【社会生活中的电磁波人教版高二物理上册知识点】人教版高二物理知识点
社会生活中的电磁波高二物理上册知识点
社会生活中的电磁波高二物理上册知识点
社会生活中的电磁波人教版高二物理上册知识点
电磁波:从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波. 正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波.
电磁波谱是无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线.
应用:
◆无线电波用于通信等
◆微波用于微波炉
◆红外线用于遥控、热成像仪、红外制导导弹等
◆可见光是所有生物用来观察事物的基础
◆紫外线用于医用消毒,验证假钞,测量距离,工程上的`探伤等
◆X射线用于CT照相
◆伽玛射线用于治疗,使原子发生跃迁从而产生新的射线等.
◆无线电波.无线电广播与电视都是利用电磁波来进行的.
新人教版高二物理上册知识点到这里就结束了,希望能帮助大家提高学习成绩。
高二物理第十四章 电磁波知识精讲 人教实验版
高二物理第十四章电磁波知识精讲人教实验版一. 本周教学内容:第十四章电磁波[知识要点]1. 理解电磁感应现象与掌握电磁波的概念。
2. 理解电磁振荡的产生原理,掌握它的周期、频率的求法。
3. 了解电磁波的发射和接收的途径与方式,能对无线电波进展波段划分。
4. 了解电磁波在我们日常生活、生产与科技领域中的应用。
二. 重点、难点解析:本章知识结构:〔一〕电磁振荡问题1. 电磁振荡的产生和过程〔1〕振荡电流的产生①振荡电流:大小和方向都做周期性迅速变化的电流。
②振荡电路:能够产生振荡电流的电路。
③LC回路:自感线圈L和电容器C组成的电路,LC回路是一种最简单的振荡电路。
〔2〕电磁振荡:在振荡电路产生振荡电流的过程中,电容器极板上电荷、极板上电压、电路中电流以与跟电荷有关的电场、与电流有关的磁场都发生周期性变化的现象叫电磁振荡现象。
在电磁振荡过程中,电场能和磁场能同时发生周期性变化。
注意:在分析电磁振荡的过程时,首先要明确电容器和自感线圈在电路中的作用。
电容器在电路中有充电和放电的作用,自感线圈在电路中有阻碍电流变化的作用,线圈中自感电动势的大小和电流的变化率成正比,方向总是阻碍电流的变化。
〔3〕振荡中的电流、极板上的电荷量、电压、电场能和磁场能的对应关系:①图象说明如下列图。
说明:在振荡电路中,电容器极板上的电荷量与电压、电路中的电流,都是按正弦〔或余弦〕规律变化的,它们对时间的变化是不均匀的——在最大值处,变化率最小;在零值处,变化率最大。
〔可依据斜率判断,图线的斜率即代表该量变化率,即变化快慢。
〕振荡电流tq I ∆∆=,由极板上电荷量的变化率决定,与电荷量的多少无关。
两板间的电压U =q c,由极板上电荷量的多少决定〔电容C 恒定〕,与电荷量的变化率无关。
线圈中的自感电动势E 自=Lt i ∆∆,由电路中的电流变化率决定,而与电流的大小无关。
2. 阻尼振荡和无阻尼振荡〔1〕无阻尼振荡:没有能量损耗的电磁振荡。
高二物理知识点电磁波的能量传播与应用
高二物理知识点电磁波的能量传播与应用电磁波是由电场和磁场相互关联而产生的波动现象,它具有传播能量的特性,在日常生活中有着广泛的应用。
本文将从电磁波的能量传播和应用两个方面展开讨论。
一、电磁波的能量传播1. 电磁波的特性电磁波是一种横波,它的传播速度等于真空中光速,即3×10^8米/秒。
根据波长的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同频段。
2. 电磁波的传播介质电磁波可以在真空中传播,也可以在各种介质中传播,如空气、水、固体等。
不同介质对电磁波的传播具有不同的影响,如折射、反射和散射等现象。
3. 能量传播的方式电磁波通过电场和磁场的相互作用而传播能量。
当电磁波传播到一个物体上时,电磁波的能量可以被吸收、反射或散射。
其中,吸收能量意味着能量被物体吸收并转化为其他形式的能量,如热能。
反射能量意味着能量被物体反射回去,不被物体吸收。
散射能量意味着能量在物体表面发生了改变,并以不同的方向散射出去。
4. 能量的电磁传导电磁波也可以通过导体进行能量传导。
