两级阻容耦合放大电路 (

合集下载

两级阻容耦合级间电压串联负反馈放大电路设计

两级阻容耦合级间电压串联负反馈放大电路设计

课程设计题目:两级阻容耦合级间电压串联负反馈放大电路设计学生姓名:学号:院系:专业班级:指导教师姓名及职称:起止时间:课程设计评分:两级阻容耦合级间电压串联负反馈放大电路设计1.两级阻容耦合级间电压串联负反馈放大电路概述:把几个单级放大电路连接起来,使信号逐级得到放大,在输出获得必要的电压幅值或足够的功率。

由几个单级放大电路连接起来的电路称为多级放大电路。

在多级放大电路中,每两个单级放大电路之间的连接方式叫耦合;如耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。

阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。

其特点是各级静态工作点互不影响,不适合传送缓慢变化信号。

而在两级阻容耦合放大器电路的基础上,加接一个反馈电阻,使得负反馈电路中的反馈量取自输出电压,若反馈信号为电压量,与输入电压求差而获得净输入电压,则引入电压串联负反馈。

2.两级阻容耦合级间电压串联负反馈放大电路设计2.1两级阻容耦合级间电压串联负反馈放大电路原理图图1两级阻容耦合级间电压串联负反馈放大电路原理图2.2静态工作点设置分析两级阻容耦合放大电路的总电压放大倍数为21u u u A A A =其中,第一级放大电路的电压放大倍数为11121)1(E be i CSu R r R R A +++-=ββ可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为])1(//[//R 222W 627E be i R r R R R β+++=)(设V U BEQ 7.0=,所以第一级放大电路中,KR R r R R R R r R R A V R R R I U U AI R U U I U R R R R U be W i beLu C c CEQ C BEB EQ cc W BQ 8.1302)1(32.10)543(m 14v4.2212c =≈+=-==++-==≈-==++≈β所以晶体管V 1和V 2的输入电阻分别为11126)1(300EQ be I r β++≈ 22226)1(300EQ be Ir β++=10uF图2 仿真电路图在Ui=0的情况,接上电源,调节电位器R13和R12,使得Ic1=1.0mA ,Ic2=1.5mA图3 Ic1电流值 图4 Ic2电流值然后用万用表测量各级的电位图5 1C 极电位 1B 极电位 1E 电位图6 2C 极电位 2B 极电位 2E 极电位2.3 测量基本放大器的性能指标和动态分析(1)不连接反馈网络,输入kHz f 1=、mV U i 5=的正弦信号,并且接入负载Ω=k R L .5,测量输出电压Uo ,计算u A 、i R 、o R图7输入kHz f 1=、mV U i 5=的正弦信号仿真电路数据如图8图8输入与输出电压的有效值如图9所示图9 输入电压Ui 输出电压Uo Us所以放大的倍数533003.0≈==i o u U A 输入电阻=-=s is ii R u u u R 9.27Ωk 输出电阻Ω==k R R o 3.38 (2)接入R c =12k 电阻和C=10uf 电容的负反馈后,输入kHz f 1=、mV U i 5=的正弦信号,并且接入负载Ω=k R L .5,测量输出电压Uo ,计算u AR110k¦¸R220k¦¸R31.8k¦¸R4100¦¸R51k¦¸R610k¦¸R715k¦¸R83.3k¦¸R91.2k¦¸R1112k¦¸V112 V 0XMM1XMM3XSC1ABExt Trig++__+_XFG1R105.1k¦¸J2AKey = A 12Q12N3904Q22N3904R1250k¦¸Key=A 83%1R13100k¦¸Key=A 94%7R1451¦¸C610uF C7100uFC810uFC910uF C10100uF9C110uFXMM2XMM41113R151k¦¸XMM6205XMM715XMM88XMM910XMM1018XMM111917XMM124XMM531422图10 接入负反馈的仿真电路图输入与输出的有效值如图11所示图11 输入电压Ui 输出电压Uo所以放大的倍数933.3≈==i o u U A 同过仿真数据得出,当接入反馈网络后,电压的放大倍数减小,但放大倍数的稳定性得到提高,波形失真程度小。

实验三两级耦合放大电路

实验三两级耦合放大电路

实验三两级耦合放大电路——阻容耦合、直接耦合一、实验目的1、学习两级阻容耦合及直接耦合放大电路静态工作点的调试方法。

2、学习两级放大电路电压放大倍数的测量。

3、掌握两级放大电路输入、输出的相位关系。

二、预习要求1、熟悉单管放大电路不失真的调整方法。

2、预习多级放大电路的耦合方式,掌握阻容耦合放大电路各级静态工作点的调试方法。

3、预习多级放大电路电压放大倍数的测量方法、步骤及计算。

4、分析多级放大电路各级输入、输出电压的相位关系。

三、实验设备及仪器智能网络型实验台、双踪示波器、交流毫伏表、数字万用表、函数信号发生器。

四、实验内容及步骤1、实验电路原理图如图3.1所示。

(将图中的第二极输入端与信号源之间不加耦合电容的话,就可以得到直接耦合两极放大电路的原理图,具体实现方法为在模拟板上改变跳线连接方法)图 3.1电路中Re11、Re21都取100Ω,其中一个用实验板T1-2M1左下角的100Ω电位器代替,另一个用680Ω电位器调出100Ω电阻。

