湿度检测开关传感器原理图
湿度传感器PPT模板
1.3 主要参数
1.测量范围 指能保证湿度传感器正常工作的被测湿度最大变化范围。 2.灵敏度 指在一定湿度范围内,湿度变化为1%RH时,其感湿特征量的变化值或变化率。 指在一定温度环境下,当被测湿度发生变化时,输出的感湿特征值达
湿度为 W
T
100%
(6-5)
如
式中, 和max 分别表示某温度下空气的绝对湿度和饱和湿度; PV 和 PW 分
别表示某温度下实际水蒸气压和饱和水蒸气压。
1.2 常见的湿度传感器
1.氯化锂湿度传感器
氯化锂湿度传感器是利用吸湿性盐类(即含有氯化 锂成分的混合液体)潮解使离子导电率发生变化而制成 的测湿元件。它主要由引线、基片、感湿层和金属极板 组成。
3.响应时间 到稳定变化量的规定比例所需的时间。
4.温度系数 指感湿特性曲线随温度变化的特性。
6.3.1 结构及工作原理
1.土壤湿度检测
SLHT5-1型土壤湿度传感器(见图6-15)可以 检测农作物周围土壤的湿度,它具有很好的抵抗环 境其他因素干扰的能力,而且不会因为土壤湿度发 生突变而造成检测不准确,因此不需要额外增加信 号稳定电路。
传感器原理与应用
1.1 湿度的表示方法
1.绝对湿度
单位体积的空气中所含水蒸气的质量称为绝对湿度(AH),它也指空气中水蒸气的
密度,其定义式为
mV V
(6-4)
式中, 表示被测空气的绝对湿度,单位是 g/L 或 mg/L; mV 表示被测空气中水蒸气的
质量,单位是 g 或 mg;V 表示被测气体的体积,单位是 L。
湿度传感器单片机应用指南
湿度传感器单片机应用指南检测电路原理及说明(第二版)一、 湿度传感器检测需要注意的问题1、交流供电的问题:高分子湿度传感器CHR01、CHR02系列为新一代复合型电阻型湿度敏感部件,其复阻抗与空气相对湿度成指数关系,直流阻抗(普通数字万用表测量)几乎为无穷大,等效电容相对来说比较大,与传统意义上的电阻有明显的区别,可以等效为电阻与电容的串联体。
由于湿度敏感元件本身需要空气中水分子参与膜中的离子导电,水分子为极性分子,如果直流电流一直存在的情况下,水分子会电离,并分解为H2与O2,从而影响导电与元件的寿命,所以通过传感器的电流必须为双向电流,即为交流电流。
2、检测频率对湿度传感器而言,频率与阻抗之间存在一定的关系,数据表中的检测数据,是通过LCR电桥所测试出来的,(1KHz正弦波),对于测量20%--90%RH范围内,频率的变化(300 Hz—10K Hz)对传感器影响并不明显。
3、湿度传感器查表法及温度补偿说明相对湿度是指在某一温度下,水蒸气的分压P与此温度下饱和水蒸气压P0之比,由于不同温度下,饱和水蒸气压是不同的,因此相对湿度是与温度存在必然的联系。
湿度传感器阻抗变化与温度的关系见规格书中的数据表(Z/RH/T),在实际应用中必须先检测实际的温度,然后通过A/D或频率算出此时湿度传感器的阻抗值,再对照数据表,按查表法求出此时的相对湿度。
如果湿度精度要求不是特别严格的情况,(从数据处理简易的法则来说),可以推算湿度传感器温度系数为-0.4%RH/℃,公式为:H(t)=H (25℃) - 0.4*(t – 25)例如,以实测阻抗按25℃的数据表读数,例如在35℃时读到的阻抗为30K,按25℃表格,相对湿度为60%RH,此时按公式计算的实际湿度应为56%RH。
4、实测校正及软件修正的问题在通过单片机对湿度传感器进行实际采样应用时,需要通过实测修正数据,首先将传感器置于湿度发生装置中(例如恒温恒湿箱),进行实测AD 值或频率值,通过软件对显示值进行修正,此项修正基本上可以弥补频率变化以及数据取值等等所产生的误差。
湿敏电阻传感器工作原理
湿敏电阻传感器工作原理湿敏电阻传感器工作原理是基于材料的电阻随湿度变化的特性而设计的一种传感器。
它通过测量材料的电阻值来间接检测周围环境的湿度水分含量。
湿敏电阻传感器通常由一种具有湿敏特性的半导体材料制成,如氧化锌(ZnO)或聚合物。
这些材料的电阻值随着湿度的变化而变化,其工作原理主要是利用材料的吸湿性来改变导电路径。
当材料吸湿时,水分会与材料表面发生相互作用,并形成一个致电离子,这些离子会改变材料内部的电导率。
因此,当湿敏材料吸湿时,电阻值会发生变化。
湿敏电阻传感器大多数采用可变电阻的工作模式,根据电阻值的变化来测量湿度。
一般情况下,传感器由两个电极组成,电极之间的材料就是带有湿敏特性的材料。
当材料吸湿时,电阻值会下降,反之,当材料失去水分时,电阻值会上升。
湿敏电阻传感器通常通过一个电路进行测量和处理。
传感器电路一般由一个恒定电流源和一个测量电压源组成。
恒定电流源会通过传感器的湿敏材料,测量电压源则通过传感器的另一端。
当电流通过传感器时,会产生一个与电阻值成正比的电压信号。
测量电压源测量这个电压信号,进而计算出电阻值,从而间接得出湿度的数值。
需要注意的是,湿敏电阻传感器的测量范围通常由其材料的性质和制造工艺决定,不同的传感器会有不同的测量范围和精度。
因此,在选择和应用湿敏电阻传感器时,需要根据具体的要求和应用场景进行选择。
总结起来,湿敏电阻传感器的工作原理是利用材料的电阻随湿度变化的特性来间接测量环境的湿度。
通过测量材料的电阻值,并经过测量和处理电路的计算,最终得出湿度的数值。
传感器的输出信号可以是模拟信号或数字信号,用于不同的应用。
这种传感器具有简单、灵敏、成本低廉等特点,在许多领域中得到了广泛应用。
温湿度传感器工作原理
温湿度传感器工作原理
温湿度传感器是一种常见的环境传感器,用于测量环境中的温度和湿度,可以用于家庭、工厂、农业等各种场合。
温湿度传感器的工作原理是通过测量环境中的温度和湿度来确定空气压力,进而推算出空气中的温度和湿度。
温湿度传感器一般由两个部分组成,第一部分是温度传感器,它可以测量环境中的温度,并将测量值转换为电信号或数字信号。
第二部分是湿度传感器,它可以测量环境中的湿度,并将测量值转换为电信号或数字信号。
两个传感器的输出信号将被数据处理器或其他控制器读取,并最终转换成温度和湿度的数字值,以便显示或控制。
温湿度传感器内部有一种叫做湿敏电阻或湿敏元件的元件,它能够感受空气中水蒸气的变化,从而影响湿度传感器的输出信号。
