实验1 simulink仿真结果分析
matlab中Simulink 的仿真实验报告
Simulink 的仿真实验报告1.实验目的:熟悉使用Simulink的各种使用方法及仿真系统2.数学建模:假设系统的微分方程为:r''(t)+3r'(t)+2r(t)=e(t) , 其中e(t)=u(t)求该系统的零状态响应令等式右边为零,则可求得方程的两个特征根为:r1=-1, r2=-2所以设该系统的零状态响应为:r(t)=Ae^-t+Be^-2t+C其中C为方程的一个特解,由微分方程可知,等式右边没有冲激函数及冲激函数的微分,故系统在零负到零正的过程中没有发生跳变,则C为一个常数。
将C带入方程可解得C=1/2由于零状态响应时系统的初值都为零即r(0-)=0 , r'(0-)=0,且系统无跳变,则r(0+)=0.r'(0+)=0.带入r(t)得:A+B+1/2=0-A-2B+1/2=0解得:A=-3/2 B=1所以系统的零状态响应为:r(t)=-3/2e^-t+e^-2t+1/2Simulink仿真:根据系统的微分方程可编辑仿真模型如下图打开开始按键,可以得到波形图:验证仿真结果:由前面得到的系统零状态响应结果:r(t)=-3/2e^-t+e^-2t+1/2可编辑仿真模型:>> t=(0:0.1:10);>> plot(t,((-3)/2)*exp((-1)*t)+exp((-2)*t)+1/2)实验结论:Simulink仿真结果和函数仿真结果基本一致,所以simulink仿真是正确的。
实验心得:1.此实验是利用matlab对一个微分方程进行建模求解,既要求我们掌握对微分方程的求解,又要求掌握用matlab对微分方程进行建模,所以要求我们对软件得熟悉。
2.信号与系统的实验主要是用matlab分析或验证书上的东西,前提当然是学好书本上的知识,再学好matlab这个软件。
3.用simulink仿真的时候,对函数用积分器较好,不知为什么用微分器做不出来,报错显示不出图形。
MATLAB Simulink系统建模与仿真 实验报告
MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。
自动实验一——典型环节的MATLAB仿真 报告
班级 姓名 学号XXXXXX 电子与信息工程学院实验报告册课程名称:自动控制原理 实验地点: 实验时间同组实验人: 实验题目: 典型环节的MATLAB 仿真一、实验目的:1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理及SIMULINK 图形:1.比例环节的传递函数为 221211()2100,200Z R G s R K R K Z R =-=-=-==其对应的模拟电路及SIMULINK 图形如图1-3所示。
2.惯性环节的传递函数为2211211212()100,200,110.21R Z R G s R K R K C uf Z R C s =-=-=-===++其对应的模拟电路及SIMULINK 图形如图1-4所示。
3.积分环节(I)的传递函数为uf C K R s s C R Z Z s G 1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-5所示。
图1-5 积分环节的模拟电路及及SIMULINK 图形 图1-4 惯性环节的模拟电路及SIMULINK 图形4.微分环节(D)的传递函数为uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<<其对应的模拟电路及SIMULINK 图形如图1-6所示。
5.比例+微分环节(PD )的传递函数为)11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<=== 其对应的模拟电路及SIMULINK 图形如图1-7所示。
6.比例+积分环节(PI )的传递函数为)11(1)(11212s R s C R Z Z s G +-=+-=-= uf C K R R 10,100121===其对应的模拟电路及SIMULINK 图形如图1-8所示。
Matlab simulink 上机实验报告 简单版
201006113 11002 Matlab上机实验报告
◆实验一: Smulink动态仿真集成环境
➢ 1.目的要求
➢熟悉simulink环境, 掌握simulink的仿真方法。
➢ 2.掌握要点
➢熟悉simulink环境, 掌握simulink的仿真方法。
➢ 3.实验内容
➢熟悉simulink环境;
➢熟悉基本的模块库以及功能模块
➢搭建简单的电路进行仿真;
➢对分析参数对结果的影响;
1.建立如图所示的仿真系统.
