高考文科数学复习第轮极坐标与参数方程
高考数学三轮冲刺课之解答题5极坐标与参数方程课件(37张ppt)
型
专
练
3
4
高中数学
难度及考查内容:
1. 难度:以基础、中等题为主.
题
型
专
练
1
2.考查内容:
(1) 参数方程化为普通方程:基本思路是消去参数.
(2)普通方程化为参数方程:曲线上任意一点的坐标与参数的关系比较明显且关系相对简单;当参数取
某一值时,可以唯一确定x,y 的值.
(3)极坐标方程与直角坐标方程互化:进行极坐标方程与直角坐标方程互化的关键是熟练掌握互化公式:
高中数学
高考数学冲刺之解答题5
极坐标与参数方程
主讲人: |
高中数学
解答题 01
解答题 04
三角函数与解三角形
函数与导数
解答题 02
解答题 05
立体几何
极坐标与参数方程
解答题 03
统计与概率
2
高中数学
高考冲刺分析
参数方程与极坐标方程在高考中往往综合考查,各自的特征都较为突出,都是极坐标方程转
化为直角坐标方程、参数方程方程转化为普通方程,最后转化为平面几何知识进行解决.
第一步:消参数(注意参数的取值对普通方程中x及y的取值范围的影响)常用
代入法、加减消元法、三角恒等变换;
第二步:化简求出方程.
高中数学
参数几何意义解题模板:
第一步:先把参数方程代入曲线方程;
第二步:求出t1,t2,解决问题 .
当堂
总结
利用ρ,ϴ的几何意义解题模板:
第一步:将角的值代入有关ρ的方程;
高中数学
两种互化解题模板:
1.极坐标和直角坐标的互化
题
型
专
练
1
人教A版高考总复习一轮文科数学精品课件 选修4—4 坐标系与参数方程 第1节 极坐标方程与参数方程
π
θ=4代入 ρ2-2ρcos
+1=0,得 ρ2-3 2ρ+1=0,∴ρ1+ρ2=3 2,ρ1ρ2=1,∴|AB|=|ρ1-ρ2|
= (1 + 2 )2 -41 2 =
(3 2)2 -4 × 1 = 14.
θ-4ρsin θ
考向2参数方程和极坐标方程化为直角坐标方程
例2(2022全国甲,文22)在直角坐标系xOy中,曲线C1的参数方程为
(1)极坐标系:如图所示,在平面内取一个 定点
叫做极点;自极点O引一条 射线
再选定一个 长度
(通常取 弧度
O,
Ox,叫做极轴;
单位、一个 角度
)及其正方向(通常取
单位
逆时针 方
向),这样就建立了一个极坐标系.
|OM|
(2)极坐标:设M是平面内一点,极点O与点M的距离
叫做点M
的极径,记为 ρ ;以极轴Ox为始边,射线OM为终边的角 xOM 叫做点
选修4—4 第1节 极坐标方程与参数方程
内
容
索
引
01
强基础 固本增分
02
研考点 精准突破
课标解读
1.了解在直角坐标系伸缩变换作用下平
面图形的变化情况.
2.能用极坐标表示点的位置,理解在两个
坐标系中表示点的位置的区别,能进行极
坐标和直角坐标的互化.
3.能在极坐标系中给出简单图形的方程,
通过比较这些图形在两个坐标系中的方
程,理解用方程表示平面图形时选择适当
坐标系的意义.
4.了解参数方程及参数的意义.
5.能选择适当的参数写出直线、圆和圆
锥曲线的参数方程.
衍生考点
核心素养
极坐标系与参数方程一轮复习
极坐标系与参数方程♦知识梳理 、极坐标在象限确定.二、常见曲线的极坐标方程 1、圆的极坐标方程(1) 圆心在极点,半径为r 的圆的极坐标方程是 _____ ;(2) ______________________________________________________________ 圆心在极轴上的点(a,0)处,且过极点0的圆的极坐标方程是 _________________________ (3)圆心在点(a,处且过极点的圆0的极坐标方程是 ___________ 。
2、直线的极坐标方程(1) 过极点且倾斜角为 的直线的极坐标方程是 __________ ;(2) _______________________________________________________ 过点(a,0),且垂直于极轴的直线的极坐标方程是 ___________________________________ 三、常见曲线的参数方程1、极坐标定义:M 是平面上一点,表示0M 的长度,是MOx ,则有序实数实数对(,),叫极径,叫极角;一般地,2、极坐标和直角坐标互化公式:COS2 2 x 2y sin或t tany (x 0)的象限由点(x, y )所[0,2 ), 0x y第一节 平面直角坐标系中的伸缩、平移变换知识点】点P(x,y)的对应点为P'(x',y')。
称 为平面直角坐标系中的伸缩变换 定义 2: 在平面内,将图形 F 上所有点按照同一个方向,移动同样长度,称为图形F 的平移。
若以向量a 表示移动的方向和长度,我们也称图形 F 按向量a 平移. F 上任意一点P 的坐标为(x, y),向量a (h, k),平移后因为平移变换仅改变图形的位置,不改变它的形状和大小.所以,在 平移变换作用下,曲线上任意两点间的距离保持不变。
【典例1】(2014年高考辽宁卷(文))将圆x 2 + /= 1上每一点的横坐标保持不变,纵坐 标变为原来的 2 倍,得曲线 C. (I) 写出 C 的参数方程;(II )设直线1: 2x + y - 2二0与C 的交点为P i ,P 2,以坐标原点为极点,x 轴正半轴为极 轴建立极坐标系,求过线段 P i P 2的中点且与I 垂直的直线的极坐标方程.练习:定义 1:设 P(x, y) 是平面直角坐标系中的任意一点,在变换x' x( y' y(00))的作用下,在平面直角坐标系中,设图形 的对应点为P(x, y )则有:即有:x x h, y y k在平面直角坐标系中,由 (x,y) (h,k) (x,y)xh x h 所确定的变换是一个平移变换。
2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第二课时 参数方程
第二课时 参数方程考试要求 1.了解参数方程,了解参数的意义;2.能选择适当的参数写出直线、圆和椭圆的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数)1.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.1.思考辨析(在括号内打“√”或“×”)(1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( ) 答案 (1)√ (2)√ (3)√ (4)×解析 (4)当t =π3时,点M 的坐标为(2cos π3,4sin π3),即M (1,23),∴OM 的斜率k =2 3.2.(2019·北京卷)已知直线l 的参数方程为⎩⎨⎧x =1+3t ,y =2+4t (t 为参数),则点(1,0)到直线l 的距离是( ) A.15 B.25C.45D.65答案 D解析 由题意可知直线l 的普通方程为4x -3y +2=0,则点(1,0)到直线l 的距离d =|4×1-3×0+2|42+(-3)2=65.故选D.3.在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值是________. 答案 3解析 直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为x 29+y 24=1, 所以椭圆C 的右顶点坐标为(3,0), 若直线l 过点(3,0),则3-a =0,所以a =3.4.(2019·天津卷)设直线ax -y +2=0和圆⎩⎨⎧x =2+2cos θ,y =1+2sin θ(θ为参数)相切,则实数a =________. 答案 34解析 圆的参数方程消去θ,得 (x -2)2+(y -1)2=4. ∴圆心(2,1),半径r =2. 又直线ax -y +2=0与圆相切. ∴d =|2a -1+2|a 2+1=2,解得a =34.5.已知直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),若l 与圆x 2+y 2-4x +3=0交于A ,B 两点,且|AB |=3,则直线l 的斜率为________. 答案 ±1515解析 由⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),得y =x tan α,设k =tan α,得直线的方程为y =kx ,由x 2+y 2-4x +3=0,得(x -2)2+y 2=1,圆心为(2,0),半径为1, ∴圆心到直线y =kx 的距离为 12-|AB |24=12=|2k |k 2+1,得k =±1515.6.(易错题)设P (x ,y )是曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈[0,2π))上任意一点,则yx 的最大值为________.答案 33解析 由曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数),得(x +2)2+y 2=1,表示圆心为(-2,0),半径为1的圆,yx 表示的是圆上的点和原点连线的斜率, 设yx =k ,则原问题转化为y =kx 和圆有交点的问题, 即圆心到直线的距离d ≤r ,所以|-2k |1+k 2≤1,解得-33≤k ≤33, 所以y x 的最大值为33.考点一 参数方程与普通方程的互化1.下列参数方程与方程y 2=x 表示同一曲线的是( ) A.⎩⎨⎧x =t ,y =t 2B.⎩⎨⎧x =sin 2t ,y =sin t C.⎩⎨⎧x =t ,y =|t |D.⎩⎨⎧x =1-cos 2t 1+cos 2t ,y =tan t答案 D解析 对于A ,消去t 后所得方程为x 2=y ,不符合y 2=x ;对于B ,消去t 后所得方程为y 2=x ,但要求0≤x ≤1,也不符合y 2=x ; 对于C ,消去t 得方程为y 2=|x |,且要求y ≥0,x ∈R ,也不符合y 2=x ; 对于D ,x =1-cos 2t1+cos 2t =2sin 2t2cos 2t =tan 2t =y 2,符合y 2=x .故选D.2.把下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数);(2)⎩⎨⎧x =sin θ,y =cos 2θ(θ为参数,θ∈[0,2π)). 解 (1)由已知得t =2x -2,代入y =5+32t 中得y =5+32(2x -2). 即它的普通方程为3x -y +5-3=0.(2)因为sin 2θ+cos 2θ=1,所以x 2+y =1,即y =1-x 2. 又因为|sin θ|≤1,所以其普通方程为y =1-x 2(|x |≤1).3.(2021·全国乙卷)在直角坐标系xOy 中,⊙C 的圆心为C (2,1),半径为1. (1)写出⊙C 的一个参数方程;(2)过点F (4,1)作⊙C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.解 (1)由题意知⊙C 的标准方程为(x -2)2+(y -1)2=1, 则⊙C 的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数).(2)由题意可知,切线的斜率存在,设切线方程为y -1=k (x -4),即kx -y +1-4k =0,所以|2k -1+1-4k |k 2+1=1,解得k =±33,则这两条切线方程分别为y =33x -433+1,y =-33x +433+1, 故这两条切线的极坐标方程分别为 ρsin θ=33ρcos θ-433+1,ρsin θ=-33ρcos θ+433+1.感悟提升 1.化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法.另外,消参时要注意参数的范围.2.普通方程化为参数方程时,先分清普通方程所表示的曲线类型,结合常见曲线的参数方程直接写出. 考点二 参数方程的应用例 1 (2022·兰州模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t(t 为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为cos ⎝ ⎛⎭⎪⎫θ+π3=0.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)已知点P (3,3),曲线C 1和C 2相交于A ,B 两个不同的点,求||P A |-|PB ||的值.