2017杭州中考数学试卷(含答案)
2017年浙江省杭州市中考数学试卷
2017年杭州市各类高中招生文化考试数学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题纸上写姓名和准考证号.3.必须在答题纸上的相应答题位置上答题,写在其他地方无效.答题方式详见答题纸上说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷与答题纸一并上交.参考公式:二次函数)0(2≠++=a c bx ax y 图像的顶点坐标是:⎪⎪⎭⎫⎝⎛--a b ac a b 44,22试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.﹣22=()A .﹣2B .﹣4C .2D .42.太阳与地球的平均距离大约是150000000千米,数据150000000用科学记数法表示为()A .1.5×108B .1.5×109C .0.15×109D .15×1073.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD=2AD ,则()A .B.C.D .4.|1+|+|1﹣|=()A .1B.C .2D .25.设x ,y ,c 是实数,()A .若x=y ,则x+c=y ﹣cB .若x=y ,则xc=yc姓名座位号C.若x=y,则D.若,则2x=3y6.若x+5>0,则()A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<127.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.88.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC 旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4D.l1:l2=1:4,S1:S2=1:49.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0D.若m<1,则(m﹣1)a+b<010.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=21二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.数据2,2,3,4,5的中位数是.12.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.若•|m|=,则m=.15.如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC 于点E,连结AE,则△ABE的面积等于.16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39A1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC 于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.。
2017年中考数学真题试题(含答案)
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2017年中考数学真题试题与答案(word版)
XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
2017年杭州市中考数学试卷及答案[1]
2017年杭州市中考数学试卷及答案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年杭州市中考数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年杭州市中考数学试卷及答案(word版可编辑修改)的全部内容。
2017年浙江省杭州市中考数学试卷【初中数学,中考数学试卷,中考数学试题,含答案word可编辑】
20XX 年浙江省杭州市中考数学试卷一 .选择题)1. -22 = ()A-2B.-4C.2D.4 2. 太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表 示为()A. 1.5 x 108B.1.5 x 109C.0.15 x 109D.15 x 107 点、D, E 分另U 在边刀。
上,DE//BC,假设= 贝ij ()A.^ =i AB 2 B.—=- EC 2 AD 1 C. — = EC 2 D. —= i BC 24. |1+V3| + |1-V3| =()5. 设x, y, c 是实数,那么以下判断正确的选项是(6. 假设x + 5 > 0,贝ij ()7. 某景点的参观人数逐年增加, 次.设参观人次的平均年增长率为心那么()B. 16.8(l-x) = 10.8 D.10.8[(l + x) + (1 + x)2] = 16.88. 如图,在RtZk/lBC中,^ABC = 90°, AB = 2, BC = 1.把△分另U 绕直线AB 和旋转一周,所得几何体的底面圆的周长分别记作h ,成 侧面积分别记作Si ,S2,那么()A.lB.V3C.2D.2V3A .假设 x = y,贝股 + c = y — cB.袈=> CX XA. x + 1 < 0B. x - 1 < 0 D-2% <12据统计,20XX 年为10.8万人次,20XX 年为16.8万人 A.10.8(l + %) = 16.8C.10.8(l + %)2 = 16.89. 设直线x = l 是函数y=ax 2 + bx + c(a, b, c 是实数,且a < 0)的图象的对称轴,()A.假设m > 1,贝0(m — l)a + b > 0B.假设m > 1,贝ij(?n — l)a + b < 0C.假设m < 1,贝ij(zn + 1)Q + b > 0 D .假设m V 1,那么(m + l)a + b V 0BC = 12, E 为AC 边的中点,线段BE 的垂直平分线)C.3x 一 y 2 = 15D.4x 一 y 2 = 21二.填空题)11.数据2, 2, 3, 4, 5的中位数是12. 如图,AT 切OO 于点4 08是OO 的直径.假设"BT = 40。
(完整)2017年浙江省杭州市中考数学试卷(含答案解析版)(2),推荐文档
3 2017 年浙江省杭州市中考数学试卷一.选择题1.(3 分)﹣22=( ) A .﹣2 B .﹣4 C .2D .42.(3 分)太阳与地球的平均距离大约是 150 000 000 千米,数据 150 000 000 用科学记数法表示为()A .1.5×108B .1.5×109C .0.15×109D .15×1073.(3 分)如图,在△ABC 中,点 D ,E 分别在边 AB ,AC 上,DE ∥BC ,若 BD=2AD ,则()1=1E ==1E=1 A .2 B .E 2 C .E2 D .24.(3 分)|1+ 3|+|1 ﹣ 3|=()A .1B .C .2D .2 5.(3 分)设 x ,y ,c 是实数,( )A. 若 x=y ,则 x +c=y ﹣c B .若 x=y ,则 xc=yc==C .若 x=y ,则D .若23 ,则 2x=3y6.(3 分)若 x +5>0,则()A .x +1<0B .x ﹣1<0C .5<﹣1D .﹣2x <127.(3 分)某景点的参观人数逐年增加,据统计,2014 年为 10.8 万人次,2016年为 16.8 万人次.设参观人次的平均年增长率为 x ,则()3A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.(3 分)如图,在Rt△ABC 中,∠ABC=90°,AB=2,BC=1.把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3 分)设直线x=1 是函数y=ax2+bx+c(a,b,c 是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0 C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<010.(3 分)如图,在△ABC 中,AB=AC,BC=12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4 分)数据2,2,3,4,5 的中位数是.12.(4 分)如图,AT 切⊙O 于点A,AB 是⊙O 的直径.若∠ABT=40°,则∠ATB=.13.(4 分)一个仅装有球的不透明布袋里共有3 个球(只有颜色不同),其中2 个是红球,1 个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.m‒ 3 m‒ 314.(4 分)若m‒ 1•|m|=m‒ 1,则m=.15.(4 分)如图,在Rt△ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE⊥BC 于点E,连结AE,则△ABE 的面积等于.16.(4 分)某水果点销售50 千克香蕉,第一天售价为9 元/千克,第二天降价6 元/千克,第三天再降为3 元/千克.三天全部售完,共计所得270 元.若该店第二天销售香蕉t 千克,则第三天销售香蕉千克.(用含t 的代数式表示.)三.解答题17.(6 分)为了了解某校九年级学生的跳高水平,随机抽取该年级50 名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50 名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 A1.39~1.49 10(1)求a 的值,并把频数直方图补充完整;(2)该年级共有500 名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8 分)在平面直角坐标系中,一次函数y=kx+b(k,b 都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3 时,求y 的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P 的坐标.19.(8 分)如图,在锐角三角形ABC 中,点D,E 分别在边AC,AB 上,AG⊥BC 于点G,AF⊥DE 于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10 分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1 时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y 关于x 的函数表达式;②当y≥3 时,求x 的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10 分)如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B,D 重合),GE⊥DC 于点E,GF⊥BC 于点F,连结AG.(1)写出线段AG,GE,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.(12 分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b 的图象与y1的图象经过x 轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12 分)如图,已知△ABC 内接于⊙O,点C 在劣弧AB 上(不与点A,B 重合),点D 为弦BC 的中点,DE⊥BC,DE 与AC 的延长线交于点E,射线AO 与射线EB 交于点F,与⊙O 交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β 关于ɑ 的函数表达式,γ 关于ɑ 的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE 的面积为△ABC 的面积的4 倍,求⊙O 半径的长.2017 年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.(3 分)(2017•杭州)﹣22=()A.﹣2 B.﹣4 C.2 D.4【考点】1E:有理数的乘方.【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3 分)(2017•杭州)太阳与地球的平均距离大约是150 000 000 千米,数据150 000 000 用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将150 000 000 用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3 分)(2017•杭州)如图,在△ABC 中,点D,E 分别在边AB,AC 上,DE∥BC,若BD=2AD,则()3 31=1E ==1 E=1 A .2 B .E 2 C .E2 D .2【考点】S9:相似三角形的判定与性质.【分析】根据题意得出△ADE ∽△ABC ,进而利用已知得出对应边的比值. 【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∵BD=2AD ,E 1E∴AB =BC =AC =3,E 1 则E =2,∴A ,C ,D 选项错误,B 选项正确, 故选:B .【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解 题关键.4.(3 分)(2017•杭州)|1+ A.1 B . C .2 D .2 【考点】28:实数的性质.3|+|1 ﹣3|=()【分析】根据绝对值的性质,可得答案.【解答】解:原式 1+ 3+ 3﹣1=2 3,故选:D .【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3 分)(2017•杭州)设x,y,c 是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=yc= =C.若x=y,则D.若2 3 ,则2x=3y【考点】83:等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故 A 不符合题意;B、两边都乘以c,故B 符合题意;C、c=0 时,两边都除以c 无意义,故C 不符合题意;D、两边乘以不同的数,故D 不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.6.(3 分)(2017•杭州)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.5<﹣1 D.﹣2x<12【考点】C2:不等式的性质.【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0 得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0 得出x<1,故本选项不符合题意;C、根据5<﹣1 得出x<5,故本选项符合题意;D、根据﹣2x<12 得出x>﹣6,故本选项不符合题意;故选C.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3 分)(2017•杭州)某景点的参观人数逐年增加,据统计,2014 年为10.8万人次,2016 年为16.8 万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【考点】AC:由实际问题抽象出一元二次方程.【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8 万人次×(1+增长率)2=16.8 万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3 分)(2017•杭州)如图,在Rt△ABC 中,∠ABC=90°,AB=2,BC=1.把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【考点】MP:圆锥的计算;I2:点、线、面、体.【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,1∵S1=2×2π×5= 5π,1S2=2×4π× 5=2 5π,∴S1:S2=1:2,故选A.1【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=2lr 求解是解题的关键.9.(3 分)(2017•杭州)设直线x=1 是函数y=ax2+bx+c(a,b,c 是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0 C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0【考点】H4:二次函数图象与系数的关系.【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a 当m<1 时,(m﹣3)a>0,故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a 是解10.(3 分)(2017•杭州)如图,在△ABC 中,AB=AC,BC=12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【考点】T7:解直角三角形;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】过A 作AQ⊥BC 于Q,过E 作EM⊥BC 于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM 中,根据勾股定理求出即可.