2、静态工作点的调试①分别调试各级的静态工作点,将每级的静态工作点设在交流负载线的中间(即V CE≈6V)。

两级的调试方法相同。

以第一级为例,在输入端输入频率为1kHz正弦波信号u i,用示波器观察本级输出波形,在逐渐增大u i的同时调节P1,直至使输出信号波形幅度为最大且不失真。

②第二级输入端与信号源之间必须加接耦合电容。

③将信号源拆除,用直流电压表测量两级的三极管各脚的直流工作电压,将数据填入表3.1中。

表 3.13连接好级间连线,在第一级输入端输入1kHz正弦波信号u s,调节信号发生器,使u s逐渐减小,用示波器观察输出信号u o的波形不失真,此时用交流毫伏表和示波器测量各级的输入、输出交流电压值和波形,记录于表3.2和表3.3中。

4、根据测量的数据,将电压放大倍数的计算结果填入表3.4中。

表 3.4五、要求与思考1、整理实验数据,并对实验数据进行比较和分析。

两级阻容耦合负反馈放大电路Multisim仿真分析

两级阻容耦合负反馈放大电路Multisim仿真分析

两级阻容耦合负反馈放大电路Multisim仿真分析一、实验目的:1.学习利用Multisim电子线路仿真软件构建自己的虚拟实验室。

2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。

3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。

4.加深对负反馈放大电路放大特性的理解。

5.研究负反馈对放大电路各项性能指标的影响。

二、实验原理:反馈形式:电压串联负反馈三、实验内容:1.直流工作点分析择节点5、6、7、8、9、13作为输出节点,对开环和闭环电路仿真得到相同的输出结果2.负反馈对放大电路性能的影响主要有五个方面1.降低放大倍数2.提高放大倍数的稳定性3.改善波形失真4.展宽通频带5.对放大电路的输入电阻和输出电阻的影响2.1放大电路稳定性分析在电路输入端5、输出端10同时接入交流电压表,按B键选择有无引入负反馈,按A 键选择有无负载电阻R9接入。

表1 输出电压与电压放大倍数的测量结果U o、A u的测量J1U i (mV) U o (mV) A u= U o /U i无反馈(J2断开)断开97.207 2030 20.883 闭合105.452 1524 14.452负反馈(J2闭合)断开30.563 446.583 14.612闭合37.128 414.451 11.163从而稳定了电压放大倍数。

此外,基本放大电路在空载和负载状态下,得到的输出电压相差很大,而接入负反馈后,负载接入与否对输出电压影响很小。

2.2非线性失真分析按B键断开开关S2使电路处在开环状态,双击示波器观察输出波形。

如图所示,调节信号源电压的幅值(频率不变),使输出波形出现非线性失真,在输出端利用失真度测试仪测得其失真系数为18.484%。

开关S2闭合引入负反馈,可见输出波形幅度减小,失真度测试仪显示失真系数为0.158%,因此引入负反馈后非线性失真得到明显改善。

(a)开环输出电压非线性失真 (b)电压串联负反馈失真减小2.3 幅频特性分析打开S2开关,选择simulate→analyses→AC Analysis,在弹出的对话框的“Prequency Parameters”选项卡中将“开始频率”和“终止频率”分别设置为1Hz和1GHz,在“Output”选项卡中选择输出节点10进行仿真,得到无反馈的频率特性。

两级阻容耦合放大电路

两级阻容耦合放大电路

两级阻容耦合放大电路一、 实验目的(一) 学习两级阻容耦合放大电路静态工作点的调整方法。

(二) 学习两级阻容耦合放大电压放大倍数的测量方法。

(三)学习放大电路频率性的测量方法。

二、知识要点(一)多级放大器有三种耦合方式,即直接耦合、阻容耦合、变压器耦合。

本实验讨论阻容耦合。

(二)多级放大器的主要参数 1、电压放大倍数在多级放大器中,由于各级之间是串联起来的,后一级的输入电阻是前一级的负载,所以多级放大器的总电压放大倍数等于各级放大器倍数乘积,即vn v v v A •A =A A ••L L 21本实验讨论两极放大器。

注意:各级的放大倍数已考虑前后级的相互影响,两级阻容耦合放大器中1111-be 'L v r R β=A ×,2222-be 'L v r R β=A ×由于 212121'1i C i C i C L +r R r R =//r =R R ×,L C L C L C L +R R R R =//R =R R 222'2×222be2222r b be b b be i +R r R =//R =r r ×,22212221122B B B B B B b +R R R R =//R =R R ×通常由于 b be R r <<2及cT i R r <<2 ,所以有1111be be b i r //r =R r ≈,2222≈be be b i r //r =R r2221'1be i i C L r r //r =R R ≈≈所以,1'221221221-()-(be L be 'L be be v v v r R ββr R βr r βA =A A =•=•2、输入输出电阻两级放大器输入电阻就是第一级(输入级)的输入电阻,即1be111≈//R be b i i r r =R R >两级放大器输出电阻就是第二级(输出级)的输出电阻,即cn n =R =R R 00 即 2200c =R =R R3、频率响应特性放大器在低频或高频时,放大器的信号达不到预期的要求,而造成放大器低频或高频时的放大性能变差。

