学高中数学数系的扩充与复数的引入数的概念的扩展复数的有

合集下载

2014届高考数学一轮复习教学案数系的扩充与复数的引入

2014届高考数学一轮复习教学案数系的扩充与复数的引入

数系的扩充与复数的引入[知识能否忆起]一、复数的有关概念1.复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0,b ≠0,则a +b i 为纯虚数.2.复数相等:a +b i =c +d i ⇔a =c ,b =d (a ,b ,c ,d ∈R ).3.共轭复数:a +b i 与c +d i 共轭⇔a =c ,b +d =0(a ,b ,c ,d ∈R ).4.复数的模:向量OZ ―→的长度叫做复数z =a +b i 的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2.二、复数的几何意义复数z =a +b i ―→复平面内的点Z (a ,b )―→平面向量OZ .三、复数的运算1.复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则: (1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; (2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )ic 2+d 2(c +d i ≠0).2.复数加法、乘法的运算律对任意z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3);z 1·z 2=z 2·z 1,(z 1·z 2)·z 3=z 1·(z 2·z 3),z 1(z 2+z 3)=z 1z 2+z 1z 3.[小题能否全取]1.(教材习题改编)已知a ∈R ,i 为虚数单位,若(1-2i)(a +i)为纯虚数,则a 的值等于( )A .-6B .-2C .2D .6解析:选B 由(1-2i)(a +i)=(a +2)+(1-2a )i 是纯虚数,得⎩⎪⎨⎪⎧a +2=0,1-2a ≠0,由此解得a=-2.2.(2011·湖南高考)若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( ) A .a =1,b =1B .a =-1,b =1C .a =-1,b =-1D .a =1,b =-1解析:选D 由(a +i)i =b +i ,得-1+a i =b +i ,根据两复数相等的充要条件得a =1,b =-1.3.(2012·天津高考)i 是虚数单位,复数5+3i4-i =( )A .1-iB .-1+iC .1+iD .-1-i解析:选C 5+3i 4-i =(5+3i )(4+i )(4-i )(4+i )=20+5i +12i +3i 216-i 2=17+17i17=1+i.4.若复数z 满足z1+i =2i ,则z 对应的点位于第________象限.解析:z =2i(1+i)=-2+2i ,因此z 对应的点为(-2,2),在第二象限内. 答案:二5.若复数z 满足z +i =3+ii ,则|z |=________.解析:因为z =3+ii -i =1-3i -i =1-4i ,则|z |=17.答案:17 1.复数的几何意义除了复数与复平面内的点和向量的一一对应关系外,还要注意 (1)|z |=|z -0|=a (a >0)表示复数z 对应的点到原点的距离为a ; (2)|z -z 0|表示复数z 对应的点与复数z 0对应的点之间的距离. 2.复数中的解题策略(1)证明复数是实数的策略:①z =a +b i ∈R ⇔b =0(a ,b ∈R );②z ∈R ⇔z =z . (2)证明复数是纯虚数的策略:①z =a +b i 为纯虚数⇔a =0,b ≠0(a ,b ∈R ); ②b ≠0时,z -z =2b i 为纯虚数;③z 是纯虚数⇔z +z =0且z ≠0.典题导入[例1] (1)(2012·陕西高考)设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2012·郑州质检)如果复数2-b i1+2i (其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( )A .-23B.23C. 2D .2[自主解答] (1)若复数a +bi =a -b i 为纯虚数,则a =0,b ≠0,ab =0;而ab =0时a=0或b =0,a +b i 不一定是纯虚数,故“ab =0”是“复数a +bi 为纯虚数”的必要不充分条件.(2)2-b i 1+2i =(2-b i )(1-2i )(1+2i )(1-2i )=(2-2b )-(4+b )i5,依题意有2-2b =4+b ,解得b =-23.[答案] (1)B (2)A由题悟法处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成实数问题来处理.