中考数学复习专题1 数与式

合集下载

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0

x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .

中考必刷题板块一 数与式

中考必刷题板块一 数与式

第一板块板块一 数与式考点① 代数式求值题型一:点在图像上(中考地位:B21)【例1】(2013成都)已知点(3,5)在直线y=ax+b(a,b 为常数,且a ≠0)上,则5a -b 的值为:【中考变式练】:1、已知直线y=ax+b 经过点(-3,1),则b 31a -的值为: 2、已知双曲线xk =y (k ≠0)过点(-3,2)则3912k 2++k 的值为: 3、无论m 取什么实数,点A (m+1,2m-2)都在直线L 上。

若点B (a,b )是直线L 上的动点,则(2a-b-6)3的值等于:4、直线y=kx (k>0)与双曲线x 2y =交于A (x 1,y 1).B (x 2,y 2)两点,则x 1y 2-x 2y 1的值为 题型二 整体带入(B21)【例2】(2012成都)已知当x=1时bx x +2a 2的值为3,则当x=2时,bx x +2a 的值为【中考变式】1、已知当x=1时,34ax 23+-bx 的值为7,则当x=-1时,34ax 23+-bx 的值为2、若y=x-2,则代数式3x -y 39+的值为3、已知y=1x 31-,那么232x 3122-+-y xy 的值为4、已知0)13(2a 2=--+-b a b ,则b 43a -的值为5、已知21b =-b a ,则222253225a 3b ab a b ab -++-的值为6、已知013x 2=-+x ,则x x x 221x 22-++的值为7、已知a,b,c 满足61,51,41=+=+=+a c ca c b bc b a ab ,则ac bc ab ++abc 的值为命题三 找规律(B23)【例3】(2011用含n 的代数式表示,其中n 为正整数)【中考变式练】1、观察下列运算过程:计算:1022...221++++解:设S=1022...221++++①①×2,得2S=11322...222++++②②-①得S=1211-所以:1022...221++++=1211- 运用上面的计算方式计算:213...33120172+++++2、古希腊数学家把1,3,6,10,15,21,...叫作三角数,它有一定的规律性.若把第一个三角形数记为a 1,第二个三角形数记为a 2,……,第n 个三角形数记为a n ,计算……,由此推算a 1+a 2,a 2+a 3,a 3+a 4,由此推算a 399+a 400=3、定义:a 是不为1的有理数,我们把a -11称为a 的差倒数,如:2的倒差数是2-11=-1,-1的倒差数是211--11=)(.已知a 1=-31,a 2是a 1的差倒数,a 3是a 2的差倒数,……那么a 2017=_____4、我过南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”。

浙江省杭州市中考数学微专题一:数与式

浙江省杭州市中考数学微专题一:数与式

微专题一:数与式一.选择题1.(有理数的加减)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃2.(科学计数法)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.14.126×108B.1.4126×109C.1.4126×108D.0.14126×10103.(分式加减)照相机成像应用了一个重要原理,用公式=+(v≠f)表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片于(像)到镜头的距离.已知f,v,则u=()A.B.C.D.4.(有理数的计算)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣95.(实数的计算)×=()A.B.C.D.36.(整式的运算)(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y27.(有理数的认识)﹣(﹣2021)=()A.﹣2021B.2021C.﹣D.8.(科学计数法)“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜记录.数据10909用科学记数法可表示为()A.0.10909×105B.1.0909×104C.10.909×103D.109.09×1029.(因式分解)因式分解:1﹣4y2=()A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)10.(二次根式)下列计算正确的是()A.=2B.=﹣2C.=±2D.=±2 11.(列代数式)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元二.填空题1.(实数)计算:=;(﹣2)2=.2.(因式分解)因式分解:1﹣x2=.3.(分式的性质)若分式的值等于1,则x=.4.(特殊角的三角函数值)计算:sin30°=.5.(整式运算)计算:2a+3a=.6.(整式的乘除)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.三.解答题1.(有理数的计算)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.2.(分式的化简)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.。