完成过程:
********* ***** 结果如下:
◆ 2.建立如图所示的仿真系统.
◆将红色区域部分创建并封装装成子系统
完成过程:
没有设置子系统时:
没有设置子系统时的结果如下:
以下开始设置子系统并封装: 修改变量后:
最终如下图所示:
开始封装设置过程: 设置子系统各个参数
设置完成后如下图所示:
双击设置好的封装并分别输入与变量对应的参数如下:
运行结果如下:。
simulink仿真实验报告
simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。
本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。
二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。
通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。
三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。
2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。
3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。
4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。
四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。
通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。
仿真结果显示,系统经过调整参数后,得到了较好的控制效果。
输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。
通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。
五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。
了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。
这对于我们今后的工程设计和研究具有重要的意义。
六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。
2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。
simulink仿真实验报告
simulink仿真实验报告一、实验目的本次实验的主要目的是通过使用Simulink软件来进行仿真实验,掌握Simulink仿真工具的基本使用方法,并且了解如何应用Simulink软件来进行系统建模和仿真分析。
二、实验内容1. Simulink软件的基本介绍2. Simulink仿真工具的使用方法3. Simulink模型建立与参数设置4. Simulink仿真结果分析三、实验步骤及方法1. Simulink软件的基本介绍Simulink是一种基于模块化编程思想的图形化编程工具,可以用于建立各种系统模型,并且进行系统仿真分析。
在Simulink中,用户可以通过拖动不同类型的模块来搭建自己所需要的系统模型,并且可以对这些模块进行参数设置和连接操作。
2. Simulink仿真工具的使用方法首先,在打开Simulink软件后,可以看到左侧有一系列不同类型的模块,包括数学运算、信号处理、控制系统等。
用户可以根据自己需要选择相应类型的模块,并将其拖入到工作区域中。
然后,用户需要对这些模块进行参数设置和连接操作,以构建出完整的系统模型。
最后,在完成了系统模型的构建后,用户可以进行仿真分析,并且观察系统的运行情况和输出结果。
3. Simulink模型建立与参数设置在本次实验中,我们主要是以一个简单的控制系统为例来进行仿真分析。
首先,我们需要将数学运算模块、控制器模块和被控对象模块拖入到工作区域中,并将它们进行连接。
然后,我们需要对这些模块进行参数设置,以确定各个模块的输入和输出关系。
最后,在完成了系统模型的构建后,我们可以进行仿真分析,并观察系统的运行情况和输出结果。
4. Simulink仿真结果分析在完成了Simulink仿真实验之后,我们可以得到一系列仿真结果数据,并且可以通过Simulink软件来对这些数据进行进一步的分析和处理。