【解答】解:过A 作AQ⊥BC 于Q,过 E 作EM⊥BC 于M,连接DE,∵BE 的垂直平分线交BC 于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,EM∴M C=CQ=y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E 为AC 中点,1∴CM=QM=2CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM 中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4 分)(2017•杭州)数据2,2,3,4,5 的中位数是 3 .【考点】W4:中位数.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4 分)(2017•杭州)如图,AT 切⊙O 于点A,AB 是⊙O 的直径.若∠ABT=40°,则∠ATB= 50°.【考点】MC:切线的性质.【分析】根据切线的性质即可求出答案.【解答】解:∵AT 切⊙O 于点A,AB 是⊙O 的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4 分)(2017•杭州)一个仅装有球的不透明布袋里共有3 个球(只有颜色不同),其中2 个是红球,1 个是白球,从中任意摸出一个球,记下颜色后放回,4搅匀,再任意摸出一个球,则两次摸出都是红球的概率是9 .【考点】X6:列表法与树状图法.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9 种情况,两次摸到红球的有 4 种情况,4∴两次摸出都是红球的概率是9,4故答案为:9.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.m‒ 3 m‒ 314.(4 分)(2017•杭州)若m‒ 1•|m|=m‒ 1,则m= 3 或﹣1 .【考点】15:绝对值.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0 或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3 或m=±1,∵m≠1,∴m=3 或m=﹣1,故答案为:3 或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0 是解答此题的关键.15.(4 分)(2017•杭州)如图,在Rt△ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE⊥BC 于点E,连结AE,则△ABE 的面积等于78.AB + AC 2 2【考点】S9:相似三角形的判定与性质;KQ :勾股定理.【分析】由勾股定理求出 BC= AB 2 + AC 2 E =CDE ∽△CBA ,得出ACCB ,求出 CE=12,得出 BE=BC ﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在 Rt △ABC 中,∠BAC=90°,AB=15,AC=20,1122∴BC= =25,△ABC 的面积=AB•AC = ×15×20=150,∵AD=5,∴CD=AC ﹣AD=15,∵DE ⊥BC ,∴∠DEC=∠BAC=90°, 又∵∠C=∠C ,∴△CDE ∽△CBA ,E=E=15∴AC CB ,即2025,解得:CE=12,∴BE=BC ﹣CE=13,∵△ABE 的面积:△ABC 的面积=BE :BC=13:25,13∴△ABE 的面积=25×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟=25,求出△ABC 的面积=150,证明△练掌握勾股定理,证明三角形相似是解决问题的关键16.(4 分)(2017•杭州)某水果点销售50 千克香蕉,第一天售价为9 元/千克,第二天降价6 元/千克,第三天再降为3 元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉30﹣2千克.(用含t的代数式表示.)【考点】32:列代数式.【分析】设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270 元列出方程,求出x 即可.【解答】解:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,450 ‒ 270 ‒则x= 6 =30﹣2,故答案为:30﹣2.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6 分)(2017•杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50 名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50 名学生跳高测试成绩的频数表1.39~1.49 10(1)求a 的值,并把频数直方图补充完整;(2)该年级共有500 名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)利用总人数50 减去其它组的人数即可求得 a 的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在 1.29m(含 1.29m)以上的人数是:20 + 10500× 50 =300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.{ 18.(8 分)(2017•杭州)在平面直角坐标系中,一次函数 y=kx +b (k ,b 都是常数,且 k ≠0)的图象经过点(1,0)和(0,2).(1) 当﹣2<x ≤3 时,求 y 的取值范围;(2) 已知点 P (m ,n )在该函数的图象上,且 m ﹣n=4,求点 P 的坐标.【考点】F8:一次函数图象上点的坐标特征;F5:一次函数的性质.【分析】利用待定系数法求一次函数解析式得出即可;(1) 利用一次函数增减性得出即可.(2) 根据题意得出 n=﹣2m +2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx +b ,{+ = 0将(1,0),(0,﹣2)代入得:k =‒ 2 解得:= 2, ∴这个函数的解析式为:y=﹣2x +2;(1)把 x=﹣2 代入 y=﹣2x +2 得,y=6, 把 x=3 代入 y=﹣2x +2 得,y=﹣4,∴y 的取值范围是﹣4≤y <6.= 2, (2)∵点 P (m ,n )在该函数的图象上,∴n=﹣2m +2,∵m ﹣n=4,∴m ﹣(﹣2m +2)=4, 解得m=2,n=﹣2,∴点 P 的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8 分)(2017•杭州)如图,在锐角三角形 ABC 中,点 D ,E 分别在边AC,AB 上,AG⊥BC 于点G,AF⊥DE 于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【考点】S9:相似三角形的判定与性质.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;= E =E(2)△ADE∽△ABC,AB AC,又易证△EAF∽△CAG,所以,从而可=知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,= E 3∴AB AC=5由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,=E∴AG AC,3∴AG=5【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10 分)(2017•杭州)在面积都相等的所有矩形中,当其中一个矩形的一边长为1 时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y 关于x 的函数表达式;②当y≥3 时,求x 的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【考点】GA:反比例函数的应用.【分析】(1)①直接利用矩形面积求法进而得出y 与x 之间的关系;②直接利用y≥3 得出x 的取值范围;(2)直接利用x+y 的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,3则y= ;3②当y≥3 时,x≥3解得:x≤1;(2)∵一个矩形的周长为6,∴x+y=3,3∴x+x=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;∵一个矩形的周长为10,∴x+y=5,3∴x+x=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y 与x 之间的关系是解题关键.21.(10 分)(2017•杭州)如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B,D 重合),GE⊥DC 于点E,GF⊥BC 于点F,连结AG.(1)写出线段AG,GE,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC 是矩形,推出GE=CF,在Rt△GFC 中,利用勾股定理即可证明;(2)作BN⊥AG 于N,在BN 上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN= 3x,在Rt△ABN 中,根据AB2=AN2+BN2,可得1=x2+(2x+ 3x)2,6 ‒ 2 6 + 2解得x= 4 ,推出BN= 4 ,再根据BG=BN÷cos30°即可解决问题;【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD 是正方形,∴A、C 关于对角线BD 对称,∵点G 在BD 上,∴GA=GC,∵GE⊥DC 于点E,GF⊥BC 于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC 是矩形,∴CF=GE,在Rt△GFC 中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG 于N,在BN 上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,3x,∴AM=BM=2x,MN=在Rt△ABN 中,∵AB2=AN2+BN2,3x)2,∴1=x2+(2x+6 ‒ 2解得x= 4 ,3 2 + 6∴BN= 4 ,∴BG=BN÷cos30°= 6 .【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30 度的性质等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.22.(12 分)(2017•杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b 的图象与y1的图象经过x 轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【考点】H5:二次函数图象上点的坐标特征;F7:一次函数图象与系数的关系.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得6 + 2a=﹣2,a=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0 时x2﹣x﹣2=0,解得x1=﹣1,x2=2,y1的图象与x 轴的交点是(﹣1,0)(2,0),当y2=ax+b 经过(﹣1,0)时,﹣a+b=0,即a=b;当y2=ax+b 经过(2,0)时,2a+b=0,即b=﹣2a;(3)当P 在对称轴的左侧时,y 随x 的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得x0<0;当时P 在对称轴的右侧时,y 随x 的增大而减小,由m<n,得x0>1,综上所述:m<n,求x0的取值范围x0<0 或x0>1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12 分)(2017•杭州)如图,已知△ABC 内接于⊙O,点C 在劣弧AB 上(不与点A,B 重合),点D 为弦BC 的中点,DE⊥BC,DE 与AC 的延长线交于点E,射线AO 与射线EB 交于点F,与⊙O 交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β 关于ɑ 的函数表达式,γ 关于ɑ 的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE 的面积为△ABC 的面积的4 倍,求⊙O 半径的长.【考点】MR:圆的综合题.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据 D 是BC 的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B 四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE 的E= 4面积为△ABC 的面积的4 倍,所以AC,根据勾股定理即可求出AE、AC 的长度,从而可求出AB 的长度,再由勾股定理即可求出⊙O 的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D 是BC 的中点,DE⊥BC,∴OE 是线段BC 的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B 四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B 四点共圆,∴∠BEC=90°,∵△ABE 的面积为△ABC 的面积的 4 倍,E= 4∴AC,E= 3∴AC,设CE=3x,AC=x,由(1)可知:BC=2CD=6,x= 2,∴由勾股定理可知:(3x )2+(3x )2=62,∴BE=CE=3 2,AC= 2,∴AE=AC +CE=4 2,在 Rt △ABE 中,由勾股定理可知:AB 2=(3 2)2+(4 2)2,∴AB=5 2,∵∠BAO=45°,∴∠AOB=90°,在 Rt △AOB 中,设半径为 r ,由勾股定理可知:AB 2=2r 2,∴r=5,∴⊙O 半径的长为 5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2017年浙江省杭州市中考数学试卷 精编
2017年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.(3分)(2017•杭州)﹣22=()A.﹣2 B.﹣4 C.2 D.4【考点】1E:有理数的乘方.【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3分)(2017•杭州)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.12ADAB=B.12AEEC=C.12ADBC=D.12DEBC=【考点】S9:相似三角形的判定与性质.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴13 AD DE AEAB BC AC===,则12 AEEC=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.(3分)(2017•杭州)|1+3|+|1﹣3|=()A.1 B.3 C.2 D.23【考点】28:实数的性质.【分析】根据绝对值的性质,可得答案.【解答】解:原式1+3+3﹣1=23,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3分)(2017•杭州)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则x yc c=D.若23x yc c=,则2x=3y【考点】83:等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D 、两边乘以不同的数,故D 不符合题意;故选:B .【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.6.(3分)(2017•杭州)若x+5>0,则( )A .x+1<0B .x ﹣1<0C .5x <﹣1 D .﹣2x <12 【考点】C2:不等式的性质.【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x >﹣5,A 、根据x+1<0得出x <﹣1,故本选项不符合题意;B 、根据x ﹣1<0得出x <1,故本选项不符合题意;C 、根据5x <﹣1得出x <﹣5,故本选项不符合题意; D 、根据﹣2x <12得出x >﹣6,故本选项符合题意;故选D .【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3分)(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x ,则( )A .10.8(1+x )=16.8B .16.8(1﹣x )=10.8C .10.8(1+x )2=16.8D .10.8[(1+x )+(1+x )2]=16.8【考点】AC :由实际问题抽象出一元二次方程.【分析】设参观人次的平均年增长率为x ,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x ,由题意得:10.8(1+x )2=16.8,故选:C .【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .8.(3分)(2017•杭州)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC 分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【考点】MP:圆锥的计算;I2:点、线、面、体.【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=12×2π×5=5π,S2=12×4π×5=25π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=12lr求解是解题的关键.9.