初三数学中考复习专题数与式

初三数学中考复习专题数与式

《数与式》考点1 有理数、实数的概念1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有___个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______ 4、 写出一个无理数________,使它与2的积是有理数 考点2 数轴、倒数、相反数、绝对值1、___________的倒数是211-;0.28的相反数是_________. 2、 如图1,数轴上的点M 所表示的数的相反数为_________ M3、 0|2|)1(2=++-n m ,则n m +的值为________4、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( ) ①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A .1个B .2个C .3个D .4个5、 ①数轴上表示-2和-5的两点之间的距离是______②数轴上表示x 和-1的两点A 和B 之间的距离是_______,如果|AB |=2,那么____________=x考点3 平方根与算术平方根.1、下列说法中,正确的是( )A .3的平方根是3B .7的算术平方根是7C .15-的平方根是15-±D .2-的算术平方根是2- 2、 9的算术平方根是______3、 38-等于_____ 3图1 ∙-2 -1 a 图2 ∙∙b c4、 03|2|=-+-y x ,则______=xy考点4 近似数和科学计数法1、 据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________2、 由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______3、 用小数表示:5107-⨯=_____________考点5 实数大小的比较1、 比较大小:0_____21_____|3|--;π. 2、 比较41,31,21---的大小关系:__________________ 3、 已知2,,1,10x x xx x ,那么在<<中,最大的数是___________ 考点6 实数的运算【知识要点】1、是正整数);时,当n a a a n ______(_____00==≠-.2、 如图1,是一个简单的数值运算程序,当输入x 的值为-1时,则输出的数值为____________3、 计算(1)|21|)32004(21)2(02---+-(2)︒⋅+++-30cos 2)21()21(10考点7 乘法公式与整式的运算1、下列计算正确的是( )A .532x x x =+B .632x x x =⋅C .623)(x x =-D .236x x x =÷2、 下列不是同类项的是( )A .212与-B .n m 22与C .b a b a 2241与-D 222221y x y x 与- 3、 计算:)12)(12()12(2-+-+a a a4、 计算:)()2(42222y x y x-÷-考点8 因式分解 1、 分解因式______2=+mnmn ,______4422=++b ab a 2、 分解因式________12=-x考点9:分式 1、 当x _______时,分式52+-x x 有意义 2、 当x _______时,分式242--x x 的值为零 3、 下列分式是最简分式的是( )A .ab a a +22B .axy 36 C .112+-x x D 112++x x 4、 下列各式是分式的是( )A .a 1 B .3a C .21 D π65、 计算:x x ++-11116、 计算:112---a a a考点10 二次根式1、下列各式是最简二次根式的是( )A .12B .x 3C .32xD .352、 下列根式与8是同类二次根式的是( ) A .2 B .3 C .5 D .63、 二次根式43-x 有意义,则x 的取值范围_________4、 计算:3322323--+5、 计算:)0(4522≥-a a a6、 计算:5120-7、 数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.(第7题)82得【 】 (A ) 2 (B )4x 4-+ (C )-2 (D )4x 4-达标测试:1、实验中学初三年级12个班中共有团员a 人,则a 12表示的实际意义是 ▲ 2、先化简,再求值:2x 2x 11x 1x -⎛⎫⋅+ ⎪+⎝⎭,其中x=12. 3、已知, P=22x y x y x y---,Q=()2x y 2y(x y)+-+,小敏、小聪两人在x 2,y 1==-的条件下分别计算了P 和Q 的值,小敏说P 的值比Q 大,小聪说Q 的值比P 大,请你判断谁的结论正确,并说明理由。