例如,在本次实验中,我们可以使用Simulink软件来绘制出控制系统的输入信号、输出信号和误差曲线等图形,并且可以通过这些图形来判断系统是否满足预期要求。
MATLABSimulink和控制系统仿真实验报告
MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
simulink实验报告
simulink实验报告Simulink实验报告引言:Simulink是一种功能强大的图形化建模和仿真环境,广泛应用于控制系统设计、信号处理和通信系统等领域。
本实验报告将介绍Simulink的基本概念和使用方法,并通过一个具体的示例来展示Simulink的应用。
一、Simulink简介Simulink是MathWorks公司开发的一款基于模块化的仿真工具,它可以与MATLAB紧密集成,为系统建模和仿真提供了强大的支持。
相比于传统的编程方法,Simulink使用图形化界面,使得系统建模更加直观和易于理解。
Simulink 提供了丰富的模块库,用户可以通过拖拽和连接不同的模块来构建系统模型,并进行仿真和分析。
二、Simulink的基本概念1. 模块库:Simulink提供了各种各样的模块库,包括数学运算、信号处理、控制系统等。
用户可以从库中选择所需的模块,将其拖拽到工作区,并进行连接和参数配置。
2. 模块:模块是Simulink中的基本单元,它代表了系统中的一个功能模块或组件。
每个模块都有输入和输出端口,用户可以通过连接不同的模块来构建系统模型。
3. 信号:信号是模块之间传递的数据,可以是连续的或离散的。
Simulink支持多种信号类型,如模拟信号、数字信号、布尔信号等。
4. 仿真:Simulink提供了强大的仿真功能,用户可以通过设置仿真参数和模型参数,对系统进行仿真和分析。
仿真结果可以以图表、曲线等形式展示,帮助用户理解系统的行为和性能。
三、Simulink的应用示例:PID控制器设计以PID控制器设计为例,演示Simulink的应用过程。
1. 建立模型首先,我们需要建立一个PID控制器的模型。
在Simulink的模块库中,我们可以找到PID控制器的模块,并将其拖拽到工作区。
然后,我们需要连接输入信号、输出信号和反馈信号,并设置PID控制器的参数。
2. 设置仿真参数在进行仿真之前,我们需要设置仿真参数。
自动控制原理MATLAB仿真实验报告
实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
Simulink实验指导书
实验1 控制系统仿真-使用Simulink1 实验目的1熟悉Simulink 的软件环境,常用模块的组织结构,功能(积分器、传递函数、状态空间、示波器,FC )和使用方法,掌握Simulink 的基本操作2 掌握使用Simulink 建立控制系统仿真模型的方法,仿真参数的含义及设置。
2 实验内容1 使用Simulink ,求解下列微分方程,并给出仿真结果(图形)。
【本题重点:积分器的用法,FC 模块的用法】 1123223312231238()()()()3()10()10()()()()28()()(0)(0)0,(0)0.001x t x t x t x t xt x t x t xt x t x t x t x t x x x =-+⋅=-+=-⋅+-=== 初始值:2设某2I2O 的连续系统,如下。
求其在u1,u2分别为阶跃信号输入时的响应。
【重点:纯延迟模块,sim() 函数的用法】 0.72112120.3 1.2922212()()0.11340.924()()1.78 4.481 2.071()()()0.33780.318()()0.361 1.0912.931s ss y s y s e u s u s s s s G s y s y s e e u s u s s s s ---⎡⎤⎡⎤⎢⎥⎢⎥+++⎢⎥⎢⎥==⎢⎥-⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦3某控制系统如下图,Kp=200, Ti=10,饱和非线性宽度=2,被控对象为 (2)0.2(1)5()()sin(26)()()t t y t e y t e t y t u t --+++=求:当输入为阶跃信号时,系统的阶跃响应曲线。
4 对于下图所示的系统,采用Simulink 建立仿真模型,求:(1)输入y sp =0,干扰d 为阶跃信号,求u 和y 的响应过程。
(2)输入y sp 为阶跃信号,干扰d=0,求u 和 y 的响应过程。
Simulink机械振动仿真简例分析
1.单自由度无阻尼自由振动
运行仿真,查看示波器显示的结果
曲 线 不 光 滑 ?