此外,一些温湿度传感器还包括一个叫做机械式湿度传感器的元件,它可以测量空气中的水蒸气压力,从而计算出空气中的湿度。
温湿度传感器的应用非常广泛,它可以用于检测空气中的温度和湿度,从而调节空调、加热和排风等环境控制设备的工作状态,以确保空气中的温度和湿度处于良好的状态,从而保护人们的健康。
此外,温湿度传感器还可用于工厂、仓库、农业、气象等领域的环境监测和控制,以确保生产的顺利进行。
总之,温湿度传感器是一种用于测量环境中的温度和湿度的常见传感器,它的工作原理是通过测量空气压力来推算出空气中的温度和湿度,它可以用于家庭、工厂、农业等各种场合,为人们提供了一种可靠而可靠的环境监测和控制手段。
温湿度检测系统设计——at89c51单片机和dht11温湿度传感器(可编辑)
摘要此次设计主要是通过使用AT89C51单片机和DHT11温湿度传感器来实现的检测系统。
此次设计主要是针对两个方面的设计:硬件电路方面的设计和系统软件方面的设计。
硬件电路是通过单片机、温湿度传感器、显示器、报警器和键盘等组合在一起的,系统显示器通过DHT11温湿度传感器和LCD1620字符型液晶模块构成。
本次设计使用的电路相对而言比较简单、工作状态比较稳定、并且具有相对较高的集成度和测量误差较小的特点。
另外,此设计方便使用者进行调试,具有一定的使用价值和实用价值。
使用者可以先设定自己想预订的数值,一旦检测实际的结果比预设的数值高时,蜂鸣器就会发出报警信号,测试电路主要将温湿度传感器检测的实际值和预先的设定数值进行比较、然后通过报警电路实现的。
软件方面主要由主程序、显示模块的程序、检测温湿度程序组成。
此次设计主要通过使用DHT11传感器和AT89C51单片机来实现。
DHT11温湿度传感器具有专用的数字模块采集技术和温湿度传感技术,使得产品有极高的稳定性和可靠性;它是主要由一个电阻式感湿元件和一个NTC测温元件构成的,它通过与一个高性能8位单片机相连接来工作;因而DHT11传感器具备抗干扰能力强、响应快、以及性价比很高的优点。
由于AT89C51单片机是一种高性能、低消耗CMOS8位单片机,因此在许多领域都使用它。
【关键词】温度测量湿度测量AT89C51 DHT11ABSTRACTThis design is mainly the detection system is realized by using AT89C51 MCU and DHT11 temperature and humidity sensor. This design is mainly aimed at two aspects of design: design and system design aspects of the hardware circuit.The hardware circuit is through the micro controller, temperature and humidity sensor, display, alarm and keyboard combination together, display system through DHT11 temperature and humidity sensor and the LCD1620 character LCD module. Characteristics of circuits using this design is relatively simple, the work of relatively stable state, and has a relatively high degree of integration and less measurement error. In addition, this design is convenient for a user to debug, has certain use value and practical value. The user can set you want to book value, once the actual testing results than numerical is preset, the buzzer will alarm signal, test circuit is mainly the actual temperature and humidity sensor detection and numerical preset values were compared, then through the alarm circuit realization. The software is composed of main program, display module of the program, the temperature and humidity testing program.The design is mainly through the use of DHT11 sensor and AT89C51 single chip to achieve. DHT11 temperature and humidity sensor has a special digital module acquisition technology and the temperature and humidity sensing technology, the product has high stability and reliability; it is mainly composed of a resistance type humidity sensitive element and a NTC temperature components, it is connected with a high performance 8 bit MCU to work; so this DHT11 sensor have strong anti-interference ability, fast response, and high cost performance.Since the AT89C51 is a high performance, low consumption CMOS8microcontroller, so use it in many areas.【Key words】Temperature measurement Humidity measurement AT89C51 DHT11前言现在在人类的生活中温度已成为非常重要的数据,人们的许多行业都离不开对温度的检测。