中考数学专题复习数与式

中考数学专题复习数与式

中考数学专题复习专题一 数与式[基础训练]1.如果a 与2-的和为O ,那么a 是( )B.12 C.12- D.2- 2.234()m m g 等于( ) A.9mB .10mC .12mD .14m3. 若4x =,则5x -的值是( )A .1B .-1C .9D .-94、5-的相反数是 ,9的算术平方根是 ,-3倒数是 . 4.已知(a-b)2=4,ab=21,则(a+b)2= 5.在函数1-=x y 中,自变量x6.若分式12--x x 的值为零,则=x . 7.因式分解:=+-2232xy y x x 9.根据如图所示的程序计算,若输入x 的值为1则输出y 的值为 10.计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+11.已知12+=x ,求代数式xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值.(第9题图)[精选例题]例题1(1)1:2的倒数是( ) A21 B-21 C ±21D2 (2)写出一个比-1大的负有理数是________,写出一个比-1大的负无理数是_________. (3)若()的值为则n m n m 2,0)3(32+=++- A -4 B -1 C 0 D4 说明:本题考查对数与式基本概念的理解(1)倒数的概念(2)有理数与无理数的概念和大小比较(3)绝对值和完全平方的非负性 例题2(1)如图,在数轴上表示15的点可能是(A 点PB 点QC 点MD 点N (2)当x=_____时,分式33--x x 无意义.(3)已知aaa a -=-112,则a 的取值范围是( ) A a 0≤ B a<0 C 0<a ≤1 Da>0 说明:本题考查对数与式有关性质的掌握(1)实数的大小和数轴上的表示(2)分式在什么时候无意义和绝对值的意义 (3)平方根的意义和性质例题3(1)下列运算正确的是( )A 22a a a =⋅ B 2a a a =+ C 236a a a =÷ D ()623a a =(2)化简a+b+(a-b)的最后结果正确的是( ) A 2a+2b B 2b C 2a D0 (3)下列计算错误的是( )A -(-2)=2B 228=C 222532x x x =+ D ()532a a =(4)先化简41)231(2-+÷-+a a a , 然后请你给a 选取一个合适的值, 再求此时原式的值.说明:本题考查对数与式运算法则的掌握,第(4)题注意解题的规范。

初三数学中考专题—数与式(全面、详细、好用)

初三数学中考专题—数与式(全面、详细、好用)

1专题一:数与式一、考点综述考点内容:实数与代数式是数学知识的基础,也是其它学科的重要工具,因此在近年来各地的中考试卷中始终占有一席之地. 考纲要求: (1)实数1借助数轴理解相反数、倒数、绝对值意义及性质. 2掌握实数的分类、大小比较及混合运算.3会用科学记数法、有效数字、精确度确定一个数的近似值. 4能用有理数估计一个无理数的大致范围. (2)代数式1了解整式、分式、二次根式、最简二次根式的概念及意义.会用提公因式法、公式法对整式进行因式分解.2理解平方根、算术平方根、立方根的意义及其性质. 根据整式、分式、二次根式的运算法则进行化简、求值考题分值:数与式约占总分的17.1%备考策略:①夯实基础,抓好“双基”.②把课本的典型、重点的题目做变式和延伸. ③注意一些跨学科的常识.④关注中考的新题型.⑤关注课程标准里面新增的目标. ⑥探究性试题的复习步骤:1.纯数字的探索规律.2.结合平面图形探索规律.3.结合空间图形探索规律,4.探索规律方法的总结. 二、例题精析【答案】选B .【规律总结】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案.突破方法:根据表格中所提供的信息,找出规律,容易发现短横与长横所表示的不同意义.然后对照分析出两个安全空格中所应填写的数字. 例2.阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,A B O B O A b a b a a b=-=-=-=-;(2)如图1-5,点A 、B都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;(3)如图1-6,点A 、B在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:的两点之间的距离是 ;数轴上表示-2和-1和-3的两点之间的距离之间的距离是.如果2AB =,那么x =. 【解题思路】依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解.(1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+;因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.【答案】(1)3,3,4;(2)1x =或3x =-.【规律总结】要认真阅读材料,理解数轴上两点A 、B 的距离公式AB a b =-,获取新的信息和结论,然后应用所得结论,解答新问题.例3.0细心观察图形,认真分析各式,然后解答问题。

专题1.数与式(解析版)