当电磁波遇到导体时,会在导体中引起电磁感应,产生感应电流,从而使电磁波的能量在导体中传导。
二、电磁波的应用1. 通信技术电磁波在通信技术中有着广泛的应用。
无线电波用于无线电通信,微波被应用于卫星通信和雷达技术,红外线被应用于遥控器和红外线通信等。
2. 医学影像技术X射线和γ射线是医学影像技术中常用的电磁波。
X射线被用于拍摄骨骼结构和检测肿瘤等,γ射线则用于放射性同位素的检测和治疗。
3. 太阳能利用太阳能是利用可见光的电磁波来提供能量的。
通过太阳能电池板的吸收转换,可将太阳能转化为电能,实现可持续的能源利用。
4. 遥感技术电磁波的各种频段被广泛用于遥感技术,如红外线和微波用于气象预报和地球观测,可见光和红外线用于卫星摄影和地质勘探等。
5. 家电设备电磁波的应用还体现在家电设备中,如电视和无线网络。
电视通过接收无线电波信号来播放节目,无线网络通过微波信号传输数据。
高二物理电磁波知识点
高二物理电磁波知识点高二物理电磁波学问点(一)麦克斯韦电磁场理论1、电磁场理论的核心之一:改变的磁场产生电场在改变的磁场中所产生的电场的电场线是闭合的(涡旋电场)理解:①匀称改变的磁场产生稳定电场;②非匀称改变的磁场产生改变电场。
2、电磁场理论的核心之二:改变的电场产生磁场麦克斯韦假设:改变的电场就像导线中的电流一样,会在空间产生磁场,即改变的电场产生磁场理解:①匀称改变的电场产生稳定磁场;②非匀称改变的电场产生改变磁场。
(二)电磁波1、电磁场:假如在空间某区域中有周期性改变的电场,那么这个改变的电场就在它四周空间产生周期性改变的磁场;这个改变的磁场又在它四周空间产生新的周期性改变的电场,改变的电场和改变的磁场是相互联系着的,形成不行分割的统一体,这就是电磁场。
这个过程可以用下图表达:2、电磁波:电磁场由发生区域向远处的传播就是电磁波。
3、电磁波的特点:(1)电磁波是横波,电场强度E 和磁感应强度B按正弦规律改变,二者相互垂直,均与波的传播方向垂。
(2)电磁波可以在真空中传播,速度和光速相同。
(3)电磁波具有波的特性。
(三)赫兹的电火花赫兹视察到了电磁波的反射、折射、干涉、偏振和衍射等现象,他还测量出电磁波和光有相同的速度.这样赫兹证明了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕获到了电磁波。
高二物理学问点放射性同位素:有些同位素具有放射性,叫做放射性同位素。
同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。
正电子的发觉:用粒子轰击铝时,发生核反应。
1934年,约里奥居里夫妇发觉经过α粒子轰击的铝片中含有放射性磷衰变:原子核由于放出某种粒子而转变成新核的改变称为衰变在原子核的衰变过程中,电荷数和质量数守恒半衰期:放射性元素的原子核的半数发生衰变所须要的时间,称该元素的半衰期。
放射性元素衰变的快慢是由核内部自身因素确定的,跟原子所处的化学状态和外部条件没有关系。
高二物理总结掌握电磁波的特性与应用
高二物理总结掌握电磁波的特性与应用电磁波是一种脱离物质媒介传播的波动现象,在现代科技与生活中起到了不可忽视的作用。
本文将总结高二物理中关于电磁波的特性和应用的知识,让我们一起来了解它的奥秘。
一、电磁波的特性电磁波具有以下重要特性:1.波长和频率:电磁波的波长和频率之间有一定的关系,即波速等于频率乘以波长。
在电磁波谱中,波长从长到短分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线,频率从低到高相应地增加。
2.传播特性:电磁波具有直线传播、波行相同时同时振动、可通过真空和透明介质传播等特点。
这些特性使得电磁波可以在太空中传播,也能在大气中传播至地球表面。
3.干涉和衍射现象:根据电磁波的波动性质,它们可以产生干涉和衍射现象。
干涉使波的振幅增强或衰减,衍射使波传播方向发生偏折,这些现象在科学研究和技术应用中得到广泛应用。
4.吸收和反射:当电磁波遇到不同的物质时,会发生吸收和反射现象。
不同物质对于电磁波的吸收和反射程度不同,这一现象被应用于红外线热像仪、光波导纤维等技术中。
二、电磁波的应用电磁波的特性使得它有广泛的应用领域,下面我们将介绍一些常见的应用场景:1.通信技术:无线电波和微波被广泛用于通信领域。