解(1)将⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t的参数t 消去得曲线C 1的普通方程为x 2-y 24=1.∵cos ⎝ ⎛⎭⎪⎫θ+π3=0,∴ρcos θ-3ρsin θ=0,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ可得曲线C 2的直角坐标方程为x -3y =0. (2)由题意得点P (3,3)在曲线C 2上,曲线C 2的参数方程可表示为⎩⎪⎨⎪⎧x =3+32t ′,y =3+12t ′(t ′为参数),将上述参数方程代入x 2-y 24=1得11t ′2+443t ′+4×29=0,① Δ>0,设t ′1,t ′2为方程①的两根, 则t ′1+t ′2=-43,t ′1t ′2=4×2911,∴(|P A |-|PB |)2=(|P A |+|PB |)2-4|P A ||PB |=(t ′1+t ′2)2-4t ′1t ′2=6411,∴||P A |-|PB ||=81111.感悟提升 1.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.2.过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t为参数),t 的几何意义是P 0P →的数量,即|t |表示P 0到P 的距离,t 有正负之分.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.训练1 (2022·晋中模拟)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t ∈R ,t 为参数,α∈⎝ ⎛⎭⎪⎫0,π2).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2sin θ,θ∈⎝ ⎛⎭⎪⎫π4,3π4.(1)求半圆C 的参数方程和直线l 的普通方程;(2)直线l 与x 轴交于点A ,与y 轴交于点B ,点D 在半圆C 上,且直线CD 的倾斜角是直线l 的倾斜角的2倍,△ABD 的面积为1+3,求α的值. 解 (1)由ρ=2sin θ,得ρ2=2ρsin θ,将x 2+y 2=ρ2,y =ρsin θ代入,得半圆C 的直角坐标方程为x 2+y 2=2y , ∵θ∈⎝ ⎛⎭⎪⎫π4,3π4,∴y =ρsin θ=2sin 2θ∈(1,2],x =ρcos θ=2sin θ·cos θ=sin 2θ∈(-1,1), ∴半圆C 的直角坐标方程为x 2+(y -1)2=1(1<y ≤2).由sin φ=y -1∈(0,1],cos φ=x ∈(-1,1)知,可取φ∈(0,π), ∴半圆C 的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(其中φ为参数,φ∈(0,π)).将直线l 的参数方程消去参数t ,得直线l 的普通方程为y =x tan α-2,α∈⎝ ⎛⎭⎪⎫0,π2.(2)由题意可知,A ⎝ ⎛⎭⎪⎫2tan α,0,B (0,-2),根据圆的参数方程中参数的几何意义, 结合已知条件,可得φ=2α, 所以D (cos 2α,1+sin 2α). 则点D 到直线AB 的距离d =|tan α·cos 2α-(1+sin 2α)-2|1+tan 2α=|sin αcos 2α-cos αsin 2α-3cos α| =sin α+3cos α, 又|AB |=(-2)2+⎝ ⎛⎭⎪⎫2tan α2=2sin α.∴△ABD 的面积S =12·|AB |·d =1+3tan α=1+3, ∴tan α= 3.又α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π3.考点三 参数方程与极坐标方程的综合应用例2 (2020·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos k t ,y =sin kt (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcos θ-16ρsin θ+3=0. (1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标. 解 (1)当k =1时,C 1:⎩⎪⎨⎪⎧x =cos t ,y =sin t ,消去参数t 得x 2+y 2=1,故曲线C 1是以坐标原点为圆心,1为半径的圆.(2)当k =4时,C 1:⎩⎪⎨⎪⎧x =cos 4t ,y =sin 4t ,消去参数t 得C 1的直角坐标方程为x +y =1.C 2的直角坐标方程为4x -16y +3=0. 由⎩⎪⎨⎪⎧x +y =1,4x -16y +3=0,解得⎩⎪⎨⎪⎧x =14,y =14.故C 1与C 2的公共点的直角坐标为⎝ ⎛⎭⎪⎫14,14.感悟提升 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷地解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.训练2 (2022·长春联考)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =t -2,y =t 2-2t (t 为参数),曲线C 上异于原点的两点M ,N 所对应的参数分别为t 1,t 2.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρ=2a sin θ. (1)当t 1=1,t 2=3时,直线MN 平分曲线D ,求a 的值;(2)当a =1时,若t 1+t 2=2+3,直线MN 被曲线D 截得的弦长为3,求直线MN 的方程.解 (1)因为t 1=1,t 2=3, 所以M (-1,-1),N (1,3). 所以直线MN 的方程为y =2x +1. 因为ρ=2a sin θ,所以ρ2=2aρsin θ, 又x 2+y 2=ρ2,y =ρsin θ,所以曲线D 的方程可化为x 2+(y -a )2=a 2,因为直线MN 平分曲线D ,所以直线MN 过点(0,a ),所以a =1.(2)由题意可知k MN =(t 21-2t 1)-(t 22-2t 2)(t 1-2)-(t 2-2)=(t 1-t 2)(t 1+t 2-2)t 1-t 2=3,曲线D 的方程为x 2+(y -1)2=1,设直线MN 的方程为y =3x +m ,圆心D 到直线MN 的距离为d ,则d =|m -1|2, 因为d 2+⎝ ⎛⎭⎪⎫322=12,所以⎝ ⎛⎭⎪⎫m -122+⎝ ⎛⎭⎪⎫322=1, 所以m =0或m =2,所以直线MN 的方程为y =3x 或y =3x +2.1.将下列参数方程化成普通方程.(1)⎩⎨⎧x =t 2-1,y =t 2+1(t 为参数); (2)⎩⎨⎧x =cos θ,y =sin θ⎝⎛⎭⎪⎫θ为参数,θ∈⎣⎢⎡⎦⎥⎤π2,π. 解 (1)消去参数t ,得y =x +2,由于t 2≥0,所以普通方程为y =x +2(x ≥-1),表示一条射线.(2)消去参数θ,得x 2+y 2=1,由于θ∈⎣⎢⎡⎦⎥⎤ π2,π,所以x ∈[-1,0],y ∈[0,1],所以普通方程为x 2+y 2=1(-1≤x ≤0,0≤y ≤1),表示圆的四分之一.2.(2021·全国甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),点M 为C 上的动点,点P 满足AP→=2AM →,写出点P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.解 (1)根据ρ=22cos θ,得ρ2=22ρcos θ,因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=22x ,所以曲线C 的直角坐标方程为(x -2)2+y 2=2.(2)设P (x ,y ),M (x ′,y ′),则AP→=(x -1,y ),AM →=(x ′-1,y ′). 因为AP →=2AM →,所以⎩⎪⎨⎪⎧x -1=2(x ′-1),y =2y ′,即⎩⎨⎧x ′=x -12+1,y ′=y 2. 因为点M 为C 上的动点,所以⎝ ⎛⎭⎪⎫x -12+1-22+⎝ ⎛⎭⎪⎫y 22=2, 即(x -3+2)2+y 2=4.所以点P 的轨迹C 1的参数方程为⎩⎪⎨⎪⎧x =3-2+2cos α,y =2sin α(其中α为参数,α∈[0,2π)). 所以|CC 1|=3-22,⊙C 1的半径r 1=2,又⊙C 的半径r =2,所以|CC 1|<r 1-r ,所以C 与C 1没有公共点.3.(2021·银川模拟)在平面直角坐标系xOy 中,直线l 过定点P (3,0),倾斜角为α⎝ ⎛⎭⎪⎫0<α<π2,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 交曲线C 于M ,N 两点,且|PM |·|PN |=103,求l 的参数方程.解 (1)由⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t 得⎩⎪⎨⎪⎧x =t +1t ,2y =t -1t ,∵⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=t 2+2+1t 2-t 2+2-1t 2=4, ∴x 2-(2y )2=4,即x 2-4y 2=4.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴ρ2cos 2θ-4ρ2sin 2θ=4. 即曲线C 的极坐标方程为ρ2cos 2θ-4ρ2sin 2θ=4.(2)设l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),代入x 2-4y 2=4整理得(cos 2α-4sin 2α)t 2+6t cos α+5=0,设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=5cos 2α-4sin 2α, 则|PM |·|PN |=|t 1t 2|=⎪⎪⎪⎪⎪⎪5cos 2α-4sin 2α=103.解得cos α=±22, ∵0<α<π2,∴cos α=22,∴α=π4.故l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t(t 为参数). 4.(2022·合肥检测)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)(t 为参数).在以原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若曲线C 2与曲线C 1交于点A ,B ,M (-2,2),求1|MA |-1|MB |的值.解 (1)由⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)得⎩⎪⎨⎪⎧2x =t 14-t -14,12y =t 14+t -14, 两式平方相减得12y 2-2x 2=4,即y 28-x 22=1.又y =2(t 14+t -14)≥22(t >0), ∴曲线C 1的普通方程为y 28-x 22=1(y ≥22).曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0,化简,得ρsin θ-ρcos θ-4=0,又x =ρcos θ,y =ρsin θ,∴y -x -4=0,∴曲线C 2的直角坐标方程为x -y +4=0.(2)设曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-2+22t ′,y =2+22t ′(t ′为参数).代入曲线C 1的方程得⎝ ⎛⎭⎪⎫2+22t ′2-4⎝ ⎛⎭⎪⎫-2+22t ′2=8,即3t ′2-202t ′+40=0.Δ=320>0.设方程的两个实数根为t 1,t 2,则t 1+t 2=2023,t 1t 2=403,∴⎪⎪⎪⎪⎪⎪1|MA |-1|MB |=⎪⎪⎪⎪⎪⎪1|t 1|-1|t 2|=||t 2|-|t 1|||t 1|·|t 2|=|t 1-t 2||t 1|·|t 2|=(t 1+t 2)2-4t 1t 2|t 1|·|t 2|=853403=55,∴1|MA |-1|MB |=55或-55.5.