湿度传感器的工作原理
湿度传感器的工作原理湿度传感器是一种用于测量空气中湿度的设备,它可以将湿度转化为电信号输出,从而实现湿度的监测和控制。
那么,湿度传感器的工作原理是怎样的呢?接下来,我们将详细介绍湿度传感器的工作原理。
首先,湿度传感器通常是由感湿元件和信号处理电路两部分组成。
感湿元件是湿度传感器的核心部件,它的作用是根据周围环境的湿度变化,改变自身的电学性能。
常见的感湿元件有电容式感湿元件、电阻式感湿元件和电介质感湿元件等。
其中,电容式感湿元件是应用最为广泛的一种,它利用介质的相对介电常数随湿度变化而变化的特性,通过测量电容的变化来实现湿度的测量。
其次,信号处理电路是湿度传感器的另一个重要组成部分,它的作用是将感湿元件输出的信号进行放大、滤波和线性化处理,最终转化为标准的电信号输出。
信号处理电路的设计对传感器的精度和稳定性有着重要影响,一般包括放大电路、滤波电路和AD转换电路等。
通过信号处理电路的处理,湿度传感器可以输出与环境湿度成线性关系的电压或电流信号,方便后续的数据处理和控制。
最后,湿度传感器的工作原理可以总结为,感湿元件受环境湿度变化的影响,改变自身的电学性能,输出相应的电信号;信号处理电路对感湿元件输出的信号进行放大、滤波和线性化处理,最终转化为标准的电信号输出。
通过这样的工作原理,湿度传感器可以准确地测量环境中的湿度,并将湿度信息转化为电信号输出,为各种湿度控制系统提供准确的数据支持。
总结一下,湿度传感器的工作原理主要包括感湿元件和信号处理电路两部分,感湿元件受湿度变化影响,改变自身的电学性能,信号处理电路对感湿元件输出的信号进行处理,最终实现湿度的准确测量和输出。
希望通过本文的介绍,您对湿度传感器的工作原理有了更清晰的了解。
AMT2001温湿度传感器工作原理
湿度模块AMT2001 产品手册更多详情请登陆:一、产品概述AMT2001湿敏电容湿度模块相对湿度传感器与电路一体化的产品模块的供给电压为直流电压,相对湿度通过电压输出进行计算,本模块具有精度高、可靠性高、一致性好、且已带温度补偿、稳定性好、使用方便及价格低廉等特点,尤其适合对质量、成本要求比较苛刻的企业使用。
图1 实物图 图2 外形尺寸(单位:mm )二、应用范围 暖通空调、加湿器、除湿机、通迅、大气环境监测、工业过程控制、农业、测量仪表等应用领域。
三、产品亮点 低功耗,小体积、带温度补偿、单片机校准线性输出、使用方便、成本低、完全互换、超长的信号传输距离、精确校准。
四、接口定义4.1 引脚分配表1:引脚分配4.2 电源引脚(VDD GND )该模块的供电电压范围为4.2V - 5.5V,建议供电电压为5.0V 。
4.3 电压输出信号线(Hout )湿度信号从该信号线以电压的形式输出,电压输出范围为0-3V ,具体湿度与电压关系请参照电压与湿度特性表(表4)。
图3:引脚分配图4.4 温度输出信号线(Tout ) 温度输出有两种选择:第一种:模拟信号输出.所接传感器为LM35,测温范围为0-80℃,+10.0mv/℃线性刻度系数,0℃时输出0.0V ;连接方式为图4中的第3种接线方式;第二种:温度传感器为10K NTC B.3435热敏电阻而非模拟信号输出,用户需另加读取电路。
特殊注意:客户在购买本产品时,须注明温度传感器的类型,如接NTC10K 热敏电阻须说明连接方式;如无说明,则默认为LM35模拟型温度传感器,按图4中的第3种连接方式,输出0-0.8V 的电压信号。
客户如特殊要求请注明或在线咨询。
4.5 温度传感器接线方式示意图图4:温度接线方式示意图五、传感器性能5.1 相对湿度表2:相对湿度性能表5.2 相对湿度最大误差(25℃)图5: 25℃时相对湿度最大误差[1] 此精度为出厂时检验时,传感器在25℃和5V ,条件下测试的精度指标,其不包括迟滞和非线性,且只适合非冷凝环境。
嵌入式温湿度传感器实验
温湿度传感器实验一、实验目的理解温/湿度传感器采集温/湿度的工作过程。
理解温/湿度传感器驱动的编写。
二、实验环境硬件:PC机,EBDCC2530节点板(附带SHT1X型温湿度传感器),USB接口仿真器,6Pin串口线,交叉串口线。
软件:Windows98/2000/NT/XP,IAR集成开发环境,串口调试助手。
三、实验原理温/湿度传感器SHT1X有四个引脚接口,它和EBDCC2530节点板的连接方式如下图所示:CND NCDATA NCSCK NCVDD NC图3-2-1温湿度传感器的引脚连接电路图传感器的DATA引脚和SCK引脚连接到CC2530的P0.4和P1.5上,SCK引脚是传感器的时序输入,主机可以通过P1.5引脚输出高低变换的时序控制传感器的工作;DATA引脚为传感器的双向数据输入/输出引脚,用来向传感器发送命令或者读取采集的温/湿度值。
该传感器的工作时序类似于IIC总线,每个命令对应着一个特殊的时序输出,根据SHT1X的时序特点,依次控制DATA和SCK的输出,可以实现对传感器的命令写入和数据读出。
传感器驱动程序的流程图如下:开始各引脚及传感器的的初始化写入数据采集命令等待最大转换时间图3-2-2温湿度传感器程序流程图首先通过设置至少9个周期的DATA高电平来初始化SHT1X;然后发送“传输开始”命令开始数据的采集;如果传感器正确的接收到命令,会在DATA引脚回复一个先低后高ACK信号,否则继续发送“传输开始”命令。
在正确接收到ACK 应答后温度采集将等待大约320ms(温度采集的分辨率为14位,为此手册给出的14位分辨率的最大等待时间),湿度采集将等待80ms(湿度采集的分辨率为12位,为此为手册给出的12位分辨率的最大等待时间)内传感器就能计算出采集到的温/湿度值,并且通过在DATA引脚输出低电平表示计算的完成。