无线电波可以通过天线传输信息,如收听广播、手机通信等。
微波具有短波长和高频率,适用于无线网络、卫星通信以及雷达等应用。
2.医学影像:X射线是一种高能电磁波,通过其可进行医学影像的拍摄。
医生可以借助X射线了解内部组织和骨骼情况,帮助诊断疾病。
3.遥感技术:利用电磁波谱的不同波长,可以进行地球观测和遥感图像的获取。
红外线和可见光被用于制作高分辨率的卫星地图,用于资源勘探、气象预测等领域。
4.光波导纤维:光波导纤维利用光的全反射原理,将光信号通过纤维进行传输。
它被广泛用于通信传输、高速宽带网络以及医学激光手术等领域。
5.激光技术:激光是一种高度聚焦的电磁波,具有高亮度、高单色性和高方向性的特点。
激光器在医疗、制造业、科学研究等众多领域发挥着重要作用,如激光切割、激光打印、激光医疗等。
人教版高中物理选修 电磁波基础知识梳理
第十四章电磁波14.1 电磁波的发现一、电磁场和电磁波1.麦克斯韦电磁理论的两个基本假设(1)变化的磁场能够在周围空间产生电场。
(2)变化的电场能够在周围空间产生磁场注意:变化的磁场产生的电场,叫感应电场或涡流电场,它的电场线是闭合的;静电荷周围产生的电场叫静电场,它的电场线由正电荷起到负电荷止,是不闭合的。
二、电磁波的产生机理1.电磁场变化的电场和变化的磁场交替产生,形成不可分割的统一体,称为电磁场。
2.电磁波(1)电磁波的产生:变化的电场和磁场交替产生而形成的电磁场是由近及远地传播的,这种变化的电磁场在空间的传播称为电磁波。
(2)电磁波的特点:①电磁波在空间传播不需要介质;在真空中,电磁波的传播速度与光速相同:即 v真空= c = 3.0×108m/s 光是一种电磁波②电磁波是横波,在空间传播时任一位置上(或任一时刻)E、B、v三矢量相互垂直且E和B随时间做正弦规律变化。
③电磁波具有波的共性,能产生干涉、衍射等现象,电磁波与物质相互作用时,能发生反射、吸收、折射等现象,电磁波也是传播能量的一种形式。
④相邻两个波峰(或波谷)之间的距离等于电磁波的波长,一个周期的时间,电磁波传播一个波长的距离。
⑤电磁波的频率为电磁振荡的频率,由波源决定,与介质无关。
(3)电磁波的波速、波长与频率的关系:v=λf,λ=vf 。
注意:①同一种电磁波在不同介质中传播时,频率不变(频率由波源决定),波速、波长发生改变,在介质中的速度为v=c(n为介质对电磁波的折射率),在介质中的速n度都比在真空中的速度小.②不同电磁波在同一种介质中传播时,传播速度不同,频率越高波速越小,频率越低波速越大.三、赫兹的电火花一发现了电磁波1.赫兹实验赫兹观察到:当感应圈的两个金属球间有火花跳过时,导线环两个小球间也跳过火花。
据此实验,赫兹在人类历史上首先捕捉到了电磁波。
2.赫兹的其他成果赫兹观察到了电磁波的反射、折射、干涉、偏振和衍射等现象,测量证明了电磁波在真空中具有与光相同的速度c,证实了麦克斯韦关于光的电理论。
高二物理知识点电磁波
高二物理知识点电磁波高二物理知识点:电磁波一、电磁波的概念和特征电磁波是一种能量的传播方式,是电场和磁场相互作用而形成的波动现象。
它具有以下几个特征:1.1 频率和波长电磁波具有一定的频率和波长,频率指的是单位时间内波动次数,波长指的是连续波峰之间的距离。
根据频率和波长的关系,我们可以计算出电磁波在真空中的传播速度,即光速。
1.2 光的频谱电磁波按照频率从低到高可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同波段。
其中,可见光是人眼可以感知的电磁波。
二、电磁波的产生和传播电磁波的产生和传播是通过振荡电荷和传播相互作用而实现的。
2.1 振荡电荷当电荷在电磁场中振荡时,就会发射电磁波。
这种振荡电荷可以由交流电源、天线等产生。
2.2 传播相互作用电磁波的传播需要电场和磁场相互作用,在真空中,电场和磁场彼此垂直且互相垂直。
三、电磁波的应用领域电磁波在现代社会中有着广泛的应用,包括通信、能量传输、医学等方面。
3.1 无线通信电磁波的不同频段被应用于不同的通信方式,如无线电、电视、手机等。
无线通信主要依靠电磁波的传播与接收,将信息转化为信号的形式传递。