(3分)(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0【考点】H4:二次函数图象与系数的关系.【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a当m<1时,(m﹣3)a>0,故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.(3分)(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【考点】T7:解直角三角形;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴EM AQMC CQ=y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=12CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4分)(2017•杭州)数据2,2,3,4,5的中位数是3.【考点】W4:中位数.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)(2017•杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=50°.【考点】MC:切线的性质.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4分)(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是49.【考点】X6:列表法与树状图法.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是49,故答案为:49.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.(4分)(2017•杭州)若31m m --•|m|=31m m --,则m= 3或﹣1 . 【考点】15:绝对值.【分析】利用绝对值和分式的性质可得m ﹣1≠0,m ﹣3=0或|m|=1,可得m .【解答】解:由题意得,m ﹣1≠0,则m≠1,(m ﹣3)•|m|=m ﹣3,∴(m ﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.(4分)(2017•杭州)如图,在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE ⊥BC 于点E ,连结AE ,则△ABE 的面积等于 78 .【考点】S9:相似三角形的判定与性质;KQ :勾股定理.【分析】由勾股定理求出BC=22AB AC +=25,求出△ABC 的面积=150,证明△CDE ∽△CBA ,得出CE CD AC CB=,求出CE=12,得出BE=BC ﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,∴BC=22AB AC +=25,△ABC 的面积=12AB•AC=12×15×20=150, ∵AD=5,∴CD=AC ﹣AD=15,∵DE ⊥BC ,∴∠DEC=∠BAC=90°,又∵∠C=∠C ,∴△CDE ∽△CBA , ∴CE CD AC CB =,即152025CE =, 解得:CE=12,∴BE=BC ﹣CE=13,∵△ABE 的面积:△ABC 的面积=BE :BC=13:25,∴△ABE 的面积=1325×150=78; 故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.(4分)(2017•杭州)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 30﹣2t 千克.(用含t 的代数式表示.) 【考点】32:列代数式.【分析】设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程,求出x 即可.【解答】解:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克, 根据题意,得:9(50﹣t ﹣x )+6t+3x=270,则x=45027036t --=30﹣2t , 故答案为:30﹣2t . 【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)(2017•杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39A1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×201050=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)(2017•杭州)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【考点】F8:一次函数图象上点的坐标特征;F5:一次函数的性质.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,﹣2)代入得:2k bb+=⎧⎨=⎩,解得:22kb=-⎧⎨=⎩,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求AFAG的值.【考点】S9:相似三角形的判定与性质.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可知AF AD AG AB=.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴AF AE AG AC==35由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AF AG=35【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)(2017•杭州)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【考点】GA:反比例函数的应用.【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=3x;②当y≥3时,3x≥3解得:x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+3x=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;∵一个矩形的周长为10,∴x+y=5,∴x+3x=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x 之间的关系是解题关键.21.(10分)(2017•杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=3x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+3x)2,解得x=624-,推出BN=624+,再根据BG=BN÷cos30°即可解决问题;【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=3x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+3x)2,解得x=624-,∴BN=624+,∴BG=BN÷cos30°=3266+.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.22.(12分)(2017•杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【考点】H5:二次函数图象上点的坐标特征;F7:一次函数图象与系数的关系.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a=﹣2,a=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时x2﹣x﹣2=0,解得x1=﹣1,x2=2,y1的图象与x轴的交点是(﹣1,0)(2,0),当y2=ax+b经过(﹣1,0)时,﹣a+b=0,即a=b;当y2=ax+b经过(2,0)时,2a+b=0,即b=﹣2a;(3)当P在对称轴的左侧时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得x0<0;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得x0>1,综上所述:m<n,求x0的取值范围x0<0或x0>1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)(2017•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO 与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据: ɑ30° 40° 50° 60° β120° 130° 140° 150° γ 150° 140° 130° 120° 猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE 的面积为△ABC 的面积的4倍,求⊙O 半径的长.【考点】MR :圆的综合题.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D 是BC 的中点,DE ⊥BC ,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O 、A 、E 、B 四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE 的面积为△ABC 的面积的4倍,所以4AE AC,根据勾股定理即可求出AE 、AC 的长度,从而可求出AB 的长度,再由勾股定理即可求出⊙O 的半径r ;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB ,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA ,∵OB=OA ,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D 是BC 的中点,DE ⊥BC ,∴OE 是线段BC 的垂直平分线,∴BE=CE ,∠BED=∠CED ,∠EDC=90°∵∠BCA=∠EDC+∠CED ,∴β=90°+∠CED ,∴∠CED=α,∴∠CED=∠OBA=α,∴O 、A 、E 、B 四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O 、A 、E 、B 四点共圆,∴∠BEC=90°,∵△ABE 的面积为△ABC 的面积的4倍, ∴4AE AC=, ∴3CE AC =, 设CE=3x ,AC=x ,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x ,∴由勾股定理可知:(3x )2+(3x )2=62, x=2,∴BE=CE=32,AC=2,∴AE=AC+CE=42,在Rt △ABE 中,由勾股定理可知:AB 2=(32)2+(42)2,∴AB=52,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
2017年浙江省杭州市中考数学试卷
2017年浙江省杭州市中考数学试卷一.选择题1. −22=()A.−2B.−4C.2D.42. 太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073. 如图,在△ABC中,点D,E分别在边AB,AC上,DE // BC,若BD=2AD,则()A.ADAB =12B.AEEC=12C.ADEC=12D.DEBC=124. |1+√3|+|1−√3|=()A.1B.√3C.2D.2√35. 设x,y,c是实数,()A.若x=y,则x+c=y−cB.若x=y,则xc=ycC.若x=y,则xc =ycD.若x2c =y3c,则2x=3y6. 若x+5>0,则()A.x+1<0B.x−1<0C.x5<−1 D.−2x<127. 某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1−x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.88. 如图,在Rt△ABC中,∠ABC=90∘,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4D.l1:l2=1:4,S1:S2=1:49. 设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m−1)a+b>0B.若m>1,则(m−1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<010. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D,设BD=x,tan∠ACB=y,则()A.x−y2=3B.2x−y2=9C.3x−y2=15D.4x−y2=21二.填空题11. 数据2,2,3,4,5的中位数是________.12. 如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40∘,则∠ATB=________.13. 一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是________.14. 若m−3m−1⋅|m|=m−3m−1,则m=________.16. 某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉________千克.(用含t的代数式表示.)三.解答题17. 为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18. 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1, 0)和(0, 2).(1)当−2<x≤3时,求y的取值范围;(2)已知点P(m, n)在该函数的图象上,且m−n=4,求点P的坐标.19. 如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∼△ABC;(2)若AD=3,AB=5,求AF的值.AG20. 在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105∘,求线段BG的长.22. 在平面直角坐标系中,设二次函数y1=(x+a)(x−a−1),其中a≠0.(1)若函数y1的图象经过点(1, −2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0, m)和Q(1, n)在函数y1的图象上,若m<n,求x0的取值范围.23. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明;(2)若γ=135∘,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.参考答案与试题解析2017年浙江省杭州市中考数学试卷一.选择题1.【答案】B【考点】有理数的乘方【解析】根据幂的乘方的运算法则求解.【解答】−22=−4,2.【答案】A【考点】科学记数法–表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:由题意得,将150 000 000用科学记数法表示为:1.5×108.故选A.3.【答案】B【考点】相似三角形的性质与判定【解析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】∵DE // BC,∴△ADE∽△ABC,∵BD=2AD,∴ADAB =DEBC=AEAC=13,则AEEC =12,∴A,C,D选项错误,B选项正确,4.【答案】实数的性质实数【解析】根据绝对值的性质,可得答案.【解答】原式1+√3+√3−1=2√3,5.【答案】B【考点】等式的性质【解析】本题考查了等式的性质.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意.故选B.6.【答案】D【考点】不等式的性质【解析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】∵x+5>0,∴x>−5,A、根据x+1<0得出x<−1,故本选项不符合题意;B、根据x−1<0得出x<1,故本选项不符合题意;<−1得出x<−5,故本选项不符合题意;C、根据x5D、根据−2x<12得出x>−6,故本选项符合题意;7.【答案】C【考点】由实际问题抽象出一元二次方程【解析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,A【考点】点、线、面、体圆锥的计算【解析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=1×2π×√5=√5π,2×4π×√5=2√5π,S2=12∴S1:S2=1:2,9.【答案】C【考点】二次函数图象与系数的关系【解析】根据对称轴,可得b=−2a,根据有理数的乘法,可得答案.【解答】由对称轴,得b=−2a.(m+1)a+b=ma+a−2a=(m−1)a,当m>1时,(m−1)a+b=(m−1)a−2a=(m−3)a,(m−1)a+b与0无法判断.当m<1时,(m+1)a+b=(m+1)a−2a=(m−1)a>0.10.【答案】B【考点】线段垂直平分线的性质等腰三角形的性质解直角三角形勾股定理【解析】本题考查线段垂直平分线的性质、等腰三角形的性质、勾股定理、解直角三角形等知识.