动态电路分析仿真实验
教你Multisim仿真

三 验证叠加原理
例3 测量下图所示电路中的电流I,并验证叠加原理。
电源故障设置
见example8_1_3.msm
电源故障设置
2 动态电路分析
主要目的: 观察动态电路响应的时域波形。
主要方法: 1. 利用“瞬态分析(Transient Analysis) ” 2. 利用示波器
二、基本元件库
● 电阻 ● 电容 ● 电解电容 ● 电感 ● 电位器 ● 可变电容 ● 可变电感 ● 开关 ● 变压器 ● 磁芯 ● 连接器 ● 半导体电阻 ● 封装电阻 ● SMT电容 ● SMT电感 ● 虚拟电阻 ● 虚拟电容 ● 上拉电容 ● 虚拟电感 ● 虚拟电位器 ● 虚拟可变电容 ● 虚拟可变电感 ● 继电器 ● 非线性变压器 ● 无芯线圈 ● 插座 ● 半导体电容 ● SMT电阻 ● SMT电解电容
一、数字万用表
二、函数信号发生器
三、瓦特表
四、示波器
XSC1 G A B T
A、B两通道,G是接地端,T为触发端
① 测量数据显示区
在示波器显示区有两个可以任意移动的游标,游标所 处的位置和所测量的信号幅度值在该区域中显示。其中:
●“T1”、“T2”分别表示两个游标的位置,即信号出 现的时间; ●“VA1”、“VB1”和“VA2”、“VB2”分别表示两 个游标所测得的A通道和B通道信号在测量位置具有的 幅值。
波特图仪(Bode Plotter)
字信号发生器(Word Generator) 逻辑分析仪(Logic Analyzer)
逻辑转换仪(Logic Converter)
失真分析仪(Distortion Analyzer)
频谱分析仪(Spectrum Analyzer)
仿真实验--差分电路仿真实验

仿真实验三差分电路仿真实验一、实验目的(1)通过Multisim来仿真电路,测试差分放大电路的静态工作点、差模电压放大倍数、输入电阻和输出电阻;(2)加深对差分放大电路原理的理解;(3)通过仿真,体会差分放大电路对温漂的抑制作用;二、实验平台Multisim 10.0三、实验原理差放的外信号输入分差模和共模两种基本输入状态。
当外信号加到两输入端子之间,使两个输入信号V i1、V i2的大小相等、极性相反时,称为差模输入状态。
此时,外输入信号称为差模输入信号,以V id表示,且有:当外信号加到两输入端子与地之间,使V i1、V i2大小相等、极性相同时,称为共模输入状态,此时的外输入信号称为共模输入信号,以V ic表示,且:当输入信号使V i1、V i2的大小不对称时,输入信号可以看成是由差模信号Vid和共模信号V ic两部分组成,其中动态时分差模输入和共模输入两种状态。
(1)对差模输入信号的放大作用当差模信号V id输入(共模信号V ic=0)时,差放两输入端信号大小相等、极性相反,即V i1=-V i2=V id/2,因此差动对管电流增量的大小相等、极性相反,导致两输出端对地的电压增量,即差模输出电压V od1、V od2大小相等、极性相反,此时双端输出电压V o=V od1-V od2=2V od1=V od,可见,差放能有效地放大差模输入信号。
要注意的是:差放公共射极的动态电阻R e对差模信号不起(负反馈)作用。
(2)对共模输入信号的抑制作用当共模信号V ic输入(差模信号V id=0)时,差放两输入端信号大小相等、极性相同,即V i1=V i2=V ic,因此差动对管电流增量的大小相等、极性相同,导致两输出端对地的电压增量,即差模输出电压V oc1、V oc2大小相等、极性相同,此时双端输出电压V o=V oc1-V oc2=0,可见,差放对共模输入信号具有很强的抑制能力。
此外,在电路对称的条件下,差放具有很强的抑制零点漂移及抑制噪声与干扰的能力。
multisim仿真实验报告

MULTISIM 仿真实验报告实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。
2.双击示波器,得到如下波形5.他们的相位相差180度。
27.动态仿真二1.删除负载电阻R62.重启仿真。
3.分别加上5.1k,300欧的电阻,并填表填表.28.仿真动态三1.测量输入端电阻。
在输入端串联一个5.1k的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。
2.测量输出电阻RO数据为VL测量数据为VO填表1.画出如下电路图。
2.元件的翻转4.去掉r7电阻后,波形幅值变大。
实验二射级跟随器一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
4、学习mutisim参数扫描方法5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1实验电路图如图所示;2.直流工作点的调整。
如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。
7.出现如图的图形。
10.单击工具栏,使出现如下数据。
11.更改电路图如下、16.测量输出电阻,电路如图将测量数据填表。
17思考与练习。
1.创建整流电路,并仿真,观察波形。
XSC12.2分析射级跟随器的性能及特点由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。
电机控制器的动态建模与仿真分析

电机控制器的动态建模与仿真分析随着现代工业的发展,电机控制器在各种行业中得到了广泛应用,成为了现代化生产的重要部件之一。
电机控制器在机器人、汽车、船舶等多种设备中发挥着重要作用,对于提高设备的精度、效率和可靠性都有着不可替代的作用。
电机控制器的重要性不言而喻,而电机控制器的动态建模和仿真分析则是电机控制器设计的关键环节。
本文将从以下三个方面来探讨电机控制器的动态建模和仿真分析。
一、电机控制器的基本原理电机控制器通常由电路板、恒流/恒压控制系统、数字信号处理器等部分组成。
电路板主要负责保护电源、驱动电机、数据采集和处理等,恒流/恒压控制系统主要是为了保证电机运行时的性能和稳定性,数字信号处理器则实现了电机控制器对电机的精确控制。
在电机控制器中,电路板是最基本的部分,它通过控制电流、电压等参数来达到电机的速度和力矩控制,并且可以通过数据处理来实现更加复杂的功能。
在电路板中,采用的电路通常需要进行动态建模和仿真分析,以保证电路运行的稳定性和精确性。
二、电机控制器的动态建模电机控制器的动态建模是指将电机控制器的电路结构建立数学模型。
电路模型可以用传统的电路分析方法,也可以通过模型化软件等现代技术来实现。
电路模型的建立需要确定电路的参数和电器特性,这些参数和特性可以通过实验或者理论方法来获取。
通过对电机控制器的建模,可以快速地得到电路特性、电流/电压响应等数据。
这对于电路的优化和改进有着非常重要的意义。
同时,建立电路模型还能够为后续的仿真分析提供依据。
三、电机控制器的仿真分析电机控制器的仿真分析是将电路模型加载到仿真软件中,对电路模型进行模拟运行,以验证电路的性能,检验电路的可行性等。
仿真过程可以通过软件仿真、硬件仿真等多种方式来进行,其结果具有较高的准确度和可靠性。
通过仿真分析,可以找到电路中的问题与不足,为电路优化和改进提供依据。
此外,仿真分析还可以辅助制定电路控制策略,提高电路的控制精度。
因此,仿真分析是电机控制器设计中必不可少的一个环节。
Multisim仿真教程及实例