3.2 能量传输微波炉利用微波的特性,将电磁波转化为热能,实现食物的加热。
同样地,太阳能和无线能量传输也是利用了电磁波能量的传递特性。
3.3 医学应用X射线和γ射线是医学影像学中常用的检查手段,它们可穿透人体组织,从而获得关于骨骼和内部器官的图像信息。
四、电磁波的安全性尽管电磁波在现代社会中具有重要应用价值,但我们也需要注意电磁波的安全问题。
4.1 电磁辐射高频电磁波辐射对人体健康会产生一定的影响,比如电磁辐射可能引起电离辐射损伤等。
因此,在使用电子设备时要注意合理使用,避免长时间暴露于辐射源附近。
4.2 电磁波屏蔽技术为了减少电磁波的传播和接收,我们可以采用一些屏蔽技术,如铅板、金属网等,来降低电磁波的辐射。
五、总结电磁波是电场和磁场相互作用而形成的一种能量传播方式。
高二物理知识点梳理电磁波的产生与传播
高二物理知识点梳理电磁波的产生与传播电磁波是围绕着我们日常生活中的无处不在的一种物理现象,它既以光的形式表现出来,也包括了无线电、微波、X射线等。
电磁波是由电场和磁场相互关联而产生的,并能够在空气、水和真空中传播。
一、电磁波的产生电磁波的产生源自振荡电荷或电流。
当电荷被激发或移动时,就会产生变化的电场。
这种变化的电场会相互作用并激发出磁场的变化。
由于电场和磁场的相互关系,使得电磁波产生的振幅随着时间的推移而不断膨胀和收缩。
这种电场和磁场相互支持、相互作用的波动现象就是电磁波的产生。
二、电磁波的传播电磁波的传播是通过电场和磁场的相互作用完成的。
电磁波在真空中传播的速度被称为光速,其大小约为每秒3亿米。
这意味着从太阳发出的光线需要大约8分钟才能到达地球。
在介质中传播时,电磁波会遇到介质阻力的影响。
当电磁波传播进入一个介质时,电场和磁场会与介质中的电荷和电流相互作用。
这种相互作用会使电磁波的速度减小,波长缩短。
这就是我们经常听到的光在折射时的现象。
三、电磁波的分类根据电磁波的波长和频率,我们可以将其分为不同的类型。
根据波长的长短可以将电磁波分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线七个不同的区域。
- 无线电波的波长较长,适合用于无线通信和广播。
- 微波的波长较短,常用于雷达和微波炉等技术领域。
- 红外线是一种具有热效应的辐射,被广泛应用于红外线加热和红外线摄像。
- 可见光是人眼可以看到的光线范围,包括了红、橙、黄、绿、蓝、靛、紫七个颜色。
- 紫外线具有较高的能量,被广泛应用于紫外线灯、紫外线消毒等场景。
- X射线是通过高速电子撞击物质而产生的,具有强穿透力,被广泛应用于医学和工业领域。
- γ射线是最高能量的电磁波,具有很强的穿透能力,常用于癌症治疗和杀菌。
总结:电磁波作为物理学中的重要概念,是由电场和磁场相互作用所产生的波动现象。
它在我们生活中的应用广泛,从日常的无线通信到医学和工业领域的应用,都离不开电磁波。
高二年级物理电磁波传播基础课堂笔记
高二年级物理电磁波传播基础课堂笔记电磁波传播是物理学中的一个重要概念,也是高中物理课程中的重点内容之一。
理解电磁波传播的基础知识对于学生理解光的本质和电磁波的应用具有重要意义。
本文将从电磁波的概念入手,分析电磁波的传播特性和相关公式,并通过具体操作方法的举例,帮助学生更好地理解和掌握电磁波传播的基础知识。
一、电磁波的概念和传播特性首先,我们要明确电磁波的概念。
电磁波是由电场和磁场相互作用而产生的一种能量传输方式,在真空中以光速传播。
它包括了不同频率和波长的电磁辐射,如射线、微波、可见光等。
电磁波具有以下几个基本特性:1. 频率和波长:电磁波的频率和波长是密切相关的。
频率指的是单位时间内电磁波的振动次数,单位为赫兹(Hz);波长指的是电磁波的振动周期内传播的距离,单位为米(m)。
频率和波长之间的关系由公式v = fλ表示,其中v为电磁波的传播速度。
2. 传播速度:电磁波在真空中的传播速度为光速,约为3.00×10^8m/s。
这也是电磁波的一大特点,决定了它在空间中的传播时间和传播距离。
3. 传播方向:电磁波在传播过程中呈直线传播,遵循直线传播的法则。
当电磁波遇到介质时,会发生折射、反射、衍射等现象,导致传播方向的改变。
这些现象都是电磁波传播特性的重要表现。