两级RC阻容耦合放大电路一、基本原理框图如下当K1、K2断开时,前

两级RC阻容耦合放大电路一、基本原理框图如下当K1、K2断开时,前

两级RC阻容耦合放大电路一、基本原理框图如下当K1、K2断开时,前级放大为一典型电阻分压式单管放大器,当把K1、K2闭合时前级和后级接通,组成带有电压串联负反馈的两级放大器。

二、硬件电路设计电路如下图所示,,它是由两个分压式偏置稳定电路经阻容耦合连在一起当K1闭合时,则把前级放大电路的输出信号加到后级放大电路的输入端继续放大。

由于前级放大电路与后级放大电路类似,现只分析前级放大电路,图中三极管T1具有电流放大作用,是放大电路的核心,电阻R P1、R B1、R B2、的分压来稳定基极电位,集电极电阻R C1的作用主要是将集电极电流的变化转成电压的变化,以实现电压的放大功能,另一方面电源U CC可以通过R C1加到三极管上,使三极管获得正常的偏置电压,所以R C1也起直流负载的作用,耦合电容C1、C2又称做隔直电容,他们分别接在放大电路的输入端和输出端,一方面起交流耦合作用,另一方面隔离直流的作用,发射极电阻(R E1+R E2)用来反映电流I EQ变化的信号,反馈到输入端,自动调节I EQ的大小实现工作点的稳定,当K1、K2闭合时则引入级间负反馈,,以实现提高放大倍数的稳定性和减小非线性失真和抑制干扰和噪声的影响。

三、 电路主要参数1)闭环电压放大倍数FA A AVVV Vf+=1其中A V =UU iO为无级间反馈时的电压放大倍数,即开环电压放大倍数。

1+F A V V ——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。

2)级间反馈系数 UUFOf V=3)输入电阻R F A Ri V V if)1(+=R i——无级间反馈时放大器的输入电阻4)输出电阻 FA R RVVO Of+=1RO——无级间反馈时的输出电阻调试与检测1、初步检测检查电路板上的元件,有无明显的焦痕破坏的情况,电路中连线有无虚焊,短路及直流电源是否正常等。

2.导线故障级顺序测量各级的输入输出电压和波形,对以上放大电路输入正弦波,若B 1点输入正弦波信号正常,但C 点波形不正常则第一级是可疑级,在C 点将电容C 2断开后,再测C 点波形,若仍不正常,则故障在第一级;若断开后正常了,则故障在第二级。

两级阻容耦合放大电路的安装与调试2

两级阻容耦合放大电路的安装与调试2
例:393KH和224J/1H,其中393、244表示电容器的容量,K、J表示电容器的误差,H、1H意义相 同表示101*5.0=50V。又如:2E104,104表示容量,2E表示102*2.5=250V。
一、常用电子元件的识别与检测
(三)、电感器(L,单位亨利 H,mH,μH。1H=103mH=106μH)
两级阻容耦合放大电路的安装与调试
实习内容: 1.电子元件的识别与检测 2.常用电子仪器和工具的使用练习 3.拆焊与焊接技术训练 4.电路工作原理与元件参数设计 5.电路的安装、调试、维修训练 6.作品验收 7.撰写实习报告
一、常用电子元件的识别与检测
(一)、电阻器(R,单位:Ω、K Ω、M Ω) 1、电阻器的分类: 根据电阻值特性分为:固定电阻器、可变电阻器(电位器)、敏感电阻器
码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。电感量误 差细分为:F级(±1%),G级(±2%),H级(±3%),J级(±5%),K级 (±10%),L级(±15%),M级(±20%),P级(±25%)。N级 (±30%)。但普通常用J,K,M级。 (2)品质因素Q
品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比 值,即:Q=XL/R。 线圈的Q值愈高,回路的损耗愈小。
(4)线绕电阻由于分布电感和分布电容都比较大,只能用在低频电路,高频 电路中应尽量选用金属膜电阻。在高频电路中电阻器的引线不宜过长,以减小 分布参数。
(5)电阻的测量:注意指针式万用表的Ω调零。
一、常用电子元件的识别与检测
(二)、电容器(C,单位法拉F,μF,nF,pF。1 μF =103nF=106pF) 1、电容器的分类: 按绝缘介质分为:空气介质电容器、纸质电容器、有机薄膜电容器、瓷介 电容器、玻璃釉电容器、云母电容器、电解电容器等。 按结构分为:固定电容器、半可变电容器、可变电容器