判断出这个低电平到来之后,接下来每个周期内采集一个bit,直到采集两个字节的温/温度值,最后处理器应当通过下拉DATA通知传感器该采集过程的结束。
温湿度测量系统--基于单片机和温度传感器DS18B20、HS1101是电容式空气湿度传感器
摘要此温湿度测量系统是基于单线式温度传感器DS18B20、电容式湿度传感器单片机STC89C52 对温度湿度分别测量并通过液晶显示屏1602经行显示。
温度传感器DS18B20是单线式,体积超小,硬件开消超低,抗干扰能力强,精度高,附加功能强的理想单片机温度传感器,可实时根据指令给出温度数据,可读性高。
HS1101是电容式空气湿度传感器,在不同的湿度环境下呈现出不同的电容值,0%~100%RH湿度范围内,电容从162PF变化到200PF,误差误差为2%RH。
可见其精度非常高,为了反映出其电容的变化,本系统采用555多谐震荡电路产生不同的频率,用于检测湿度。
单片机采集到两个传感器给出的数据进行处理与计算,得出当前的温度与湿度并送给液晶屏显示。
本系统具有可读性高,稳定性高,反应速度快,测量值准确的特点。
关键词:温湿度测量系统精度高速度快体积小Abstract: The temperature and humidity measurement system is based on singleline type temperature sensor DS18B20, capacitive moisture sensorSCM STC89C52 for temperature humidity measurement and respectively by LCD display. The line 1602 Temperature sensor DS18B20 is singleline type, volume super-small, hardware KaiXiao ultra-low, strong anti-jamming capability, high precision, additional features strong ideal single-chip microcomputer temperature sensor, real-time temperature data, depending on the directive given readable. HS1101 is capacitive sensor, air humidity in different humidity presents different capacitance, 0% ~ 100% RH humidity, within the scope of capacitance change to 200PF, from 162PF error for 2% RH error. e can see its precision is very high, in order to reflect the capacitance change, the system USES the 555 more harmonic concussion circuits produce different frequency, which is used to detect humidity. SCM acquisition to two sensor gives data processing and calculated, the current temperature and humidity and give the display on the LCD panel. This system has a readable, high stability, reaction speed, measured values exact characteristic.Keywords: temperature and humidity measurement system high precision speed small volume目录1.设计要求 (3)2. 方案设计及论证 (3)2.1 总体方案设计 (3)2.2系统主要单元的选择与论证 (3)2.2.1单片机控制模块的选择论证 (3)2.2.2温度湿度检测模块的选择与论证 (3)2.2.3显示模块的选择与论证 (3)2.3 系统组成 (4)3. 理论分析及计算 (4)3.1 (4)3.2..........................................................................................错误!未定义书签。
温湿度传感器检测原理
温湿度传感器检测原理
温湿度传感器是一种用于测量环境温度和相对湿度的装置。
它的工作原理基于热容或热导性。
热容传感器利用物体温度变化时吸收或释放的热量来测量温度。
在温湿度传感器中,热容元件通常由一小块金属或聚合物材料制成。
当环境温度升高时,热容元件吸收热量,并导致温度升高。
通过测量热容元件吸收或释放的热量,可以计算出环境温度。
对于湿度测量,热容传感器通常结合了湿度传感器。
湿度传感器是基于材料吸湿膨胀或脱水收缩的原理工作的。
当湿度升高时,湿度传感器的材料吸湿膨胀,使热容元件的温度降低。
通过测量热容元件温度的变化,可以计算出相对湿度。
热导性传感器则通过测量物体传导热量的能力来测量温度。
它通常由两个温度传感器组成,一个用于测量环境温度,另一个用于测量传感器的温度。
通过测量这两个温度之间的差异,并考虑传感器的热导率,可以计算出环境温度。
对于湿度测量,热导性传感器通常结合了湿度传感器。
湿度传感器可以是基于阻抗变化、电容变化或介电材料吸湿膨胀的原理工作的。
湿度传感器的工作原理类似于热容传感器中的湿度传感器。
综上所述,温湿度传感器的检测原理可以是基于热容或热导性。
通过测量温度传感器的温度变化或环境温度与传感器温度之间
的差异,结合湿度传感器的工作原理,可以准确地测量环境的温度和相对湿度。
温湿度传感器工作原理