二、电磁波传播公式的应用为了更好地理解电磁波传播的基础知识,我们需要掌握一些与之相关的公式。
以下是一些常用的公式及其应用方法:1. 传播速度公式:v = fλ这是电磁波传播速度公式,其中v为电磁波的传播速度,f为电磁波的频率,λ为电磁波的波长。
通过这个公式,我们可以计算出电磁波的传播速度,也可以根据已知的传播速度和频率或波长计算出另一个未知量。
2. 折射定律公式:n₁sinθ₁ = n₂sinθ₂这是描述电磁波在两种不同介质中传播时的折射定律公式,其中n₁和n₂分别为两种介质的折射率,θ₁和θ₂为电磁波的入射角和折射角。
通过这个公式,我们可以计算出电磁波在介质中的折射角,进而推导出折射率和入射角之间的关系。
高二物理知识点总结电磁波篇
高二物理知识点总结电磁波篇高二物理知识点总结——电磁波篇电磁波是由电场和磁场相互作用产生的一种波动现象。
在高二物理学习中,学生们需要了解电磁波的基本概念、特性以及应用。
本文将对高二物理的电磁波知识进行总结,从电磁波的产生、分类以及在日常生活及科学研究中的应用等方面进行探讨。
一、电磁波的产生电磁波的产生是因为变化的电流或电荷在空间中产生了电场和磁场的变化,从而形成了电磁波。
具体来说,当电流通过一个导线时,会在导线周围产生一个磁场,同时磁场的变化也会导致电场的变化,从而产生了电磁波。
二、电磁波的分类根据波长或频率的不同,电磁波可以分为不同的类型,包括了无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
1. 无线电波无线电波是波长最长的电磁波,波长范围在1mm至100000km之间。
无线电波的应用广泛,如无线通信、广播电视等。
2. 微波微波是波长在1mm至1m之间的电磁波。
微波广泛应用于雷达、无线通信、微波炉等领域。
3. 红外线红外线是波长在0.75μm至1mm之间的电磁波。
红外线广泛用于红外线摄像机、红外线加热等领域。
4. 可见光可见光是波长在380nm至750nm之间的电磁波,人眼可以看到的光线属于可见光。
可见光广泛应用于照明、显示技术等领域。
5. 紫外线紫外线是波长在10nm至380nm之间的电磁波。
紫外线可用于杀菌、紫外线检测等领域。
6. X射线X射线是波长在0.01nm至10nm之间的电磁波。
X射线广泛应用于医学影像学、材料检测等领域。
7. γ射线γ射线是波长小于0.01nm的电磁波,也是波长最短的电磁波。
γ射线广泛用于核医学、辐射治疗等领域。
三、电磁波的应用电磁波的应用在现代社会中无处不在,涉及到许多领域和行业。
1. 电磁波在通信领域中的应用电磁波的一个重要应用领域是通信领域。
各种类型的电磁波被广泛用于移动通信、卫星通信、电视广播、无线网络等。
这些通信技术都离不开电磁波的传输和接收。
高二物理第四章电磁波及其应用知识点总结
高二物理第四章电磁波及其应用知识点总结高二物理第四章电磁波及其应用知识点总结1、变化的磁场产生电场,变化的电场产生磁场2、变化的电场和磁场交替产生,由近及远的传播。
麦克斯韦方程组深刻指出,这种电场和磁场的传播是一种波动过程。
由此,一个伟大的预言诞生了:空间可能存在电磁波!3、与机械波不同,电磁波可以在真空中传播,这是因为电磁波的传播靠的是电场和磁场的相互激发,而电场和磁场本身就是一种形式的物质。
4、那么,电磁波以多大的'速度传播?麦克斯韦推算出一个出人意料的答案:电磁波的速度等于光速!他还由此提出了光的电磁理论:光是以波动形式传播的一种电磁振动。
5、赫兹证实了麦克斯韦关于光的电磁理论。
6、波速=波长频率7、电磁波的频率范围很广。
无线电波、光波、x射线射线都是电磁波。
其中,可以看见的光波可见光,只是电磁波中的一小部分。
按电磁波的波长或频率大小的顺序把他们排列成谱,叫做电磁波谱。
8、无线电波:波长大于一频率小于三9、无线电波:波长大于1mm(频率小于300000MHz)的电磁波是无线电波。
(广播,微波炉,电视,射电望远镜)红外线:所有物体都发射红外线,热物体的红外辐射比冷物体的红外辐射强。
紫外线:人眼看不到比紫外线波长更短的电磁波。
可以灭菌,发出荧光,可防伪。
X射线:x射线对生命物质有较强的作用,x射线能够穿透物质,可以用来检查人体内部器官,在工业上,利用x 射线检查金属内部有无缺陷。
y射线:波长最短的电磁辐射是y射线,它具有很高的能量。