菜单系统工具栏设计工具栏仪器仪表工具栏电路图编辑窗口四、定制Multisim用户界面操作:设置菜单栏Option /Preferences中各属性选择元件的符号标准ANSI:美国标准DIN:欧洲标准。
元器件和背景的颜色一、电源库电源库中共有30个电源器件,分别是:●接地端●数字接地端● VCC电压源● VDD数字电压源●直流电压源●直流电流源●正弦交流电压源●正弦交流电流源●时钟电压源●调幅信号源●调频电压源●调频电流源● FSK信号源●电压控制正弦波电压源●电压控制方波电压源●电压控制三角波电压源●电压控制电压源●电压控制电流源●电流控制电压源●电流控制电流源●电流控制电压源●电流控制电流源●脉冲电压源●脉冲电流源图●指数电压源●指数电流源●分段线性电压源●分段线性电流源●压控分段电压源●受控单脉冲●多项式电源●非线性相关电源4、时钟电压源实质上是一个频率、占空比及幅度皆可调的方波发生器二、基本元件库●电阻●虚拟电阻●电容●虚拟电容●电解电容●上拉电容●电感●虚拟电感●电位器●虚拟电位器●可变电容●虚拟可变电容●可变电感●虚拟可变电感●开关●继电器●变压器●非线性变压器●磁芯●无芯线圈●连接器●插座●半导体电阻●半导体电容●封装电阻● SMT电阻● SMT电容● SMT电解电容● SMT电感现实元件虚拟元件“GeneralGeneral””页:元件的一般性资料,包括元件的名称、制造商、创建时间、制作者。
“SymbolSymbol””页:元件的符号。
“ModelModel””页:元件的模型,提供电路仿真时所需要的参数。
Footprint””页:元件封装,提供“Footprint给印制电路板设计的原件外形。
Electronic Parameters””页:“Electronic Parameters元件的电气参数,包括元件在实际使用中应该考虑的参数指标。
编辑电阻元件“User FieldsUser Fields””页:用户使用信息。
自动控制原理实验——二阶系统的动态过程分析

实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。
4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。
二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。
2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。
图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。
图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。
试分别写出系统的误差响应表达式,并估算其性能指标。
图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。
将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。
通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。
图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。
比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。
其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。
multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
Buck电路的闭环设计及仿真分析

Buck电路的闭环设计及仿真分析一、本文概述随着电力电子技术的飞速发展,电源转换技术已成为现代电子设备不可或缺的一部分。
其中,Buck电路作为一种基本的直流-直流(DC-DC)转换器,因其结构简单、效率高、调节范围宽等优点,在电子设备中得到了广泛应用。
然而,为了确保Buck电路在各种环境和负载条件下的稳定性和高效性,闭环设计显得尤为重要。
本文旨在探讨Buck电路的闭环设计方法,并通过仿真分析验证设计的有效性。
文章首先简要介绍了Buck电路的基本原理和应用背景,然后重点阐述了闭环设计的重要性及常用方法。
在闭环设计部分,文章详细分析了反馈网络的选取、控制策略的制定以及功率级和控制级的协同工作等问题。
同时,结合具体的设计实例,阐述了闭环设计在实际应用中的具体实现过程。
为了验证设计的有效性,文章采用了仿真分析的方法。
通过搭建基于MATLAB/Simulink的仿真模型,对设计的Buck闭环电路进行了全面的仿真分析。
仿真结果证明了闭环设计的有效性,同时也为实际电路的制作和调试提供了重要参考。
文章对闭环设计的Buck电路进行了总结,并指出了未来研究方向和潜在的应用前景。
通过本文的研究,旨在为从事电源转换技术研究和应用的工程师和学者提供有益的参考和启示。
二、Buck电路的基本原理Buck电路,也称为降压转换器,是一种基本的直流-直流(DC-DC)转换电路,其主要功能是将较高的直流电压降低到所需的较低直流电压。
其名称来源于电路中开关元件(如MOSFET或晶体管)的操作,类似于"bucking"(减少或抑制)输入电压。
Buck电路的基本构成包括一个开关(通常是MOSFET),一个电感(或称为线圈),一个二极管(也称为整流器或续流二极管),以及一个输出电容器。
在开关打开时,电流通过电感从输入源流向输出,此时电感储存能量。
当开关关闭时,电感释放其储存的能量,通过二极管向输出电容器和负载供电。
Buck电路的工作原理基于电感的电压-电流关系。
Multisim仿真教程