1.单自由度无阻尼自由振动
打开仿真参数对话框 Ctrl+E 修改最大步长为0.01
1.单自由度无阻尼自由振动
再次运行,曲线明显光滑了许多
1.单自由度无阻尼自由振动
• 用到的模块:
积分模块,将输入信号经过数值 积分,在输出端输出相应结果。 增益模块,在输入信号基础上乘 以一个特定数据,然后输出。 示波器模块,将输入信号输入到 示波器显示出来。
据此在Simulink中画出框图
5.单自由度有阻尼+正弦激励
• 参数设置: 令k=4,m=1,c=0.2 • 初始状态: 初始速度为0,位移为0.05 • 在框图中: 分别修改对应模块的数值
5.单自由度有阻尼+正弦激励
Hale Waihona Puke • 响应趋于稳态的过程5.单自由度有阻尼+正弦激励
示波器输出为质量块的位移信号
• 参数设置:k=100N/m, m=1kg →n=10rad/s • sin wave参数:Amplitude 1; Frequency 8,10,12 • 初始状态:①x0=1, v0=0→=90; ②x0=0, v0=1→=0; ③ x0=1, v0=10→=45; ④ x0=1, v0=−10→=135; ⑤ x0=0, v0= −1→=180 Sine Wave XY Graph • XY Graph参数 1 1 s s x-min -2; x-max 2; Integrator Integrator1 Gain Scope y-min -2; y-max 2
4.衰减振荡的阻尼比的估计
• 参数:k=100,m=10, c=2 • 初始条件:x0=1, v0=0 • 初始振幅为1,约7个周期时衰减 为0.25,对数减幅: =(ln4)/70.099 阻尼比/20.032 • 理论值=0.5c(km)−0.5 0.032
simulink仿真实验报告
simulink仿真实验报告Simulink 仿真实验报告引言:Simulink 是一种常用的建模和仿真工具,它可以帮助工程师们在设计和开发过程中进行系统级建模和仿真。
本文将通过一个实际的仿真实验来展示 Simulink 的应用。
一、实验背景在现代工程领域中,系统的建模和仿真是非常重要的一步。
通过仿真实验,我们可以在实际制造之前对系统进行测试和优化,节省了时间和成本。
本实验的目标是使用 Simulink 对一个电机驱动系统进行建模和仿真,以验证其性能和稳定性。
二、实验步骤1. 系统建模在 Simulink 中,我们首先需要将电机驱动系统进行建模。
我们可以使用Simulink 提供的各种组件来构建系统模型,例如传感器、控制器、电机等。
在本实验中,我们将使用 PID 控制器来控制电机的转速。
2. 参数设置在建模过程中,我们需要设置各个组件的参数。
例如,我们需要设置 PID 控制器的比例、积分和微分系数,以及电机的转动惯量和阻尼系数等。
这些参数的设置将直接影响系统的性能。
3. 仿真运行在模型建立和参数设置完成后,我们可以进行仿真运行。
通过设置仿真时间和输入信号,我们可以观察系统在不同条件下的响应情况。
例如,我们可以通过改变输入信号的频率和幅度来测试系统的稳定性和鲁棒性。
4. 结果分析仿真运行完成后,我们可以分析仿真结果。
通过观察输出信号的波形和频谱,我们可以评估系统的性能和稳定性。
例如,我们可以计算系统的响应时间、超调量和稳态误差等指标,以评估系统的控制效果。
三、实验结果在本实验中,我们成功建立了一个电机驱动系统的 Simulink 模型,并进行了仿真运行。
通过观察仿真结果,我们发现系统在不同输入信号条件下的响应情况。
在一些情况下,系统的响应时间较短,稳态误差较小,表现出良好的控制效果。
然而,在一些极端情况下,系统可能出现超调或不稳定的现象,需要进一步优化参数和控制策略。
四、实验总结通过本次仿真实验,我们深入了解了 Simulink 的应用和优势。
(完整word版)三相桥式全控整流电路Simulink仿真实验
基于三相桥式全控整流电路Matlab仿真实验报告 13351040 施定邦一、电路仿真原理及仿真电路图:图1图21、带电阻负载时当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。
当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。
分析可知α角的移相范围是0°--120°。
2、带阻感负载时a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。
电容的容值越大电流波形就越平缓,近于水平直线。
a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。
分析可知α角的移相范围是0°--90°。
二、仿真过程与结果:设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。