y射线能破坏生命物质。
可以治疗某些癌症,也可以用于探测金属部件内部的缺陷。
10、电磁波具有能量,电磁波是一种物质。
11、波长在黄绿光附近,辐射的能量最强。
我们的眼睛正好能感受这个区域的电磁辐射。
12、把信息加到载波上,就是使载波随信号而变化,这种技术叫做调制。
13、一种常见的调制方式是使高频载波的振幅随信号改变,这种调制叫做调幅。
14、另一种调制方式是使高频载波的频率随信号改变,这种调制方式叫做调频。
高二物理【电磁波 波粒二象性】知识点
高二物理【电磁波波粒二象性】知识点一、电磁波1、电磁波的产生:如果某空间区域存在不均匀变化的电场,那么它就会在空间引起不均匀变化的磁场,这一不均匀变化的磁场又引起不均匀变化的电场——于是变化的电场和变化的磁场交错产生,由近及远向周围传播,形成电磁波。
2、电磁波的特点(1)电磁波时横波:根据麦克斯韦的电磁场理论,电磁波中的电场强度和磁感应强度互相垂直,而且二者均与波的传播方向垂直,因此电磁波是横波。
(2)电磁波的速度:麦克斯韦指出了光的电磁本性,他预言电磁波在真空中传播的速度等于光速。
(3)电磁波本身是一种物质,它具有能量。
(4)具有波的特征,能产生反射、折射、衍射、干涉等现象3、电磁波的发射(1)发射电磁波的振荡电路应具备以下特点(a)要有足够高的频率,频率越高,越容易向外界辐射_能量__。
(b)振荡电路的电场和磁场必须分散到尽可能大的空间,即必须用开放电路。
4、调制(a)使电磁波随各种信号而改变的技术叫做调制。
(b)调制方法调幅:使高频电磁波的振幅随信号的强弱而改变。
调频:使高频电磁波的频率随信号的强弱而改变。
5、无线电波的发射由振荡器(常用LC振荡电路)产生高频震荡电流,用调制器将需传送的电信号调制到振荡电流上,再耦合到一个开放电路中激发出无线电波,向四周发射出去。
6、电磁波的接受(1)、接收原理电磁波在传播时遇到导体会使导体中产生感应电流,所以导体可用来接收电磁波,这个导体就是接收天线。
(2)、通过电谐振来选台(a)电谐振:当接收电路的固有频率跟接收到的电磁波频率相同时,接收电路中产生的振荡电流最强,这种现象叫电谐振。
(b)调谐:使接收电路发生电谐振的过程叫调谐。
(3)、通过解调获取信号解调:把声音或图象等信号,从高频振荡电流中还原出来的过程,叫解调。
检波:调幅波的解调叫检波。
(4)、无线电波的接收天线接收到的所有的电磁波,经调谐选择出所需要的电磁波,再经解调取出携带的信号,放大后再还原成声音或图象的过程。
高二物理学习中的电磁感应与电磁波解释
高二物理学习中的电磁感应与电磁波解释在高二物理学习过程中,电磁感应与电磁波是重要的内容。
本文将就电磁感应和电磁波的概念、原理及其在实际应用中的解释进行探讨。
1. 电磁感应电磁感应是指导体中有磁场变化时,会在导体中感应出感应电动势的现象。
法拉第电磁感应定律是电磁感应的基本原理,它指出:导体中的感应电动势大小与磁场变化率成正比,与导体的长度及磁场的方向有关。
根据法拉第电磁感应定律,当导体与磁场相互运动或磁场发生变化时,导体中将会感应出感应电动势。
这一现象广泛应用在发电机、变压器等电器设备中。
例如,电动机的工作原理就是利用电磁感应产生的力矩将电能转换为机械能。
2. 电磁波电磁波是由变化的电场和磁场相互作用产生并传播的一种波动现象。
电磁波的特点包括频率、波长、速度等。
根据频率的不同,可以将电磁波分为不同的种类,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波广泛应用于通信、医学诊断、能源传输等领域。
实际生活中我们经常接触的手机信号就是通过电磁波进行传输的。
医学上的核磁共振成像(MRI)利用了电磁波的特性对人体进行成像。
3. 电磁感应和电磁波的关系电磁感应和电磁波之间存在紧密的联系。
根据麦克斯韦方程组,变化的磁场会产生电场的涡旋,而变化的电场会产生磁场的涡旋。
这种相互关系导致了电磁感应和电磁波的产生。
具体来说,当电流变化时,会产生磁场的变化,从而引起周围导体中的电磁感应;而当磁场发生变化时,会在周围产生电场的变化,从而引起周围介质中的电磁波的传播。
这种相互作用使得电磁感应和电磁波紧密联系在一起。