Multisim意为“万能仿真 ”
精品文档
一、主要(zhǔyào)功能
构建仿真电路(diànlù) 通信系统分析与设计
仿真电路(diànlù)环 的模块
境
PCB设计模块:直观、
multi mcu(单片机 层板32层、快速自动
精品文档
仿真开关
工程栏
元件
工具栏
菜单栏
设计 (shèjì) 工具栏
使用 (shǐyòng)
中 元件列表
工作区
状态栏
仪器仪表 工具栏
精品文档
常用(chánɡ yònɡ)元件库分类
精品文档
仪器仪表工具栏
从左到右分别是:数字万用表、函数发生器、示 波器、波特图仪、字信号发生器、逻辑分析仪、 瓦特表、逻辑转换仪、失真分析仪、网络分析仪、 频谱分析仪
报告按钮,用以打印有关电路的报告
传输按钮,用以与其它程序通讯,比如与Ult 通讯;也可以将仿真结果输出到 像MathCAD和Excel这样的应用程序。
精品文档
元件(yuánjiàn) 工具栏
电源库 基本元件库 二极管库 晶体管库 模拟元件库 TTL元件库 COMS元件库
精品文档
其他数字元件库 混合芯片库 指示部件库 其他部件库 控制部件库 射频器件库 机电类元件库
给印制电路板设计的原件外形。
“Electronic Parameters”页: 元件的电气参数,包括元件在 实际使用中应该考虑的参数指标。
“User Fields”页:用户使用信息。
精品文档
编辑电阻元件
2、虚拟(xūnǐ)电阻
Multisim14电子电路仿真方法和样例

Multisim14 电子电路仿真方法和样例
2019 年 9 月
1
前言
本手册基于 Multisim14 仿真环境,从最基本的仿真电路图的建立开始,结合实际的例 子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特 性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时 间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。
选定 sheet properties 即弹出图 2.3 所示界面,选中 Net names 下的 Show all(简述为
Optionsàsheet propertiesà Net namesàShow all,以下均用简述方法表述),即可在电路图中
显示出各个节点号。
4
图 2.2 移动连线
图 2.3 显示电路节点号
3
1. Multisim14 主界面简介
运行 Multisim14,自动进入电路图编辑界面。当前电路图的缺省命名为“Design1”,在 保存文件时可以选择存放路径并重新命名。Multisim14 主界面如图 1.1 所示。
图 1.1 Multisim14 用户界面
2. 仿真电路图的建立
下面以单管放大电路为例,介绍建立电路的步骤。其中三极管选用实际器件
此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题, 可参阅《Multisim 14 教学版使用说明书》或其它帮助文档。
2
目录
自动控制原理实验报告集典型环节的电路模拟与软件仿真研究

验证性实验实验一典型环节的电路模拟与软件仿真研究一、实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。
2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。
二、实验内容1.设计各种典型环节的模拟电路。
2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
3.利用上位机界面上的软件仿真功能,完成各典型环节阶跃特性的软件仿真研究,并与电路模拟测试的结果作比较。
三、实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。
注意实验前必须先将实验箱断电,再接线。
接线时要注意不同环节、不同测试信号对运放锁零的要求。
在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。
2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。
为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。
仍以比例环节为例,此时将Ui连到实验箱 U3单元的O1(D/A通道的输出端),将Uo 连到实验箱 U3单元的I1(A/D通道的输入端),将运放的锁零G连到实验箱 U3单元的G1(与O1同步),并连好U3单元至上位机的并口通信线。
接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。
界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X”选择“通道I1#”,“采样通道Y”选择“不采集”。
②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。
Proteus数字电路的设计与仿真

目录
CONTENTS
• Proteus软件介绍 • 数字电路设计基础 • Proteus中的数字电路设计 • 数字电路仿真实验 • Proteus与其他EDA软件的比较 • Proteus在数字电路设计中的应用实例
01 Proteus软件介绍
软件特点
集成开发环境
Proteus软件提供了一个完整的集 成开发环境,支持数字电路的设 计、仿真和调试。
实时仿真
Proteus支持实时仿真,可以在设 计阶段实时观察电路的行为,提 高了设计效率。
丰富的元件库
Proteus拥有丰富的元件库,包括 各种数字逻辑门、触发器、存储 器等,方便用户进行电路设计。
软件功能
01
原理图设计
在Proteus中设计矩阵键盘和数码管显示电 路的原理图,编写程序实现键盘输入与数码
管显示的对应关系,并进行仿真测试。
感谢您的观看
THANKS
嵌入式系统开发
Proteus可以用于嵌入式系统的设计和仿真,支持多种微控制器和 外设。
教学与实验
由于Proteus的易用性和丰富的功能,它也被广泛应用于电子工程和 计算机科学的教学中,作为学生进行实验和实践的优秀工具。
02 数字电路设计基础
数字电路概述
数字电路定义
数字电路是处理离散二进制信号的电路,与模拟 电路处理连续信号不同。
06 Proteus在数字电路设计 中的应用实例
4位二进制计数器设计
要点一
总结词
使用Proteus软件设计一个4位二进制计数器,通过仿真验 证其功能。
要点二
详细描述
首先在Proteus软件中绘制4位二进制计数器的电路原理图 ,然后进行仿真测试,观察计数器的计数过程和输出结果 。
基于MATLAB的电路分析仿真实验研究