【解答】解:作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵线段BE的垂直平分线交BC于D,BD=x,∴DE=BD=x,∵AB=AC,BC=12,tan∠ACB=y,∴EMMC =AQCQ=y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ // EM,∵E为AC中点,∴CM=QM=12CQ=3,∴EM=3y,∴DM=12−3−x=9−x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9−x)2,即2x−y2=9.故选B.二.填空题11.【答案】3【考点】中位数【解析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.12.【答案】50∘【考点】切线的性质【解析】根据切线的性质即可求出答案.【解答】∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90∘,∵∠ABT=40∘,∴∠ATB=50∘,13.【答案】4【考点】列表法与树状图法【解析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是49,14.【答案】3或−1【考点】绝对值【解析】利用绝对值和分式的性质可得m−1≠0,m−3=0或|m|=1,可得m.【解答】解:由题意得,m−1≠0,则m≠1,(m−3)⋅|m|=m−3,∴(m−3)⋅(|m|−1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=−1.故答案为:3或−1.15.【答案】78【考点】勾股定理相似三角形的性质与判定【解析】由勾股定理求出BC=√AB2+AC2=25,求出△ABC的面积=150,证明△CDE∽△CBA,得出CEAC =CDCB,求出CE=12,得出BE=BC−CE=13,再由三角形的面积关系即可得出答案.【解答】∴BC=√AB2+AC2=25,△ABC的面积=12AB⋅AC=12×15×20=150,∵AD=5,∴CD=AC−AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90∘,又∵∠C=∠C,∴△CDE∽△CBA,∴CEAC =CDCB,即CE20=1525,解得:CE=12,∴BE=BC−CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=1325×150=78;方法二:作AF⊥BC于于F.证明△ABF≅△CDE即可解决问题.16.【答案】30−t 2【考点】列代数式【解析】设第三天销售香蕉x千克,则第一天销售香蕉(50−t−x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】设第三天销售香蕉x千克,则第一天销售香蕉(50−t−x)千克,根据题意,得:9(50−t−x)+6t+3x=270,则x=450−270−3t6=30−t2,三.解答题17.【答案】a=50−8−12−10=20,;该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×20+1050=300(人).【考点】频数(率)分布表频数(率)分布直方图【解析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】a=50−8−12−10=20,;=300(人).该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×20+105018.【答案】把x=−2代入y=−2x+2得,y=6,把x=3代入y=−2x+2得,y=−4,∴y的取值范围是−4≤y<6.∵点P(m, n)在该函数的图象上,∴n=−2m+2,∵m−n=4,∴m−(−2m+2)=4,解得m=2,n=−2,∴点P的坐标为(2, −2).【考点】一次函数的性质一次函数图象上点的坐标特点【解析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=−2m+2,联立方程,解方程即可求得.【解答】把x=−2代入y=−2x+2得,y=6,把x=3代入y=−2x+2得,y=−4,∴y的取值范围是−4≤y<6.∵点P(m, n)在该函数的图象上,∴n=−2m+2,∵m−n=4,∴m−(−2m+2)=4,解得m=2,n=−2,∴点P的坐标为(2, −2).【答案】(1)证明:∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90∘,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∼△ABC.(2)解:方法一:由(1)可知:△ADE∼△ABC,∴ADAB =AEAC=35由(1)可知:∠AFE=∠AGC=90∘,又∵ ∠EAF=∠GAC,∴△EAF∼△CAG,∴AFAG =AEAC=35.方法二:∵AG⊥BC,AF⊥DE,△ADE∼△ABC,∴AFAG =ADAB=35.【考点】相似三角形的性质与判定【解析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90∘,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,ADAB =AEAC,又易证△EAF∽△CAG,所以AFAG=AEAC,从而可知AFAG=ADAB.【解答】(1)证明:∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90∘,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∼△ABC.(2)解:方法一:由(1)可知:△ADE∼△ABC,∴ADAB =AEAC=35由(1)可知:∠AFE=∠AGC=90∘,又∵ ∠EAF=∠GAC,∴△EAF∼△CAG,∴AFAG =AEAC=35.方法二:∵AG⊥BC,AF⊥DE,△ADE∼△ABC,AF AD320.【答案】解:(1)①由题意可得:xy=3,(x>0);则y=3x≥3,②当y≥3时,3x解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+3=3,x整理得:x2−3x+3=0,∵b2−4ac=9−12=−3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+3=5,x整理得:x2−5x+3=0,∵b2−4ac=25−12=13>0,∴矩形的周长可能是10,所以方方的说法对.【考点】反比例函数的应用【解析】此题主要考查了反比例函数的应用以及一元二次方程的解法.【解答】解:(1)①由题意可得:xy=3,(x>0);则y=3x≥3,②当y≥3时,3x解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+3=3,x整理得:x2−3x+3=0,∵b2−4ac=9−12=−3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+3x=5,整理得:x2−5x+3=0,∵b2−4ac=25−12=13>0,∴矩形的周长可能是10,所以方方的说法对.21.【答案】结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90∘,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45∘,∵GF⊥BC,∴∠BGF=45∘,∵∠AGF=105∘,∴∠AGB=∠AGF−∠BGF=105∘−45∘=60∘,在Rt△ABH中,∵AB=1,∴AH=BH=√22,在Rt△AGH中,∵AH=√22,∠GAH=30∘,∴HG=AH⋅tan30∘=√66,∴BG=BH+HG=√22+√66.【考点】正方形的性质【解析】CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90∘,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45∘,∵GF⊥BC,∴∠BGF=45∘,∵∠AGF=105∘,∴∠AGB=∠AGF−∠BGF=105∘−45∘=60∘,在Rt△ABH中,∵AB=1,∴AH=BH=√22,在Rt△AGH中,∵AH=√22,∠GAH=30∘,∴HG=AH⋅tan30∘=√66,∴BG=BH+HG=√22+√66.22.【答案】解:(1)∵函数y1=(x+a)(x−a−1)的图象经过点(1,−2),∴把x=1,y=−2代入y1=(x+a)(x−a−1),得−2=(1+a)(−a),解得a1=−2,a2=1,∴y1=x2−x−2;(2)函数y1=(x+a)(x−a−1)的图象在x轴的交点为(−a,0),(a+1,0),①当函数y2=ax+b的图象经过点(−a,0)时,②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=−b;(3)抛物线y1=(x+a)(x−a−1)的对称轴是直线x=−a+a+12=12,∵m<n,二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,其纵坐标越大,∵m<n∴点Q离对称轴x=12的距离比点P离对称轴x=12的距离大,∴|x0−12|<1−12,解得0<x0<1.【考点】一次函数图象与系数的关系二次函数图象上点的坐标特征【解析】本题考查了二次函数图象上点的坐标特征,待定系数法求函数解析式,二次函数的性质.【解答】解:(1)∵函数y1=(x+a)(x−a−1)的图象经过点(1,−2),∴把x=1,y=−2代入y1=(x+a)(x−a−1),得−2=(1+a)(−a),解得a1=−2,a2=1,∴y1=x2−x−2;(2)函数y1=(x+a)(x−a−1)的图象在x轴的交点为(−a,0),(a+1,0),①当函数y2=ax+b的图象经过点(−a,0)时,把x=−a,y=0代入y2=ax+b中,得a2=b;②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=−b;(3)抛物线y1=(x+a)(x−a−1)的对称轴是直线x=−a+a+12=12,∵m<n,二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,其纵坐标越大,∵m<n∴点Q离对称轴x=12的距离比点P离对称轴x=12的距离大,∴|x0−12|<1−12,解得0<x0<1.23.【答案】∴由圆周角定理可知:2∠BCA=360∘−∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180∘−2α,∴2β=360∘−(180∘−2α),∴β=α+90∘,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90∘∵∠BCA=∠EDC+∠CED,∴β=90∘+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180∘,∴∠EBA+∠OBA+∠EAG=180∘,∴γ+α=180∘;另∵EO平分BC,∴∠EBC=∠ECB,∵∠ECG=∠ACG=90∘,∴∠ECB+∠BCG=90∘,∠CGA+∠EAG=90∘,∵∠CBA=∠CGA,∠BCG=∠BAG=α,∴∠ECB+α=90∘,∠CBA+∠EAG=90∘,∴∠ECB+α+∠CBA+∠EAG=180∘,∴∠EBC+∠CBA+∠EAG+α=180∘,∴∠EBA+∠EAG+α=180∘,即γ+α=180∘,当γ=135∘时,此时图形如图所示,∴α=45∘,β=135∘,∴∠BOA=90∘,∠BCE=45∘,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90∘,∵△ABE的面积为△ABC的面积的4倍,∴AE=4,AC∴CE=3,AC设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45∘,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=√2,∴BE=CE=3√2,AC=√2,在Rt△ABE中,由勾股定理可知:AB2=(3√2)2+(4√2)2,∴AB=5√2,∵∠BAO=45∘,∴∠AOB=90∘,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【考点】圆的综合题【解析】(1)由圆周角定理即可得出β=α+90∘,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90∘,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180∘,即γ=−α+180∘;(2)由(1)及γ=135∘可知∠BOA=90∘,∠BCE=45∘,∠BEC=90∘,由于△ABE=4,根据勾股定理即可求出AE、AC的长度,的面积为△ABC的面积的4倍,所以AEAC从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;【解答】猜想:β=α+90∘,γ=−α+180∘连接OB,∴由圆周角定理可知:2∠BCA=360∘−∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180∘−2α,∴2β=360∘−(180∘−2α),∴β=α+90∘,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90∘∴β=90∘+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180∘,∴∠EBA+∠OBA+∠EAG=180∘,∴γ+α=180∘;另∵EO平分BC,∴∠EBC=∠ECB,∵∠ECG=∠ACG=90∘,∴∠ECB+∠BCG=90∘,∠CGA+∠EAG=90∘,∵∠CBA=∠CGA,∠BCG=∠BAG=α,∴∠ECB+α=90∘,∠CBA+∠EAG=90∘,∴∠ECB+α+∠CBA+∠EAG=180∘,∴∠EBC+∠CBA+∠EAG+α=180∘,∴∠EBA+∠EAG+α=180∘,即γ+α=180∘,当γ=135∘时,此时图形如图所示,∴α=45∘,β=135∘,∴∠BOA=90∘,∠BCE=45∘,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90∘,∵△ABE的面积为△ABC的面积的4倍,∴AE=4,AC∴CE=3,AC设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45∘,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=√2,∴BE=CE=3√2,AC=√2,∴AE=AC+CE=4√2,在Rt△ABE中,由勾股定理可知:AB2=(3√2)2+(4√2)2,∴AB=5√2,∵∠BAO=45∘,∴∠AOB=90∘,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.试卷第21页,总21页。
2017年杭州市中考数学试卷
2017年杭州市中考数学试卷2017年杭州市中考数学试卷一、选择题(共10小题;共50分)1. −22=( )A. −2B. −4C. 2D. 42. 太阳与地球的平均距离大约是150000000千米,数据150000000用科学记数法表示为( )A. 1.5×108B. 1.5×109C.0.15×109 D. 15×1073. 如图在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则( )A. ADAB =12B. AEEC=12C. ADEC=12D. DEBC=124. ∣1+√∣+∣1−√∣=( )A. 1B. √C. 2D. 2√5. 设x,y,c是实数,( )第2页(共19 页)A. 若x=y,则x+c=y−cB. 若x=y,则xc=ycC. 若x=y,则xc =ycD. 若x2c=y3c,则2x=3y6. 若x+5>0,则( )A. x+1<0B. x−1<0C. x5<−1D. −2x<127. 某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次,设参观人次的平均年增长率为x,则( )A. 10.8(1+x)=16.8B. 16.8(1−x)=10.8C. 10.8(1+x)2=16.8D. 10.8[(1+x)+(1+x)2]=16.88. 如图,在Rt△ABC中,∠ABC=90∘,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )第3页(共19 页)第4页(共19 页)第5页(共19 页)A. x −y 2=3B. 2x −y 2=9C. 3x −y 2=15D. 4x −y 2=21二、填空题(共6小题;共30分)11. 数据 2,2,3,4,5 的中位数是 .12. 如图,AT 切 ⊙O 于点 A ,AB 是 ⊙O 的直径,若 ∠ABT =40∘,则 ∠ATB = .13. 一个仅装有球的不透明布袋里共有 3 个球(只有颜色不同),其中 2 个是红球,1 个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14. 若m−3m−1⋅∣m∣=m−3m−1,则m=.15. 如图,在△ABC中,∠BAC=90∘,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于.16. 某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元,若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示)三、解答题(共7小题;共91分)17. 为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数分布表和未完成的第6页(共19 页)频数分布直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数分布表:组别(m)频数1.09∼1.1981.19∼1.29121.29∼1.39a1.39∼1.4910(1)求a的值,并把频数分布直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18. 