专题1.数与式(解析版)

2019年中考数学典题精选系列专题01 数与式1.3月30日,我区航空经济产业功能区2019年一季度重大项目集中开工仪式在电子科大产业园四期项目用地举行.参加此次集中开工仪式项目共计71个,总投资超过249亿元,未来随着这一波又一波项目的建成投产,必将为双流航空经济插上腾飞之翼,助力双流打造中国航空经济之都.用科学记数法表示249亿元为()A.249×108元B.24.9×109元C.2.49×1010元D.0.249×1011元【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将249亿用科学记数法可表示为2.49×1010.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C.3.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2 B.x=﹣2,y=1 C.x=2,y=1 D.x=﹣3,y=1【答案】C【解析】【分析】将各项中的x与y代入程序计算,即可得到结果.【详解】A、当x=1,y=2时,原式=2﹣2=0,不符合题意;B、当x=﹣2,y=1时,原式=8+1=9,不符合题意;C、当x=2,y=1时,原式=8﹣1=7,符合题意;D、当x=﹣3,y=1时,原式=18+1=19,不符合题意,故选:C.【点睛】本题考查代数式求值,熟练掌握运算法则是解题关键.4.下列整数中,比小的数是()A.B.C.D.【答案】D【解析】【分析】可根据有理数大小比较的方法:正数>0>负数,两个负数比较大小,绝对值越大的反而越小.通过比较直接得出.【详解】∵-3>-π,0>-π,1>-π,-4<-π故选D.【点睛】本题考查有理数比大小,深刻理解有理数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.5.已知23ab=,则代数式a ba+的值为()A.52B.53C.23D.32【答案】B【解析】由23ab=得到:a=23b,则代入可得2533b ba bb b++==.故选:B.6.下列运算正确的是()A .B .C .D .【答案】D【解析】【分析】根据合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算求出每个式子的值,再根据结果判断即可.【详解】A 、与不是同类项,故本选项错误;B 、,故本选项错误;C 、,故本选项正确;D 、,故本选项正确.故选D.【点睛】本题考查了合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算等知识点,主要考查学生的计算能力和辨析能力,题目比较好,但是一道比较容易出错的题目.7.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A .B.2 C.﹣1 D.﹣2【答案】A【解析】根据表达式求出前几个数后发现:每三个数为一个循环组.用100除以3,根据商和余数的情况确定a100的值即可.解:根据题意得,a 2==2,a 3==﹣1,a 4==,a 5==2,…,依此类推,每三个数为一个循环组依次循环, ∵100÷3=33…1,∴a 100是第34个循环组的第一个数,与a 1相同, 即a 100=.故选A .8.已知a ﹣b=3,则代数式a 2﹣b 2﹣6b 的值为( ) A .3 B .6 C .9 D .12 【答案】C .【解析】由a ﹣b=3,得到a=b+3,则原式=(b+3)2﹣b 2﹣6b=b 2+6b+9﹣b 2﹣6b=9.故选C .学科*网 9.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于-1,若我们规定一个“新数”,使其满足(即方程有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,从而对任意正整数n ,我们可得到同理可得那么, 23420162017••••••i i i i i i ++++++。

(完整word版)中考数学专题复习资料--数与式

(完整word版)中考数学专题复习资料--数与式

第一轮中考复习——数与式知识梳理:一.实数和代数式的有关概念 1。

实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。

数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。

3。

相反数:只有符号不同的两个数叫做互为相反数。

0的相反数是0。

数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等.4.倒数:1除以一个数的商,叫做这个数的倒数.一般地,实数a 的倒数为a1.0没有倒数.两个互为倒数的数之积为1。

反之,若两个数之积为1,则这两个数必互为倒数。

5。

绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。

a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离.6。

实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大. (1)正数大于零,零大于负数.(2)两正数相比较绝对值大的数大,绝对值小的数小。