基于MATLAB的电路分析仿真实验研究彭文竹;吴亚建;王钦;张禹【摘要】针对当前电路分析实验课程教学中存在的不足,将MATLAB/Simulink仿真技术引入实验教学,实现了硬件实验与仿真技术的有机融合.通过MATLAB在动态电路的时域分析、RLC串联谐振电路分析中的应用实例,详细介绍了MATLAB软件及其Simulink模块在实验中的应用方法.实践表明,在电路分析实验教学中引入MATLAB仿真分析,可以加深学生对电路知识的理解,提高电路实验综合分析设计能力及工程实践能力.【期刊名称】《曲靖师范学院学报》【年(卷),期】2017(036)003【总页数】7页(P16-22)【关键词】MATLAB;Simulink;电路分析;建模与仿真【作者】彭文竹;吴亚建;王钦;张禹【作者单位】集羡大学诚毅学院,福建厦门361021;集羡大学诚毅学院,福建厦门361021;集羡大学诚毅学院,福建厦门361021;福建江夏学院电子信息科学学院,福建福州350108【正文语种】中文【中图分类】TN710电路分析基础是电子和电气信息类专业的一门基础课程,实验教学是该理论课程的重要实践教学环节,重在实际操作,实现从理论向实践的过渡[1].学生通过实验课程的学习,不仅可以巩固和加深理解所学的理论知识,更重要的是可以训练学生的实践技能,培养学生在理论知识指导下独立动手组织电路实验的能力.我校电路分析实验室中包含的实验项目主要有电路基本概念与直流电路、动态电路分析、正弦交流稳态电路分析及三相电路分析四大模块,共有23个实验项目,具体实验内容如图1所示.但是电路分析实验实际开课时受限于课时、时间及实验场所,有大部分的实验内容无法在课堂上完成.因此,结合仿真软件对电路分析实验进行仿真学习,可以弥补传统实验教学上的不足[2-6].本文根据本校实验室实际开课情况,在原有实验教学方法的基础上,将MATLAB技术引入到电路分析实验教学过程中,结合硬件实验方法进行综合学习,使学生学会利用计算机仿真软件辅助分析电路的方法,开发创新与动手能力[7-10].MATLAB是美国Math Works公司于20世纪80年代中期推出的当今世界上最优秀的高性能数值计算软件,具有强大的计算功能、丰富、方便的图形功能.在MATLAB的Simulink库里,提供了一个实体图形化仿真模型库,与数学模型库相对应,该模型库中的模块就是实际工程里实物的图形符号,可以连接成一个电路、一个装置或是一个系统,具有很高的实用价值[11].电路分析课程内容丰富,计算正弦量的复数与各种矩阵、不同电压与电流、各种时域和频域分析、不同暂态与稳态、各种代数方程与矩阵方程等,繁杂而麻烦的各类计算工作量非常大,传统的原始手工计算极易产生差错.应用MATLAB程序进行计算,只要沿用原理正确,对任何问题的计算,无论计算工作量多少,都简便、高效而且结果精准.而通过Simulink建立的电路系统模型并进行仿真,更简单、方便和高效,其仿真结果能够验证MATLAB程序计算数据的正确性,两者相辅相成,结合电路分析硬件实验,完成整套实验设计流程,有效提高学生理论分析、程序编写、电路分析及数据处理能力.采用MATLAB进行电路分析实验仿真的具体流程如图2所示.在MATLAB仿真平台上,可以方便实现电路参数的计算、建模和仿真.以下将在本校实验内容中选择动态电路分析和正弦交流稳态分析两个模块中的相应实验内容为研究对象,介绍采用MATLAB数值计算功能和Simulink建模仿真功能来实现电路分析实验中的动态响应过程以及RLC谐振电路计算和仿真.2.1 动态电路时域中MATLAB子系统建模方法及仿真动态网络的过渡过程是十分短暂的单次变化过程,由于充电时间很快,此过程在硬件实验中很难用普通示波器观察得到[12].因此,若要观察动态电路单次变化过程,必须采用相应的计算机辅助手段.因此,这边我们借助于MATLAB仿真软件.MATLAB的数值计算过程首先需要列出电路的微分方程,再通过MALTAB建立M文件求解所需要参数并通过程序画出相应暂态过程波形;然后在Simulink平台上建立仿真模型,设置模型参数,通过相应参数测量模块和仪表模块,即可以观察到相应电压相应波形.2.1.1 实验要求RC一阶电路如图3所示,当开关S在‘1’位置时,UC=0,处于零状态,当开关S拨向‘2’时,US通过电阻R向电容C充电,设US=20V,C=1μF,R分别为500Ω,5.0kΩ,50kΩ,绘制UC在不同电阻下的充电变化曲线.并在此基础上,研究激励信号由直流改变为交流时,改变不同的电阻和电容时,一阶积分和微分电路实验的异同点.2.1.2 MATLAB实验仿真过程本实验为根据不同的电阻值,观察充电过程达到τ值的变化,从而分析电容在不同时间常数下的充电过程.由于该过程非常短暂,在硬件实验过程中,很难用示波器直接观察到直流信号下的充电过程,因此我们采用MATLAB建立模型的方式来进行仿真过程.首先通过MATLAB的M文件建模仿真,利用基尔霍夫定律我们可以推导出,在RC电路的零状态相应过程中,可以得到如下表达式,其中τ=RC:根据以上表达式,编写M文件,对在不同R值下电路充电暂态过程进行仿真,仿真图如图4所示.2.1.3 Simulink模型及Subsystem子系统建立电路单次暂态过程方法通过图3所示电路图,进行Simulink电路模型建立,根据不同的R值,建立不同的子系统.对于复杂或者有重复模块的Simulink仿真模型,可以把模型中完成特定功能的一部分模块组合起来,创建一个新的模块,该模块即为子系统.子系统减少了Simulink框图中模块数量,使模型的结构、层次及功能更加清晰,所形成的新的模块也可以被其他Simulink模型调用,具有可移植性.通过Subsystem子系统的仿真系统及其内部电路分别如图5所示,其中开关S和S1的状态参数通过Initial state属性进行设置.运行Simulink仿真模型,观察示波器,可以得到该电路的暂态变化过程,实验结果和MATLAB计算仿真一致,采用子系统的波形仿真图如图6所示.通过以上的实验例程可以看出MATLAB具有强大的计算和分析功能,而且计算范围广,结合Simulink对一阶电路暂态过程建模仿真可以方便对描述电路的微分方程进行求解,对在直流激励下的暂态响应波形硬件实验难以观察到的过程,可以方便快捷的通过MATLAB程序得到或者通过Simulink模型得到.硬件实验中,只能采用交流激励输入信号,使暂态过程重复出现,方能通过示波器观察得到,以下我们将在此基础上进行交流激励信号输入的一阶实验过程,并和硬件结果进行分析比较.2.1.4 交流激励下一阶积分和微分电路的过程研究RC一阶动态电路在满足一定条件下,可以近似构成微分电路和积分电路.当满足电路时间常数τ<<tp脉冲宽度时,图7(b)图所示为微分电路,输出电压UR与方波输入信号US近似呈微分关系;当满足τ>>tp时,图7(a)图所示为积分电路,输出电压UC和US近似呈积分关系[13].在上述电路图中,输入信号为方波信号,幅值为2V、频率为1kHz.在积分电路中,观察R=10kΩ保持不变,C=0.01μF和C=0.1μF情况下,电容C的积分波形;在微分电路中,观察C=0.01μF保持不变,R=1kΩ和R=10kΩ情况下,电阻R的微分波形.根据以上硬件实验电路图,我们得到Simulink积分和微分系统模型及其内部子系统仿真图如图8,9所示.根据所建立模型,分别仿真在上述几种情况下所对应的和的积分和微分波形,具体如图10所示.通过仿真图进行比较(见表1),可以发现,在积分情况下,当电阻R不变,电容越小,充放电速度越快,实现从方波到三角波的转变;在微分情况下,当电容C不变时,电阻越小,微分越明显,实现从方波到尖脉冲波形的转变,和硬件实验电路所观察到的波形图及结论完全一致.利用MATLAB仿真可以克服在硬件条件下难于用示波器观察电路直流激励下的暂态过程等其他难以完成的实验内容,本例程实验包含从直流激励下的仿真过渡到交流激励下的整个仿真过程,并和硬件实验结果进行对比分析,结果均和理论一致.2.2 MATLAB在RLC谐振电路中的应用在RLC电路中,电路两端的电压与其中的电流相位一般是不同的,如果改变电路的参数或电源的频率而使它们同相,这时电路中就会发生谐振现象.谐振是正弦稳态电路中的一种特定的工作状态,可以利用谐振现象实现一定有用的功能,但是也要防止谐振现象对电路造成的破坏.本小节主要研究MATLAB在RLC串联谐振电路中的应用,如何通过MATLAB建模仿真求出谐振频率点,画出阻抗模和电流模等曲线的方法.2.2.1 实验原理及要求本例程为本校电路分析实验中的第十七个实验,在图11(a)所示RLC串联电路中,电路复阻抗,当时,和同相,电路发生串联谐振,谐振角频率,谐振频率.串联谐振具有以下特征:(1)电路的阻抗模=R,其值最小,因此在不改变电源电压的情况下,电路中的电流将达到最大值,即.(2)由于电源电压与电流同相,因此电路对电源呈现电阻性.(3)由于谐振时,XL=XC,因此有UL=UC.而L与C在相位上相反,对整个电路不起作用.本实验具体内容为根据图11(b)组成监视、测量电路,用交流电压表测量电压,并保证信号源输出幅度为1V不变,找出电路的谐振频率fo.其方法是,改变信号源的频率,测量电阻两端电压有效值,当UO的读数为最大时,所对应的信号源频率值即为电路的谐振频率,并观察电感与电容两端电压的变化特征.2.2.2 实验仿真结果及分析根据图11(b)硬件原理图,我们可以通过原理图中的参数求出谐振频率=11.3164kHz,接下来我们通过仿真来测量谐振频率,并和理论值进行比较.在MATLAB中建立仿真模型,并进行测量,仿真电路图及测量结果如图12,表2所示.通过以上所测量数据可以得到谐振频率fO=11.316kHz,和理论完全一致.可见,通过仿真模型进行数据测量,并和硬件数据进行比较,基本一致.根据已知参数,在MATLAB中建立M文件,画出阻抗模曲线和电流模曲线如图13所示,从图中,我们可以看出在以上所求的谐振频率点中,对应的阻抗模为最小值,电流模为最大值,符合串联谐振电路的基本特征.本小节结合串联谐振电路的具体应用实例,用MATLAB编程方式详细阐述了谐振电路的图例仿真过程,以及采用Simulink进行电路模型的建立及仿真的全过程,并对电路的具体参数给出详细的计算方法,对研究谐振电路的应用有很大的帮助.本文以我校电路分析实验教学为例,阐述将MALTAB仿真软件结合硬件实验以弥补教学上的不足,并用具体实例进行分析,论述MATLAB在电路分析实验中的应用过程及方法.MATLAB运算功能强大,对于电路分析实验是方便而高效的计算工具,不仅可以利用程序设计对实验中直流电路参数、交流稳态电路分析及各种代数方程与矩阵方程等各类繁杂电路进行计算;还可以通过Simulink建立系统模型进行仿真分析对动态电路、变压器等系统的动态仿真,使学生有更多的机会参与电路实验的验证分析及电路综合设计过程,从而作为硬件电路分析实验教学上中的高效有用的辅助工具.【相关文献】[1]沈一骑,万凯.电路分析实验的改进与研究性拓展[J].实验技术与管理, 2013,30(4):24-26.[2]陈知红,王锦兰.Proteus仿真软件在电工学中的应用[J].实验技术与管理, 2014,31(2):93-95.[3]胡中玉,岳强,任杰,等.基于Proteus仿真的电工电子课程教学创新[J].实验技术与管理,2016,33(4):128-130.[4]强秀华,李林.基于Multisim13的高压三相短路仿真实验[J].实验室研究与探索,2015,34(10):108-110.[5]姜凤利,陈春玲,黄蕊.Multisim仿真在电工与电子技术实验中的应用[J].实验室科学, 2015,18(5): 88-92.[6]陈齐平,张文俊,王钢林,等.基于Multisim的简易自动售货机控制系统设计与仿真[J].华东交通大学学报, 2015,32(6): 88-92.[7]吴霞,施阁,李孝禄.“电路与电子技术实验”多样性教学模式探索与实践[J].实验室研究与探索, 2016,35(6): 194-197.[8]黄用勤, 陈珺,王书纯,等.电工电子实验教学示范中心持续性建设的探索[J].实验技术与管理, 2016,33(2):127-129.[9]成谢锋,郭宇锋,黄丽亚,等.大电子实验教学平台建设和教学方式的改革[J].实验室研究与探索, 2015,34(9):164-167.[10]杨志清,肖洪详,杨亮亮.独立学院《电路分析基础》实验教学改革[J].实验科学与技术,2013,11(5):111-112.[11]赵莉华,张亚超,金阳,等.基于LabVIEW和Matlab虚拟实验室的实现[J].实验室研究与探索,2014,33(4): 62-64.[12]秦曾煌.电工学(上册):第7版[M].北京:高等教育出版社, 2011:108-156.[13]邱关源.电路:第5版[M].北京:高等教育出版社, 2016:279-296.。
南理工EDA1实验报告-模电仿真