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).第7页(共19 页)(1)当−2<x≤3时,求y的取值范围.(2)已知点P(m,n)在该函数的图象上,且m−n=4,求点P的坐标.19. 如图在锐角△ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;的值.(2)若AD=3,AB=5,求AFAG20. 在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?第8页(共19 页)21. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF= 105∘,求线段BG的长.22. 在平面直角坐标系中,设二次函数y1=(x+a)(x−a−1),其中a≠0.(1)若函数y1的图象经过点(1,−2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.第9页(共19 页)23. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据:α30∘40∘50∘60∘β120∘130∘140∘150∘γ150∘140∘130∘120∘猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135∘,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.第10页(共19 页)答案第一部分1. B2. A3. B4. D5. B6. D7. C8. A9. C 10. B第二部分11. 312. 50∘13. 4914. −1或315. 7816. 30−t2第三部分17. (1)a=50−8−12−10=20,a的值是20.补全频数分布直方图如图所示.(2) 500×20+1050=500×35=300(名). 答:该年级学生跳高成绩在 1.29 m 以上的人数为300 名. 18. (1) 已知一次函数解析式为:y =kx +b (k ≠0),将点 (1,0),(0,2) 分别代入,得:{0=k +b,2=b,解得:{k =−2,b =2,所以 y =−2x +2.当 −2<x ≤3 时,有 −4≤−2x +2<6,即 −4≤y <6.(2) 因为点 P (m,n ) 在该函数图象上,则有 {n =−2m +2,m −n =4,解得:{m =2,n =−2,所以点 P 的坐标为 (2,−2).19. (1) ∵ 在 △ABC 中,AG ⊥BC 于点 G ,AF ⊥DE 于点 F ,∴ ∠AFE =∠AGC =90∘,∴在△AEF和△ACG中,∠AFE=∠AGC=90∘,∠EAF=∠GAC,∴△AEF∽△ACG.∴∠AEF=∠C.在△ADE和△ABC中,∠AED=∠C,∠EAD=∠CAB,∴△ADE∽△ABC.(2)由(1)知,△ADE∽△ABC,∴ADAB =AEAC=35,又∵△AEF∽△ACG,∴AFAG =AEAC=35.20. (1)①由题意可得:矩形面积为S=1×3=3,即xy=3,∴y=3x(x>0).②当y≥3即3x≥3时,有0<x≤1,∴x的取值范围是0<x≤1.(2)圆圆说的不对,方方说的对.理由:按照圆圆的说法,若其中一个矩形周长为6,则有 {2(x +y )=6, ⋯⋯①xy =3, ⋯⋯②由 ① 得:y =3−x, ⋯⋯③将 ③ 代入 ② 得:x (3−x )=3,即 −x 2+3x −3=0,∵ 该方程 Δ=32−4×(−1)×(−3)=9−12=−3<0,∴ 此方程无解,∴ 不存在这样的矩形,∴ 圆圆说的不对,同理,按照方方的说法,若其中一个矩形周长为 10,有 {2(x +y )=10,xy =3,解得:x =5±√132,∴ 方方说的对.21. (1) AG 2=GE 2+GF 2.证:连接 CG .∵ 四边形 ABCD 为正方形,∴∠ABG =∠CBG =45∘,BA =BC , 在 △ABG 与 △CBG 中,{BA =BC,∠ABG =∠CBG,BG =BG,∴△ABG ≌△CBG (SAS ),∴AG =CG ,又 ∵GE ⊥DC ,∠C =90∘,∴ 四边形 GECF 为矩形,∴GE =FC ,FC 2+GF 2=GC 2, ∴AG 2=GE 2+GF 2.(2) 过点 A 作 AM ⊥BD 于 M ,∵GF ⊥BC ,∴△BFG 为等腰直角三角形,∴∠BGF =45∘.又 ∵∠AGF =105∘,∴∠AGB =105∘−45∘=60∘.∵△ABM 为等腰直角三角形,AB =1,∴AM=BM=√22,∴MG=AMtan∠AGM =√22√3=√66,∴BG=BM+MG=√22+√66=3√2+√66.22. (1)把x=1,y=−2代入y1=(x+a)(x−a−1)中,得:a(1+a)=2,∵y1=x2−x−a(a+1),∴y1=x2−x−2.(2)令y1=(x+a)(x−a−1)=0,解得:x1=−a,x2=a+1,①当一次函数经过(−a,0)时,把x=−a,y=0代入y2=ax+b得:b=a,②当一次函数经过(a+1,0)时,把x=a+1,y=0代入y2=ax+b得:b=−a2−a.(3)y1=(x+a)(x−a−1)的对称轴为:直线x0=−a+a+12=12,m<n,抛物线开口向上可知:∣∣x0−12∣∣<(1−12),∴0<x0<1.23. (1) ① β=90∘+α,γ=180∘−α. 证明:如图 1,连接 BG ,∵ B ,C ,A ,G 四点共圆,∴ ∠BGA =180∘−β.又 ∵ AG 为直径,∴ ∠ABG =90∘,∴ ∠BGA +∠BAG =90∘,即 (180∘−β)+α=90∘,∴ β=90∘+α.② D 为弦 BC 的中点,DE ⊥BC , 在 △BDE 和 △CDE 中,{BD =CD,∠BDE =∠CDE,ED =ED,∴ △BDE ≌△CDE ,∴ ∠EBC =∠ECB =180∘−β. ∵ ∠CBA +∠CAB =∠ECB ,∴γ=∠EAG+∠EBA=α+∠CAB+∠CBA+∠EBC=α+∠ECB+∠EBC=α+(180∘−β)+(180∘−β)=360∘+α−2β,又∵β=90∘+α,∴γ=360∘+α−2(90∘+α)=180∘−α,即γ=180∘−α.(2)如图2,连接BG.Array∵γ=135∘,∴α=45∘,β=45∘,∠AGB=45∘,∴△ECD和△ABG为等腰直角三角形.又∵S△ABE=4S△ABC,∴AE=4AC,∴EC=3AC.设AC=x,∴EC=3x.又∵CD=3,∴√2CD=EC=3x,∴x=√2,∴AE=4√2.又∵BE=EC,∠AEB=90∘,∴AB=√BE2+AE2=5√2,∴AG=√2AB=5√2×√2=10,∴r=5.。
2017年杭州市中考数学试卷
2017年杭州市中考数学试卷D第2页(共20 页)第3页(共20 页)第4页(共20 页)第5页(共20 页)第6页(共20 页)第7页(共20 页)14.若 m−3m−1⋅∣m ∣=m−3m−1,则 m = .15. 如图,在 △ABC 中,∠BAC =90∘,AB =15,AC =20,点 D 在边 AC 上,AD =5,DE ⊥BC 于点 E ,连接 AE ,则 △ABE 的面积等于 .16. 某水果店销售 50 千克香蕉,第一天售价为 9元/千克,第二天降为 6 元/千克,第三天再降为 3 元/千克.三天全部售完,共计所得 270 元,若该店第二天销售香蕉 t 千克,则第三天销售香蕉 千克.(用含t 的代数式表示)三、解答题(共7小题;共91分)17. 为了了解某校九年级学生的跳高水平,随机抽取该年级 50 名学生进行跳高测试,并把测试成绩绘制成如图所示的频数分布表和未完成的频数分布直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数分布表:组别(m)频数1.09∼1.1981.19∼1.29121.29∼1.39a1.39∼1.4910(1)求a的值,并把频数分布直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在 1.29m(含 1.29m)以上的人数.18. 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).第8页(共20 页)(1)当−2<x≤3时,求y的取值范围.(2)已知点P(m,n)在该函数的图象上,且m−n=4,求点P的坐标.19. 如图在锐角△ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;的值.(2)若AD=3,AB=5,求AFAG20. 在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?第9页(共20 页)21. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF= 105∘,求线段BG的长.22. 在平面直角坐标系中,设二次函数y1=(x+a)(x−a−1),其中a≠0.(1)若函数y1的图象经过点(1,−2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.第10页(共20 页)23. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据:α30∘40∘50∘60∘β120∘130∘140∘150∘γ150∘140∘130∘120∘猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135∘,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.答案第一部分1. B2. A3. B4. D5. B6. D7. C8. A9. C 10. B第二部分11. 312. 50∘13. 4914. −1或315. 7816. 30−t2第三部分17. (1)a=50−8−12−10=20,a的值是20.补全频数分布直方图如图所示.(2) 500×20+1050=500×35=300(名).答:该年级学生跳高成绩在 1.29 m 以上的人数为 300 名.18. (1) 已知一次函数解析式为:y =kx +b (k ≠0), 将点 (1,0),(0,2) 分别代入,得:{0=k +b,2=b,解得:{k =−2,b =2,所以 y =−2x +2. 当 −2<x ≤3 时, 有 −4≤−2x +2<6, 即 −4≤y <6.(2) 因为点 P (m,n ) 在该函数图象上,则有 {n =−2m +2,m −n =4,解得:{m =2,n =−2,所以点 P 的坐标为 (2,−2).19. (1) ∵ 在 △ABC 中,AG ⊥BC 于点 G ,AF ⊥DE 于点 F ,∴ ∠AFE =∠AGC =90∘,∴在△AEF和△ACG中,∠AFE=∠AGC=90∘,∠EAF=∠GAC,∴△AEF∽△ACG.∴∠AEF=∠C.在△ADE和△ABC中,∠AED=∠C,∠EAD=∠CAB,∴△ADE∽△ABC.(2)由(1)知,△ADE∽△ABC,∴ADAB =AEAC=35,又∵△AEF∽△ACG,∴AFAG =AEAC=35.20. (1)①由题意可得:矩形面积为S=1×3=3,即xy=3,∴y=3x(x>0).②当y≥3即3x≥3时,有0<x≤1,∴x的取值范围是0<x≤1.(2)圆圆说的不对,方方说的对.理由:按照圆圆的说法,若其中一个矩形周长为6,则有 {2(x +y )=6, ⋯⋯①xy =3, ⋯⋯②由 ① 得:y =3−x, ⋯⋯③ 将 ③ 代入 ② 得:x (3−x )=3, 即 −x 2+3x −3=0,∵ 该方程 Δ=32−4×(−1)×(−3)=9−12=−3<0, ∴ 此方程无解, ∴ 不存在这样的矩形, ∴ 圆圆说的不对,同理,按照方方的说法,若其中一个矩形周长为 10,有 {2(x +y )=10,xy =3,解得:x =5±√132, ∴ 方方说的对.21. (1) AG 2=GE 2+GF 2. 证:连接 CG .∵ 四边形 ABCD 为正方形,∴∠ABG =∠CBG =45∘,BA =BC , 在 △ABG 与 △CBG 中, {BA =BC,∠ABG =∠CBG,BG =BG,∴△ABG ≌△CBG (SAS ), ∴AG =CG ,又 ∵GE ⊥DC ,∠C =90∘, ∴ 四边形 GECF 为矩形, ∴GE =FC ,FC 2+GF 2=GC 2, ∴AG 2=GE 2+GF 2.(2) 过点 A 作 AM ⊥BD 于 M ,∵GF ⊥BC ,∴△BFG 为等腰直角三角形, ∴∠BGF =45∘. 又 ∵∠AGF =105∘,∴∠AGB =105∘−45∘=60∘.∵△ABM 为等腰直角三角形,AB =1,∴AM=BM=√22,∴MG=AMtan∠AGM =√22√3=√66,∴BG=BM+MG=√22+√66=3√2+√66.22. (1)把x=1,y=−2代入y1=(x+a)(x−a−1)中,得:a(1+a)=2,∵y1=x2−x−a(a+1),∴y1=x2−x−2.(2)令y1=(x+a)(x−a−1)=0,解得:x1=−a,x2=a+1,①当一次函数经过(−a,0)时,把x=−a,y=0代入y2=ax+b得:b=a,②当一次函数经过(a+1,0)时,把x=a+1,y=0代入y2=ax+b得:b=−a2−a.(3)y1=(x+a)(x−a−1)的对称轴为:直线x0=−a+a+12=12,m<n,抛物线开口向上可知:∣∣x0−12∣∣<(1−12),∴0<x0<1.23. (1) ① β=90∘+α,γ=180∘−α. 证明:如图 1,连接 BG ,∵ B ,C ,A ,G 四点共圆, ∴ ∠BGA =180∘−β. 又 ∵ AG 为直径, ∴ ∠ABG =90∘, ∴ ∠BGA +∠BAG =90∘, 即 (180∘−β)+α=90∘, ∴ β=90∘+α.② D 为弦 BC 的中点,DE ⊥BC , 在 △BDE 和 △CDE 中, {BD =CD,∠BDE =∠CDE,ED =ED,∴ △BDE ≌△CDE ,∴ ∠EBC =∠ECB =180∘−β. ∵ ∠CBA +∠CAB =∠ECB ,∴γ=∠EAG+∠EBA=α+∠CAB+∠CBA+∠EBC=α+∠ECB+∠EBC=α+(180∘−β)+(180∘−β)=360∘+α−2β,又∵β=90∘+α,∴γ=360∘+α−2(90∘+α)=180∘−α,即γ=180∘−α.(2)如图2,连接BG.Array∵γ=135∘,∴α=45∘,β=45∘,∠AGB=45∘,∴△ECD和△ABG为等腰直角三角形.又∵S△ABE=4S△ABC,∴AE=4AC,∴EC=3AC.设AC=x,∴EC=3x.又∵CD=3,∴√2CD=EC=3x,∴x=√2,∴AE=4√2.又∵BE=EC,∠AEB=90∘,∴AB=√BE2+AE2=5√2,∴AG=√2AB=5√2×√2=10,∴r=5.。
2017年中考数学真题试卷(含答案详细解析)
2017年中考数学真题卷及答案详解一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=14﹣1=﹣34,故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y ﹣yx+y,结果正确的是()A.1 B.x2+y2x−yC.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.33 B.6 C.32 D.21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=AC2+BC2=32,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=32,∴∠CAB′=90°,∴B′C=CA2+B′A2=33,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【考点】两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴y=−2x+4y=kx+2k解得x=4−2kk+2y=8kk+2∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴4−2kk+2>08kk+2>0解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【考点】相似三角形的判定与性质;LB:矩形的性质.【分析】根据S△ABE =12S矩形ABCD=3=12•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE=AD2+DE2=32+12=10,∵S△ABE =12S矩形ABCD=3=12•AE•BF,∴BF=310 5.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.532C.52 D.53【考点】三角形的外接圆与外心;KH:等腰三角形的性质.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=32×5=532,∴AP=2PD=53,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣3,0,π,6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π> 6>0>− 3>﹣5,故实数﹣5,− 3,0,π, 6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B. 173tan38°15′≈ .