总结起来,电磁感应是指导体中由磁场变化引起的感应电动势的现象;而电磁波是由变化的电场和磁场相互作用产生并传播的波动现象。
电磁感应和电磁波之间存在着密切的联系,它们共同构成了电磁学的基础理论,对于我们理解和应用电磁现象具有重要的意义。
以上便是高二物理学习中的电磁感应与电磁波解释的相关内容。
通过深入了解电磁感应和电磁波的概念和原理,我们能够更好地理解它们在实际应用中的重要性。
高二物理电磁波及其应用知识点总结
高二物理电磁波及其应用知识点总结电磁波不需要依靠介质传播,各种电磁波在真空中速率固定,速度为光速。
小编准备了高二物理电磁波及其应用知识点,希望你喜欢。
1. 振荡电流和振荡电路大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。
2. 电磁振荡及周期、频率(1)电磁振荡的产生(2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁场能的相互转化。
(3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到最大值。
给电容器反向充电时,情况相反,电容器正反方向充放电一次,便完成一次振荡的全过程。
(4)振荡周期和频率:电磁振荡完成一次周期性变化所用时间叫电磁振荡的周期,一秒内完成电磁振荡的次数叫电磁振荡的频率。
对于LC振荡电路,(5)电磁场:变化的电场在周围空间产生磁场,变化磁场在周围空间产生电场,变化的电场和磁场成为一个完整的整体,就是电磁场。
3. 电磁波(1)电磁波:电磁场由近及远的传播形成电磁波(2)电磁波在空间传播不需要介质,电磁波是横波,电磁波传递电磁场的能量。
(3)电磁波的波速、波长和频率的关系,4. 电磁波的发射,传播和接收(1)发射将电磁波发射出去,首先要有开放电路,其次,发射出去的电磁波要携带有信号,因而必须把要传递的电信号加别高频等幅振荡电流上去。
我们把将电信号加到高频等幅振荡电流上去的过程叫调制。
(2)传播电磁波传播方式一般有三种:地波、天波、直线传播地波:沿地球表面空间向外传播,适于长波、中波和中短波,传播距离为几百公里。
天波:依靠电离层的反射来传播,适于传播短波,传播距离为几千公里。
直线传播:在短距离内(几十公里)依靠波的直进,直接在空间传播多用于传播微波,需有中继站接力才能传远。
(3)接收① 电谐振、调谐② 检波四. 规律技巧电磁波的波速问题真空中电磁波的波速与光速相同,1. 同一种电磁波在不同介质中传播时,频率不变(频率电波源决定)、波速、波长发生改变,在介质中的速度都比在真空中速度小。
高二物理知识点梳理电磁波与光的性质
高二物理知识点梳理电磁波与光的性质高二物理知识点梳理:电磁波与光的性质一、引言物理学是一门研究自然界现象和规律的科学,其中电磁波与光学是高中物理中重要的内容之一。
电磁波与光学是研究电磁现象和光的传播性质的学科,本文将对高二物理的几个关键知识点进行梳理,包括电磁波的基本性质、光的特性以及其在光学器件中的应用等。
二、电磁波的基本性质1. 定义电磁波是一种由电场和磁场交替产生、相互垂直、且能在真空和介质中传播的波动现象。
在电磁波的传播中,电场和磁场的变化不仅产生电磁波的传递,还相互耦合影响。
2. 电磁波的特性(1)频率和波长:电磁波的频率指的是单位时间内,电磁波通过同一点的次数,用赫兹(Hz)表示。
波长是电磁波传播一次所经过的距离,用米(m)表示,并与频率之间存在简单的关系。
(2)速度:电磁波在真空中的传播速度称为光速,其数值约为3.00 × 10^8 m/s(表示为c)。
光速是真空中一切电磁波的共同传播速度。
(3)能量:电磁波能量与其振幅的平方成正比,与频率有关。
能量越大,波长越短,频率越高。
三、光的特性1. 光的波动性(1)干涉与衍射:光的波动性表现在干涉与衍射现象中。
干涉是指两束或多束光线叠加出现明暗条纹的现象,衍射是指光通过物体的缝隙或在物体边缘产生弯曲现象。
这些现象可以解释光的波动性。
(2)双缝干涉实验:双缝干涉实验是研究光的波动性的重要实验之一。
通过实验,我们可以观察到光条纹的干涉现象,并进一步验证光是一种波动现象。
2. 光的粒子性(1)光电效应:光电效应是指当光照射到金属表面时,光子与金属表面的电子发生碰撞,电子被击出金属表面形成光电子。