EDA设计(Ⅰ)实验报告院系:电子工程与光电技术学院专业:电子信息工程学号:914104姓名:指导老师:宗志园目录实验一单级放大电路的设计与仿真 (2)一、实验目的 (2)二、实验要求 (2)三、实验原理图 (3)四、三极管参数测试 (3)五、电路静态工作点测试 (6)六、电路动态参数测试 (8)七、频率响应测试 (10)八、数据表格 (10)九、理论分析 (11)十、实验分析 (11)实验二差动放大电路的设计与仿真 (12)一、实验目的 (12)二、实验要求 (12)三、实验原理图 (12)四、三极管参数测试 (13)五、电路工作测试 (18)六、电路增益测试 (18)七、数据表格 (21)八、理论分析 (22)九、实验分析 (22)实验三负反馈放大电路的设计与仿真 (23)一、实验目的 (23)二、实验要求 (23)三、实验原理图 (24)四、电路指标分析 (25)五、电路幅频特性和相频特性 (30)六、电路的最大不失真电压 (31)七、数据表格 (32)八、误差分析 (33)九、实验分析 (33)实验四阶梯波发生器电路的设计 (34)一、实验目的 (34)二、实验要求 (34)三、实验原理图 (35)四、实验原理简介 (35)五、电路分级调试步骤 (36)六、误差分析 (40)七、电路调整方法 (40)八、实验分析 (40)实验一单级放大电路的设计与仿真一、实验目的(1)设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz,峰值5mV ,负载电阻5.1kΩ,电压增益大于70.(2)调节电路静态工作点,观察电路出现饱和失真、截止失真和正常放大的输出信号波形,并测试对应的静态工作点值.(3)在正常放大状态下测试:1.三极管的输入、输出特性曲线和β、r be、r ce值;2.电路的输入电阻、输出电阻和电压增益;3.电路的频率响应曲线和f L、f H值.二、实验要求(1)给出单级放大电路原理图.(2)实验过程中各个参数的电路仿真结果:1.给出测试三极管输入、输出特性曲线和β、r be、r ce值的仿真图;2.给出电路饱和失真、截止失真和不失真的输出信号波形图;3.给出测量输入电阻、输出电阻和电压增益的仿真图;4.给出电路的幅频和相频特性曲线(所有测试图中要有相关仪表或标尺数据).(3)给出相关仿真测试结果.(4)理论计算电路的输入电阻、输出电阻和电压增益,并和测试值做比较,分析误差来源.三、实验原理图图1-1 实验原理图四、三极管参数测试图1-2 电路静态工作点(1)输入特性图1-3 测量输入特性曲线电路图图1-4 输入特性曲线(2)输出特性图1-5 测量输出特性曲线电路图图1-6输出特性曲线(3)根据图1-4及公式i V rb be be ∆∆= , 可计算出r be = . (4)根据图1-6及公式V r c CE ce ∆∆= ,可计算出r ce = . (5)根据图1-2.五、电路静态工作点测试(1)饱和失真图1-7饱和失真波形图1-8饱和失真数据(2)截止失真图1-9截止失真波形及其数据(3)正常放大黄色曲线为输入波形,蓝色曲线为输出波形.图1-10正常放大波形六、电路动态参数测试(1)Av图1-11 Av测量电路计算,得到.(2)Ri图1-12 Ri测量电路计算,得到.(3)Ro图1-13 Ro测量电路计算,得到. 七、频率响应测试图1-14 频率响应测试八、数据表格表1-1 静态工作点调试数据表1-2 电路正常工作数据九、理论分析(1)Ri理论值:.误差:.(2)Ro理论值:.误差:.(2)Av理论值:.误差:.十、实验分析本实验是EDA的第一项实验,在老师的指导下我初步了解了电路仿真的基础知识和Multisim软件的使用方法,并完成了第一个电路:单机放大电路的设计与参数测量。
multisim电子电路仿真教程第5章