温湿度传感器工作原理温湿度传感器是一种能够测量环境温度和湿度的设备,它在各种领域都有着广泛的应用,包括气象观测、农业生产、工业生产等。
那么,温湿度传感器是如何工作的呢?接下来,我们将介绍温湿度传感器的工作原理。
首先,温湿度传感器通常由温度传感器和湿度传感器两部分组成。
温度传感器主要用于测量环境的温度,而湿度传感器则用于测量环境的湿度。
这两个传感器通过内部的电路和芯片将测量到的温度和湿度转换成电信号,然后输出给外部的显示设备或控制设备。
温湿度传感器的工作原理主要依靠两种原理,电阻原理和电容原理。
在电阻原理中,温度传感器通常采用热敏电阻,当温度发生变化时,热敏电阻的电阻值也会发生相应的变化。
而湿度传感器则采用湿敏电阻,当湿度发生变化时,湿敏电阻的电阻值也会发生相应的变化。
通过测量电阻值的变化,就可以得到环境的温度和湿度信息。
在电容原理中,温湿度传感器通常采用电容式传感器,这种传感器的电容值会随着环境温度和湿度的变化而发生变化。
通过测量电容值的变化,就可以得到环境的温度和湿度信息。
除了电阻原理和电容原理,温湿度传感器还可以采用其他原理,比如红外线原理、声波原理等。
不同原理的温湿度传感器在测量精度、响应速度、成本等方面会有所不同,用户可以根据实际需求选择合适的温湿度传感器。
总的来说,温湿度传感器的工作原理是通过测量温度和湿度对应的物理量(电阻、电容、红外线等)的变化,然后将这些变化转换成电信号输出。
通过这些电信号,我们可以了解到环境的温度和湿度信息,从而进行相应的控制和调节。
温湿度传感器在现代生活中起着重要的作用,它为我们提供了便利和舒适的环境,也为各行各业的生产提供了重要的数据支持。
希望本文能够帮助大家更好地理解温湿度传感器的工作原理,为实际应用提供参考。
湿度传感器课件(可编辑)
湿度传感器课件α粒子带正电荷由两粒带正电荷的质子和两粒中性的中子组成相等于一个氦原子核由于带正电荷它会受电磁场影响在自然界内大部份的重元素原子序数为82或以上都会在衰变时释放它例如铀和镭由于α粒子的体积比较大又带两个正电荷很容易就可以电离其他物质因此它的能量亦散失得较快穿透能力在众多电离辐射中是最弱的人类的皮肤或一张纸已能隔阻α粒子不过如果人类吸入或进食具有α粒子放射性的物质譬如吸入了辐射烟羽α粒子就能直接破坏内脏细胞它的穿透能力虽然弱但由于它的电离能力很强它对生物所造成的危害并不下于其他辐射β粒子是高速的电子由于带负电荷会受电磁场影响它的体积比α粒子细得多穿透能力则比α粒子强需要一块几毫米厚的铝片才可以阻挡它很多放射性物质都会在衰变时放出β粒子放射性元素的半衰期长短差别很大短的远小于一秒长的可达数万年利用物质吸收水分子而导电率发生变化检测湿度潮解指的是物质在空气中吸收水分使得表面逐渐变得潮湿滑润最后物质就会从固体变为该物质的溶液反映湿度传感器温度特性的一个比较直观实用的物理量氯化锂湿敏电阻即电解质湿敏电阻利用物质吸收水分子而导电率发生变化检测湿度在氯化锂LiCl溶液中Li和Cl以正负离子的形式存在锂离子Li对水分子的吸收力强离子水合成度高溶液中的离子导能力与溶液浓度成正比溶液浓度增加导电率上升当溶液置于一定湿度场中若环境RH上升溶液吸收水分子使浓度下降电阻率ρ上升反之RH下降溶液吸收水分子使浓度上升电阻率ρ下降通过测量溶液电阻R值实现对湿度测量负湿敏特性半导体瓷湿敏电阻电阻随湿度增加而下降由于水分子中氢原子具有很强的正电场当水分子在半导体瓷表面吸附时可能从半导体瓷表面俘获电子使半导体表面带负电相当表面电势变负电阻率随湿度增加而下降 7电压特性加直流电会引起感湿体内水分子的电解使电导率随时间的增加而下降用湿度传感器测量湿度时不能用直流电压采用交流电压右图表示湿度传感器的电阻与外加交流电压之间的关系测试电压小于5V时电压对阻湿特性没有影响交流电压大于15V时由于产生焦耳热对湿度传感器的阻湿特性产生了较大影响因而一般湿度传感的使用电压都小于10V Lg R Ω 0 1 2 3 4 5 6 5 7 8 4 20℃ 100Hz 11 RH 33 RH 75 RH 100 RH UV 电阻-频率特性 20℃ 5V 11 RH 33 RH 100 RH Lg f Hz 0 1 2 3 4 5 6 5 7 8 4 75 RH Lg R Ω 8频率特性湿度传感器的阻值与外加电压频率的关系在高湿时频率对阻值的影响很小当低湿高频时随着频率的增加阻值下降对这种湿度传感器当电压频率小于103Hz时阻值不随使用频率而变化所以使用频率的上限为103Hz 湿度传感器的使用频率上限由实验确定直流电压会引起水分子的电解因此测试电压频率也不能太低三电解质湿度传感器电解质是以离子形式导电的物质分为固体电解质和液体电解质若物质溶于水中在极性水分子作用下能全部或部分地离解为自由移动的正负离子称为液体电解质电解质溶液的电导率与溶液的浓度有关而溶液的浓度在一定的温度下又是环境相对湿度的函数氯化锂湿度传感器的结构 A B B 钯丝 A 涂有聚苯乙烯薄膜的圆筒电解质氯化锂湿度传感器最为典型 0 30 60 90 001 01 1 10 R108Ω相对湿度①②③④⑤④ 10 LiCl ⑤ 22LiCl ③ 05 LiCl ② 025 LiCl ① PVAC 氯化锂湿度传感器的阻湿特性组合式氯化锂的阻湿特性 0 30 60 90 001 01 1 10 相对湿度 R108Ω把不同感湿范围的单片湿度传感器组合起来可制成相对湿度工作量程为20%~90%RH的湿度传感器四陶瓷湿度传感器利用半导体陶瓷材料制成优点测湿范围宽可实现全湿范围内的湿度测量工作温度高常温型工作温度在150℃以下高温型工作温度可达800℃响应时间较短精度高抗污染能力强工艺简单成本低典型产品是烧结型陶瓷湿敏元件是MgCr2O4-TiO2此外还有TiO2-V2O5ZnO-Li2O-V2O5ZnCr2O4ZrO2-MgOFe3O4Ta2O5等这类湿度传感器的感湿特征量大多数为电阻除Fe3O4外都为负特性湿度传感器即随着环境相对湿度的增加阻值下降也有少数陶瓷湿度传感器它的感湿特性量为电容 1结构感湿体是MgCr2O4-TiO2系多孔陶瓷陶瓷的气孔大部分为粒间气孔气孔直径随TiO2添加量的增加而增大粒间气孔与颗粒大小无关相当于一种开口毛细管容易吸附水分材料的主晶相是MgCr2O4相此外还有TiO2相等感湿体是一个多晶多相的混合物陶瓷湿敏元件结构图护圈电极感湿陶瓷氧化钌电极加热器基板电极引线 