这一现象说明光也具有粒子性。
(2)光的能量量子:根据普朗克量子假设,光的能量是由光子携带的。
光子能量与频率成正比,光的能量是离散的,不连续的。
四、光学器件的应用1. 光的反射(1)反射定律:光线在平面镜上的反射遵循反射定律,即入射角等于反射角,入射光线、反射光线和法线共面。
人教版高二物理电磁波及其应用学习要点汇总
人教版高二物理电磁波及其应用学习要点汇总
物理效果不时止步不前,刻苦用功但是又找不到方法,不知道效果究竟出在哪里的你是不是很愁呢?高二物理电磁涉及其运用学习要点大家不要偷懒哦!赶快来动动大脑吧~~ 一、电磁波的发现:高二物理上学期电磁波的发现同步习题~
1、电磁场实际的中心之一:变化的磁场发生电场
在变化的磁场中所发生的电场的电场线是闭合的(涡旋电场)◎了解: (1) 平均变化的磁场发生动摇电场
(2) 非平均变化的磁场发生变化电场>>>2021年高二物理电磁波的发现知识点~
二、电磁波谱:高二物理«电磁波谱»练习题及答案??~
1.光的电磁说
(1)麦克斯韦计算出电磁波传达速度与光速相反,说明光具有电磁实质>>>2021年高二上册物理电磁波谱知识点~
三、电磁波的发射和接纳:高二物理«电磁波的发射和接纳»课后练习题
1、电谐振:当接纳电路的固有频率跟接纳到的电磁波的频率相反时,接纳电路中发生的振荡电流最强,这种现象叫做电谐振。
2、调谐:使接纳电路发生电谐振的进程。
经过改动电容器电容来改动调谐电路的频率。
3、检波:从接纳到的高频振荡中〝检〞出所携带的信号
四、信息化社会;高二物理«信息化社会»课后习题及答案?
1、电视
复杂地说:电视信号是电视台先把影像信号转变为可以发射的电信号,发射出去后被接纳的电信号经过恢复,被恢复为光的图象重现荧光屏。
电子束把一幅图象依照各点的明暗状况,逐点变为强弱不同的信号电流,经过天线把带有图象信号的电磁波发射出去。
高中高二选修一物理电磁波及其应用知识点
高中高二选修一物理电磁波及其应用知识点
高中高二选修一物理电磁波及其应用知识点
物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。
小编准备了高二选修一物理电磁波及其应用知识点,希望你喜欢。
1.信息:各种事物发出的有意义的消息。
人类历史上,信息和信息传播活动经历了五次巨大的变革是:①语言的诞生;②文字的诞生;③印刷术的诞生;④电磁波的应用;⑤计算机技术的应用。
(要求会正确排序)2.早期的信息传播工具:烽火台,驿马,电报机,电话等。
3.人类储存信息的工具有:①牛骨﹑竹简、木牍,②书,③磁盘﹑光盘。
4.所有的波都在传播周期性的运动形态。
例如:水和橡皮绳传播的是凸凹相间的运动形态,而弹簧和声波传播的是疏密相间的运动形态。
5.机械波是振动形式在介质中的传播,它不仅传播了振动的形式,更主要是传播了振动的能量。
当信息加载到波上后,就可以传播出去。
6.有关描述波的性质的物理量:①振幅A:波源偏离平衡位置的最大距离,单位是m.②周期T:波源振动一次所需要的时间,单位是s.③频率f:波源每秒类振动的次数,单位是Hz.④波长:波在一个周期类传播的距离,单位是m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【社会生活中的电磁波人教版高二物理上册知识点】人教版高二物理知识点
电磁波:从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波. 正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波.
电磁波谱是无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线.
应用:
◆无线电波用于通信等
◆微波用于微波炉
◆红外线用于遥控、热成像仪、红外制导导弹等
◆可见光是所有生物用来观察事物的基础
◆紫外线用于医用消毒,验证假钞,测量距离,工程上的探伤等
◆X射线用于CT照相
◆伽玛射线用于治疗,使原子发生跃迁从而产生新的射线等.
◆无线电波.无线电广播与电视都是利用电磁波来进行的.
新人教版高二物理上册知识点到这里就结束了,希望能帮助大家提高学习成绩。
感谢您的阅读!。