图5-4 电压表内接测量电路
第5章 电路基础Multisim仿真实验
表5-4 电压表内接法改变电阻时的测量结果
R/? U/V I/A U/I/? 1 10.909 10.909 1 10 11.881 1.188 1 100 11.988 0.120 99.983 1× 103 11.999 0.012 999.917 10× 103 12 1.260× 10
第5章 电路基础Multisim仿真实验
图5-10 复杂电路
第5章 电路基础Multisim仿真实验
4.实验步骤
(1) 在电路窗口按图5-10构建一个复杂电路。 (2) 显示各节点编号。启动菜单Options/Preferences, 打开参数设置框,在Circuit页将Show node names选中,电 路就会自动显示节点的编号。 (3) 直接分析出各节点电压。启动Simulate/Analyses/DC Operating Point...命令,在打开的直流工作点参数设置对话 框中选取要分析的节点号,这里将全部变量设置为分析变量。 仿真分析后的结果如图5-11所示。
-6
10× 103
第5章 电路基础Multisim仿真实验
(4) 采用图5-4所示的电压表内接测量方法分别测量1 Ω 、
10 Ω 、100 Ω 、1 k Ω 、10 k Ω电阻的电压和电流。将电压 表内阻设定为200 k Ω ,电流表的内阻设定为0.1 Ω 。测量的 结果填入表5-4中。
第5章 电路基础Multisim仿真实验
第5章 电路基础Multisim仿真实验
3.实验电路
含源二端线性网络如图5-5所示。
第5章 电路基础Multisim仿真实验
图5-5 含源二端线性网络
电脑模拟电路实验报告(3篇)