由于复数z =a +b i(a ,b ∈R )由它的实部与虚部唯一确定,故复数z 与点Z (a ,b )相对应.以题试法1.(2012·东北模拟)已知x1+i =1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( )A .1+2iB .1-2iC .2+iD .2-i解析:选D 依题意得x =(1+i)(1-y i)=(1+y )+(1-y )i ;又x ,y ∈R ,于是有⎩⎪⎨⎪⎧x =1+y ,1-y =0,解得x =2,y =1. x +y i =2+i ,因此x +y i 的共轭复数是2-i.典题导入[例2] (2012·山西四校联考)已知复数z 的实部为-1,虚部为2,则2-iz (i 为虚部单位)在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限[自主解答] 选C 依题意得2-i z =2-i -1+2i =(2-i )(-1-2i )(-1+2i )(-1-2i )=-4-3i5,因此该复数在复平面内对应的点的坐标是⎝⎛⎭⎫-45,-35,位于第三象限.由题悟法复数与复平面内的点是一一对应的,复数和复平面内以原点为起点的向量也是一一对应的,因此复数加减法的几何意义可按平面向量加减法理解,利用平行四边形法则或三角形法则解决问题.以题试法2.(1)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i(2)(2012·连云港模拟)已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上对应的点分别为A ,B ,C ,若OC =λOA +μOB,(λ,μ∈R ),则λ+μ的值是________.解析:(1)复数6+5i 对应的点为A (6,5),复数-2+3i 对应的点为B (-2,3).利用中点坐标公式得线段AB 的中点C (2,4),故点C 对应的复数为2+4i.(2)由条件得OC =(3,-4),OA =(-1,2),OB=(1,-1),根据OC =λOA +μOB 得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),∴⎩⎪⎨⎪⎧ -λ+μ=3,2λ-μ=-4,解得⎩⎪⎨⎪⎧λ=-1,μ=2.∴λ+μ=1. 答案:(1)C (2)1典题导入[例3] (1)(2012·山东高考)若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)(2011·重庆高考)复数i 2+i 3+i 41-i =( )A .-12-12iB .-12+12iC.12-12iD.12+12i [自主解答] (1)z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i.(2)i 2+i 3+i 41-i =(-1)+(-i )+11-i =-i1-i=-i (1+i )(1-i )(1+i )=1-i 2=12-12i.[答案] (1)A (2)C由题悟法1.复数的加法、减法、乘法运算可以类比多项式运算,除法运算是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式.2.记住以下结论,可提高运算速度:①(1±i)2=±2i ;②1+i 1-i =i ;③1-i 1+i =-i ;④a +b i i =b -a i ;⑤i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ).以题试法3.(1)(2012·山西四校联考)设复数z 的共轭复数为z ,若z =1-i(i 为虚数单位),则z z +z 2的值为( )A .-3iB .-2iC .iD .-i(2)i 为虚数单位,⎝ ⎛⎭⎪⎫1+i 1-i 4=________. 解析:(1)依题意得zz +z 2=1+i 1-i +(1-i)2=-i 2+i 1-i-2i =i -2i =-i.(2)⎝ ⎛⎭⎪⎫1+i 1-i 4=⎣⎡⎦⎤(1+i )224=i 4=1.答案:(1)D (2)11.(2012·江西高考)若复数z =1+i(i 为虚数单位),z 是z 的共轭复数,则z 2+z 2的虚部为( )A .0B .-1C .1D .-2解析:选A ∵z =1+i ,∴z =1-i ,∴z 2+z 2=(z +z )2-2z z =4-4=0,∴z 2+z2的虚部为0.2.(2012·北京高考)在复平面内,复数10i 3+i 对应的点的坐标为( )A .(1,3)B .(3,1)C .(-1,3)D .(3,-1)解析:选A 由10i3+i =10i (3-i )(3+i )(3-i )=10(1+3i )10=1+3i 得,该复数对应的点为(1,3).3.(2012·长春调研)若复数(a +i)2在复平面内对应的点在y 轴负半轴上,则实数a 的值是( )A .1B .-1 C. 2D .