两级阻容耦合放大及负反馈电路实验

两级阻容耦合放大及负反馈电路实验

两级阻容耦合放大及负反馈电路实验两级阻容耦合放大及电路试验_模拟试验与指导4.1.3 两级阻容耦合放大及负反馈电路试验1)试验目的(1)巩固学习放大器主要性能(工作点、放大倍数、输入输出)的测量办法。

(2)观看多级放大器的级间联系及互相影响。

(3)观看负反馈对放大器性能的影响,了解负反馈放大器性能的普通测试办法。

2)试验原理(1)开关A向左扳,开关B打开时,图4.1.3为两级RC阻容耦合放大电路的原理图。

图4.1.3 两极阻容耦合放大及负反馈电路(2)因为放大器级间是阻容耦合,每级的静态工作点互不影响,这易于电路静态工作点的计算和调节。

两级静态工作点的计算办法同试验4.1.1。

(3)对于沟通信号,在分析多级放大器时,要考虑各级之间的互相影响,以及放大器与信号源或负载之间的衔接问题。

例如:后级的输入电阻构成了前级的负载电阻,前级的输出电阻便构成了后级的信号源内阻。

此外,多级放大器在放大较低频率信号时,级间耦合电容会造成信号的衰减。

(4)两级放大器中频段的性能指标分析如下。

①放大器电压放大倍数为式中:——第一级的电压放大倍数R′L1——第一级的沟通等效负载,R′L1=Rc1∥Rb21∥Rb22∥[rbe2+(1+β2)Re3];——其次级的电压放大倍数,R′L——其次级的沟通等效负载,R′L=Rc2∥RL。

②放大器输入电阻为:ri=Rb11∥Rb12∥[rbe1+(1+β1)Ref]③放大器输出电阻为:ro≈Rc2(5)负反馈电路会对放大器的性能产生影响,反馈类型不同对放大器性能的影响也不同。

开关A向左扳,开关B闭合时,图4.1.3为级间带有电压串联负反馈的放大电路。

负反馈放大器电压放大倍数的基本方程式:式中:Au——基本放大器的电压放大倍数;Fu——反馈系数;Auf——放大器的闭环电压放大倍数。

电压串联负反馈对电路放大器的性能的影响:①当为深度反馈时,电压串联负反馈的电压放大倍数可近似表示为:Auf=1/Fu;②电压串联负反馈的输入电阻:iif=Ui/Ii=ri(1+AuFu);③电压串联负反馈的输出电阻:rof=Uo/Io=ro/(1+A′usFu);式中:A′us——负载RL开路时的源电压放大倍数。

学位论文—模拟电子技术报告--两级阻容耦合放大电路的设计与调试

学位论文—模拟电子技术报告--两级阻容耦合放大电路的设计与调试

模拟电子技术课程设计报告题目:两级阻容耦合放大电路的设计与调试学院电气工程学院专业班级12级电气3班学生姓名指导教师同组组员提交日期 2014年03月 07日电气工程学院专业课程设计评阅表学生姓名学生学号201230088063同组队员专业班级12电气3班题目名称两级阻容耦合放大电路的设计与调试一、学生自我总结二、指导教师评定目录目录一、设计目的 (5)二、设计要求和设计指标 (5)三、设计内容 (5)3.1.内容简介 (5)3.2.电路原理 (6)3.3参数确定 (7)3.4具体仿真电路 (7)3.5仿真结果与分析 (8)3.5.1设计要求 (8)3.5.2.技术指标 (8)3.5.3功能仿真及仿真图 (8)3.5.4. 测试电压 (9)3.5.5.频率失真图 (9)3.5.6.输出波形图 (10)3.5.7频响特性 (10)四、本设计改进建议 (4)五、总结(感想和心得等 (11)六、主要参考文献 (11)附录 (12)一、设计目的1.能够较全面地巩固和应用“模拟电子技术”课程中所学的基本理论和基本方法,并初步掌握电路设计的全过程(设计-仿真-PCB板制作-调试安装)。

2.能合理、灵活地应用分立元件或标准集成电路芯片实现规定的电路。

3. 培养独立思考、独立准备资料、独立设计规定功能的模拟电子系统的能力。

4.培养独立设计能力,熟悉EAD工具的使用,比如EWB(现在为Multisim系列)(仿真分析)及Protel(原理图和PCB版图的制作)等。

5.培养书写综合设计实验报告的能力。

二、设计要求和设计指标1.设计要求:1.根据性能指标要求,确定电路及器件型号,计算电路组件参数;2.在EWB中进行电路仿真,测量与调整电路参数,是满足设计计算要求。

3.测试性能指标,调整修改组件参数值,使其满足电路性能指标要求,将修改后的组件参数值标在设计原理图上。

4.上述各项完成后,在Protel软件中绘制电路原理图及其PCB版图。

电子技术学习指导与习题解答:第3章 多级放大电路

电子技术学习指导与习题解答:第3章   多级放大电路

第3章 多级放大电路3.1 如图 3.7所示为两级阻容耦合放大电路,已知12CC =U V ,20B1B1='=R R k Ω,10B2B2='=R R k Ω,2C2C1==R R k Ω,2E2E1==R R k Ω,2L =R k Ω,5021==ββ,6.0BE2BE1==U U V 。