(2022·陕西部分学校联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+sin φ-2cos φ,y =cos φ+2sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ+2=0.(1)求曲线C 1的极坐标方程并判断C 1,C 2的位置关系;(2)设直线θ=α⎝ ⎛⎭⎪⎫-π2<α<π2,ρ∈R 分别与曲线C 1交于A ,B 两点,与曲线C 2交于P 点,若|AB |=3|OA |,求|OP |的值.解 (1)曲线C 1:⎩⎪⎨⎪⎧x -3=sin φ-2cos φ,①y =cos φ+2sin φ,②①2+②2得(x -3)2+y 2=5,即x 2+y 2-6x +4=0,将x 2+y 2=ρ2,x =ρcos θ代入上式,得曲线C 1的极坐标方程为ρ2-6ρcos θ+4=0.由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,ρcos θ+2=0得ρ2+16=0,此方程无解. 所以C 1,C 2相离.(2)由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,θ=α得ρ2-6ρcos α+4=0, 因为直线θ=α与曲线C 1有两个交点A ,B ,所以Δ=36cos 2α-16>0,得cos α>23.设方程ρ2-6ρcos α+4=0的两根分别为ρ1,ρ2,则⎩⎪⎨⎪⎧ρ1+ρ2=6cos α>0,③ρ1ρ2=4,④因为|AB |=3|OA |,所以|OB |=4|OA |,即ρ2=4ρ1,⑤由③④⑤解得ρ1=1,ρ2=4,cos α=56,满足Δ>0,由⎩⎪⎨⎪⎧ρcos α+2=0,θ=α得ρ=-2cos α=-125, 所以|OP |=|ρ|=125.6.(2022·贵阳适应性测试)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =r cos α,y =r sin α(0<r <2,α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4cos 2θ(如图所示).(1)若r =2,求曲线C 1的极坐标方程,并求曲线C 1与C 2交点的直角坐标;(2)已知曲线C 2既关于原点对称,又关于坐标轴对称,且曲线C 1与C 2交于不同的四点A ,B ,C ,D ,求矩形ABCD 面积的最大值.解 (1)∵r =2,∴x 2+y 2=2,又x 2+y 2=ρ2,∴曲线C 1的极坐标方程为ρ=2,∴⎩⎪⎨⎪⎧ρ2=4cos 2θ,ρ=2,cos 2θ=12⇒cos θ=±32, 当cos θ=32时,sin θ=±12,当cos θ=-32时,sin θ=±12,分别代入⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,可得四个交点的直角坐标分别为⎝ ⎛⎭⎪⎫62,22,⎝ ⎛⎭⎪⎫62,-22,⎝ ⎛⎭⎪⎫-62,22,⎝ ⎛⎭⎪⎫-62,-22. (2)由(1)知曲线C 1的极坐标方程为ρ=r .由⎩⎪⎨⎪⎧ρ=r ,ρ2=4cos 2θ得cos 2θ=r 24. ∵曲线C 2关于原点和坐标轴对称, ∴S 矩形ABCD =4|r cos θ||r sin θ| =4r 2|cos θsin θ|=2r 2|sin 2θ| =2r 21-cos 22θ=2r 21-r 416 =12r 216-r 4=12r 4(16-r 4) ≤12⎝ ⎛⎭⎪⎫r 4+16-r 422=4. 当且仅当r 4=16-r 4,即r 2=22时等号成立. 故矩形ABCD 面积的最大值为4.。
2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第一课时 坐标系
第1节 坐标系与参数方程第一课时 坐标系考试要求 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点),自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ.②极角:以极轴Ox为始边,射线OM为终边的角∠xOM叫做点M的极角,记为θ.③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).3.极坐标与直角坐标的互化4.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆 ρ=r (0≤θ<2π) 圆心为(r ,0),半径为r 的圆ρ=2r cos__θ⎝ ⎛⎭⎪⎫-π2≤θ<π2圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin__θ(0≤θ<π)过极点,倾斜角为α的直线①θ=α(ρ∈R )或θ=π+α(ρ∈R ) ②θ=α(ρ≥0)和 θ=π+α(ρ≥0)过点(a ,0),与极轴垂直的直线ρcos__θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin__θ=a (0<θ<π)1.极坐标的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.2.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系,约定极点的极坐标是极径ρ=0,极角可取任意角.3.曲线的极坐标方程与直角坐标方程互化:对于简单的可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同乘以ρ等.1.思考辨析(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( ) 答案 (1)× (2)√ (3)√ (4)×解析 (1)一般认为ρ≥0,当θ∈[0,2π)时,平面上的点(除去极点)才与极坐标建立一一对应关系;(4)极坐标方程θ=π(ρ≥0)表示的曲线是一条射线.2.(易错题)在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是( ) A.ρsin θ=1 B.ρsin θ= 3 C.ρcos θ=1D.ρcos θ= 3答案 A解析 先将极坐标化成直角坐标表示,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1, 再化为极坐标为ρsin θ=1.3.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4 答案 A解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝ ⎛⎭⎪⎫1,π2 B.⎝ ⎛⎭⎪⎫1,-π2 C.(1,0)D.(1,π)答案 B解析 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y , 即x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝ ⎛⎭⎪⎫1,-π2.5.(易错题)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________. 答案 x 2+(y -1)2=1解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0,即x 2+(y -1)2=1.6.(2018·北京卷)在极坐标系中,直线ρcos θ+ρsin θ=a (a >0)与圆ρ=2cos θ相切,则a =________. 答案 1+ 2解析 直线的方程为x +y -a =0,圆的方程为(x -1)2+y 2=1, 所以圆心(1,0),半径r =1, 由于直线与圆相切,故圆心到直线的距离等于半径,即|1-a |2=1,又a >0,所以a =1+ 2.考点一 平面直角坐标系中的伸缩变换1.曲线C :x 2+y 2=1经过伸缩变换⎩⎨⎧x ′=2x ,y ′=y得到曲线C ′,则曲线C ′的方程为________. 答案 x ′24+y ′2=1解析 因为⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,所以⎩⎪⎨⎪⎧x =x ′2,y =y ′,代入曲线C 的方程得C ′:x ′24+y ′2=1.2.曲线C 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则曲线C 的方程为________. 答案 4x 2+9y 2=1解析 根据题意,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则(2x )2+(3y )2=1,即4x 2+9y 2=1,所以曲线C 的方程为4x 2+9y 2=1.3.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y ,则点A ⎝ ⎛⎭⎪⎫13,-2经过变换后所得的点A ′的坐标为________. 答案 (1,-1)解析 设A ′(x ′,y ′),由伸缩变换φ: ⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎨⎧x ′=3x ,y ′=12y .由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1, 所以点A ′的坐标为(1,-1).4.双曲线C :x 2-y 264=1经过伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y后所得曲线C ′的焦点坐标为________.答案 (-5,0),(5,0)解析 设曲线C ′上任意一点P ′(x ′,y ′),将⎩⎨⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1, 化简得x ′29-y ′216=1,即为曲线C ′的方程,知C ′仍是双曲线,其焦点坐标分别为(-5,0),(5,0).感悟提升 1.平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.2.解答该类问题应明确两点:一是明确平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解.考点二 极坐标与直角坐标的互化例1 (1)极坐标方程ρ2cos θ-ρ=0转化成直角坐标方程为( ) A.x 2+y 2=0或y =1 B.x =1C.x 2+y 2=0或x =1D.y =1(2)点M 的直角坐标是(-1,3),则点M 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ) 答案 (1)C (2)C解析 (1)ρ2cos θ-ρ=0⇒ρ=x 2+y 2=0,或ρcos θ=1,即x =1.(2)∵ρ=(-1)2+(3)2=2,tan θ=3-1=- 3.又点M 在第二象限,∴θ=2π3, ∴点M 的极坐标为⎝ ⎛⎭⎪⎫2,2π3.感悟提升 1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.训练1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解 (1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得,ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1, 即x +3y =2.