- 2解析:选B 因为复数(a +i)2=(a 2-1)+2a i ,所以其在复平面内对应的点的坐标是(a 2-1,2a ),又因为该点在y 轴负半轴上,所以有⎩⎪⎨⎪⎧a 2-1=0,2a <0,解得a =-1.4.(2013·萍乡模拟)复数(1+2i )(2+i )(1-i )2等于( )A.52 B .-52C.52iD .-52i解析:选B (1+2i )(2+i )(1-i )2=2+4i +i +2i 2-2i =5i -2i =-52. 5.(2012·河南三市调研)已知i 为虚数单位,复数z =2+i 1-2i,则|z |+1z =( )A .iB .1-iC .1+iD .-i解析:选B 由已知得z =2+i 1-2i =-2i 2+i 1-2i =i (1-2i )1-2i=i ,|z |+1z =|i|+1i =1-i.6.(2012·安徽名校模拟)设复数z 的共轭复数为z ,若(2+i)z =3-i ,则z ·z 的值为( ) A .1 B .2 C. 2D .4解析:选B 设z =a +b i(a ,b ∈R ),代入(2+i)z =3-i ,得(2a -b )+(2b +a )i =3-i ,从而可得a =1,b =-1,那么z ·z =(1-i)(1+i)=2.7.(2013·长沙模拟)已知集合M =⎩⎨⎧⎭⎬⎫i ,i 2,1i ,(1+i )2i ,i 是虚数单位,Z 为整数集,则集合Z ∩M 中的元素个数是( )A .3个B .2个C .1个D .0个解析:选B 由已知得M ={i ,-1,-i,2},Z 为整数集,∴Z ∩M ={-1,2},即集合Z ∩M 中有2个元素.8.定义:若z 2=a +b i(a ,b ∈R ,i 为虚数单位),则称复数z 是复数a +b i 的平方根.根据定义,则复数-3+4i 的平方根是( )A .1-2i 或-1+2iB .1+2i 或-1-2iC .-7-24iD .7+24i解析:选B 设(x +y i)2=-3+4i(x ,y ∈R ),则⎩⎪⎨⎪⎧x 2-y 2=-3,xy =2,解得⎩⎪⎨⎪⎧ x =1,y =2,或⎩⎪⎨⎪⎧x =-1,y =-2.9.在复平面内,复数1+i 与-1+3i 分别对应向量OA 和OB,其中O 为坐标原点,则|AB|=________.解析:由题意知A (1,1),B (-1,3),故|AB|=(-1-1)2+(3-1)2=2 2.答案:2 210.已知复数z =1-i ,则z 2-2zz -1=________.解析:z 2-2z z -1=(z -1)2-1z -1=z -1-1z -1=(-i)-1-i =-i -i -i·i =-2i.答案:-2i11.设复数z 满足|z |=5且(3+4i)z 是纯虚数,则z =________. 解析:设z =a +b i(a ,b ∈R ),则有a 2+b 2=5. 于是(3+4i)z =(3a -4b )+(4a +3b )i.由题设得⎩⎪⎨⎪⎧ 3a -4b =04a +3b ≠0得b =34a 代入得a 2+⎝⎛⎭⎫34a 2=25,a =±4,∴⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =-4,b =-3.∴z =4-3i 或z =-4+3i. 答案:±(4-3i)12.(-1+i )(2+i )i 3=________.解析:(-1+i )(2+i )i 3=-3+i -i =-1-3i.答案:-1-3i13.(2011·上海高考改编)已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,则z 2=________.解析:(z 1-2)(1+i)=1-i ⇒z 1=2-i. 设z 2=a +2i ,a ∈R . 则z 1·z 2=(2-i)(a +2i) =(2a +2)+(4-a )i.∵z 1·z 2∈R ,∴a =4.∴z 2=4+2i. 答案:4+2i14.若复数z =a 2-1+(a +1)i(a ∈R )是纯虚数,则1z +a的虚部为________.解析:由题意得⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,所以a =1,所以1z +a =11+2i =1-2i (1+2i )(1-2i )=15-25i ,根据虚部的概念,可得1z +a的虚部为-25.答案:-251.(2012·山东日照一模)在复数集C 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧1+x ,x ∈R ,(1-i )x ,x ∉R ,则f (1+i)等于( )A .2+iB .-2C .0D .2解析:选D ∵1+i ∉R ,∴f (1+i)=(1-i)(1+i)=2.2.已知i 为虚数单位,a 为实数,复数z =(1-2i)(a +i)在复平面内对应的点为M ,则“a >12”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C z =(1-2i)(a +i)=(a +2)+(1-2a )i ,若其对应的点在第四象限,则a +2>0,且1-2a <0,解得a >12.