(1)求前、后级放大电路的静态值。

(2)画出微变等效电路。

(3)求各级电压放大倍数u1A 、u2A 和总电压放大倍数u A 。

u s+u o -CC图3.7 习题3.1的图分析 两级放大电路都是共发射极的分压式偏置放大电路,各级电路的静态值可分别计算,动态分析时需注意第一级的负载电阻就是第二级的输入电阻,即i2L1r R =。

解 (1)各级电路静态值的计算采用估算法。

第一级:412102010CC B2B1B2B1=⨯+=+=U R R R U (V )7.126.04E1BE1B1E1C1=-=-=≈R U U I I (mA )0.034507.11C1B1===βI I (mA )2.5)22(7.112)(E1C1C1CC CE1=+⨯-=+-=R R I U U (V ) 第二级:412102010CC B2B1B2B2=⨯+='+''=U R R R U (V )7.126.04E2BE2B2E2C2=-=-=≈R U U I I (mA )电子技术学习指导与习题解答46 0.034507.12C2B2===βI I (mA ) 2.5)22(7.112)(E2C2C2CC CE2=+⨯-=+-=R R I U U (V )(2)微变等效电路如图3.8所示。

R U +-图3.8 习题3.1解答用图(3)求各级电路的电压放大倍数u1A 、u2A 和总电压放大倍数u A 。

三极管V 1的动态输入电阻为:10807.126)501(30026)1(300E11be1=⨯++=++=I r β(Ω) 三极管V 2的动态输入电阻为:10807.126)501(30026)1(300E22be2=⨯++=++=I r β(Ω) 第二级输入电阻为:93.008.1//10//20////be2B2B1i2==''=r R R r (k Ω) 第一级等效负载电阻为:63.093.0//2//i2C1L1==='r R R (k Ω) 第二级等效负载电阻为:12//2//L C2L2==='R R R (k Ω) 第一级电压放大倍数为:3008.163.050be1L11u1-=⨯-='-=r R A β 第二级电压放大倍数为:5008.1150be2L22u2-=⨯-='-=r R A β 两级总电压放大倍数为:1500)50()30(u2u1u =-⨯-==A A A3.2 在 如图 3.9所示的两级阻容耦合放大电路中,已知12CC =U V ,30B1=R k Ω,20B2=R k Ω,4E1C1==R R k Ω,130B3=R k Ω,3E2=R k Ω,5.1L =R k Ω,5021==ββ,8.0BE2BE1==U U V 。

两级阻容耦合放大电路的仿真与设计基于Multisim10(DOC)

两级阻容耦合放大电路的仿真与设计基于Multisim10(DOC)

课程设计(论文)报告书题目:两级阻容耦合放大器的设计与仿真课程:模电综合实验院(部):通信与信息工程学院专业:电子信息工程班级:1104班学生姓名:(*^__^*) 嘻嘻……学号:1107050405设计期限:2013年7月12日指导教师:吴文峰《一》课题两级阻容耦合放大器的设计与仿真《二》选题意义(1)为了尽可能保证不失真放大,采用两级放大电路。

阻容耦合放大器是多级放大器中最常见的一种,两级之间通过耦合电容及下级输入电阻连接,故称为阻容耦合,由于电容有隔直作用,使用前、后级的直流工作点互相不影响,各级放大电路的静态工作点可以单独计算。

每一级放大电路的电压放大倍数为输出电压Uo与输入电压Ui之比,其中,第一级的输出电压Uo1 即为第二级输入电压Uo2,所以两级放大电路的电压放大倍数为==*=(2)我选这个题目觉得能够较全面地巩固和应用“模拟电子技术”课程中所学的基本理论和基本方法,更加熟悉阻容耦合放大电路。

(3)更加了解电路的仿真。

《三》具体要求已知条件:(1)电源电压VCC=12V;(2)负载电阻RL=2KΩ;(3)输入信号为Vi=4mv,f=1KHZ的正弦波电压,信号源内阻Rg很小可忽略;(4)晶体管用3DG6。