2主要特性与性能 1电阻一湿度特性 MgCr2O4-TiO2陶瓷湿度传感器的电阻一湿度特性随着相对湿度的增加电阻值急骤下降基本按指数规律下降在单对数的坐标中电阻湿度特性近似呈线性关系当相对湿度由0变为100%RH时阻值从108Ω下降到104Ω即变化了四个数量级 20 40 60 80 100 103 104 105 106 107 108相对湿度 RΩ 2电阻温度特性在不同的温度环境下测量陶瓷湿度传感器的电阻湿度特性从图可见从20℃到80℃各条曲线的变化规律基本一致具有负温度系数感湿负温度系数为–038%RH/℃如果要求精确的湿度测量需要对湿度传感器进行温度补偿 20 40 60 80 100 103 104 105 106 107 108 相对湿度 20℃40℃ 60℃ 80℃ RΩ MgCr2O4-TiO2系湿度传感器的电阻温度特性MgCr2O4-TiO2系湿度传感器的时间响应特性 20 40 60 80 100 0 10 20 30 94RH 50RH 1RH 50RH t s RH 3响应时间响应时间特性如图根据响应时间的规定从图中可知响应时间小于10s 4稳定性制成的MgCr2O4-TiO2陶瓷类湿度传感器需要实验高温负荷实验大气中温度150℃交流电压5V时间104h 高温高湿负荷试验湿度大于95%RH温度60℃交流电压5V时间104h 常温常湿试验[湿度 10~90 %RH温度–10℃~+40℃ ] 油气循环试验油蒸气加热清洗循环25万次交流电压5V经过以上各种试验大多数陶瓷湿度传感器仍能可靠地工作说明稳定性比较好五高分子湿度传感器有机高分子材料制成的湿度传感器主要是利用其吸湿性与胀缩性电容式湿度传感器高分子电介质吸湿后介电常数明显改变电阻式湿度传感器高分子电解质吸湿后电阻明显变化利用胀缩性高分子如树脂材料和导电粒子在吸湿之后的开关特性制成结露传感器一电容式湿度传感器1结构高分子薄膜电介质电容式湿度传感器的基本结构高分子薄膜上部电极下部电极 2感湿机理与性能电容式高分子湿度传感器其上部多孔质的金电极可使水分子透过水的介电系数比较大室温时约为79感湿高分子材料的介电常数并不大当水分子被高分子薄膜吸附时介电常数发生变化随着环境湿度的提高高分子薄膜吸附的水分子增多因而湿度传感器的电容量增加根据电容的变化测得相对湿度 2响应特性高分子薄膜可以做得极薄响应时都很短一般都小于5s有的响应时间仅为1s 3电容一温度特性感湿特性受温度影响非常小在5℃~50℃范围内电容温度系数约为006%RH℃相对湿度 0 50 100 200 250 300 350 电容湿度特性 CpF f 15MHZ 1电容湿度特性电容随着环境温度的增加而增加基本上呈线性关系当测试频率为l5MHz 左右时其输出特性有良好的线性度对其它测试频率如1kHz10kHz尽管传感器的电容量变化很大但线性度欠佳可外接转换电路使电容湿度特性趋于理想直线二电阻式高分子膜湿度传感器 1结构聚苯乙烯磺酸锂湿度传感器的结构引线端感湿膜聚苯乙烯磺酸锂湿度传感器的结构梳状电极基片 2主要特性 1电阻湿度特性当环境湿度变化时传感器在吸湿和脱湿两种情况的感湿特性曲线如图在整个湿度范围内传感器均有感湿特性其阻值与相对湿度的关系在单对数坐标纸上近似为一直线吸湿和脱湿时湿度指示的最大误差值为 3~4 %RH 1K 30 40 50 60 70 80 90 吸湿 10K 100K 1M 10M 相对湿度 R Ω脱湿Δ±3RH 电阻湿度特性 2温度特性聚苯乙烯磺酸锂的电导率随温度的变化较为明显具有负温度系数在 0~55 ℃时温度系数为–06%~–10% RH℃ 0 40 20 104 60 80 100 50℃ 10 102 103 聚苯乙烯磺酸锂湿度传感器的湿度特性 25℃ 40℃ RΩ相对湿度 3其它特性聚苯乙烯磺酸锂湿度传感器的升湿响应时间比较长降湿响应时间比较短响应时间在一分钟之内有良好的稳定性存储一年后测量误差不超过2%RH可以满足器件稳定性的要求缺点含有机溶液气体的环境下测湿时器件易损坏不能用于80℃以上的高温六湿度传感器的测量电路一检测电路的选择 1电源选择电阻式湿度传感器必须使用交流电源否则性能会劣化甚至失效电解质湿度传感器的电导是靠离子的移动实现的在直流电源作用下正负离子必然向电源两极运动产生电解作用使感湿层变薄甚至被破坏在交流电源作用下正负离子往返运动不会产生电解作用感湿膜不会被破坏交流电源的频率选择在不产生正负离子定向积累情况下尽可能低一些在高频情况下测试引线的容抗明显下降会把湿敏电阻短路另外湿敏膜在高频下也会产生集肤效应阻值发生变化影响到测湿灵敏度和准确性 2.温度补偿湿度传感器具有正或负的温度系数其温度系数大小不一工作温区有宽有窄所以要考虑温度补偿问题对于半导体陶瓷传感器其电阻与温度的的关系一般为指数函数关系通常其温度关系属于NTC型即 H相对湿度 T绝对温度R0在T 0℃相对湿度H 0时的阻值 A湿度常数B温度常数温度系数=湿度系数=湿度温度系数=若传感器的湿度温度系数为007%RH℃工作温度差为30℃测量误差为021%RH℃则不必考虑温度补偿若湿度温度系数为04%RH℃则引起12%RH℃的误差必须进行温度补偿 3.线性化湿度传感器的感湿特征量与相对湿度之间的关系不是线性的给湿度的测量控制和补偿带来了困难需要通过一种变换使感湿特征量与相对湿度之间的关系线性化下图为湿度传感器测量电路原理框图 A2 A1 A3 A4 A5 A6 _ _ 湿敏元件 R1 R2 R3 R4 R5 R6 RT USC C1 C2 C3 W 湿度传感器测量电路原理框图 D1 振荡器放大电路传感器驱动电路整流电路对数温补电路二典型电路电阻式湿度传感器其测量电路主要有两种形式 1.电桥电路振荡器对电路提供交流电源电桥的一臂为湿度传感器湿度变化使湿度传感器的阻值发生变化电桥失去平衡产生信号输出放大器可把不平衡信号加以放大整流器将交流信号变成直流信号由直流毫安表显示振荡器和放大器都由9V直流电源供给电桥法适合于氯化锂湿度传感器振荡器电桥放大器桥式整流电表指示直流电源9V 湿度传感器电桥测湿电路框图 100kΩ传感器湿度 3AX3 ╳ 2 10kΩ 100kΩ╳6 3DG6 2kΩ 2kΩ 22kΩ 9V 10μF 10μF 20μF 10μF 20μF 3kΩ╳2 U 10μF 51kΩ 51kΩ 100mA 便携式湿度计的实际电路 2.