(结果精确到0.01)【考点】计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB ); B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB )=64°, 故答案为:64°;B 、 173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 【考点】反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得: b =3m a −b =2m−5a, 所以3m +2m−5a =0,即5m ﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m +2m−5a =0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,∠BAM=∠DAN∠AMB=∠ANDAB=AD,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣2)×6+|3﹣2|﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣12+2﹣3﹣2=﹣23﹣3=﹣33【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【考点】正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中AD=CD∠ADF=∠CDE DF=DE,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,∠GAE=∠GCF ∠AGE=∠CGF AE=CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA 是⊙O 的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O ,∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5 32∴AC=2AD=5 3(2)∵AC ⊥PB ,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC ∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式;(2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m ,MB=10m ,△AMB 的面积为96m 2;过弦AB 的中点D作DE ⊥AB 交AB于点E ,又测得DE=8m . 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】圆的综合题.【分析】(1)构建Rt △AOD 中,利用cos ∠OAD=cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图1,过O 作OD ⊥AC 于D ,则AD=12AC=12×12=6, ∵O 是内心,△ABC 是等边三角形,∴∠OAD=12∠BAC=12×60°=30°, 在Rt △AOD 中,cos ∠OAD=cos30°=AD OA, ∴OA=6÷ 32=4 3, 故答案为:4 3;(2)存在,如图2,连接AC 、BD 交于点O ,连接PO 并延长交BC 于Q ,则线段PQ 将矩形ABCD 的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ=AP=3,过P 作PM ⊥BC 于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ= PM 2+MQ 2= 122+122=12 2;(3)如图3,作射线ED 交AM 于点C∵AD=DB ,ED ⊥AB ,AB是劣弧, ∴AB所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA=r ,OD=r ﹣8,AD=12AB=12, 在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13,∴OD=5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB=24,∴12AB•MN=96, 12×24×MN=96, ∴MN=8,NB=6,AN=18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN =AD AN, ∴DC 8=1218, ∴DC=163, ∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB于点F ,则MF 为草坪上的点到M 点的最大距离, ∵在AB上任取一点异于点F 的点G ,连接GO ,GM , ∴MF=OM +OF=OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH=DN=6,MH=3,∴OM=MH2+OH2=32+62=35,∴MF=OM+r=35+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.。
2017年浙江省杭州市中考数学试卷(含答案解析)
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m=.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39A1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.2017年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.(3分)(2017•杭州)﹣22=()A.﹣2 B.﹣4 C.2 D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3分)(2017•杭州)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.(3分)(2017•杭州)|1+|+|1﹣|=()A.1 B.C.2 D.2【分析】根据绝对值的性质,可得答案.【解答】解:原式1++﹣1=2,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3分)(2017•杭州)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关键.6.(3分)(2017•杭州)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3分)(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3分)(2017•杭州)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.(3分)(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b(m﹣1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.(3分)(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4分)(2017•杭州)数据2,2,3,4,5的中位数是3.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)(2017•杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=50°.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4分)(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.(4分)(2017•杭州)若•|m|=,则m=3或﹣1.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.(4分)(2017•杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于78.【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.(4分)(2017•杭州)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30﹣千克.(用含t的代数式表示.)【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)(2017•杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39A1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)(2017•杭州)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG ⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)(2017•杭州)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x 的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)(2017•杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D 重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题;【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=+.方法二:过点A作AH⊥BG,可以构造两个特殊直角三角形,即可解决问题.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.22.(12分)(2017•杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案;(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)(2017•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B 重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB 交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB 的长度,再由勾股定理即可求出⊙O的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
2017年浙江省杭州市中考数学试卷与答案
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2B.﹣4C.2D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=()A.1B.C.2D.25.(3分)设x,y,c是实数,正确的是()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y6.(3分)若x+5>0,则()A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<12 7.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m=.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.2017年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.【解答】解:﹣22=﹣4,故选:B.2.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选:A.3.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.4.【解答】解:原式1++﹣1=2,故选:D.5.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘6c,得到,3x=2y,故D不符合题意;故选:B.6.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选:D.7.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.8.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选:A.9.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a+b=(m﹣1)a﹣2a=(m﹣3)a,(m﹣1)a+b与0无法判断.当m<1时,(m+1)a+b=(m+1)a﹣2a=(m﹣1)a>0.故选:C.10.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选:B.二.填空题11.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.12.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°13.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.14.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.15.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.16.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.三.解答题17.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).18.【解答】解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).19.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=另解:∵AG⊥BC,AF⊥DE,△ADE∽△ABC,∴==20.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.21.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.22.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,所求x0的取值范围0<x0<1.23.【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;另解:∵EO平分BC,∴∠EBC=∠ECB,∵∠ECG=∠ACG=90°,∴∠ECB+∠BCG=90°,∠CGA+∠EAG=90°,∵∠CBA=∠CGA,∠BCG=∠BAG=α,∴∠ECB+α=90°,∠CBA+∠EAG=90°,∴∠ECB+α+∠CBA+∠EAG=180°,∴∠EBC+∠CBA+∠EAG+α=180°,∴∠EBA+∠EAG+α=180°,即γ+α=180°,(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.----<<本文为word格式,下载后方便编辑修改,也可以直接使用>>-----免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文。
2017年浙江省杭州市初中毕业生学业考试数学试题(附答案解析)
2017年浙江省杭州市初中毕业生学业考试数学试题一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= .13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m= .15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39A1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB 交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.参考答案一.选择题1.(3分)(2017•杭州)﹣22=()A.﹣2 B.﹣4 C.2 D.4分析#根据幂的乘方的运算法则求解.解答#解:﹣22=﹣4,故选B.点评#本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3分)(2017•杭州)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107分析#科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.解答#解:将150 000 000用科学记数法表示为:1.5×108.故选A.点评#此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.分析#根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.解答#解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.点评#此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.(3分)(2017•杭州)|1+|+|1﹣|=()A.1 B.C.2 D.2分析#根据绝对值的性质,可得答案.解答#解:原式1++﹣1=2,故选:D.点评#本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3分)(2017•杭州)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y分析#根据等式的性质,可得答案.解答#解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.点评#本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关键.6.(3分)(2017•杭州)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12分析#求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.解答#解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.