技术指标:(1)放大器不失真输出电压VO≥1000mv,即放大器电压增益∣AV∣≥250;(2)△f=300Hz~80KHz;(3)放大器工作点稳定。

《四》方案1 采用集成运放可以采用集成运放来搭建放大电路。

该方案设计简单,集成度高、精确度高,在参数上输入电阻很高,输出电阻低,采用集成运放放大小信号是很好的选择。

2 采用三极管采用三极管的级联方式组成多级放大电路。

三极管又可以分为三种放大电路:共射、共集和共基放大电路。

三种方式有各自的特点。

根据实验的要求,本设计最终采用了三极管设计的方案。

电路由两级放大电路级联组成,第一级为分压偏置的共射级放大电路,第二级采用同样的放大电路通过电容耦合连接起来。

两级阻容耦合放大器及负反馈放大器

两级阻容耦合放大器及负反馈放大器

实验四 两级阻容耦合放大器及负反馈放大器一、实验目的1. 了解多级阻容耦合放大器组成的一般方法。

2. 了解负反馈对放大器性能指标的改善。

3. 掌握两级放大器与负反馈放大器性能指标的调测方法。

二、实验原理1.阻容耦合放大器是多级放大器中最常见的一种,其电路如图4.4.1所示。

这是一个曲型的两级阻容耦合放大器。

由于耦合电容1C 、2C 、3C 的隔直流作用,各级之间的直流工作状态是完全独立的,因此可分别单独调整。

但是,对于交流信号,各级之间有着密切的联系,前级的输出电压就是后级的输入信号,因此两级放大器的总电压放大倍数等于各级放大倍数的乘积u2u1u A A A ⋅=,同时后级的输入阻抗也就是前级的负载。

2. 负反馈放大器(1)负反馈电路的基本形式负反馈电路的形式很多,但就其基本形式来说可分四种:(a )电压串联负反馈;(b )电压并联负反馈;(c )电流串联负反馈;(d )电流并联负反馈。

在分析放大器中的反馈时,主要应抓住三个基本要素:第一、反馈信号的极性。

如果反馈信号是与输入信号反相的就是负反馈,反之则是正反馈。

第二、反馈信号与输出信号的关系。

如果反馈信号正比于输出电压,就是电压反馈;若反馈信号正比于输出电流,就是电流反馈。

第三、反馈信号与输入信号的关系。

从反馈电路的输入端看,反馈信号(电压或电流)与输入信号并联接入称为并联反馈;串联接入成为串联反馈。

(2)负反馈对放大器性能的影响负反馈能有效地改善放大器的性能,主要体现在输入电阻、输出电阻、频带宽度、非线性失真、稳定性等方面。

但是放大器性能的改善是以降低其增益为代价的,因而在应用负反馈电路时,必须考虑电路性能改善的同时会引起电路增益的减小。

3. 放大器的输入电阻i R 及输出电阻o R 。

放大器的输入电阻i R 是向放大器输入端看进去的等效电阻,定义为输入电压i u 和输入电流i i 之比,即:iii i u R =。

测量输入电阻i R 的方法很多,例如替代法、电桥法、换算法等等。

电子技术综合实验报告(两级阻容耦合放大电路)

电子技术综合实验报告(两级阻容耦合放大电路)

电子技术综合设计实验
两级阻容耦合放大电路
1.实验任务
用常用电阻电容三极管等器件搭建不失真,通频带宽的二级阻容耦合放大电路,设计静态工作点和动态特性,测试通频带并用面包板实现。

2.实验目的
掌握用模拟电子技术中放大电路的设计与测试方法,掌握面包板电路基本调试手段
3.实验原理
1)两级阻容耦合放大电路开环特性测试
电路图如上所示,通过四通道示波器各个引脚可知两级放大倍数,静态工作点等信息:
第一级放大倍数为2.698/4.582=0.588倍,静态工作点为(D通道设置在第一级电容之前)即得11.949V如下图所示
第二级放大倍数由两级放大倍数之积与第一级放大倍数的比值。

如示波器所示,第二级静态工作点为6.613V。

两级放大倍数之积为329.535mV,则放大倍数为总体放大倍数329.535,第二级放大倍数为32.953/0.588=56.04,频率响应如图所示
2)两级阻容耦合放大电路闭环特性测试(电压串联负反馈)
测试增加反馈对通频带的影响以及放大倍数的影响如下:
如图,闭环放大倍数为32.47,比开环时缩小
2)两级阻容耦合放大电路开环特性测试(电流并联负反馈)
如图所示,放大倍数为32.89,放大倍数有所下降。

两级阻容耦合放大电路

两级阻容耦合放大电路

两级阻容耦合放大电路通常放大电路的输入信号都是很弱的,一般为毫伏或微伏数量级,输入功率常在1mV 以下。

为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大,方可在输出获得必要的电压幅值或足够的功率。

由几个单级放大电路连接起来的电路称为多级放大电路。

在多级放大电路中,每两个单级放大电路之间的连接方式叫耦合;如耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。

阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。

本实验采用的是两级阻容耦合放大电路,如图3-1所示。

图3-1 两级阻容耦合放大电路在晶体管V 1的输出特性曲线中直流负载线与横轴的交点U CEQ1=V CC ,与纵轴的交点(U CE =0时)集电极电流为=1CQ I 311E E C CCRR R V++静态工作点Q 1位于直流负载线的中部附近,由静态时的集电极电流I CQ1和集-射电压U CEQ1确定。