欧姆定律电路电路用于可承受较大电流的陶瓷湿度传感器由于测湿电路可以获得较强信号故可以省去电桥和放大器用市电作为电源降压变压器降压欧姆定律电路220V 22kΩ 51kΩ 3V 2AP9╳4 输入 Rd 插口 005μF╳2 3.带温度补偿的湿度测量电路在实际应用中需要同时考虑对湿度传感器进行线性处理和温度补偿常常采用运算放大器构成湿度测量电路下图为湿度测量电路中Rt是热敏电阻器 20kΩB 4100K RH为H204C湿度传感器运算放大器型号为LM2904该电路的湿度电压特性及温度特性表明在 30%~90% RH15℃~35℃范围内输出电压表示的湿度误差不超过3%RH _ _ 1V 120HZ 51kΩ 91kΩ 22kΩ91kΩ RH 12V -12V D 20μF 47kΩ 100kΩ 100kΩ 330kΩ UOUT -VS Rt A2 A1 释义与简介声呐就是利用水中声波对水下目标进行探测定位和通信的电子设备是水声学中应用最广泛最重要的一种装置它是SONAR 一词的义音两顾的译称旧译为声纳SONAR是Sound Navigationand Ranging声音导航测距的缩写声呐技术至今已有100年历史它是1906年由英国海军的刘易斯·尼克森所发明他发明的第一部声呐仪是一种被动式的聆听装置主要用来侦测冰山这种技术到第一次世界大战时被应用到战场上用来侦测潜藏在水底的潜水艇目前声呐是各国海军进行水下监视使用的主要技术用于对水下目标进行探测分类定位和跟踪进行水下通信和导航保障舰艇反潜飞机和反潜直升机的战术机动和水中武器的使用此外声呐技术还广泛用于鱼雷制导水雷引信以及鱼群探测海洋石油勘探船舶导航水下作业水文测量和海底地质地貌的勘测等和许多科学技术的发展一样社会的需要和科技的进步促进了声呐技术的发展工作的原理声波是观察和测量的重要手段有趣的是英文sound一词作为名词是声的意思作为动词就有探测的意思可见声与探测关系之紧密在水中进行观察和测量具有得天独厚条件的只有声波这是由于其他探测手段的作用距离都很短光在水中的穿透能力很有限即使在最清澈的海水中人们也只能看到十几米到几十米内的物体电磁波在水中也衰减太快而且波长越短损失越大即使用大功率的低频电磁波也只能传播几十米然而声波在水中传播的衰减就小得多在深海声道中爆炸一个几公斤的炸弹在两万公里外还可以收到信号低频的声波还可以穿透海底几千米的地层并且得到地层中的信息在水中进行测量和观察至今还没有发现比声波更有效的手段结构与分类声呐装置一般由基阵电子机柜和辅助设备三部分组成基阵由水声换能器以一定几何图形排列组合而成其外形通常为球形柱形平板形或线列行有接收基阵发射机阵或收发合一基阵之分电子机柜一般有发射接收显示和控制等分系统辅助设备包括电源设备连接电缆水下接线箱和增音机与声呐基阵的传动控制相配套的升降回转俯仰收放拖曳吊放投放等装置以及声呐导流罩等换能器是声呐中的重要器件它是声能与其它形式的能如机械能电能磁能等相互转换的装置它有两个用途一是在水下发射声波称为发射换能器相当于空气中的扬声器二是在水下接收声波称为接收换能器相当于空气中的传声器俗称麦克风或话筒换能器在实际使用时往往同时用于发射和接收声波专门用于接收的换能器又称为水听器换能器的工作原理是利用某些材料在电场或磁场的作用下发生伸缩的压电效应或磁致伸缩效应声呐的分类可按其工作方式按装备对象按战术用途按基阵携带方式和技术特点等分类方法分成为各种不同的声呐例如按工作方式可分为主动声呐和被动声呐按装备对象可分为水面舰艇声呐潜艇声呐航空声呐便携式声呐和海岸声呐等主动声呐主动声呐技术是指声呐主动发射声波照射目标而后接收水中目标反射的回波以测定目标的参数大多数采用脉冲体制也有采用连续波体制的它由简单的回声探测仪器演变而来它主动地发射超声波然后收测回波进行计算适用于探测冰山暗礁沉船海深鱼群水雷和关闭了发动机的隐蔽的潜艇被动声呐被动声呐技术是指声呐被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号以测定目标的方位它由简单的水听器演变而来它收听目标发出的噪声判断出目标的位置和某些特性特别适用于不能发声暴露自己而又要探测敌舰活动的潜艇安装及运用传统上潜艇安装声呐的主要位置是在最前端的位置由于现代潜艇非常依赖被动声呐的探测效果巨大的收音装置不仅仅让潜艇的直径水涨船高原先在这个位置上的鱼雷管也得乖乖让出位置而退到两旁去其他安装在潜艇上的声呐型态还包括安装在艇身其他位置的被动声呐听音装置利用不同位置收到的同一讯号经过电脑处理和运算之后就可以迅速的进行粗浅的定位对于艇身较大的潜艇来说比较有利因为测量的基线较长准确度较高另外一种声呐称为拖曳声纳因为这种声呐装置在使用时以缆线与潜艇连接声呐的本体则远远的拖在潜艇的后面进行探测拖曳声呐的使用大幅强化潜艇对于全方位与不同深度的侦测能力尤其是潜艇的尾端这是因为潜艇的尾端同时也是动力输出的部分由于水流的声音的干扰位于前方的声呐无法听到这个区域的讯号而形成一个盲区使用拖曳声呐之后就能够消除这个盲区找出躲在这个区域的目标影响的因素影响声呐工作性能的因素除声呐本身的技术状况外外界条件的影响很严重比较直接的因素有传播衰减多路径效应混响干扰海洋噪声自噪声目标反射特征或辐射噪声强度等它们大多与海洋环境因素有关例如声波在传播途中受海水介质不均匀分布和海面海底的影响和制约会产生折射散射反射和干涉会产生声线弯曲信号起伏和畸变造成传播途径的改变以及出现声阴区严重影响声呐的作用距离和测量精度现代声呐根据海区声速--深度变化形成的传播条件可适当选择基阵工作深度和俯仰角利用声波的不同传播途径直达声海底反射声会聚区深海声道来克服水声传播条件的不利影响提高声呐探测距离又如运载平台的自噪声主要与航速有关航速越大自噪声越大声呐作用距离就越近反之则越远目标反射本领越大被对方主动声呐发现的距离就越远目标辐射噪声强度越大被对方被动声呐发现的距离就越远从科学的角度来说电磁波是能量的一种凡是能够释出能量的物体都会释出电磁波微波能通常由直流电或50MHz交流电通过一特殊的器件来获得可以产生微波的器件有许多种但主要分为两大类半导体器件和电真空器件电真空器件是利用电子在真空中运动来完成能量变换的器件或称之为电子管在电真空器件中能产生大功率微波能量的有磁控管多腔速战速调管微波三四极管行波管等在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管微波是指频率为300MHz-300GHz的电磁波是无线电波中一个有限频带的简称即波长在1米不含1米到1毫米之间的电磁波是分米波厘米波毫米波的统称微波频率比一般的无线电波频率高通常也称为超高频电磁波微波作为一种电磁波也具有波粒二象性.