点评#本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3分)(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8分析#设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.解答#解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.点评#本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3分)(2017•杭州)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4分析#根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.解答#解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.点评#本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.(3分)(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0分析#根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.解答#解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b(m﹣1)a﹣2a=(m﹣1)a>0.故选:C.点评#本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.(3分)(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21分析#过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.解答#解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.点评#本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4分)(2017•杭州)数据2,2,3,4,5的中位数是 3 .分析#根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.解答#解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.点评#本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)(2017•杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= 50°.分析#根据切线的性质即可求出答案.解答#解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°点评#本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4分)(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.分析#根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.解答#解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.点评#此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.(4分)(2017•杭州)若•|m|=,则m= 3或﹣1 .分析#利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.解答#解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.点评#本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.(4分)(2017•杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE ⊥BC于点E,连结AE,则△ABE的面积等于78 .分析#由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.解答#解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.点评#本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.(4分)(2017•杭州)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30﹣千克.(用含t的代数式表示.)分析#设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.解答#解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.点评#本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)(2017•杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 A1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.分析#(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.解答#解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).点评#本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)(2017•杭州)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.分析#利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.解答#解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).点评#本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.分析#(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.解答#解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=点评#本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)(2017•杭州)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?分析#(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.解答#解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.点评#此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)(2017•杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.分析#(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.解答#解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.点评#本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(12分)(2017•杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.分析#(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案;(3)根据二次函数的性质,可得答案.解答#解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.点评#本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)(2017•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.分析#(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;解答#解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.点评#本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
中考数学题库(含答案和解析)
中考数学题库(含答案和解析)一.选择题1.(3分)(2017•杭州)﹣22=()A.﹣2 B.﹣4 C.2 D.4【解答】解:﹣22=﹣4.故选B.2.(3分)(2017•杭州)太阳与地球的平均距离大约是150 000 000千米.数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.3.(3分)(2017•杭州)如图.在△ABC中.点D.E分别在边AB.AC 上.DE∥BC.若BD=2AD.则()A.B.C.D.【解答】解:∵DE∥BC.∴△ADE∽△ABC.∵BD=2AD.∴===.则=.∴A.C.D选项错误.B选项正确.故选:B.4.(3分)(2017•杭州)|1+|+|1﹣|=()A.1 B. C.2 D.2【解答】解:原式1++﹣1=2.故选:D.5.(3分)(2017•杭州)设x.y.c是实数.()A.若x=y.则x+c=y﹣c B.若x=y.则xc=ycC.若x=y.则D.若.则2x=3y【解答】解:A、两边加不同的数.故A不符合题意;B、两边都乘以c.故B符合题意;C、c=0时.两边都除以c无意义.故C不符合题意;D、两边乘以不同的数.故D不符合题意;故选:B.6.(3分)(2017•杭州)若x+5>0.则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12 【解答】解:∵x+5>0.∴x>﹣5.A、根据x+1<0得出x<﹣1.故本选项不符合题意;B、根据x﹣1<0得出x<1.故本选项不符合题意;C、根据<﹣1得出x<﹣5.故本选项不符合题意;D、根据﹣2x<12得出x>﹣6.故本选项符合题意;故选D.7.(3分)(2017•杭州)某景点的参观人数逐年增加.据统计.2014年为10.8万人次.2016年为16.8万人次.设参观人次的平均年增长率为x.则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【解答】解:设参观人次的平均年增长率为x.由题意得:10.8(1+x)2=16.8.故选:C.8.(3分)(2017•杭州)如图.在Rt△ABC中.∠ABC=90°.AB=2.BC=1.把△ABC分别绕直线AB和BC旋转一周.所得几何体的地面圆的周长分别记作l1.l2.侧面积分别记作S1.S2.则()A.l1:l2=1:2.S1:S2=1:2 B.l1:l2=1:4.S1:S2=1:2C.l1:l2=1:2.S1:S2=1:4 D.l1:l2=1:4.S1:S2=1:4【解答】解:∵l1=2π×BC=2π.l2=2π×AB=4π.∴l1:l2=1:2.∵S1=×2π×=π.S2=×4π×=2π.∴S1:S2=1:2.故选A.9.(3分)(2017•杭州)设直线x=1是函数y=ax2+bx+c(a.b.c是实数.且a<0)的图象的对称轴.()A.若m>1.则(m﹣1)a+b>0 B.若m>1.则(m﹣1)a+b<0 C.若m<1.则(m﹣1)a+b>0 D.若m<1.则(m﹣1)a+b<0【解答】解:由对称轴.得b=﹣2a.(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a当m<1时.(m﹣3)a>0.故选:C.10.(3分)(2017•杭州)如图.在△ABC中.AB=AC.BC=12.E为AC 边的中点.线段BE的垂直平分线交边BC于点D.设BD=x.tan∠ACB=y.则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【解答】解:过A作AQ⊥BC于Q.过E作EM⊥BC于M.连接DE.∵BE的垂直平分线交BC于D.BD=x.∴BD=DE=x.∵AB=AC.BC=12.tan∠ACB=y.∴==y.BQ=CQ=6.∴AQ=6y.∵AQ⊥BC.EM⊥BC.∴AQ∥EM.∵E为AC中点.∴CM=QM=CQ=3.∴EM=3y.∴DM=12﹣3﹣x=9﹣x.在Rt△EDM中.由勾股定理得:x2=(3y)2+(9﹣x)2.即2x﹣y2=9.故选B.二.填空题11.(4分)(2017•杭州)数据2.2.3.4.5的中位数是 3 .【解答】解:从小到大排列为:2.2.3.4.5.位于最中间的数是3.则这组数的中位数是3.故答案为:3.12.(4分)(2017•杭州)如图.AT切⊙O于点A.AB是⊙O的直径.若∠ABT=40°.则∠ATB= 50°.【解答】解:∵AT切⊙O于点A.AB是⊙O的直径.∴∠BAT=90°.∵∠ABT=40°.∴∠ATB=50°.故答案为:50°13.(4分)(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同).其中2个是红球.1个是白球.从中任意摸出一个球.记下颜色后放回.搅匀.再任意摸出一个球.则两次摸出都是红球的概率是.【解答】解:根据题意画出相应的树状图.所以一共有9种情况.两次摸到红球的有4种情况.∴两次摸出都是红球的概率是.故答案为:.14.(4分)(2017•杭州)若•|m|=.则m= 3或﹣1 .【解答】解:由题意得.m﹣1≠0.则m≠1.(m﹣3)•|m|=m﹣3.∴(m﹣3)•(|m|﹣1)=0.∴m=3或m=±1.∵m≠1.∴m=3或m=﹣1.故答案为:3或﹣1.(2017•杭州)如图.在Rt△ABC中.∠BAC=90°.AB=15.AC=20. 15.(4分)点D在边AC上.AD=5.DE⊥BC于点E.连结AE.则△ABE的面积等于78 .【解答】解:∵在Rt△ABC中.∠BAC=90°.AB=15.AC=20.∴BC==25.△ABC的面积=AB•AC=×15×20=150.∵AD=5.∴CD=AC﹣AD=15.∵DE⊥BC.∴∠DEC=∠BAC=90°.又∵∠C=∠C.∴△CDE∽△CBA.∴.即.解得:CE=12.∴BE=BC﹣CE=13.∵△ABE的面积:△ABC的面积=BE:BC=13:25.∴△ABE的面积=×150=78;故答案为:78.16.(4分)(2017•杭州)某水果点销售50千克香蕉.第一天售价为9元/千克.第二天降价6元/千克.第三天再降为3元/千克.三天全部售完.共计所得270元.若该店第二天销售香蕉t千克.则第三天销售香蕉30﹣千克.(用含t的代数式表示.)【解答】解:设第三天销售香蕉x千克.则第一天销售香蕉(50﹣t ﹣x)千克.根据题意.得:9(50﹣t﹣x)+6t+3x=270.则x==30﹣.故答案为:30﹣.三.解答题17.(6分)(2017•杭州)为了了解某校九年级学生的跳高水平.随机抽取该年级50名学生进行跳高测试.并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值.不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 A1.39~1.49 10(1)求a的值.并把频数直方图补充完整;(2)该年级共有500名学生.估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【解答】解:(1)a=50﹣8﹣12﹣10=20.;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).18.(8分)(2017•杭州)在平面直角坐标系中.一次函数y=kx+b (k.b都是常数.且k≠0)的图象经过点(1.0)和(0.2).(1)当﹣2<x≤3时.求y的取值范围;(2)已知点P(m.n)在该函数的图象上.且m﹣n=4.求点P的坐标.【解答】解:设解析式为:y=kx+b.将(1.0).(0.﹣2)代入得:.解得:.∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得.y=6.把x=3代入y=﹣2x+2得.y=﹣4.∴y的取值范围是﹣4≤y<6.(2)∵点P(m.n)在该函数的图象上.∴n=﹣2m+2.∵m﹣n=4.∴m﹣(﹣2m+2)=4.解得m=2.n=﹣2.∴点P的坐标为(2.﹣2).19.(8分)(2017•杭州)如图.在锐角三角形ABC中.点D.E分别在边AC.AB上.AG⊥BC于点G.AF⊥DE于点F.∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3.AB=5.求的值.【解答】解:(1)∵AG⊥BC.AF⊥DE.∴∠AFE=∠AGC=90°.∵∠EAF=∠GAC.∴∠AED=∠ACB.∵∠EAD=∠BAC.∴△ADE∽△ABC.(2)由(1)可知:△ADE∽△ABC.∴=由(1)可知:∠AFE=∠AGC=90°.∴∠EAF=∠GAC.∴△EAF∽△CAG.∴.∴=20.(10分)(2017•杭州)在面积都相等的所有矩形中.当其中一个矩形的一边长为1时.它的另一边长为3.(1)设矩形的相邻两边长分别为x.y.①求y关于x的函数表达式;②当y≥3时.求x的取值范围;(2)圆圆说其中有一个矩形的周长为6.方方说有一个矩形的周长为10.你认为圆圆和方方的说法对吗?为什么?【解答】解:(1)①由题意可得:xy=3.则y=;②当y≥3时.≥3解得:x≤1;(2)∵一个矩形的周长为6.∴x+y=3.∴x+=3.整理得:x2﹣3x+3=0.∵b2﹣4ac=9﹣12=﹣3<0.∴矩形的周长不可能是6;∵一个矩形的周长为10.