6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。
设置电源频率为50Hz:三、仿真结果1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:2、带阻感负载:R=100Ω,H=1H (1)α=0°各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于理想情况)实验总结:通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较理想的波形。
simulink建模及动态仿真的一些实验步骤
simulink建模及动态仿真的一些实验步骤Simulink是MATLAB中的一种可视化仿真工具,可以用于动态系统建模、仿真和分析。
以下是一些Simulink建模及动态仿真的实验步骤:启动Simulink:首先,需要打开MATLAB,然后在MATLAB 的命令窗口中输入“simulink”命令,或者点击工具栏中的Simulink 图标来启动Simulink。
新建模型:在Simulink的启动界面中,可以选择“Blank Model”来新建一个空白的模型。
也可以选择其他预设的模型模板来开始建模。
构建系统模型:在新建的模型窗口中,可以通过从Simulink 的模块库中拖拽模块到模型窗口中来构建系统模型。
模块库中包含了各种类型的模块,如源模块、接收模块、处理模块等。
将这些模块按照系统的结构和功能连接起来,形成一个完整的系统模型。
设置模块参数:对于模型中的每个模块,都可以双击打开其参数设置对话框,设置其参数和初始条件。
这些参数和初始条件将决定模块在仿真中的行为。
设置仿真参数:在模型窗口的工具栏中,可以点击“Simulation”->“Model Configuration Parameters”来打开仿真参数设置对话框。
在这个对话框中,可以设置仿真的起始和结束时间、仿真步长、求解器类型等参数。
开始仿真:完成以上步骤后,可以点击模型窗口工具栏中的“Run”按钮来开始仿真。
在仿真过程中,可以实时观察模型中各个模块的状态和输出。
分析结果:仿真结束后,可以使用Simulink提供的各种分析工具来分析仿真结果。
例如,可以使用示波器模块来显示仿真过程中某个模块的输出波形,也可以使用MATLAB的工作空间来查看和处理仿真数据。
以上步骤是一个基本的Simulink建模和动态仿真的过程。
在实际使用中,可能还需要根据具体的需求和系统特点进行一些额外的设置和调整。
MATLAB实验报告(word文档良心出品)
《MATLAB/Simulink与控制系统仿真》实验报告专业:班级:学号:姓名:指导教师:实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个 三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
图 1系统结构图图 2示波器输出结果图3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MA TLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
图 3系统结构图 图 4 示波器输出结果图图 5 工作空间中仿真结果图形化输出4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++g ,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
图 6 系统结构图图 7 示波器输出结果实验2 MATLAB/Simulink 在控制系统建模中的应用一、实验目的1、掌握MATLAB/Simulink 在控制系统建模中的应用; 二、实验设备电脑一台;MA TLAB 仿真软件一个 三、实验内容1、给定RLC 网络如图所示。
MATLABSimulink与控制系统仿真实验报告
MATLAB/Simulink 与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++g ,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
Simulink仿真 实验报告
集美大学计算机工程学院实验报告一、实验目的:1.熟悉Simulink工作环境及特点2.掌握线性系统仿真常用基本模块的用法3.掌握Simulink的建模与仿真方法。
二、实验内容和步骤1.用信号发生器产生0.2Hz,幅度为1V的正弦波和方波信号,并通过示波器观察波形。