微波量子的能量为1 99×l0 -25~ 1.99×10-22j.1946年斯潘瑟还是美国雷声公司的研究员一个偶然的机会他发现微波溶化了糖果事实证明微波辐射能引起食物内部的分子振动从而产生热量1947年第一台微波炉问世顾名思义微波炉就是用微波来煮饭烧菜的微波是一种电磁波这种电磁波的能量不仅比通常的无线电波大得多而且还很有"个性"微波一碰到金属就发生反射金属根本没有办法吸收或传导它微波可以穿过玻璃陶瓷塑料等绝缘材料但不会消耗能量而含有水分的食物微波不但不能透过其能量反而会被吸收微波炉正是利用微波的这些特性制作的微波炉的外壳用不锈钢等金属材料制成可以阻挡微波从炉内逃出以免影响人们的身体健康装食物的容器则用绝缘材料制成微波炉的心脏是磁控管这个叫磁控管的电子管是个微波发生器它能产生每秒钟振动频率为245亿次的微波这种肉眼看不见的微波能穿透食物达5cm深并使食物中的水分子也随之运动剧烈的运动产生了大量的热能于是食物"煮"熟了这就是微波炉加热的原理用普通炉灶煮食物时热量总是从食物外部逐渐进入食物内部的而用微波炉烹饪热量则是直接深入食物内部所以烹饪速度比其它炉灶快4至10倍热效率高达80以上目前其它各种炉灶的热效率无法与它相比而微波炉由于烹饪的时间很短能很好地保持食物中的维生素和天然风味比如用微波炉煮青豌豆几乎可以使维生素C一点都不损失另外微波还可以消毒杀菌使用微波炉时应注意不要空"烧"因为空"烧"时微波的能量无法被吸收这样很容易损坏磁控管另外人体组织是含有大量水分的一定要在磁控管停止工作后再打开炉门提取食物微波炉的基本结构微波炉的基本外形和构造微波式传感器的组成微波振荡器和微波天线二微波传感器测量原理由发射天线发出的微波遇到被测物体时将被吸收或反射使功率发生变化若利用接收天线接收通过被测物或由被测物反射回来的微波并将它转换成电信号再由测量电路处理就实现了微波检测微波传感器可分为反射式与遮断式两种 1.反射式传感器通过检测被测物反射回来的微波或经过时间间隔来表达被测物的位置厚度等参数 2.遮断式传感器通过检测接收天线接收到的微波功率的大小来判断发射天线与接收天线间有无被测物或被测物的位置等参数三微波传感器的应用 1.微波液位计微波发射天线微波接收天线当发射功率波长增益均恒定时只要测得接收功率就可获得被测液面的高度 2.微波物位计 1 当被测物位较低时发射天线发出的微波束全部由接收天线接收经放大器比较器后发出正常工作信号2 当被测物位升高到天线所在的高度时微波束部分被吸收部分被反射接收天线接到的功率相应减弱经放大器比较器就可给出被测物位高出设定物位的信号观察者 R S 波源 u 观察者的运动速度 u波速波源和观察者相对静止时观察者接收到的波源的频率波源的运动速度波源和观察者相对运动时观察者接收到的波源的频率 3 观察者静止波源以速率运动 a波源朝向观察者以速度运动 u t时刻的波阵面 t1秒时刻的波阵面接收频率增高了 a波源与接收者相互靠近 u t时刻的波阵面 t1秒时刻的波阵面接收频率增高了4波源及观察者同时运动 a波源与接收者相互靠近 u t时刻的波阵面 t1秒时刻的波阵面接收频率增高了 4波源及观察者同时运动 b波源与接收者相互远离u t时刻的波阵面 t1秒时刻的波阵面接收频率降低了利用多普勒效应监测车速固定波源发出频率为v 100Hz 的超声波当汽车向波源行驶时与波源安装在一起的接收器接收到从汽车反射回来的波的频率为已知空气中的声速为。
氯化锂湿度传感器的原理
湿度传感器是除湿机的重要组成部分。
氯化锂湿度传感器由湿敏元件和转换电路等组成,它是将环境湿度变换为电信号的装置。
氯化锂湿度传感器在工业、农业、气象、医疗以及日常生活等方面都得到了广泛的应用。
理想的湿敏传感器的特性要求是:适合于在宽沮、湿度范围内使用,测量精度高l使用寿命长,稳定性好;响应速度快,湿滞回差小,重现性好I灵敏度高,线性好,温度系数小I制造工艺简单,易于批量生产,转换电路简单,成本低;抗腐蚀,耐低温和高温特性等.(1)基本原理自然界中许多物质的导电能力和它们的含湿量有关,而相对湿度又是影响这些物质含湿量的主要因素。
例如氯化锂在大气中不分解、不挥发,也不变质,是一种具有稳定的离子型结构的无机盐,它的饱和蒸汽压很低,在同一温度下为水的饱和蒸汽压的10%左右。
在空气的相对湿度低于l2%时,氯化锂在空气中呈固相,电阻牢很高,相当于绝缘体l当空气的相对湿度高于12%时,放置在空气中昀氯化锂就吸收空气中的水分而潮解成溶液,只有当它的蒸汽压等于周围空气的水蒸气分压力时才处于平衡状态。
因此,随着空气相对湿度的增加,氯化锂的吸湿量也随之增加,从而使氯化锂中导电的离子数也随之增加,最后导致它的电阻率降低、电阻减小.当氯化锂的蒸汽压高于空气的水蒸气分鹾力时,氯化锂就放出水分,导致电阻率升高、电阻增大。
利用氯化锂的电阻率随空气相对湿度变化的特性制成湿度传感器,根据测量线路的不同可区分为氯化锂电阻式湿度计和氯化锂露点式湿度计。
(2)氯化枉电阻式湿度计测量路.略氯化锂电阻式湿度计信号发生器测头是把梳状的金属箔或镀金箔制在绝缘板上(图5-6),也可以用两根平行的铱丝或铂丝绕制在绝缘柱上(图5-7),利用多孔塑料聚乙烯醇作为胶合剂,使氯化锂溶液均匀地附在绝缘板的表面,多孔塑料能保证水蒸气和氯化锂溶液之间有良好的接触,两极平行的金属箔本身并不接触,而依靠氯化锂盐溶液层构成回路,使得空气中相对湿度的变化转化为氯化锂信号发生器测头电阻的变化,并把它接人不平衡交流电桥的一个桥臂,于是不平衡电桥的电位差输出也就反映了空气相对湿度的变化,这样,只要测量出不平衡电桥对角线上的电位差变化就可以确定空气的相对湿度8。