当流过上下偏流电阻的电流足够大时,晶体管V 1的基级偏压为2111RR V R U CCB +=晶体管V 1的静态发射极电流为311311117.0E E B E E E B EQ RR U R R UB U I +-≈+-=静态集电极电流近似等于发射极电流,即1111EQ BQ EQ CQ II I I ≈-=晶体管V 1的静态集电极电压为111C CQ CCCQ RI V U -=两级阻容耦合放大电路的总电压放大倍数为21u u uAA A =其中,第一级放大电路的电压放大倍数为11111)1(E be L uRr R A +++'-=ββ晶体管V1的等效负载电阻为211i C L RRR ='可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为])1(//[//222432E be i R r R R R β++=晶体管V 1和V 2的输入电阻分别为11126)1(300EQ be I r β++≈22226)1(300EQ be Ir β++=第二级放大电路的电压放大倍数为222222)1(E be L u Rr R A ββ++'-=其中,等效交流负载电阻LC L RRR 22='。

含负反馈的两级阻容耦合放大电路设计

含负反馈的两级阻容耦合放大电路设计

含负反馈的两级阻容耦合放大电路设计一实验目的:1.学习利用Electronics Workbench Multisim电子线路仿真软件构建自己的虚拟实验室。

2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。

3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。

4.加深对负反馈放大电路放大特性的理解。

5.研究负反馈对放大电路各项性能指标的影响。

二主要仪器设备:1. 虚拟实验设备⏹操作系统为Windows XP的计算机 1台⏹Electronics Workbench Multisim 8.x~9.x电子线路仿真软件1套.2. 实际工程实验设备⏹模拟实验箱 1台⏹函数信号发生器 1台⏹示波器 1台⏹数字万用表 1台三实验原理及实验电路通常放大电路的放大倍数都是很微弱的,一般为毫伏或微伏数量级.为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大.因此构成多极放大电路.级间的连接方式叫耦合,如耦合电路是采用电阻,电容耦合的叫阻容耦合放大电路.本试验采用的就是两极阻容耦合放大电路,如图1-1所示.其中两极之间是通过耦合电容C2及偏置电阻连接,由于电容隔直作用,所以两极放大电路的静态工作点可以单独调试测定.两极阻容耦合放大电路的电压放大倍数Au= Au1*Au2从表面看,通过对多个单级放大电路的适当级联,可以实现任意倍数的放大。

似乎放大电路已经没有什么可以研究的了。

但是,问题并不是这么简单。

首先静态工作点与放大倍数是互相影响的,其次,放大倍数与输出电阻也可能互相影响,第三,输入电阻与放大倍数也可能互相影响.在电路中引入负反馈,可以解决这个问题。

如电路图所示.负反馈对放大电路性能主要有五个方面的影响:1.降低放大倍数2.提高放大倍数的稳定性3.改善波形失真4.展宽通频带5.对放大电路的输入电阻和输出电阻的影响四实验预习内容:1预习实验电路的原理,明确实验目的及内容2掌握放大电路的静态和动态的测试方法.3了解实验所需仪器设备的结构性能及使用方法(特别是波特图示仪)4求电路图1-1的静态工作点和电压放大倍数五实验研究分析报告参照实验电路图1-1,完成测量电路的接线,断开反馈支路。

两级阻容耦合放大电路

两级阻容耦合放大电路

原理:如图所示电路是两级阻容耦合放大电路。

阻容耦合就是利用电容作为耦合隔断直流通交流的电路,其中电路的第一级输出信号通过电容C2和第二级的输入电阻R21加到第二级的输入端。

U2是信号源,提供交流正弦小信号。

C1、C2、C3实现了直流隔离功能,电容Ce1、Ce2在高频时形成短路,有效地旁路了R e1、Re2,C2是耦合电容。

R11、R12、为第一级的三极管VT1提供偏置电流。

,R21、R22为第二级的三极管VT2提供偏置电流。

R c、R e形成适当的偏置条件。

RL为负载电阻。

通过改变输出电阻R22、RL可以改变信号的放大倍数。

模电实验二 多级放大电路

模电实验二 多级放大电路

实验二 多级放大电路一.实验目的1.掌握多级放大器静态工作点的调整与测试方法。

2.学会放大器频率特性测量方法。

3.了解放大器的失真及消除方法。

4.掌握两级放大电路放大倍数的测量方法和计算方法。

二.实验仪器 示波器数字万用表 信号发生器 直流电源三.实验原理及测量原理实验电路如图所示,是两级阻容耦合放大器。

1.静态工作点的计算测量阻容耦合多级放大器各级的静态工作点相互独立,互不影响。

所以静态工作点的调整与测量与前述的单级放大器一样。

图示的实验电路,静态值可按下式计算。

1111(1)CC BEQ BQ B E V U I R R β-=++11CQ BQ I I β=1111()CEQ CC CQ E C U V I R R =-+2222122B B CC B B R U V R R =+22E B BEQ U U U =-2222E E C E U I I R == 22/B C I I β=实际测量时,只要测出两个晶体管各极对地的电压,经过换算便可得到其静态工作点值的大小。