启动simulink->选择Blank Model->点击Library Browser选择输入源模块以及接收端模块选择Sources: Sine Wave作为输入源模块,并设置频率参数为2πf即0.4*pi,接收端选择Scope模块开始仿真选择Sources :Signal Generator: Square作为输入源,设置频率,选择示波器开始仿真问题1.1:请总结一下示波器的使用方法,有哪些主要参数需要设置?示波器的参数设置主要有:Number of input ports 这一项用来设置示波器的输入端口数Layout 这一个操作可以用来设置输出格式,比如同时输出三个不同的波形图Time span 这一项用来设置横坐标的长度Time display offset 用来设置横坐标的起始端点,通常都为0Y-Limits 用来设置纵坐标的最大最小值2.Simulink仿真实际应用1建立一个很小的系统,用示波器观察正弦信号的平方的波形,如图所示系统中所需的模块:正弦波模块、示波器模块。
正弦波仿真电路和参数如下:(在Scope的Parameters里面,把Number of Axes设为3,可以变成有3个输入端的示波器)正弦波1参数:1Hz,幅度为1v;正弦波2参数:1Hz,幅度为2v,通过示波器观察结果,写出数学表达式。
该题目需要将示波器的Number of Input Ports设置为3,并且通过设置Layout来改变示波器的输出格式问题2.1:改变两个正弦波的幅度和频率,观察输出的波形?问题2.2:通过m语言编程实现其波形,给出代码和显示图形。
3.典型环节simulink仿真模型及阶跃响应曲线剖析
《机械工程控制基础》典型环节simulink仿真作业三:典型环节Simulink仿真模型及单位阶跃响应曲线1.比例环节(1)比例环节G1(s)=1实验结果:图1_1_1 比例环节simulink仿真模型图1_1_2 比例环节阶跃响应曲线(2)比例环节G1(s)=2实验结果:图1_2_1 比例环节simulink仿真模型图1_2_2 比例环节阶跃响应曲线结果分析:由以上阶跃响应波形图知,比例环节使得输出量与输入量成正比,比例系数越大,输出量越大。
2.积分环节(1)积分环节G1(s)=实验结果:《机械工程控制基础》典型环节simulink仿真图2_1_1 积分环节simulink仿真模型图2_1_2 积分环节阶跃响应曲线(2)积分环节G2(s)=0.5s实验结果图2_2_1 积分环节simulink仿真模型图2_2_2 积分环节阶跃响应曲线结果分析:积分环节的输出量反映了输入量随时间的积累,时间常数越大,积累速度越快。
3.微分环节(1)微分环节G1(s)=s的实验结果:《机械工程控制基础》典型环节simulink仿真图3_1_1 微分环节simulink仿真模型图3_1_2 微分环节阶跃响应曲线4.惯性环节(1)惯性环节G1(s)=1实验结果:s+1图4_1_1 惯性环节simulink仿真模型图4_1_2 惯性环节阶跃响应曲线(2)惯性环节G2(s)=1实验结果:0.5s+1图4_2_1 惯性环节simulink仿真模型图4_2_2 惯性环节阶跃响应曲线结果分析:由以上单位阶跃响应波形图知,惯性环节使得输出波形在开始时以指数曲线上升,上升速度与时间常数有关,时间常数越大,上升越快。
5.导前环节(1)导前环节G1(s)=s+1的实验结果:《机械工程控制基础》典型环节simulink仿真图5_1_1 导前环节simulink仿真模型图5_1_2 导前环节阶跃响应曲线结果分析:由以上单位阶跃响应波形知,比例作用与微分作用一起构成导前环节,输出反映了输入信号的变化趋势,波形也与时间常数有关。
控制仿真实验报告
实验名称:基于MATLAB/Simulink的PID控制器参数优化仿真实验日期:2023年11月10日实验人员:[姓名]实验指导教师:[指导教师姓名]一、实验目的1. 理解PID控制器的原理及其在控制系统中的应用。
2. 学习如何使用MATLAB/Simulink进行控制系统仿真。
3. 掌握PID控制器参数优化方法,提高控制系统的性能。
4. 分析不同参数设置对系统性能的影响。
二、实验原理PID控制器是一种广泛应用于控制领域的线性控制器,它通过将比例(P)、积分(I)和微分(D)三种控制作用相结合,实现对系统输出的调节。
PID控制器参数优化是提高控制系统性能的关键。
三、实验内容1. 建立控制系统模型。
2. 设置PID控制器参数。
3. 进行仿真实验,分析系统性能。
4. 优化PID控制器参数,提高系统性能。
四、实验步骤1. 建立控制系统模型使用MATLAB/Simulink建立被控对象的传递函数模型,例如:```G(s) = 1 / (s^2 + 2s + 5)```2. 设置PID控制器参数在Simulink中添加PID控制器模块,并设置初始参数,例如:```Kp = 1Ki = 0Kd = 0```3. 进行仿真实验设置仿真时间、初始条件等参数,运行仿真实验,观察系统输出曲线。
4. 分析系统性能分析系统在给定参数下的响应性能,包括超调量、调节时间、稳态误差等指标。
5. 优化PID控制器参数根据分析结果,调整PID控制器参数,优化系统性能。
可以使用以下方法:- 试凑法:根据经验调整参数,观察系统性能变化。