即“a >12”是“点M 在第四象限”的充要条件.3.已知复数z =x +y i(x ,y ∈R ),且|z -2|=3,则yx 的最大值为________.解析:|z -2|=(x -2)2+y 2=3,∴(x -2)2+y 2=3. 由图可知⎝⎛⎭⎫y x max=31= 3. 答案: 34.复数z =(m 2+5m +6)+(m 2-2m -15)i ,与复数12+16i 互为共轭复数,则实数m =________.解析:根据共轭复数的定义得⎩⎪⎨⎪⎧m 2+5m +6=12,m 2-2m -15=-16.解之得m =1. 答案:15.已知z 是复数,z +2i ,z 2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应的点在第一象限,求实数a 的取值范围.解:设z =x +y i(x ,y ∈R ),则z +2i =x +(y +2)i ,由题意得y =-2. ∵z 2-i =x -2i 2-i =15(x -2i)(2+i)=15(2x +2)+15(x -4)i. 由题意得x =4,∴z =4-2i. ∴(z +a i)2=(12+4a -a 2)+8(a -2)i.由于(z +a i)2在复平面上对应的点在第一象限,∴⎩⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6. ∴实数a 的取值范围是(2,6).6.设z 是虚数,ω=z +1z ,且-1<ω<2.(1)求|z |的值及z 的实部的取值范围; (2)设u =1-z1+z ,求证:u 为纯虚数.解:(1)设z =a +b i(a ,b ∈R ,b ≠0),ω=a +b i +1a +b i =⎝⎛⎭⎫a +a a 2+b 2+⎝⎛⎭⎫b -b a 2+b 2i ,∵ω是实数,∴b -ba 2+b2=0.又b ≠0,∴a 2+b 2=1.∴|z |=1,ω=2a . ∵-1<ω<2,∴-12<a <1,即z 的实部的取值范围是⎝⎛⎭⎫-12,1. (2)u =1-z 1+z =1-a -b i 1+a +b i =1-a 2-b 2-2b i (1+a )2+b 2=-ba +1i. ∵-12<a <1,b ≠0,∴u 为纯虚数.1.已知a +2ii =b +i(a ,b ∈R ),其中i 为虚数单位,则a +b =( )A .-1B .1C .2D .3解析:选B a +2i i =i (a +2i )i 2=2-a i =b +i ,由复数相等的条件得b =2,a =-1,则a +b =1.2.对任意复数z =x +y i(x ,y ∈R ),i 为虚数单位,则下列结论正确的是( ) A .|z -z |=2yB .z 2=x 2+y 2C .|z -z |≥2xD .|z |≤|x |+|y |解析:选D ∵z -z =2y i ,∴|z -z |=2|y |,选项A 、C 错误;而z 2=(x +y i)2=x 2-y 2+2xy i ,选项B 错误;而|z |=x 2+y 2,|z |2=x 2+y 2,(|x |+|y |)2=x 2+y 2+2|xy |≥x 2+y 2,因此|z |≤|x |+|y |.3.已知虚数z ,使得z 1=z 1+z 2和z 2=z 21+z 都为实数,求z .解:设z =x +y i(x ,y ∈R ,且y ≠0),则z 2=x 2-y 2+2xy i ,∴z 1=x (x 2+y 2+1)+y (1-x 2-y 2)i(x 2-y 2+1)2+4x 2y 2,∵z 1∈R ,又y ≠0,∴x 2+y 2=1,同理,由z 2∈R 得x 2+2x +y 2=0,解得⎩⎨⎧x =-12,y =±32.∴z =-12±32i.三角函数、解三角形 平面向量、数系的扩充与复数的引入一、选择题(本题共12小题,每小题5分,共60分) 1.(2012·新课标全国卷)复数z =-3+i2+i 的共轭复数是( )A .2+iB .2-iC .-1+iD .-1-i解析:选D z =-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-1+i ,所以z =-1-i.2.(2012·潍坊模拟)已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan 2x =( ) A.724 B .-724C.247D .-247解析:选D 依题意得sin x =-1-cos 2x =-35,tan x =sin x cos x =-34,所以tan 2x =2tan x1-tan 2x=2×⎝⎛⎭⎫-341-⎝⎛⎭⎫-342=-247. 3.(2012·广州调研)设复数z 1=1-3i ,z 2=3-2i ,则z 1z 2在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D 因为z 1z 2=1-3i 3-2i =(1-3i )(3+2i )(3-2i )(3+2i )=9-7i 13,所以z 1z 2在复平面内对应的点为⎝⎛⎭⎫913,-713,在第四象限.4.