第1篇一、实验目的1. 理解电脑模拟电路的基本原理和组成;2. 掌握电脑模拟电路的仿真方法和技巧;3. 分析电脑模拟电路的性能指标,提高电路设计能力。
二、实验原理电脑模拟电路是指使用计算机软件对实际电路进行模拟和分析的一种方法。
通过搭建电路模型,可以预测电路的性能,优化电路设计。
实验中主要使用到的软件是Multisim。
三、实验内容及步骤1. 电路搭建以一个简单的RC低通滤波器为例,搭建电路模型。
首先,在Multisim软件中创建一个新的电路,然后按照电路图添加电阻、电容和电源等元件。
将电阻和电容的参数设置为实验所需的值。
2. 仿真设置在仿真设置中,选择合适的仿真类型。
本实验选择瞬态分析,观察电路在时间域内的响应。
设置仿真时间,本实验设置时间为0-100ms。
设置仿真步长,本实验设置步长为1μs。
3. 仿真运行点击运行按钮,观察仿真结果。
在Multisim软件的波形窗口中,可以看到电路的输入信号和输出信号随时间变化的曲线。
4. 数据分析分析仿真结果,观察电路的频率响应、幅度响应和相位响应。
本实验中,观察RC 低通滤波器的截止频率、通带增益和阻带衰减等性能指标。
5. 结果优化根据仿真结果,对电路参数进行调整,优化电路性能。
例如,可以通过调整电容值来改变截止频率,通过调整电阻值来改变通带增益。
四、实验结果与分析1. 频率响应通过仿真结果可以看出,RC低通滤波器的截止频率约为3.18kHz。
在截止频率以下,电路具有良好的滤波效果;在截止频率以上,电路的幅度衰减明显。
2. 幅度响应在通带内,RC低通滤波器的增益约为-20dB。
在阻带内,增益约为-40dB。
3. 相位响应在截止频率以下,电路的相位变化约为-90°;在截止频率以上,相位变化约为-180°。
五、实验结论1. 通过本实验,加深了对电脑模拟电路基本原理的理解;2. 掌握了Multisim软件在电路仿真中的应用;3. 分析了电路性能指标,提高了电路设计能力。
[新版]1rl一阶电路仿真
![[新版]1rl一阶电路仿真](https://img.taocdn.com/s3/m/c9f69f3e905f804d2b160b4e767f5acfa1c7831a.png)
仿真实验一 直流激励下的RL 一阶电路的响应一、实验目的:1、掌握一阶电路响应的两种分解方法及计算的三要素法。
2、理解阶跃响应的概念与电路响应信号所对应的波形。
二、实验原理:当电路中含有储能元件,即含有电感和电容,这类元件的电压和电流关系是微分、积分关系,而不是代数关系,因此根据基尔霍夫定律和元件特性方所列写的电路方程是以电流或电压为变量的微分方程。
如果电路中只含有一个动态元件,描述电路的方程是一阶微分方程,这种电路称为一阶电路。
在动态电路中,当电路的结构或元件参数发生改变时,可能使电路改变原来的工作状态,而转到另一个工作状态,这种转变往往需要经历一个过程,工程上称为过渡过程。
一阶电路的全响应的问题,其实仍是求解非齐次微分方程的问题,既要考虑初始状态又要考虑输入状态,全响应有两种分解方式一是:全响应=稳态分量+暂态分量 '"c c cu u u =+ ;二是:全响应=零输入响应+零状态响应 ()()12c c cu u u =+。
三要素法是从直流或正弦激励下的一阶电路求解法中归纳总结出来的一种通用法则。
()'"0tc ccS s u u u U U U eτ-=+=+-()()()0tc c c u u u e τ-+=∞+-∞⎡⎤⎣⎦(1)()c u ∞——稳态值,又称终值。
(2)()0c u +——初始值,又称初值。
(3)τ——电路的时间常数。
以上的三个量为全响应c u 的三要素,将上述分析结论推广到一般,设时间函数()f t 表示一阶电路在直流激励下的全响应(可以使电路中任意元件的电压和电流)则()f t 的一般表达式为:()()'"tf t f f f Aeτ-=+=∞+若已知初始值()0f +,将0t +=代入上式得:()()00f f Ae+=∞+所以:()()0A f f +=-∞结果:()()()()'"0tf t f f f f f e τ-+=+=∞+-∞⎡⎤⎣⎦如下图所示电路,计算R2两端电压:想要知道R2两端的电压,可以先计算出通过其的电流,则先使用三要素法计算电流:零时刻时的电流:(0)110511i mA -=⨯=+ (0)(0)5i i mA +-==时间无穷远点的电流:111 1.5R k =+=Ω ()(0)1018.33311i i mA R +∞=+=+'111 1.5R k =+=Ω '11500L s R τ==则电流随时间变化为:()()()1500()0()8.333 3.333tt t i i i i ee mA τ+--∞∞=+-=-即可算得R2两端的电压为:()()2150010008.333 3.333t R t U i e V-=⨯=-三、电路仿真实验过程与步骤:按照上述电路图在ewb 仿真软件中连接电路元件,并在运行仿真电路后一段时间后按下s 键以切换开关必和端口。
实验3.2 单管放大电路Multisim仿真实验

实验3.2 单管放大电路
二、实验设备及材料
1.装有Multisim 14的计算机 2. 函数信号发生器 3. 双踪示波器 4. 数字万用表 5. 模拟电路实验箱
实验3.2 单管放大电路
三、实验原理
图3-13 电阻分压式单管放大电路
实验3.2 单管放大电路
三、实验原理
1.静态工作点调试
具体现象 调整动作
V
PR1
V: 7.90 V V(p-p): 1.21 pV V(rms): 0 V V(dc): 7.90 V V(freq): --
V
PR2
C2
10µF Q1 2N3903
V: 1.90 V V(p-p): 0 V V(rms): 0 V V(dc): 1.90 V V(freq): --
PR3
V
R3 100Ω
R6 2.4kΩ
R2 20kΩ
R4
C3
1kΩ
100µF
图3-17 测量探针测量静态工作点示意图
图3-18 使用万用表测量静态工作点示意图
实验3.2 单管放大电路
四、计算机仿真实验内容
C1 10µF
VCC 12V
Rw 100kΩ
R5 2.4kΩ
Key=A 42 %
U2
+
R1 20kΩ
1.705m A
-
C2
DC 1e-009Ohm
U1
10µF
Q1
U3
+
-
0.023m A
+
6.005 V
-
DC 1e-009Ohm
2N3903 DC 10MOhm
R2 20kΩ
R3 100Ω
Multisim仿真实验报告