(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。

(4)对于任意两个实数a 和b ,①a>b ,②a=b ,③a 〈b ,这三种情况必有一种成立,而且只能有一种成立。

7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。

单独的一个数或字母也是代数式。

8。

整式:单项式与多项式统称为整式。

单项式:只含有数与字母乘积形式的代数式叫做单项式。

一个数或一个字母也是单项式。

单项式中数字因数叫做这个单项式的系数。

一个单项式中所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的代数和多项式。

数学中考专题一:数与式

数学中考专题一:数与式

题一:在 02 2数学中考专题复习专题一:数 与 式经典讲义π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简 x 2 2 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 7 1, 3%, 0.31 ,都是有理数; π 8, ,-cos30°,0.1010010001 都是无理2 数. 题二: 1,-2. 题三: D题四: (1)3x 2+13x +12(2) 6b + 3题五: A题六: 98题七:有道理,理由略 题八: 1 专题 1: 数与式经典精讲课后练习 ( 一)数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5 k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 2 2 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 22 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 22 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理。

人教版初中数学中考复习专题复习 数与式(37张PPT)

人教版初中数学中考复习专题复习 数与式(37张PPT)

知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.

人教版中考数学一轮复习专题一《数与式》知识点+练习(共33张PPT)

人教版中考数学一轮复习专题一《数与式》知识点+练习(共33张PPT)

(3)、有理数分类:
正整数 整数 0 负整数 有理数 正分数 分数 负分数
正整数 正有理数 正分数 有理数 0(0既不是正数也不是负数 ) 负整数 负有理数 负分数
2、数轴的三要素为 原点 、正方向 和单位长度. 数轴上的点与 实数 是一一对应. 3、实数a的相反数为 -a . 若a、b互为相反数,则 a+b=0 . 4、非零实数a的倒数为 1/a . 若a、b互为倒数,则 ab=1 . 5、绝对值: (a 0) a
a 0 (a 0) -a (a 0)
6、数的开方: ⑴ 任何正数都有 2 个平方根,它们互为相反数. 其中正的平方根 a 叫 算术平方根 负数 没有平方根, 0的算术平方根为 0 . ⑵ 任何一个实数a都有立方根,记为 ⑶ .
3
a
.
a ( a 0 ) 2 a a -a (a 0)
※3. 用换元法解分式方程的一般步骤: ① 设辅助未知数,并用含辅助未知 数的代数式去表示方程中另外的代数式; ② 解所得到的关于辅助未知数的新 方程,求出辅助未知数的值;
③ 把辅助未知数的值代入原设中,
求出原未知数的值;
④ 检验作答.
4.分式方程的应用题要注意检验: (1)检验所求的解是否是所列 分式方程的解 ; (2)检验所求的解是否 符合实际意义 .
(2) 多项式:几个单项式的 和 叫做多项 式.在多项式中,每个单项式叫做多项式 的 项 ,其中次数最高的项的 次数 叫做这 个多项式的次数.不含字母的项叫做常数项 .
(3) 整式: 单项式 与 多项式 统称整式.
2. 同类项:在一个多项式中,所含字母 相 同并且相同字母的指数 也分别相等的项叫 做同类项. 3.合并同类项:把同类项的系数 相加 .所 得的结果作为系数,字母以及字母的指数 不变。

初三数学 专题复习 数与式、方程、不等式

初三数学  专题复习 数与式、方程、不等式

专题复习一:数与式、方程、不等式一、考点、热点回顾 (一)数与式A 、中考经典真题1、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣=2、(2013•遵义)如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是( )A . a +b <0B . ﹣a <﹣bC . 1﹣2a >1﹣2bD . |a|﹣|b|>0 3、(2013台湾、29)数轴上A 、B 、C 三点所表示的数分别为a 、b 、c ,且C 在AB 上.若|a|=|b|,AC :CB=1:3,则下列b 、c 的关系式,何者正确?( )A .|c|=|b|B .|c|=|b|C .|c|=|b|D .|c|=|b|4、(2013•咸宁)在数轴上,点A (表示整数a )在原点的左侧,点B (表示整数b )在原点的右侧.若|a ﹣b|=2013,且AO=2BO ,则a+b 的值为 .5、(绵阳市2013年)2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( D )A .1.2×10-9米B .1.2×10-8米C .12×10-8米D .1.2×10-7米6、(2013凉山州)如果单项式﹣xa+1y 3与是同类项,那么a 、b 的值分别为( )A .a=2,b=3B .a=1,b=2C .a=1,b=3D .a=2,b=27、(2013•绥化)按如图所示的程序计算.若输入x 的值为3,则输出的值为 .8、(13年北京5分16) 已知0142=--x x ,求代数式22))(()32(y y x y x x --+--的值。