2.多级放大器放大倍数的计算与测量多级放大电路,不管是采用阻容耦合还是直接耦合,前一级的输出信号即为后级的输入信号,而后级的输入电阻会影响前级的交流负载。

多级放大电路的放大倍数,为各级放大倍数的乘积,而每一级电路电压放大倍数的计算,要将后级电路的输入电阻作为前级电路的负载来计算,图实验电路中12212112////(1)C i C LU U U be E be R R R R A A A r R r βββ==++2212122////i B B be be R R R r r =≈实际测量时,可直接测量第一级和第二级输入、输出电压,或两级的输入输出电压,并验证上述结论。

3.多级放大器的输入,输出电阻。

4.多级放大器的幅频特性多级放大器幅频特性的测量原理与单级放大器相同,理论分析与实践证验都表明,多级放大器的通频带小于任一单级放大器的通频带。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两级阻容耦合放大电路 (报告一)
一.研究背景
在实际应用中,常对放大电路的性能提出多方面的要求。

例如要求一个放大电路输入电阻大于2MΩ,压放大倍数大于2000,输出电阻小于100Ω,一种单管放大电路都不可能同时满足上述要求;这就需要选择多个基本放大电路,将它们合理连接构成多级放大电路。

构成多级放大电路电路的每一个基本放大电路成为一级,级与级之间的为级间耦合。

多级放大电路有四种常见的耦合方式:直接耦合、阻容耦合、变压器耦合,光电耦合、 在这里我们重点研究两级耦合放大电路,将对其进行瞬态特性分析、交流分析、直流分析。

一.研究目的
1、 设计两级耦合放大电路,通过分析两级耦合放大电路的各项性能指标,达到设计目
的,要求电路(1)有一定的输出功率(2)具有足够的放大倍数(3)输出信号失真要小,工作要稳定
2、掌握测试多级放大电路性能指标的基本方法。

二.研究内容
两级阻容耦合放大电路
V5
VOFF = 0
原理:如图所示电路是两级阻容耦合放大电路。

阻容耦合就是利用电容作为
耦合隔断直流通交流的电路,其中电路的第一级输出信号通过电容C3和第二级的输入电阻R13加到第二级的输入端。

电路图中V5是直流电源,提供12V 的直流电压。

V4是信号源,提供交流正弦小信号。

C2是隔直流电容,C3是耦合电容。

R11、R14、为第一级的三极管Q6提供偏置电流。

,R13、R2为第二级的三极管Q7提供偏置电流。

R3为负载电阻。

通过改变输出电阻R2、R3可以改变信号的放大倍数。

我们进行瞬态特性分析、交流分析、直流分析、温度分析。

三.研究结果和分析
1、瞬态特性分析
(1).瞬态特性分析参数设置(2)正弦小信号输入波形
(3)经过第一级放大的波形(4)第二级放大的波形
分析:从图可以看出该输出波形失真较小,达到了放大电路的基本要求。

当输入一个小信号时,经过两级阻容耦合放大电路后变成了一个相对比较大的信号。

两级阻容耦合放大电路的第一节的放大倍数大约为462\1mv=462
两级阻容耦合放大电路的第二节的放大倍数大约为11V\462mv=25由以上两个图可以算出此两级阻容耦合放大电路的总的放大倍数为第一级放大倍数乘上第二级放大倍数为100*10=1000倍,具有足够的放大倍数。

2、交流分析
(1)交流分析参数设置(2)电压放大倍数图
上图波形可知道其放大倍数大约为34。

其通频带大约在100Hz-10MHz之内。

放大电路只适合用于放大在100Hz-10MHz之内的信号,放大电路对频率在这范围的信号的放大
能力最强。

由于电路中电容、电感及半导体器件结电容等电抗元件的存在,在输入信号较低或较高时,放出倍数的数值会下降并产生相移。

3、直流分析
(1)直流参数分析设置(2)直流分析输出波形
直流扫描分析是当输入V5在0-12V变化时,输出变量V(out3)相对于输入变量的小信号转移特性分析。

在线性扫描的情况下,当V5在0-12V变化时,V(out3)在0-10内线性变化。

4.温度分析(取元件为Breakout.old中的元件)
(1)温度分析参数设置(2)温度分析结果
在温度分析中改变温度为不同的值为10 20 30 40 100 150,输出相应在9.4-9.96范围内变化。

说明改变温度将会对电路性能产生一定的影响,即温度的改变影响了电路的放大倍数。

五、总结
在进行电路的仿真和测试中,明显的看到两级阻容耦合放大电路的放大能力比单管的放大电路的放大能力强,在交流分析、直流分析、瞬态分析、温度分析中看到:两级阻容耦合放大电路的放大能力很强,由于电容对直流量的电抗为无穷大,因而阻抗耦合放大电路各级之间的直流通路各不相同,各级的静态工作点相互独立。

而且只要输入信号频率较高,耦合电容容量较大,前级电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,但只是在一定频率范围内具有这样的放大能力,对于低频和高频的放大能力较弱。

同时温度的变化也会对电路的放大能力产生一定的影响所以两级阻容耦合放大电路存在低高频和温度等的影响,还有第一级产生的误差将会在第二级被放大。

会对集成电路的性能产生重要的影响。

相关文档
最新文档