∴x+y=5.∴x+=5.整理得:x2﹣5x+3=0.∵b2﹣4ac=25﹣12=13>0.∴矩形的周长可能是10.21.(10分)(2017•杭州)如图.在正方形ABCD中.点G在对角线BD上(不与点B.D重合).GE⊥DC于点E.GF⊥BC于点F.连结AG.(1)写出线段AG.GE.GF长度之间的数量关系.并说明理由;(2)若正方形ABCD的边长为1.∠AGF=105°.求线段BG的长.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形.∴A、C关于对角线BD对称.∵点G在BD上.∴GA=GC.∵GE⊥DC于点E.GF⊥BC于点F.∴∠GEC=∠ECF=∠CFG=90°.∴四边形EGFC是矩形.∴CF=GE.在Rt△GFC中.∵CG2=GF2+CF2.∴AG2=GF2+GE2.(2)作BN⊥AG于N.在BN上截取一点M.使得AM=BM.设AN=x.∵∠AGF=105°.∠FBG=∠FGB=∠ABG=45°.∴∠AGB=60°.∠GBN=30°.∠ABM=∠MAB=15°.∴∠AMN=30°.∴AM=BM=2x.MN=x.在Rt△ABN中.∵AB2=AN2+BN2.∴1=x2+(2x+x)2.解得x=.∴BN=.∴BG=BN÷cos30°=.22.(12分)(2017•杭州)在平面直角坐标系中.设二次函数y1=(x+a)(x﹣a﹣1).其中a≠0.(1)若函数y1的图象经过点(1.﹣2).求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点.探究实数a.b满足的关系式;(3)已知点P(x0.m)和Q(1.n)在函数y1的图象上.若m<n.求x0的取值范围.【解答】解:(1)函数y1的图象经过点(1.﹣2).得(a+1)(﹣a)=﹣2.解得a=﹣2.a=1.函数y1的表达式y=(x﹣2)(x+2﹣1).化简.得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简.得y=x2﹣x﹣2.综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时x2﹣x﹣2=0.解得x1=﹣1.x2=2.y1的图象与x轴的交点是(﹣1.0)(2.0).当y2=ax+b经过(﹣1.0)时.﹣a+b=0.即a=b;当y2=ax+b经过(2.0)时.2a+b=0.即b=﹣2a;(3)当P在对称轴的左侧时.y随x的增大而增大.(1.n)与(0.n)关于对称轴对称.由m<n.得x0<0;当时P在对称轴的右侧时.y随x的增大而减小.由m<n.得x0>1.综上所述:m<n.求x0的取值范围x0<0或x0>1.23.(12分)(2017•杭州)如图.已知△ABC内接于⊙O.点C在劣弧AB上(不与点A.B重合).点D为弦BC的中点.DE⊥BC.DE与AC的延长线交于点E.射线AO与射线EB交于点F.与⊙O交于点G.设∠GAB=ɑ.∠ACB=β.∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式.γ关于ɑ的函数表达式.并给出证明:(2)若γ=135°.CD=3.△ABE的面积为△ABC的面积的4倍.求⊙O 半径的长.【解答】解:(1)猜想:β=α+90°.γ=﹣α+180°连接OB.∴由圆周角定理可知:2∠BCA=360°﹣∠BOA.∵OB=OA.∴∠OBA=∠OAB=α.∴∠BOA=180°﹣2α.∴2β=360°﹣(180°﹣2α).∴β=α+90°.∵D是BC的中点.DE⊥BC.∴OE是线段BC的垂直平分线.∴BE=CE.∠BED=∠CED.∠EDC=90°∵∠BCA=∠EDC+∠CED.∴β=90°+∠CED.∴∠CED=α.∴∠CED=∠OBA=α.∴O、A、E、B四点共圆.∴∠EBO+∠EAG=180°.∴∠EBA+∠OBA+∠EAG=180°.∴γ+α=180°;(2)当γ=135°时.此时图形如图所示. ∴α=45°.β=135°.∴∠BOA=90°.∠BCE=45°.由(1)可知:O、A、E、B四点共圆.∴∠BEC=90°.∵△ABE的面积为△ABC的面积的4倍. ∴.∴.设CE=3x.AC=x.由(1)可知:BC=2CD=6.∵∠BCE=45°.∴CE=BE=3x.∴由勾股定理可知:(3x)2+(3x)2=62. x=.∴BE=CE=3.AC=.∴AE=AC+CE=4.在Rt△ABE中.由勾股定理可知:AB2=(3)2+(4)2.∴AB=5.∵∠BAO=45°.∴∠AOB=90°.在Rt△AOB中.设半径为r. 由勾股定理可知:AB2=2r2. ∴r=5.∴⊙O半径的长为5.。
2017年浙江省杭州市中考数学试卷(含答案详解)
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m=.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.2017年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.(3分)(2017•杭州)﹣22=()A.﹣2 B.﹣4 C.2 D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3分)(2017•杭州)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,DE ∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.(3分)(2017•杭州)|1+|+|1﹣|=()A.1 B.C.2 D.2【分析】根据绝对值的性质,可得答案.【解答】解:原式1++﹣1=2,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3分)(2017•杭州)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关键.6.(3分)(2017•杭州)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3分)(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3分)(2017•杭州)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.(3分)(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a <0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b(m﹣1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.(3分)(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4分)(2017•杭州)数据2,2,3,4,5的中位数是3.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)(2017•杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=50°.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4分)(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.(4分)(2017•杭州)若•|m|=,则m=3或﹣1.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.(4分)(2017•杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于78.【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE ∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.(4分)(2017•杭州)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30﹣千克.(用含t 的代数式表示.)【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)(2017•杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)(2017•杭州)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)(2017•杭州)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)(2017•杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题;【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=+.方法二:过点A作AH⊥BG,可以构造两个特殊直角三角形,即可解决问题.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.22.(12分)(2017•杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a ﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案;(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)(2017•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
2017年浙江省杭州市中考数学试卷(含解析)
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m=.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.2017年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.2【分析】根据绝对值的性质,可得答案.【解答】解:原式1++﹣1=2,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关键.6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b(m﹣1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4分)数据2,2,3,4,5的中位数是3.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= 50°.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.(4分)若•|m|=,则m=3或﹣1.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于78.【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE ∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30﹣千克.(用含t的代数式表示.)【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案;(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
2017年杭州市中考数学试卷及答案
2017年杭州市中考数学试卷及答案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年杭州市中考数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年杭州市中考数学试卷及答案(word版可编辑修改)的全部内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年杭州市中考试卷
一.选择题
1.-2²=( )
A .-2
B .-4
C .2
D .4
2.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学计数法表示为( )
A .1.5×108
B .1.5×109
C .0.15×109
D .15×107
3.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD=2AD ,则( )
A .21=A
B AD B .21=E
C AE C .21=EC A
D D .2
1=BC DE
4.|1+3|+|1-3|=( )
A .1
B .3
C .2
D .23
5.设x ,y ,c 是实数,( )
A .若x=y ,则x+c=y-c
B .若x=y ,则xc=yc
C .若x=y ,则c
y c x = D .若c y c x 32=,则2x=3y 6.若x+5>0,则( )
A .x+1<0
B .x-1<0
C .5
x <-1 D .-2x <12 7.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次,设参观人次的平均年增长率为x ,则( )
A .10.8(1+x )=16.8
B .16.8(1-x )=10.8
C .10.8(1+x )2=16.8
D .10.8[(1+x )+(1+x )²]16.8
8.如图,在Rt △ABC 中,∠ABC=90°,AB=2,BC=1.把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )
A .l 1:l 2=1:2,S 1:S 2=1:2
B .l 1:l 2=1:4,S 1:S 2=1:2
C .l 1:l 2=1:2,S 1:S 2=1:4
D .l 1:l 2=1:4,S 1:S 2=1:4
9.设直线x=1是函数y=ax ²+bx+c (a ,b ,c 是实数,且a <0)的图象的对称轴,( )
A .若m >1,则(m-1)a+b >0
B .若m >1,则(m-1)a+b <0
C .若m <1,则(m-1)a+b >0
D .若m <1,则(m-1)a+b <0
10.如图,在△ABC 中,AB=AC ,BC=12,E 位AC 边的中点,线段BE 的垂直平分线交边BC 于点D ,设BD=x ,tan ∠ACB=y ,则( )
A .x-y ²=3
B .2x-y ²=9
C .3x-y ²=15
D .4x-y ²=21
二.填空题
11.数据2,2,3,4,5的中位数是________
12.如图,AT 切⊙O 于点A ,AB 是⊙O 的直径,若∠ABT=40°,则∠ATB=________
13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从
中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是_________
14.若1313--=⋅--m m m m m ,则m=__________ 15.如图,在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE ⊥BC 于点E ,连结A E ,则△ABE 的面积等于_______
16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3
元/千克。
三天全部售完,共计所得270元,若该店第二天销售香蕉t 千克,则第三天销售香蕉________千克。
(用含t 的代数式表示。
)
三.解答题
17.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值)。
(1)求a 的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m (含1.29m )以上的人数。
......
18.在平面直角坐标系中,一次函数y=kx+b (k ,b 都是常数,且k ≠0)的图象经过点(1,0)和(0,
2)。
(1)当-2<x ≤3时,求y 的取值范围
(2)已知点P (m ,n )在该函数的图象上,且m-n=4,求点P 的坐标。
19.如图在锐角三角形ABC 中,点D ,E 分别在边AC ,A B 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠E AF=∠GAC 。
(1)求证:△ADE ∽△ABC ;
(2)若AD=3,AB=5,求AG
AF 的值。
20.在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.
(1)设矩形的相邻两边长分别为x,y。
①求y关于x的函数表达式;
②当y≥3时,求x的取值范围;
(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?
21.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC 于点F,连结AG。
(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长。
22.在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0。
(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;
(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围。
23.如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE ⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)点点同学通过画图和测量得到以下近似数据:
ɑ30°40°50°60°
β120°130°140°150°
γ150°140°130°120°
(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长。