9、(2013年江西省)如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为 .B 、培优训练1. (2009 湖北省鄂州市) 为了求231222++++…+20082的值,可令231222S =++++…20082+,则23422222S =++++…20092+,因此2009221S S -=-,所以231222++++…20082009221+=-.仿照以上推理计算出231555++++…20095+的值是( ) A .200951- B .201051- C .2009514- D .2010514- 2. (2009 四川省眉山市) 一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( )A .1019a b + B .1019a b -C .1017a b -D .1021a b -3. (2009 贵州省贵阳市) 有一列数12341n n a a a a a a - ,,,,,,,其中1521a =⨯+,2532a =⨯+,3543a =⨯+,4554a =⨯+,5565a =⨯+, ,当2009n a =时,n 的值等于( )A .2010B .2009C .401D .3344. (2009 福建省南平市) 观察下列数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,那么第32个数对是( )A .(4,4)B .(4,5)C .(4,6)D .(5,4)5. (2009 福建省泉州市) 点A 1、 A 2、 A 3、 …、n A (n 为正整数)都在数轴上.点A 1在原点O 的左边,且A 1O =1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2008 、A 2009所表示的数分别为( )A .2008、2009-B .2008-、 2009C .1004、1005-D .1004、 1004- 6. (2007 内蒙古呼和浩特市) 观察下列三角形数阵:则第50行的最后一个数是( ) A.1225 B.1260 C.1270 D.12757. (2009 浙江省台州市) 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++; ③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 8、 (2008 福建省南平市) 定义:a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,则2009a =9. (2009 湖北省荆门市) 定义2*a b a b =-,则(12)3**=______.10. (2007 四川省德阳市) 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0) 根据这个规律探索可得,第100个点的坐标为____________.12 34 5 6 7 8 9 10 11 12 13 14 15O (1,0) (2,0) (3,0) (4,0) (5,0)x(5,1)(4,1) (3,1) (2,1) (3,2) (4,2) (4,3) (5,4) (5,3)(5,2) y11.(2009 四川省凉山州) 我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?12. (2009 四川省凉山州)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱 五棱柱 六棱柱图形顶点数a 6 10 12 棱数b 9 12 面数c58观察上表中的结果,你能发现a b c 、、之间有什么关系吗?请写出关系式.(二)方程与不等式 A 、中考经典真题1、(2013年河北)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10C.120x-10=100x D.120x+10=100x2、(2013•牡丹江)若关于x的分式方程的解为正数,那么字母a的取值范围是3、(2013•攀枝花)已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣64、(2013•咸宁)已知是二元一次方程组的解,则m+3n的立方根为.5、(2013安顺)4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .6、(2013•泸州)设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为()A.5B.﹣5 C.1D.﹣17、(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4C.﹣4 D.10 8、(2013达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习专题1《数与式》考点1 有理数、实数的概念【知识要点】1、实数的分类:有理数,无理数。

2、实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。

3、______________________叫做无理数。

一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。

【典型考题】1、把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ } 正实数集{ }2、在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、在4,45sin ,32,14.3,3︒--中,无理数的个数是_______ 4、写出一个无理数________,使它与2的积是有理数【复习指导】解这类问题的关键是对有理数和无理数意义的理解。