(2012·邵阳模拟)已知a =(1,sin 2x ),b =(2,sin 2x ),其中x ∈(0,π).若|a ·b |=|a ||b |,则tan x 的值等于( )A .1B .-1 C. 3D.22解析:选A 由|a ·b |=|a ||b |知, a ∥b ,所以sin 2x =2sin 2x ,即2sin x cos x =2sin 2x ,而x ∈(0,π), 所以sin x =cos x ,tan x =1.5.(2012·福州质检查)“cos α=35”是“cos 2α=-725”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵cos α=35,∴cos 2α=2cos 2α-1=2×925-1=-725,∴由cos α=35可推出cos 2α=-725.由cos 2α=-725得cos α=±35,∴由cos 2α=-725不能推出cos α=35.综上,“cos α=35”是“cos 2α=-725”的充分而不必要条件.6.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2B.2π3C.3π2D.5π3解析:选C ∵f (x )为偶函数,∴φ3=k π+π2(k ∈Z ),∴φ=3k π+32π(k ∈Z ).又∵φ∈[0,2π],∴φ=32π.7.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若c cos A =b ,则△ABC ( ) A .一定是锐角三角形 B .一定是钝角三角形 C .一定是直角三角形 D .一定是斜三角形解析:选C 在△ABC 中,因为c cos A =b ,根据余弦定理,得c ·b 2+c 2-a 22bc =b ,故c 2=a 2+b 2,因此△ABC 一定是直角三角形.8.设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP|,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个解析:选C 设P (x ,y ),则由|AB |=2|AP |,得AB =2AP 或AB =-2AP . AB =(2,2),AP=(x -2,y ),即(2,2)=2(x -2,y ),x =3,y =1,P (3,1),或(2,2)=-2(x -2,y ),x =1,y =-1,P (1,-1).9.(2012·福州质检)将函数f (x )=sin 2x (x ∈R )的图象向右平移π4个单位后,所得到的图象对应的函数的一个单调递增区间是( )A.⎝⎛⎭⎫-π4,0 B.⎝⎛⎭⎫0,π2 C.⎝⎛⎭⎫π2,3π4D.⎝⎛⎭⎫3π4,π解析:选B 将函数f (x )=sin 2x (x ∈R )的图象向右平移π4个单位后得到函数g (x )=sin2⎝⎛⎭⎫x -π4=-cos 2x 的图象,则函数g (x )的单调递增区间为⎣⎡⎦⎤k π,k π+π2,k ∈Z ,而满足条件的只有B.10.(2012·西安名校三检)已知tan β=43,sin(α+β)=513,且α,β∈(0,π),则sin α的值为( )A.6365 B.1365 C.3365D.6365或3365解析:选A 依题意得sin β=45,cos β=35;注意到sin(α+β)=513<sin β,因此有α+β>π2(否则,若α+β≤π2,则有0<β<α+β≤π2,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),cos(α+β)=-1213,sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β=6365.11.(2012·河南三市调研)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且b 2=a 2-ac +c 2,C -A =90°,则cos A cos C =( )A.14B.24C .-14D .-24解析:选C 依题意得a 2+c 2-b 2=ac ,cos B =a 2+c 2-b 22ac =ac 2ac =12.又0°<B <180°,所以B =60°,C +A =120°.又C -A =90°,所以C =90°+A ,A =15°,cos A cos C =cos A cos(90°+A )=-12sin 2A =-12sin 30°=-14.12.(2012·广东高考)对任意两个非零的平面向量α和β,定义α∘β=α·ββ·β.若两个非零的平面向量a ,b 满足a 与b 的夹角θ∈⎝⎛⎭⎫π4,π2,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2|n ∈Z 中,则a ∘b =( )A.52B.32 C .1D.12解析:选D a ∘b =a ·b b ·b =|a ||b|cos θ|b |2=|a |cos θ|b |,①b ∘a =b ·a a ·a =|b ||a |cos θ|a |2=|b |cos θ|a |.