- Ziegler-Nichols方法:根据系统阶跃响应,确定参数初始值。
- 遗传算法:使用遗传算法优化PID控制器参数。
6. 重复步骤3-5,直至系统性能满足要求五、实验结果与分析1. 初始参数设置初始参数设置如下:```Kp = 1Ki = 0Kd = 0```仿真结果如图1所示:![图1 初始参数设置下的系统输出曲线](https:///5Q8w6zQ.png)从图1可以看出,系统存在较大的超调量和较长的调节时间,稳态误差较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 simulink仿真结果分析
一、实验目的
1.掌握利用各种工具箱来构造自己的仿真分析程序
2.掌握常用的仿真结果分析方法
3.观察轨迹输出
4.掌握线性化的方法
5.分析线性化函数
6.了解平衡点的确定分析方法
二、 实验步骤
对式 x’=Ax+Bu
y = Cx+Du 的线性状态空间模型,对应以下的一个系统模型图。
图1-1 系统模型图
1.提取线性模型
>> [A B C D]=linmod('text11')
A =
-0.2000 6.0000
-0.5000 -1.5000
B =
0 0
1.0000 1.0000
C =
-0.5000 0
0 2.0000
D =
1 1
0 0
2. 求相位、幅度与频率图
>> bode(A,B,C,D)
图1-2 Bode相位、幅度与频率图
3.求取阶跃响应曲线
>> step(A,B,C,D)
图1-3 阶跃响应曲线
4.求取冲击响应曲线
>> impulse(A,B,C,D)
图1-4 冲激响应曲线
5. 求平衡点
>> [x,u,y,dx,options]=trim('text11')
x =
u =
y =
dx =
options =
Columns 1 through 10
0 0.0001 0.0001 0.0000 0 0 1.0000 0 0 7.0000
Columns 11 through 18
2.0000 0 2.0000 500.0000 0 0.0000 0.1000 1.0000
迭代次数
>> options(10)
ans =
7
1) 求一个在X=[1;1],U=[1,1];附近的平衡点
>> x0=[1;1]
x0 =
1
1
>> u0=[1;1];
>> [x,u,y,dx,option]=trim('s518',x0,u0)
x =
1.9355
0.0645
u =
0.5323
0.5323
y =
0.0968
0.1290
dx =
1.0e-009 *
0.1545
0.0366
option =
Columns 1 through 10
0 0.0001 0.0001 0.0000 0 0 1.0000 0.9355 0 25.0000
Columns 11 through 18
5.0000 0 2.0000 500.0000 0 0.0000 0.1000 1.0000
>> options(10)
ans =
7
2) 求输出点为3的平衡点
>> y=[3;3]
>> iy=[1;2]
>> [x,u,y,dx,options]=trim('s518',[],[],y,[],[],iy)
x =
51.4286
1.7143
u =
14.1429
14.1429
y =
2.5714
3.4286
dx =
1.0e-014 *
0.5329
0.1776
options =
Columns 1 through 10
0 0.0001 0.0001 0.0000 0 0 1.0000 0.4286 0 19.0000
Columns 11 through 18
4.0000 0 2.0000 500.0000 0 0.0000 0.1000 1.0000
3) 求输出为4,导数设为0和1的平衡点
>> y=[4;4]
>> iy=[1;2]
>> dx=[0;1]
>> idx=[1;2]
>> [x,u,y,dx,options]=trim('s518',[],[],y,[],[],iy,dx,idx)
x =
60.0000
2.0000
u =
17.0000
17.0000
y =
4.0000
4.0000
dx =
0.0000
1.0000
options =
Columns 1 through 10
0 0.0001 0.0001 0.0000 0 0 1.0000 0.0000 0 25.0000
Columns 11 through 18
5.0000 0 2.0000 500.0000 0 0.0000 0.1000 1.0000
>> options(10)
ans =
25
三、结论
1.仿真结果分析是进行建模与仿真的一个重要环节,结果的分析有助于模型的改进完善,同时结果分析也是仿真的主要目的。
2.simulink提供了一些仿真结构分析的函数和命令,可以根据模型的特点和需要来构造仿真分析程序。