无理数与有理数的根本区别在于能否用既约分数来表示。

考点2 数轴、倒数、相反数、绝对值【知识要点】1、若0≠a ,则它的相反数是______,它的倒数是______。

0的相反数是________。

2、一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。

⎩⎨⎧<≥=)0____()0____(||x x x 3、一个数的绝对值就是数轴上表示这个数的点与______的距离。

【典型考题】1、___________的倒数是211-;0.28的相反数是_________。

2、如图1,数轴上的点M 所表示的数的相反数为_________M3图13、0|2|)1(2=++-n m ,则n m +的值为________4、已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( ) ①0>+c b ②c a b a +>+ ③ac bc > ④ac ab > A.1个 B.2个 C.3个 D.4个6、①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。

②数轴上表示x 和-1的两点A 和B 之间的距离是_______,如果|AB|=2,那么____________=x【复习指导】1、若b a ,互为相反数,则0=+b a ;反之也成立。

若b a ,互为倒数,则1=ab ;反之也成立。

2、关于绝对值的化简(1) 绝对值的化简,应先判断绝对值符号内的数或式的值是正、负或0,然后再根据定义把绝对值符号去掉。

(2) 已知)0(||≥=a a x ,求x 时,要注意a x ±=考点3 平方根与算术平方根【知识要点】1、若)0(2≥=a a x ,则x 叫a 做的_________,记作______;正数a 的__________叫做算术平方根,0的算术平方根是____。

当0≥a 时,a 的算术平方根记作__________。

2、非负数是指__________,常见的非负数有(1)绝对值0___||a ;(2)实数的平方0___2a ;(3)算术平方根)0(0___≥a a 。

3、如果c b a ,,是实数,且满足0||2=++c b a ,则有__________,_____,===c b a【典型考题】1、下列说法中,正确的是( )A.3的平方根是3B.7的算术平方根是7C.15-的平方根是15-±D.2-的算术平方根是2-2、9的算术平方根是______2 a 图2 c3、38-等于_____4、03|2|=-+-y x ,则______=xy考点4 近似数和科学计数法【知识要点】1、精确位:四舍五入到哪一位。

2、有效数字:从左起_______________到最后的所有数字。

3、科学计数法:正数:_________________负数:_________________【典型考题】1、据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________2、由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______3、用小数表示:5107-⨯=_____________考点5 实数大小的比较【知识要点】1、正数>0>负数;2、两个负数绝对值大的反而小;3、在数轴上,右边的数总大于左边的数;4、作差法:.,0,00b a b a b a b a b a b a <<->>-==-则;若则;若,则若【典型考题】1、比较大小:0_____21_____|3|--;π。

2、应用计算器比较5113与的大小是____________3、比较41,31,21---的大小关系:__________________ 4、已知2,,1,10x x xx x ,那么在<<中,最大的数是___________ 考点6 实数的运算【知识要点】1、是正整数);时,当n a a a n ______(_____00==≠-。

2、今年我市二月份某一天的最低温度为C ︒-5,最高气温为C ︒13,那么这一天的最高气温比最低气温高___________3、如图1,是一个简单的数值运算程序,当输入x 的值为-1时,则输出的数值为____________4、计算(1)2011(2)(2008||22-+--(2)︒⋅+++-30cos 2)21()21(1考点7 乘法公式与整式的运算【知识要点】1、判别同类项的标准,一是__________;二是________________。