当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以点P 的直角坐标为⎝⎛⎭⎪⎫1,33,则点P 的极坐标为⎝ ⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 考点三 求曲线的极坐标方程例2 (2022·西安五校联考)在直角坐标系xOy 中,曲线C 1:(x -1)2+y 2=1(y ≥0),如图,将C 1分别绕原点O 逆时针旋转π2,π,3π2得到曲线C 2,C 3,C 4,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)分别写出曲线C 1,C 2,C 3,C 4的极坐标方程;(2)直线l :θ=π3(ρ∈R )交曲线C 1,C 3分别于A ,C 两点,直线l ′:θ=2π3(ρ∈R )交曲线C 2,C 4分别于B ,D 两点,求四边形ABCD 的面积.解 (1)将x =ρcos θ,y =ρsin θ代入C 1,得C 1的极坐标方程为ρ=2cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2,设C 1上的点(ρ0,θ0)旋转π2得到曲线C 2上的点(ρ,θ),则ρ0=ρ,θ0=θ-π2,代入C 1的方程得ρ=2cos ⎝ ⎛⎭⎪⎫θ-π2=2sin θ⎝ ⎛⎭⎪⎫0≤θ-π2≤π2,所以C 2的极坐标方程为ρ=2sin θ⎝ ⎛⎭⎪⎫π2≤θ≤π,同理,C 3的极坐标方程为ρ=-2cos θ⎝ ⎛⎭⎪⎫π≤θ≤3π2,C 4的极坐标方程为ρ=-2sin θ⎝ ⎛⎭⎪⎫3π2≤θ≤2π.(2)结合图形的对称性可知S 四边形ABCD =4S △AOB , 将θ=π3代入C 1得|OA |=ρA =1,将θ=2π3代入C 2得|OB |=ρB =3,所以S 四边形ABCD =4S △AOB =4×12·|OA |·|OB |·sin π3=3. 感悟提升 求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.训练2 在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P . (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M (ρ0,θ0)在曲线C 上, 当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP |=|OA |cos π3=2. 设Q (ρ,θ)为l 上除P 外的任意一点.在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP |=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上,所以,l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=2.(2)设P (ρ,θ),在Rt △OAP 中,|OP |=|OA |cos θ=4cos θ,即ρ=4cos θ. 因为P 在线段OM 上,且AP ⊥OM ,所以θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.考点四 极坐标方程的应用例3 已知曲线C :⎩⎨⎧x =2cos α,y =2sin α(α为参数),设曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=x ,y ′=12y 得到曲线C ′,以直角坐标中的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C ′的极坐标方程;(2)若A ,B 是曲线C ′上的两个动点,且OA ⊥OB ,求|OA |2+|OB |2的最小值. 解 (1)曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2sin α(α为参数),转换为普通方程为x 2+y 2=4,曲线C经过伸缩变换⎩⎨⎧x ′=x ,y ′=12y得到曲线C ′:x 24+y 2=1,极坐标方程为ρ=21+3sin 2θ.(2)设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π2,所以|OA |2+|OB |2=ρ21+ρ22=41+3sin 2θ+41+3cos 2θ =8+12(sin 2θ+cos 2θ)(1+3sin 2θ)(1+3cos 2θ)=20(1+3sin 2θ)(1+3cos 2θ) =201+3(sin 2θ+cos 2θ)+94sin 22θ =204+94sin 22θ≥165. 当sin 2θ=±1时,|OA |2+|OB |2取得最小值165.感悟提升 1.若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.2.在极坐标系中,如果P 1(ρ1,θ1),P 2(ρ2,θ2),那么两点间的距离公式 |P 1P 2|=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2).两种特殊情况:(1)当θ1=θ2+2k π,k ∈Z 时,|P 1P 2|=|ρ1-ρ2|; (2)当θ1=θ2+π+2k π,k ∈Z ,|P 1P 2|=|ρ1+ρ2|.3.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.训练3 (2021·昆明诊断)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =9+3t ,y =t (t为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=161+3sin 2θ.(1)求C 和l 的直角坐标方程;(2)已知P 为曲线C 上的一个动点,求线段OP 的中点M 到直线l 的最大距离. 解 (1)由ρ2=161+3sin 2θ, 得ρ2+3ρ2sin 2θ=16,则曲线C 的直角坐标方程为x 2+4y 2=16, 即x 216+y 24=1.直线l 的直角坐标方程为x -3y -9=0.(2)可知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =2sin α(α为参数),设P (4cos α,2sin α),α∈[0,2π),则M (2cos α,sin α)到直线l :x -3y -9=0的距离为d =|2cos α-3sin α-9|2=|7sin (θ-α)-9|2≤9+72,所以线段OP 的中点M 到直线l 的最大距离为9+72.1.将直角坐标方程与极坐标方程互化: (1)y 2=4x ;(2)y 2+x 2-2x -1=0; (3)θ=π3(ρ∈R );(4)ρcos 2 θ2=1; (5)ρ2cos 2θ=4; (6)ρ=12-cos θ.解 (1)将x =ρcos θ,y =ρsin θ代入y 2=4x ,得(ρsin θ)2=4ρcos θ.化简得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0,得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0,化简得ρ2-2ρcos θ-1=0.(3)当x ≠0时,由于tan θ=y x ,故tan π3=yx =3,化简得y =3x (x ≠0); 当x =0时,y =0.显然(0,0)在y =3x 上,故θ=π3(ρ∈R )的直角坐标方程为 y =3x .(4)因为ρcos 2θ2=1,所以ρ·1+cos θ2=1,而ρ+ρcos θ=2,所以x 2+y 2+x =2.化简得y 2=-4(x -1).(5)因为ρ2cos 2θ=4,所以ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (6)因为ρ=12-cos θ,所以2ρ-ρcos θ=1,因此2x 2+y 2-x =1,化简得3x 2+4y 2-2x -1=0.2.在极坐标系中,已知两点A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.解 (1)设极点为O .在△OAB 中,A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,由余弦定理,得 |AB |=32+(2)2-2×3×2×cos ⎝ ⎛⎭⎪⎫π2-π4= 5.(2)因为直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3,所以直线l 过点⎝ ⎛⎭⎪⎫32,π2,倾斜角为3π4.又B ⎝ ⎛⎭⎪⎫2,π2, 所以点B 到直线l 的距离为(32-2)×sin ⎝ ⎛⎭⎪⎫3π4-π2=2.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)因为ρ=x 2+y 2,ρsin θ=y ,所以ρ=21-sin θ化为ρ-ρsin θ=2,所以曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,所以直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.(2022·南宁调研)在直角坐标系xOy 中,圆C 1:(x -1)2+y 2=1,圆C 2:(x +2)2+y 2=4.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1,C 2的极坐标方程;(2)设A ,B 分别为C 1,C 2上的点,若△OAB 为等边三角形,求|AB |. 解 (1)因为圆C 1:(x -1)2+y 2=1, 圆C 2:(x +2)2+y 2=4,所以C 1:x 2+y 2=2x ,C 2:x 2+y 2=-4x , 因为x 2+y 2=ρ2,x =ρcos θ, 所以C 1:ρ=2cos θ,C 2:ρ=-4cos θ.(2)因为C 1,C 2都关于x 轴对称,△OAB 为等边三角形, 所以不妨设A (ρA ,θ),B ⎝ ⎛⎭⎪⎫ρB ,θ+π3,0<θ<π2.依题意可得,ρA =2cos θ,ρB =-4cos ⎝ ⎛⎭⎪⎫θ+π3.从而2cos θ=-4cos ⎝ ⎛⎭⎪⎫θ+π3,整理得,2cos θ=3sin θ,所以tan θ=233,又因为0<θ<π2,所以cos θ=217,|AB |=|OA |=ρA =2217.5.(2021·成都诊断)在直角坐标系xOy 中,已知曲线C 的方程为(x -1)2+y 2=1,直线l 的方程为x +3y -6=0.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 和直线l 的极坐标方程;(2)若点P (x ,y )在直线l 上且y >0,射线OP 与曲线C 相交于异于点O 的点Q ,求|OP ||OQ |的最小值.解 (1)由极坐标与直角坐标的互化公式x =ρcos θ,y =ρsin θ得 曲线C 的极坐标方程为ρ=2cos θ. 由题意得直线l 的极坐标方程为ρcos θ+3ρsin θ-6=0,即ρsin ⎝ ⎛⎭⎪⎫θ+π6=3.(2)设点P 的极坐标为(ρ1,θ),点Q 的极坐标为(ρ2,θ),其中0<θ<π2. 由(1)知|OP |=ρ1=6cos θ+3sin θ,|OQ |=ρ2=2cos θ. ∴|OP ||OQ |=ρ1ρ2=62cos 2θ+23sin θcos θ=61+cos 2θ+3sin 2θ=61+2sin ⎝⎛⎭⎪⎫2θ+π6.∵0<θ<π2,∴π6<2θ+π6<7π6,∴-12<sin ⎝ ⎛⎭⎪⎫2θ+π6≤1. ∴当sin ⎝ ⎛⎭⎪⎫2θ+π6=1,即θ=π6时,|OP ||OQ |取得最小值2.6.已知曲线C 1:x 2+(y -3)2=9,A 是曲线C 1上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点A 绕点O 逆时针旋转90°得到点B ,设点B 的轨迹方程为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=5π6(ρ>0)与曲线C 1,C 2分别交于P ,Q 两点,定点M (-4,0),求△MPQ的面积.解 (1)曲线C 1:x 2+(y -3)2=9, 即x 2+y 2-6y =0. 从而ρ2=6ρsin θ.所以曲线C 1的极坐标方程为ρ=6sin θ. 设B (ρ,θ),则A ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=6sin ⎝ ⎛⎭⎪⎫θ-π2=-6cos θ.所以曲线C 2的极坐标方程为ρ=-6cos θ. (2)M 到射线θ=5π6(ρ>0)的距离为d =4sin 5π6=2,射线θ=5π6(ρ>0)与曲线C 1的交点P ⎝ ⎛⎭⎪⎫ρP ,5π6,其中,ρP =6sin 5π6=3,射线θ=5π6(ρ>0)与曲线C 2的交点Q ⎝ ⎛⎭⎪⎫ρQ ,5π6,其中,ρQ =-6cos 5π6=33,则|PQ |=|ρP -ρQ |=33-3, 则S △MPQ =12|PQ |d =33-3.。