电气工程学院2011308880023电气11级2班刘思逸Multisim仿真实验报告实验一单极放大电路一.实验目的1.熟悉Multisim软件的使用方法。
2.掌握放大器静态工作点的仿真方法及其对放大电路性能的影响。
3.学习放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真算法,了解共射极电路特性。
二.虚礼实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三.实验步骤1.启动multisim如图所示2.点击菜单栏上的place/component,弹出如下图所示select a component对话框3.在group 下拉菜单中选择basic,如图所示4.选中RESISTOR,此时在右边列表中选中1.5KΩ5%的电阻,点击OK 按钮。
此时该电阻随鼠标一起移动,在工作区适当位置点击鼠标左键,如下图所示5.同理,把如下所示的所有电阻放入工作区6.同样如下图所示选取电容10uF两个,放在工作区适当位置7.同理如下图所示,选取滑动变阻器8.同理选取三极管9.选取信号源10.选取直流电源11.选取地12.最终元器件放置如下13.元件的移动与旋转,即:单击元件不放,便可以移动元件的位置;单击元件(就是选中元件),鼠标右键,如下图所示,便可以旋转元件。
14.同理,调整所有元件如下图所示15.把鼠标移动到元件的管脚,单击,便可以连接线路。
如下图所示16.同理,把所有元件连接成如下所示电路17.选择菜单栏options/sheet properties,如图所示18.在弹出的对话框中选取show all,如下图所示19.此时,电路中每条线路上便出现编号,以便后来仿真。
20.如果要在2N222A的e端加上一个100欧的电阻,可以选中“7”这条线路,然后按键盘del键,就可以删除。
如下图所示21.之后,点击菜单栏上place/component,添加电阻。
22.最后,电路如下:注意:该电路当中元件阻值与前面几个步骤中不一样,更改方法是:比如(要把R3从5.1千欧更改为20千欧),选中R3电阻,右键,如图所示:之后,重新选取20千欧电阻便会自动更换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态电路分析仿真实验
一、实验目的
1、掌握 Multisim 编辑动态电路、设置动态元件的初始条件、掌握周期激励的属性及对动态电路仿真的方法。
2、理解一阶 RC 电路在方波激励下逐步实现稳态充放电的过程。
3、理解一阶 RL 电路在正弦激励下,全响应与激励接入角的关系。
二、实验器材
计算机、Multisim 软件
三、实验内容及分析
RC 一阶动态电路仿真实验
1. 一阶RC 电路的充、放电
在 Multisim 10中,搭建RC 充、放电仿真实验电路,如图2.2.1所示。
当动态元件(电容或电感)初始储能为零(即初始状态为零)时,仅由外加激励产生的响应称为零状态响应;如果在换路瞬间动态元件(电容或电感)已储存有能量,那么即使电路中没有外加激励电源,电路中的动态元件(电容或电感)将通过电路放电,在电路中产生响应,即零输入响应。
在 Multisim 10中,单击图2.2.1所示电路中开关J 1的控制键A ,选择RC 电路分别工作在充电(零状态响应)、放电(零输入响应)状态。
(1)RC 充电(零状态响应)
J1
C1 1uF
R110kΩV113 V J1Key = Space
C1
1uF
IC=13V 3120
7020911022易小辉7020911037谢剑萍
(2)RC 放电(零输入响应)
2. 一阶RC 电路的仿真实验。
当一个非零初始状态的一阶电路受到激励时,电路产生的响应称为全响应。
对于线性电路,全响应是零输入响应和零状态响应之和。
R1
10kΩ
C11uF
7020911022易小辉7020911037谢剑萍
XFG1
XSC1
A B
Ext Trig
+
+
_
_
+_
1
2
R=4.5K C=1UF
C=5uf R=20k
实验结论:通过实验,发现电容电压波形受 R,C 元件参数及时间常数的影响。
其中
时间常数对波形的影响从图上看:1.电容冲放电过程由近似的直线变成明显的与电压成非线形关系。
2.随着时间常数的增大,电容一次充电和放电的时间间隔明显增大。
2.5.1 RLC 串联谐振电路仿真实验
(1)测量电路谐振时的I 0、V R 、V L 、V C 、Q 。
打开仿真开关,用连接在电路中的双踪示波器分别测量激励电压源V S 和电阻R 两端的电压,如图2.5.1(a )中所示在谐振的情况下,用示波器分别测量电感L 和电容C 两端的电压值;将测量的电感L (或电容C )两端的电压值除以电阻R 两端的电压值,换算出电路的Q 值;用串接在电路中的电流表测量电路中流过的电流I 0,并将测量数据填入表2.5.1中。
RLC 串联谐振实验电路数据(1) f 0 /Hz V R /V V L /V V C /V Q I 0 / mA 理论计算值 0 10 1.0 仿真测量值
1585
10
99.975
100.003
10
1.0
(2)测量电路的谐振频率、幅频特性和相频特性
R110Ω
C11uF
XSC1
A B
Ext Trig
+
+
_
_
+_
L110mH V1
10 Vrms 1590 Hz 0°
U2
AC 1e-009W
1.000
A
+
-XBP1
IN OUT
U1
AC 10M W
9.997
V
+
-31
2
4
实验结论:(1)在谐振情况下,电流与电压同相位,电路呈现电阻性;
(2)电感的端电压U L与电容的端电压U C大小相等,相位相反,相互补偿,外加电压与电阻上的电压相平衡,即U R=U I ;
(3)电感或电容的端电压可能大大超过外加电压,产生过电压。
电容或电感的端电压与外电压之比为:
Q=U L/U=XLI/RI=XL/R=WOL/R,式中Q值越大,曲线越尖锐;
(4)电路的品质因数Q值越大,电路的谐振的质越高,带宽越窄,幅频特性曲线越尖锐,相频特性曲线越陡峭,对信号的选择性越好。