2、幂的运算法则:(以下的n m ,是正整数)_____)1(=⋅n m a a ;____))(2(=n m a ;_____))(3(=n ab ;)0______()4(≠=÷a a a n m ;______))(5(=na b3、乘法公式:________))()(1(=-+b a b a ;____________))(2(2=+b a ;_____________))(3(2=-b a4、去括号、添括号的法则是_________________【典型考题】1、下列计算正确的是( )A.532x x x =+B.632x x x =⋅C.623)(x x =-D.236x x x =÷2、下列不是同类项的是( ) A.212与- B.n m 22与 C.b a b a 2241与- D 222221y x y x 与-3、计算:)12)(12()12(2-+-+a a a4、计算:)()2(42222y x y x -÷-【知识要点】因式分解的方法:1、提公因式:2、公式法:________2;__________2222=++=-b ab a b a_______222=+-b ab a【典型考题】1、分解因式______2=+mn mn ,______4422=++b ab a2、分解因式________12=-x考点9:分式【知识要点】1、分式的判别:(1)分子分母都是整式,(2)分母含有字母;2、分式的基本性质:)0(≠÷÷=⋅⋅=m ma mb m a m b a b 3、分式的值为0的条件:___________________4、分式有意义的条件:_____________________5、最简分式的判定:_____________________6、分式的运算:通分,约分【典型考题】1、当x _______时,分式52+-x x 有意义 2、当x _______时,分式242--x x 的值为零 3、下列分式是最简分式的是( ) A.ab a a +22 B.axy 36 C.112+-x x D 112++x x 4、下列各式是分式的是( ) A.a 1 B.3a C.21 D π6 5、计算:xx ++-11116、计算:112---a a a【知识要点】1、二次根式:如)0(≥a a2、二次根式的主要性质:(1))0_____()(2≥=a a (2)⎪⎩⎪⎨⎧<=>==)0__()0__()0__(||2a a a a a(3))0,0_______(≥≥=b a ab (4))0,0____(>≥=b a a b 3、二次根式的乘除法)0,0________(≥≥=⋅b a b a )0,0_______(>≥=b a b a4、分母有理化:5、最简二次根式:6、同类二次根式:化简到最简二次根式后,根号内的数或式子相同的二次根式7、二次根式有意义,根号内的式子必须大于或等于零【典型考题】1、下列各式是最简二次根式的是( ) A.12 B.x 3 C.32x D.35 2、下列根式与8是同类二次根式的是( ) A.2 B.3 C.5 D.63、二次根式43-x 有意义,则x 的取值范围_________4、若63=x ,则x =__________5、计算:3322323--+6、计算:)0(4522≥-a a a7、计算:5120-8、数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.参考答案考点1 有理数、实数的概念1、有理数集{51.0,25.0,8,32,4,5.73 -} 无理数集{π,138,15 } 正实数集{51.0,25.0,,8,32,138,4,153 π} 2、23、24、答案不唯一。

如(2)考点2 数轴、倒数、相反数、绝对值1、32-,28.0- 2、5.2-3、1-4、8-5、C6、3 ,4 ;|1|+x , 13或-考点3 平方根与算术平方根1、B(第8题)2、33、2-4、6考点4 近似数和科学计数法1、个6102.4⨯2、4,万分位3、0.00007考点5 实数大小的比较1、< , <2、3115>3、413121-<-<- 4、x1 考点6 实数的运算1、C ︒182、13、(1)解:原式=4+2121- (2)解:原式=1+2+232⋅ =4 =3+3考点7 乘法公式与整式的运算1、C2、B3、)12)(12()12(2-+-+a a a解:原式=))12(12)(12(--++a a a=)1212)(12(+-++a a a=)12(2+a=24+a4、)()2(42222y x y x -÷-解:原式=)(44244y x y x -÷=24x -考点8 因式分解1、2)2(),1(b a n mn ++2、)1)(1(-+x x考点9:分式1、5-≠x2、2-=x3、D4、A5、xx ++-1111 解:原式=)1)(1(1)1)(1(1x x x x x x -+-++-+ =)1)(1(11x x x x +--++ =)1)(1(2x x +- 6、112---a a a 解:原式=)1(12+--a a a =1)1)(1(12--+--a a a a a =1)1(22---a a a =11-a 考点10 二次根式1、B2、A3、34≥x4、25、3322323--+ 解:原式=3332223-+- =322-6、)0(4522≥-a a a 解:原式=a a 25- =a 37、5120-=552514-=- 8、222)()1()1(b a b a ---++ 解:a b b a >>-<,1,10,01,01<->-<+∴b a b a 原式=)()1()1(b a b a -+-++- =b a b a -+-+--11 =2-(第8题)。

相关文档
最新文档