高考一轮复习下:极坐标与参数方程1
极坐标与参数⽅程 1基础知识1、极坐标系四要素:极点,极轴,⻆度单位,正⽅向2、极坐标与直⻆坐标的互化直化极:极化直:3、常⽅极坐标⽅程4、常⽅参数⽅程5、参数⽅程与普通⽅程的转化题型⽅:交点坐标问题例:(2013 课标I 卷23)已知曲线的参数⽅程为(为参数), 以坐标原点为极点,轴的正半轴为极轴建⽅极坐标系,曲线的极坐标⽅程为(I)把的参数⽅程化为极坐标⽅程;(II)求与交点的极坐标().例:(2015 课标II 卷23)在直⻆坐标系中,曲线(为参数,),其中在以为极点,轴正半轴为极轴的极坐标系中,曲线.(I)求与交点的直⻆坐标.练:(2016 课标I 卷23)在直⻆坐标系中,曲线的参数⽅程为(为参数,).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线.(I)说明是哪⽅种曲线,并将的⽅程化为极坐标⽅程;(II)直线的极坐标⽅程为,其中满⽅若曲线与的公共点都在上,求练习:(2017 全国III 卷22)在直⻆坐标系中,直线的参数⽅程为(为参数). 直线的参数⽅程为(为参数), 设与的交点为,当变化时,的轨迹为曲线.(I)写出的普通⽅程;(II)以坐标原点为极点,轴正半轴为极轴建⽅极坐标系,设,为与的交点,求的极径.题型⽅:弦⽅问题上例:(2011 课标卷23)在直⻆坐标系中,曲线的参数⽅程为(为参数),是上的动点,点满⽅点的轨迹为曲线(I)求的⽅程;(II)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为与的异于极点的交点为求练习:(2016 ⽅⽅⽅三模23)在直⻆坐标系中,曲线的参数⽅程为(为参数),是上的动点,点满⽅点的轨迹为曲线(I)求的参数⽅程;(II)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为与的异于极点的交点为求练习:(2015 课标II 卷23)在直⻆坐标系中,曲线(为参数,),其中在以为极点,轴正半轴为极轴的极坐标系中,曲线.(I)求与交点的直⻆坐标;(II)若与相交于点与相交于点求的最⽅值.练习:(2015 课标I 卷23)在直⻆坐标系中,直线圆以坐标原点为极点,轴的正半轴为极轴建⽅极坐标系.(I)求的极坐标⽅程;(II)若直线的极坐标⽅程为设的交点为求的⽅积.。
极坐标与参数方程题型讲义-2022届高三数学一轮复习
极坐标与参数方程题型汇总题型一.直线参数方程t 的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22;(2)|PM |=|t 0|=t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |. 直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。
1.以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C的直角坐标方程;(2)若直线l的参数方程为(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|P A|+|PB|的值.2.在直角坐标系xOy中,直线l过点P(0,1)且斜率为1,以O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2sinθ+2cosθ.(Ⅰ)求直线l的参数方程与曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C的交点为A、B,求|P A|+|PB|的值.3.在直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)写出直线l的普通方程及曲线C的直角坐标方程;(2)已知点P(0,1),点Q(,0),直线l过点Q且曲线C相交于A,B两点,设线段AB的中点为M,求|PM|的值.4.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|P A|•|PB|=1,求实数m的值.5.在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)设点,直线与曲线相交于点,求的值.6.在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的极坐标方程为.(Ⅰ)写出曲线和直线的直角坐标方程;(Ⅱ)设直线过点与曲线交于不同两点,的中点为,与的交点为,求.7.在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线普通方程和曲线的直角坐标方程;(2)过点,且与直线平行的直线交于两点,求.8.在平面直角坐标系中,直线过点,且倾斜角为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出直线的参数方程及曲线的直角坐标方程;(Ⅱ)若直线与曲线交于,两点,且弦的中点为,求的值.9.在直角坐标系中,过点的直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)若点的直角坐标为,求直线及曲线的直角坐标方程;(2)若点在上,直线与交于两点,求的值.10.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数),其中,直线与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若点满足,求的值.11.在平面直角坐标系xOy中,点P(0,−1),直线l的参数方程为{x=tcosαy=−1+tsinα(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ= 8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=409时,求sinα的值.12.在直角坐标系xOy 中,曲线C 1的参数方程为{x =1−√22t y =1+√22t(t 为参数),以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cosθ. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A,B 两点,点P 的极坐标为(√2,π4),求1|PA|+1|PB|的值.题型二.极径的应用:一直线与两曲线分别相交,求交点间的距离(1)思路:一般采用直线极坐标与曲线极坐标联系方程求出2个交点的极坐标,利用极径相减即可,|=AB |B A 2B A B A 4)(||ρρρρρρ-+=-(2)过原点,倾斜角为α的直线的极坐标方程为:)(R ∈=ραθ 1.在平面直角坐标系中,直线l 的参数方程是(t 为参数),以坐标原点为极点,x 轴的正半轴为板轴,建立极坐标系,已知曲线C 的极坐标方程为ρ2cos 2θ+ρ2sin 2θ﹣2ρsin θ﹣3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求AB 的长.2.已知曲线,是曲线上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点绕点逆时针旋转得到点,设点的轨迹方程为曲线.(Ⅰ)求曲线,的极坐标方程;(Ⅱ)射线与曲线,分别交于,两点,定点,求的面积.3.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosφy=2sinφ(φ为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C1的普通方程和C2的直角坐标方程;(2)已知直线C3的极坐标方程为θ=α(0<α<π,ρ∈R),A是C3与C1的交点,B是C1与C2的交点,且A,B均异于原点O,|AB|=4√2,求a的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的参数方程为{x =tcosβy =tsinβ(t 为参数,0≤β<π),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 与曲线C 相交于A 、B 两点,且|OA |−|OB |=2,求β.5.在直角坐标系xOy 中,直线l 的参数方程为{x =34+√3t y =a +√3t(t 为参数),圆C 的标准方程为(x −3)2+(y −3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程;(2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.题型三.距离、最值、取值范围 (一)与圆有关的题型1.圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。
高三数学一轮复习讲义+极坐标与参数方程+学生
课题:极坐标与参数方程知识点一、极坐标1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ). 一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是坐标系平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M 直角坐标(x ,y )极坐标(ρ,θ) 互化公式⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x x ≠04.常见曲线的极坐标方程曲线图形 极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π) 圆心为(r,0),半径ρ=2r cos_θ⎝⎛⎭⎫-π2≤θ≤π2为r 的圆 圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线 (1)θ=α(ρ∈R )或θ=π+α(ρ∈R ) (2)θ=α(ρ≥0)和θ=π+α(ρ≥0) 过点(a,0),与极轴垂直的直线 ρcos_θ=a ⎝⎛⎭⎫-π2<θ<π2 过点⎝⎛⎭⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)【典型例题】【例1】若点极坐标为,则点的直角坐标是( )A.B.C.D.【例2】点M 的直角坐标)1,3(-化成极坐标为( ) A.)65,2(π B.)32,2(π C.)35,2(π D.)611,2(π【例3】在极坐标系中,已知圆C 的方程为)4cos(2πθρ+=,则圆心C 的极坐标为( )A. )41(π-, B. )431(π, C. )42(π-, D. )432(π, 【例4】在极坐标系中,点)65,2(π到直线4)3sin(=-πθρ的距离为( )A .1B .2C .3D .4【举一反三】1.在极坐标系中,以极点为坐标原点,极轴为x 轴正半轴,建立直角坐标系,点M (2,6π)的直角坐标是( )A .(2,1)B 31)C .(13D .(1,2) 2.曲线的极坐标方程θρsin 4=化为直角坐标方程为( ) A.4)2(22=++y x B.4)2(22=-+y xC.4)2(22=+-y x D.4)2(22=++yx3.在极坐标系中,点2,3π⎛⎫-⎪⎝⎭到圆2cos ρθ=-的圆心的距离为( ) A .2 B .249π+C .299π+D .7知识点二、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f t ,y =g t 就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹 普通方程参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数) 圆 x 2+y 2=r 2⎩⎪⎨⎪⎧x =r cos θy =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)【典型例题】【例1】把参数方程⎩⎨⎧==,sin ,cos 2ϕϕy x (ϕ为参数)化成普通方程是( )A. 1222=+y xB. 1222=+y xC. 1422=+y x D. 214x y 2+= 【例2】下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .3)B .31(,)42-C .1(,2)2- D .3) 【例3】已知直线l 的参数方程为:214x ty t=⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为2cos ρθ=,则圆C 的圆心到直线l 的距离为 .【举一反三】1.参数方程4125x t y t =+⎧⎨=--⎩(t 为参数)化为普通方程为______________.2.曲线22cos :2sin x aC y a =+⎧⎨=⎩(a 为参数),若以点O(0,0)为极点,x 轴正半轴为极轴建立极坐标系,则该曲线的极坐标方程是____________.3.若直线12(32x t t y t =-+⎧⎨=-⎩,为参数)与曲线4cos (sin x a y a θθθ=+⎧⎨=⎩,为参数,0a >)有且只有一个公共点,则a = .【典型例题】1.极坐标方程cos ρθ=和参数方程123x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是( )A .直线、直线B .圆、直线C .直线、圆D .圆、圆 6.已知直线l 的极坐标方程为2ρsin (θ-4π2A 的极坐标为)47,22(π,则点A 到直线l 的距离为( ) A .335 B.325 C .235 D .2253.在极坐标系中,设圆C :4cos ρθ=与直线:(R)4l πθρ=∈交于A ,B 两点,求以AB 为直径的圆的极坐标方程为( ) A .22)4πρθ=+B .22)4πρθ=-C .22cos()4πρθ=+D .22)4πρθ=- 4. 在极坐标系中,直线(3sin )2ρθθ-=与圆θρsin 4=的交点的极坐标为( )A.⎪⎭⎫⎝⎛62π, B.⎪⎭⎫⎝⎛32π, C.⎪⎭⎫⎝⎛64π, D.⎪⎭⎫⎝⎛34π,5.下列在曲线sin 2cos sin x y θθθ=⎧⎨=+⎩(θ为参数)上的点是( )A .1(,2)2-B .(2,3)C .31(,)42- D .(1,3)6.曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( ).A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 7.坐标方程分别为和的两个圆的圆心距为_________.8.已知圆C 的极坐标方程为222sin 404πρρθ⎛⎫+--= ⎪⎝⎭,则圆C 的半径为___________. 9.若直线l 的极坐标方程是cos()24πρθ-=,圆C 的极坐标方程是4sin ρθ=.则l 与C 交点的极坐标为___________. 10.已知点的极坐标是(3,)4π,则它的直角坐标是 .11.在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 3sin 6ρθθ+=的距离为 .12.已知圆的极坐标方程为6sin ρθ=,圆心为M ,点N 的极坐标为(6,)6π,则||MN = .【课后练习】正确率:________1.圆5cos 3ρθθ=-的圆心是( ) A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 2.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .20x y +=2或1y = B .1x = C .20x y +=2或1x = D .1y = 3.在极坐标系中,点()1,0与点()2,π的距离为 ( )A.1B.3 21π+ 29π+4.已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线方程是( ) A.1ρ= B.cos ρθ= C.1cos ρθ=-D.1cos ρθ= 5.曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的离心率是 ( )A .45 B 5 C .35D .346.过点(0,2)且与直线213x ty t =+⎧⎪⎨=+⎪⎩(t 为参数)互相垂直的直线方程为( )A .32x t y t⎧=⎪⎨=+⎪⎩ B.32x t y t ⎧=-⎪⎨=+⎪⎩ C.32x t y t ⎧=⎪⎨=-⎪⎩ D .23x ty t ⎧=⎪⎨=⎪⎩7.在直角坐标系xOy 中,曲线1C 的方程是5222=+y x ,2C 的参数方程是⎪⎩⎪⎨⎧-==ty t x 3(t 为参数),则1C 与2C 交点的直角坐标是 .8.已知圆C 的极坐标方程为2cos 23ρθθ=+,则圆心C 的一个极坐标为 . 9.曲线C:22cos 2sin x y αα=-+⎧⎨=⎩(α为参数),若以点()0,0O 为极点,x 轴正半轴为极轴建立极坐标系,则该曲线的极坐标方程是 .10.在极坐标系中,直线l 的方程为cos 5ρθ=,则点π43⎛⎫ ⎪⎝⎭,到直线l 的距离为 .11.在直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.若曲线22224⎧=-+⎪⎪⎨⎪=-+⎪⎩x y 经过曲线()2:sin 2cos 0C a a ρθθ=>的焦点,则实数a 的值为___________.12.已知直线112:2x t l y kt =-⎧⎨=+⎩(t 为参数),2,:12.x s l y s =⎧⎨=-⎩(s 为参数), 若12l l ⊥,则实数k = .13.直角坐标系xOy 中,圆C 的参数方程是3cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立坐标系,则圆心C 的极坐标是 .14.在极坐标系中,过圆θθρsin 22cos 6-=的圆心且与极轴垂直的直线的极坐标方程为_______.。
高考文科数学复习第轮 极坐标与参数方程
高考文科数学一轮复习(极坐标与参数方程)第二讲极坐标与参数方程目标认知考试大纲要求:1. 理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2. 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化;3. 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义;4. 了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别;5. 了解参数方程,了解参数的意义,能选择适当的参数写出直线、圆和圆锥曲线的参数方程;6. 了解平摆线、渐开线的生成过程,并能推导出它们的参数方程,了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。
重点、难点:1.理解参数方程的概念,了解常用参数方程中参数的意义,掌握参数方程与普通方程的互化。
2.理解极坐标的概念,掌握极坐标与直角坐标的互化;直线和圆的极坐标方程。
【知识要点梳理】:知识点一:极坐标1.极坐标系平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。
2.极坐标系内一点的极坐标平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对就叫做点的极坐标。
(1)一般情况下,不特别加以说明时表示非负数;当时表示极点;当时,点的位置这样确定:作射线,使,在的反向延长线上取一点,使得,点即为所求的点。
(2)点与点()所表示的是同一个点,即角与的终边是相同的。
综上所述,在极坐标系中,点与其点的极坐标之间不是一一对应而是一对多的对应,即,, 均表示同一个点.3. 极坐标与直角坐标的互化当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:直角坐标化极坐标:;极坐标化直角坐标:.此即在两个坐标系下,同一个点的两种坐标间的互化关系.4. 直线的极坐标方程:(1)过极点倾斜角为的直线:或写成及.(2)过垂直于极轴的直线:5. 圆的极坐标方程:(1)以极点为圆心,为半径的圆:.(2)若,,以为直径的圆:知识点二:柱坐标系与球坐标系:1. 柱坐标系的定义:空间点与柱坐标之间的变换公式:2. 球坐标系的定义:空间点与球坐标之间的变换公式:知识点三:参数方程1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。
高三数学专题复习--极坐标与参数方程
五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求
A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1
,
它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为
,
曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.
(完整版)高考文科数学复习专题极坐标与参数方程
1.曲线的极坐标方程.(1) 极坐标系:一般地,在平面上取一个定点O,自点 O引一条射线Ox,同时确立一个长度单位和计算角度的正方向( 往常取逆时针方向为正方向) ,这样就成立了一个极坐标系.此中,点O称为极点,射线 Ox 称为极轴.(2)极坐标 ( ρ,θ ) 的含义:设 M 是平面上任一点,ρ表示OM的长度,θ表示以射线Ox 为始边,射线OM为终边所成的角.那么,有序数对( ρ,θ) 称为点 M的极坐标.明显,每一个有序实数对 ( ρ,θ) ,决定一个点的地点.此中ρ 称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大差别在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,关于给定的有序数对 ( ρ,θ) ,能够确立平面上的一点,可是平面内的一点的极坐标却不是独一的.(3) 曲线的极坐标方程:一般地,在极坐标系中,假如平面曲线 C 上的随意一点的极坐标知足方程f( ρ,θ ) = 0,而且坐标合适方程f( ρ,θ ) = 0 的点都在曲线 C 上,那么方程f ( ρ,θ ) = 0 叫做曲线 C 的极坐标方程.2.直线的极坐标方程.(1) 过极点且与极轴成φ 0角的直线方程是θ=φ 0和θ=π-φ 0,以下列图所示.(2) 与极轴垂直且与极轴交于点(a , 0) 的直线的极坐标方程是ρ cosθ=a,以下列图所示.(3) 与极轴平行且在x 轴的上方,与 x 轴的距离为 a 的直线的极坐标方程为ρsinθ=a,以下列图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为 r 的圆的方程为ρ= r ,如图 1 所示.(2)圆心在极轴上且过极点,半径为r 的圆的方程为ρ= 2rcos_ θ,如图 2 所示.(3) 圆心在过极点且与极轴成πr 的圆的方程为ρ 2rsin_ θ,2的射线上,过极点且半径为如图 3 所示.若极点在原点且极轴为x 轴的正半轴,则平面内随意一点M 的极坐标 M(ρ,θ ) 化为平面直角坐标 M(x , y) 的公式以下:x =ρ cos θ, 2+ y 2, tan θ= y,或许 ρ= xy =ρ sin θx 此中要联合点所在的象限确立角 θ 的值.1.曲线的参数方程的定义.在平面直角坐标系中,假如曲线上随意一点的坐标 x , y 都是某个变数 t 的函数,即x = f ( t ),M(x , y) 都在这条曲线上,而且关于 t 的每一个同意值,由方程组所确立的点y = g ( t ),那么方程组就叫做这条曲线的参数方程,联系 x , y 之间关系的变数 t 叫做参变数,简称参数.2.常有曲线的参数方程.(1) 过定点 P(x 0, y 0) ,倾斜角为 α 的直线:x =x 0 + tcos α,y =y 0 + tsin(t 为参数 ) ,α此中参数 t 是以定点 P(x , y ) 为起点,点 M(x , y) 为终点的有向线段PM 的数目,又称为点 P 与点 M 间的有向距离.依据 t 的几何意义,有以下结论:①设 A , B 是直线上随意两点,它们对应的参数分别为t A 和 t B ,则 |AB| = |t B - t A | =( t B + t A ) 2-4t A · t B ;t A + t B②线段 AB 的中点所对应的参数值等于.2(2) 中心在 P(x 0, y 0) ,半径等于 r 的圆:x =x 0+ rcos θ, ( θ 为参数 )y =y 0+ rsinθ(3) 中心在原点,焦点在 x 轴 ( 或 y 轴 ) 上的椭圆:x =acos θ,x = bcos θ, y =bsin( θ 为参数 ) 或.θy = asin θx = x 0+ acos α, 中心在点 P(x 0,y 0) ,焦点在平行于x 轴的直线上的椭圆的参数方程为y = y 0+ bsin α( α 为参数 ) .(4) 中心在原点,焦点在 x 轴 ( 或 y 轴 ) 上的双曲线:x =asec θ,x = btan θ, y =btan ( θ 为参数 ) 或.θy = asec θ(5) 极点在原点,焦点在 x 轴的正半轴上的抛物线:x =2p ,(t 为参数, p>0) .y =2p1注: sec θ= cos θ .3.参数方程化为一般方程.由参数方程化为一般方程就是要消去参数,消参数时经常采纳代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要注意参数的取值范围对x , y 的限制.1.已知点 A 的极坐标为5π,则点 A 的直角坐标是 (2 ,- 2 3) .4,3π2.把点 P 的直角坐标 ( 6,- 2) 化为极坐标,结果为2 2,-6 .3.曲线的极坐标方程ρ= 4sin θ化为直角坐标方程为x 2+ (y -2) 2= 4.ππ4.以极坐标系中的点 1, 6 为圆心、1 为半径的圆的极坐标方程是 ρ= 2cos θ- 6 .5.在平面直角坐标系xOy 中,若直线 l :x = t ,为参数 ) 过椭圆 C :x = 3cos θ, (t y = 2sin θy = t -a( θ 为参数 ) 的右极点,则常数a 的值为 3.x = t ,x = 3cos θ, x 2 y 2分析: 由直线 l : y = t -a , 得 y = x - a. 由椭圆 C :y = 2sin θ, 得 9 = 4 = 1. 因此椭圆 C 的右极点为 (3 ,0) .由于直线 l过椭圆的右极点,因此0= 3- a ,即 a =3.一、选择题1.在平面直角坐标系xOy 中,点 P 的直角坐标为 (1 ,-3) .若以原点 O 为极点, x轴正半轴为极轴成立极坐标系,则点P 的极坐标能够是 ( C)A. 1,- πB. 2, 4π3 3π4πC. 2,- 3D. 2,- 32.若圆的方程为x = 2cos θ, x = t +1, y = 2sin ( θ 为参数 ) ,直线的方程为(t 为参数 ) ,则θ y = t -1直线与圆的地点关系是( B)A .相离B .订交C .相切D.不可以确立3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,成立极坐标系,两种坐标x = t +1,系中取同样的长度单位,已知直线l 的参数方程是 (t 为参数 ) ,圆 C 的极坐标方y = t -3程是 ρ= 4cos θ,则直线 l 被圆 C 截得的弦长为 ( D)A. 14B .2 14C. 2D.2 2分析: 由题意可得直线和圆的方程分别为x -y - 4= 0,x 2+y 2= 4x ,因此圆心 C(2,0) ,半径 r = 2,圆心 (2 ,0) 到直线 l 的距离 d = 2,由半径,圆心距,半弦长组成直角三角形,解得弦长为 2 2.l 均分圆 C :(x - 2) 2+ (y - 1) 2=1,则直线 l 与圆 O : x =3cosθ,( θy = 3sin θ为参数 ) 的地点关系是 ( A)A .订交B .相切C .相离D.过圆心分析: 动直线 l 均分圆 C :(x - 2) 2+ (y - 1) 2= 1,即圆心 (2 ,1) 在直线 l 上,又圆 O :x = 3cosθ,的一般方程为 x 2+ y 2= 9 且 22+ 12<9,故点 (2 , 1) 在圆 O 内,则直线 l 与圆 Oy = 3sin θ的地点关系是订交.二、填空题5.在平面直角坐标系 xOy 中,已知曲线y=sinθ- 2,C 的参数方程是( θ是参数 ) ,x= cosθ若以 O为极点,x 轴的正半轴为极轴,则曲线 C的极坐标方程可写为ρ2+4ρ sin_ θ+ 3= 0.分析:在平面直角坐标系y= sinθ- 2,y+2= sin θ,xOy 中,( θ是参数 ) ,∴根x= cos θx=cos θ .据 sin 2θ+ cos 2θ= 1,可得 x2+(y + 2) 2=1,即 x2+ y2+ 4y+3=0. ∴曲线 C 的极坐标方程为ρ2+4ρ sin θ+ 3=0.x= 2cos θ,6.在平面直角坐标系中圆 C 的参数方程为 ( θ为参数 ) ,以原点 O为极y= 2+ 2sin θπ点,以 x 轴的正半轴为极轴成立极坐标系,则圆C的圆心的极坐标为2,2.三、解答题17.求极点到直线2ρ=π ( ρ∈ R)的距离.sinθ+4分析:由 2 ρ=1sinπ ? ρ sin θ+ρ cos θ= 1? x+ y=1,θ+4|0 +0-1|2故d=12+12=2.8.极坐标系中, A 为曲线ρ2+2ρ cos θ- 3=0 上的动点, B 为直线ρ cos θ+ρ sinθ- 7= 0 上的动点,求|AB| 的最小值.x= cos θ,9.(2015 ·大连模拟) 曲线 C1的参数方程为( θ为参数 ) ,将曲线 C1上全部y= sinθ点的横坐标伸长为本来的 2 倍,纵坐标伸长为本来的3倍,获得曲线C2. 以平面直角坐标系xOy 的原点 O为极点, x 轴的正半轴为极轴,取同样的单位长度成立极坐标系,已知直线l :ρ(cos θ- 2sinθ)= 6.(1)求曲线 C2和直线 l 的一般方程;(2)P 为曲线 C2上随意一点,求点P 到直线 l 的距离的最值.分析: (1)由题意可得 C 的参数方程为x= 2cosθ,x2y2y= 3sinθ(θ为参数 ) ,即 C :4+3= 1,22直线 l :ρ(cosθ- 2sin θ ) = 6 化为直角坐标方程为x- 2y- 6= 0.(2) 设点 P(2cosθ, 3sin θ ) ,由点到直线的距离公式得点P 到直线 l的距离为|2cosθ- 23sinθ- 6|d=56+ 43sin1θ- cos θ=2256+ 4sin θ-π=655π=56+ 4sin θ-6.2525因此5≤ d≤ 25,故点 P 到直线 l的距离的最大值为25,最小值为 5.10.已知在直角坐标系xOy 中,曲线 C 的参数方程为x= 1+4cosθ,y= 2+4sin ( θ为参数 ) ,θπ直线 l 经过定点P(3, 5) ,倾斜角为 3 .(1)写出直线 l 的参数方程和曲线 C 的标准方程.(2)设直线 l 与曲线 C 订交于 A, B 两点,求 |PA| ·|PB| 的值.x= 1+4cos θ,2分析: (1) 由曲线 C 的参数方程( θ为参数 ) ,得一般方程为 (x - 1)y= 2+ 4sin θ+(y - 2) 2= 16,即 x2+ y2- 2x- 4y =11= 0.1x= 3+ t ,π2直线 l 经过定点 P(3 , 5) ,倾斜角为3,直线的参数方程为3(t 是参数 ) .y= 5+2 t(2)将直线的参数方程代入 x2+ y2- 2x-4y - 11=0,整理,得 t 2+ (2 +3 3)t - 3= 0,设方程的两根分别为 t 1, t 2,则 t 1t 2=- 3,由于直线 l 与曲线 C 订交于 A, B 两点,因此 |PA| · |PB| = |t 1t 2| =3.。
高考数学笔记 极坐标与参数方程
∴ C1 与 C2 的交点的极坐标分别为(
2, ), (2, ) .
4
2
才哥数学
题型四:距离问题
例 1:已知曲线 C 的极坐标方程是 6 cos ,以极点为平面直角坐标系的原点,极轴为 x 轴的正半
x 1 t cos
轴,建立平面直角坐标系,直线 l 的参数方程是
y t sin
x
y
4 5
5cos t 5sin t
消去参数 t
,化为普通方程
(x
4)2
(y
5)2
25
,
即
C1
:
x2
y2
8x
10 y
16
0
,将
x
y
cos sin
代入
x2
y2
8x
10 y
16
0
得,
2 8 cos 10 sin 16 0 ,
方法二,直线方程为 y x 4 ,圆心到直线 y x 4 的距离为 d 1 | AB | 2 1 1 2
2,
2
例 3 已知曲线 C 的极坐标方程是 2 cos ,若以极点为平面直角坐标系的原点,极轴为 x 轴的正半
轴且取相同的单位长度,建立平面直角坐标系,则直线
x 2 cos t
例
2:已知曲线
C1
:
y
1
sin
t
x 4 cos
(t
为参数),
C2
高考复习-极坐标与参数方程
极坐标与参数方程知识集结知识元极坐标知识讲解1.极坐标系【知识点的认识】极坐标系与点的极坐标在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ)决定一个点的位置.其中,ρ称为点M 的极径,θ称为点M的极角.由极径的意义可知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系,我们约定,极点的极坐标是极径ρ=0,极角θ可取任意角.2.简单曲线的极坐标方程【知识点的认识】一、曲线的极坐标方程定义:如果曲线C上的点与方程f(ρ,θ)=0有如下关系(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方程f(ρ,θ)=0;(2)以方程f(ρ,θ)=0的所有解为坐标的点都在曲线C上.则曲线C的方程是f(ρ,θ)=0.二、求曲线的极坐标方程的步骤:与直角坐标系里的情况一样①建系(适当的极坐标系)②设点(设M(ρ,θ)为要求方程的曲线上任意一点)③列等式(构造△,利用三角形边角关系的定理列关于M的等式)④将等式坐标化⑤化简(此方程f(ρ,θ)=0即为曲线的方程)三、圆的极坐标方程(1)圆心在极点,半径为r,ρ=r.(2)中心在C(ρ0,θ0),半径为r.ρ2+ρ02﹣2ρρ0cos(θ﹣θ0)=r2.四、直线的极坐标方程(1)过极点,θ=θ0(ρ∈R)(2)过某个定点垂直于极轴,ρcosθ=a(3)过某个定点平行于极轴,r sinθ=a(4)过某个定点(ρ1,θ1),且与极轴成的角度α,ρsin(α﹣θ)=ρ1sin(α﹣θ1)五、直线的极坐标方程步骤1、据题意画出草图;2、设点M(ρ,θ)是直线上任意一点;3、连接MO;4、根据几何条件建立关于ρ,θ的方程,并化简;5、检验并确认所得的方程即为所求.3.极坐标刻画点的位置【知识点的认识】点的极坐标设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ)决定一个点的位置.其中,ρ称为点M 的极径,θ称为点M的极角.由极径的意义可知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系,我们约定,极点的极坐标是极径ρ=0,极角θ可取任意角.4.极坐标系和平面直角坐标系的区别【知识点的认识】极坐标系与平面直角坐标系的区别平面直角坐标系极坐标定位方式横坐标、纵坐标角度和距离点与坐标点与坐标一一对应点与极坐标不一一对应外在形式原点,x,y轴极点,极轴本质两线相交定点圆与射线相交定点5.点的极坐标和直角坐标的互化【知识点的认识】坐标之间的互化(1)点的极坐标和直角坐标的互化以直角坐标系的原点O为极点,x轴的正半轴为极轴,且在两种坐标系中取相同的长度单位(如图).平面内任意一点P的直角坐标与极坐标分别为(x,y)和(ρ,θ),则由三角函数的定义可以得到如下两组公式:,.通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ<2π.(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为:.(3)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为:.例题精讲极坐标例1.已知点A是曲线ρ=2cosθ上任意一点,则点A到直线ρsin(θ+)=4的距离的最小值是()A.1B.C.D.例2.在极坐标系中,已知圆C的方程为ρ=2cos(θ-),则圆心C的极坐标可以为()A.(2,)B.(2,)C.(1,)D.(1,)例3.已知点P(1,),则它的极坐标是()A.B.C.D.参数方程知识讲解1.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.2.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tanα(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆+=1(a>b>0)(θ为参数)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.已知直线l:x-y+4=0与圆C:,则C上各点到l的距离的最小值为()A.2-2B.2C.2D.2+2例2.若圆的方程为(θ为参数),直线的方程为(t为参数),则直线与圆的位置关系是()A.相离B.相交C.相切D.不能确定例3.曲线x2+y2=1经过伸缩变换后,变成的曲线方程是()A.25x2+9y2=1B.9x2+25y2=1C.25x+9y=1D.+=1当堂练习单选题练习1.在直角坐标系xOy中,曲线C的方程为,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,射线M的极坐标方程为θ=α(ρ≥0).设射线m与曲线C、直线l分别交于A、B两点,则的最大值为()A.B.C.D.练习2.若点P的直角坐标为,则它的极坐标可以是()A.B.C.D.练习3.点P极坐标为,则它的直角坐标是()A.B.C.D.练习4.在极坐标系中,极点关于直线ρcosθ-ρsinθ+1=0对称的点的极坐标为()A.B.C.D.练习5.极坐标方程ρ=2sinθ表示的曲线为()A.两条直线B.一条射线和一个圆C.一条直线和一个圆D.圆练习6.在极坐标系中,圆ρ=cos(θ-)的圆心的极坐标为()A.(,-)B.(,)C.(1,-)D.(1,)练习7.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,长度单位不变,建立极坐标系,已知曲线C的极坐标方程为ρcos(θ-)=1,M,N分别为曲线C与x轴、y轴的交点,则MN的中点的极坐标为()A.(1,)B.(,)C.D.练习8.直线和直线=1的位置关系()A.相交但不垂直B.平行C.垂直D.重合填空题练习1.将点的极坐标(2,)化为直角坐标为_______.练习2.在极坐标系中,已知两点A、B的极坐标分别为(3,),(4,),则△AOB(其中O 为极点)的面积为___.练习3.在极坐标系中,极点到直线ρcosθ+ρsinθ=2的距离为___.练习4.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为_____.练习5.在极坐标系中A(2,),B,(4,)两点间的距离___.练习6.原点与极点重合,x轴正半轴与极轴重合,则点(-2,-2)的极坐标是_______.解答题练习1.'在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数,0≤β<π),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)已知直线l与曲线C相交于A,B两点,且|OA|-|OB|=2,求β.'练习2.'已知曲线C的参数方程为(θ为参数),A(2,0),P为曲线C上的一动点.(Ⅰ)求动点P对应的参数从变动到时,线段AP所扫过的图形面积;(Ⅱ)若直线AP与曲线C的另一个交点为Q,是否存在点P,使得P为线段AQ的中点?若存在,求出点P坐标;若不存在,说明理由.'练习3.'已知曲线C1:(t为参数),C2:(θ为参数)(Ⅰ)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值。
高考数学极坐标与参数方程题型归纳
高考数学极坐标与参数方程题型归纳一、极坐标题型1.圆的极坐标方程圆的极坐标方程为r=a,其中a为常数。
题目中常常给出一个圆的直角坐标方程,要求将其转化为极坐标方程。
2.同一直线与圆的极坐标方程给定一条直线的极坐标方程,如$r=k\\theta$,同时给出一个与该直线相交于两点的圆的极坐标方程,求该圆的半径和圆心的极坐标。
3.圆内切于另一圆与直线的极坐标方程给定一个圆的极坐标方程,要求找出与该圆相切的另一个圆和直线的极坐标方程。
4.线段与圆的极坐标方程给定一段线段的两个端点的极坐标和长度,要求求出与该线段相切的圆的极坐标方程。
二、参数方程题型1.直线的参数方程给定一条直线的直角坐标方程,要求将其转化为参数方程形式。
2.圆的参数方程给定一个圆的直角坐标方程,要求将其转化为参数方程形式。
3.曲线方程的参数化表示给定一个曲线的直角坐标方程,要求将其转化为参数方程形式。
三、极坐标与参数方程的转换题型1.极坐标转换为参数方程给定一个极坐标方程,要求将其转化为参数方程形式。
2.参数方程转换为极坐标给定一个参数方程,要求将其转化为极坐标方程形式。
四、解析法求参数方程的题型1.螺线的参数方程给定一个螺线的解析方程,要求求出其对应的参数方程。
2.抛物线的参数方程给定一个抛物线的解析方程,要求求出其对应的参数方程。
3.椭圆的参数方程给定一个椭圆的解析方程,要求求出其对应的参数方程。
五、参数方程与直角坐标系之间的关系1.参数方程的直角坐标系方程给定一个参数方程,要求将其转化为直角坐标系方程。
2.直角坐标系方程的参数方程给定一个直角坐标系方程,要求将其转化为参数方程。
以上是高考数学中关于极坐标与参数方程的常见题型归纳。
掌握了这些题型的解题方法和转换技巧,就能够更好地应对高考数学中的相关题目。
在解题时,可以根据题目给出的信息选择合适的坐标系,利用相应的公式和性质进行计算,从而得出准确的答案。
希望同学们通过对这些题型的学习和练习,能够在高考中取得优异的成绩!。
高三数学极坐标与参数方程一轮复习讲义
4
2
4
这就是点Q的轨迹方程.
化为直角坐标方程为(x 2 )2 ( y 2 )2 1 .
8
8 16
因此点Q的轨迹是以(1 ,3 )为圆心,1 为半径的圆.
44
4
7
直角坐标与极坐标互化要注意互化的前提 若要判断曲线的形状;可先将极坐标方程化为 直角坐标方程;再判断 在直角坐标系中;求曲线 的轨迹方程的方法有直译法;定义法;动点转移 法 在极坐标系中;求曲线的极坐标方程;这几种 方法仍然是适用的
专题八 自选模块
1. 极 坐 标 与 直 角 坐 标 的 互 化
1 互 化 的 前 提 :
①极点与直角坐标系的原点重合;
② 极 轴 与 x轴 的 正 方 向 重 合 ; ③两种坐标系中取相同的长度单位.
2互
化
公
式
x
y
cos sin
2 , t a n
x2 y2 y ,x
x
. 0
2 .1 圆 心 在 ( x 0, y 0 ), 半 径 为 r的 圆 的 参 数 方 程 为 :
5
1以 极 点 为 原 点 , 极 轴 为 x轴 的 正 半 轴 , 建 立 直 角
坐 标 系 , 则 点 A的 直 角 坐 标 为 ( 2,0 ), 直 线 l的 直 角 坐 标 方
程 为 x y 2 m 0 .因 为 A到 直 线 l的 距 离 d |
1 m 3, 所 以 m 2.
8
【变式训练】(2011 5月名校创新试卷)如图,在极坐标系中,
已知曲线C1:
2cos (0
2
),O1
1, 0,
C2:
4cos (0
2
),O2
2023届高三数学一轮复习——极坐标与参数方程+课件
x=x0+tcos α, y=y0+tsin α
(t 为参数).
y
M(x,y)
注意:直线参数方程中
参数t的绝对值等于直 线上动点M到定点M0的
距离 |t|=|M0M|
M0(x0,y0)
O
M0M te
x
13
· 知识点y 回顾: B
· A
M(x,y)
·· M0(x0,y0)
O
x
设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2.
知识与内容 <1>一、聚焦重点:曲线的极坐标方程.
二、破解难点:参数方程与普通方程的互化 . 三、廓清疑点:参数方程的应用.
<2>(1)曲线的参数方程与普通方程的互化、极坐 标方程与直角坐标方程互化需注意等价性.
(2)参数思想、转化思想 . (3)类比已有知识,注重新旧知识的整合与循
环上升.
当堂检测:
y
再将 C 化成极坐标方程,
C
O
x
得( ρcosθ-1)2 + ( ρsinθ- 3 )2=5.
化简,得 ρ2-4ρcos(θ- π )-1=0, 3
此即为所求的圆 C 的方程.
题型一 极坐标、参数方程、直角坐标互化
例 1 在极坐标系中,已知圆 C 的圆心坐标为 C (2,
π ),半径 R= 5 ,求圆 C 的极坐标方程. P
(θ 为参数)和曲线 C2:ρ=1 上,则 AB 的最
3 小值为________.
解析 ∵C1:(x-3)2+(y-4)2=1,C2:x2+y2=1, ∴两圆心之间的距离为 d= 32+42=5. ∵A∈曲线 C1,B∈曲线 C2, ∴ABmin=5-2=3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科数学
一轮复习(极坐标与参数方程)
第二讲极坐标与参数方程
目标认知
考试大纲要求:
1. 理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;
2. 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示
点的位置的区别,能进行极坐标和直角坐标的互化;
3. 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方
程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时
选择适当坐标系的意义;
4. 了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表
示点的位置的方法相比较,了解它们的区别;
5. 了解参数方程,了解参数的意义,能选择适当的参数写出直线、圆和圆锥曲线的参
数方程;
6. 了解平摆线、渐开线的生成过程,并能推导出它们的参数方程,了解其他摆线的生
成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。
重点、难点:
1.理解参数方程的概念,了解常用参数方程中参数的意义,掌握参数方程与普通方程
的互化。
2.理解极坐标的概念,掌握极坐标与直角坐标的互化;直线和圆的极坐标方程。
【知识要点梳理】:
知识点一:极坐标
1.极坐标系
平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。
2.极坐标系内一点的极坐标
平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对
就叫做点的极坐标。
(1)一般情况下,不特别加以说明时表示非负数;
当时表示极点;
当时,点的位置这样确定:作射线,
使,在的反向延长线上取一点,使得,点即为所
求的点。
(2)点与点()所表示的是同一个点,即角与的
终边是相同的。
综上所述,在极坐标系中,点与其点的极坐标之间不是一一对应而是一对多的对
应,
即,, 均表示同一个点.
3. 极坐标与直角坐标的互化
当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;
③长度单位相同),平面上一个点的极坐标和直角坐标有如下
关系:
直角坐标化极坐标:;
极坐标化直角坐标:.
此即在两个坐标系下,同一个点的两种坐标间的互化关系.
4. 直线的极坐标方程:
(1)过极点倾斜角为的直线:或写成及.
(2)过垂直于极轴的直线:
5. 圆的极坐标方程:
(1)以极点为圆心,为半径的圆:.
(2)若,,以为直径的圆:
知识点二:柱坐标系与球坐标系:。