②∵θ∈⎝⎛⎭⎫π4,π2,∴0<cos θ<22. ①×②得(a ∘b )(b ∘a )=cos 2θ∈⎝⎛⎭⎫0,12. 因为a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2|n ∈Z 中,设a ∘b =n 12,b ∘a =n 22(n 1,n 2∈Z ),即(a ∘b )·(b ∘a )=cos 2θ=n 1n 24,所以0<n 1n 2<2,所以n 1,n 2的值均为1,故a ∘b =n 12=12.二、填空题(本题共4小题,每小题5分,共20分)13.△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知a =2,b =3,则sin Asin (A +C )=________.解析:sin A sin (A +C )=sin A sin B =a b =23.答案:2314.(2012·安徽高考)设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________.解析:a +c =(1,2m )+(2,m )=(3,3m ). ∵(a +c )⊥b ,∴(a +c )·b =(3,3m )·(m +1,1)=6m +3=0. ∴m =-12.∴a =(1,-1).∴|a |= 2. 答案: 215.如图,在坡度为15°的观礼台上,某一列座位所在直线AB与旗杆所在直线MN 共面,在该列的第一个座位A 和最后一个座位B 测得旗杆顶端N 的仰角分别为60°和30°,且座位A 、B 的距离为106米,则旗杆的高度为________米.解析:由题可知∠BAN =105°,∠BNA =30°,由正弦定理得AN sin 45°=106sin 30°,解得AN =203(米),在Rt △AMN 中,MN =203sin 60°=30(米).故旗杆的高度为30米.答案:3016.已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1,x ∈R ,若函数h (x )=f (x +α)的图象关于点⎝⎛⎭⎫-π3,0对称,且α∈(0,π),则α的值为________. 解析:∵f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1=2sin ⎝⎛⎭⎫2x -π3,∴h (x )=f (x +α)=2sin ⎝⎛⎭⎫2x +2α-π3. ∵函数h (x )的图象的对称中心为⎝⎛⎭⎫-π3,0∴-2π3+2α-π3=k π.∴α=(k +1)π2,k ∈z .又α∈(0,π),∴α=π2.答案:π2三、解答题(本题共6小题,共70分)17.(本小题满分10分)(2012·广州二测)已知函数f (x )=A sin ⎝⎛⎭⎫ωx -π3(A >0,ω>0)在某一个周期内的图象的最高点和最低点的坐标分别为⎝⎛⎭⎫5π12,2,⎝⎛⎭⎫11π12,-2. (1)求A 和ω的值;(2)已知α∈⎝⎛⎭⎫0,π2,且sin α=45,求f (α)的值. 解:(1)∵函数f (x )在某一周期内的图象的最高坐标为⎝⎛⎭⎫5π12,2, ∴A =2,得函数f (x )的周期T =2⎝⎛⎭⎫11π12-5π12=π, ∴ω=2πT=2.(2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3. ∵α∈⎝⎛⎭⎫0,π2,且sin α=45, ∴cos α=1-sin 2α=35,∴sin 2α=2sin αcos α=2425,cos 2α=cos 2α-sin 2α=-725.∴f (α)=2sin ⎝⎛⎭⎫2α-π3=2⎝⎛⎭⎫sin 2αcos π3-cos 2αsin π3 =2⎝⎛⎭⎫2425×12+725×32=24+7325.18.(本小题满分12分)(2012·天津高考)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3+sin ⎝⎛⎭⎫2x -π3+2cos 2x -1,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间⎣⎡⎦⎤-π4,π4上的最大值和最小值. 解:(1)f (x )=sin 2x ·cos π3+cos 2x ·sin π3+sin 2x ·cos π3-cos 2x ·sin π3+cos 2x =sin 2x +cos2x =2sin ⎝⎛⎭⎫2x +π4. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π4,π8上是增函数,在区间⎣⎡⎦⎤π8,π4上是减函数,又f ⎝⎛⎭⎫-π4=-1,f ⎝⎛⎭⎫π8=2,f ⎝⎛⎭⎫π4=1,故函数f (x )在区间⎣⎡⎦⎤-π4,π4上的最大值为2,最小值为-1. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )cos B =b cos C .(1)求角B 的大小;(2)设m =(sin A ,cos 2A ),n =(4k,1)(k >1),且m ·n 的最大值是5,求k 的值.解:(1)因为(2a -c )cos B =b cos C ,所以在△ABC 中,由正弦定理,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C , 即2sin A cos B =sin A .又在△ABC 中,sin A >0,B ∈(0,π),所以cos B =12.所以B =π3.(2)因为m =(sin A ,cos 2A ),n =(4k,1)(k >1), 所以m ·n =4k sin A +cos 2A =-2sin 2A +4k sin A +1, 即m ·n =-2(sin A -k )2+2k 2+1.又B =π3,所以A ∈⎝⎛⎭⎫0,2π3.所以sin A ∈(0,1]. 所以当sin A =1⎝⎛⎭⎫A =π2时,m ·n 的最大值为4k -1. 又m ·n 的最大值是5,所以4k -1=5.所以k =32.20.(本小题满分12分)已知复数z 1=sin 2x +t i ,z 2=m +(m -3cos 2x )i(i 为虚数单位,t ,m ,x ∈R ),且z 1=z 2.(1)若t =0且0<x <π,求x 的值;(2)设t =f (x ),已知当x =α时,t =12,试求cos ⎝⎛⎭⎫4α+π3的值. 解:(1)因为z 1=z 2,所以⎩⎨⎧sin 2x =m ,t =m -3cos 2x ,即t =sin 2x -3cos 2x .若t =0,则sin 2x -3cos 2x =0,得tan 2x = 3. 因为0<x <π,所以0<2x <2π,所以2x =π3或2x =4π3,所以x =π6或x =2π3.(2)因为t =f (x )=sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3, 因为当x =α时,t =12,所以2sin ⎝⎛⎭⎫2α-π3=12, sin ⎝⎛⎭⎫π3-2α=-14, 所以cos ⎝⎛⎭⎫4α+π3=cos 2⎝⎛⎭⎫2α+π6=2cos 2⎝⎛⎭⎫2α+π6-1=2sin 2⎝⎛⎭⎫π3-2α-1=2⎝⎛⎭⎫-142-1=-78.21.(本小题满分12分)(2012·长春调研)如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点.(1)如果A ,B 两点的纵坐标分别为45,1213,求cos α和sin β;(2)在(1)的条件下,求cos(β-α)的值;(3)已知点C (-1,3),求函数f (α)=OA ·OC的值域.解:(1)根据三角函数的定义,得sin α=45,sin β=1213.又α是锐角,所以cos α=35.(2)由(1)知sin β=1213.因为β是钝角,所以cos β=-513.所以cos(β-α)=cos βcos α+sin βsin α =⎝⎛⎭⎫-513×35+1213×45=3365. (3)由题意可知,OA =(cos α,sin α),OC=(-1,3).所以f (α)=OA ·OC =3sin α-cos α=2sin ⎝⎛⎭⎫α-π6, 因为0<α<π2,所以-π6<α-π6<π3,所以-12<sin ⎝⎛⎭⎫α-π6<32,从而-1<f (α)< 3. 所以函数f (α)的值域为(-1, 3).22.(本小题满分12分)在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边长,已知 2sin A =3cos A .(1)若a 2-c 2=b 2-mbc ,求实数m 的值; (2)若a =3,求△ABC 面积的最大值.解:(1)由2sin A =3cos A 两边平方得2sin 2A =3cos A 即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍).而a 2-c 2=b 2-mbc 可以变形为b 2+c 2-a 22bc =m2,即cos A =m 2=12,所以m =1.(2)由(1)知 cos A =12,则sin A =32.又b 2+c 2-a 22bc =12,所以bc =b 2+c 2-a 2≥2bc -a 2,即bc ≤a 2.当且仅当b =c 时等号成立.故S △ABC =bc 2sinA ≤a 22·32=334.。

知识讲解_数学的扩充与复数的引入_知识讲解

知识讲解_数学的扩充与复数的引入_知识讲解

数系的扩充和复数的引入【要点梳理】要点一:复数的有关概念1.复数概念:形如()+a bi a b ∈R ,的数叫复数, 其中:a 叫复数的实部,b 叫复数的虚部,i 叫虚数单位(21=i -). 表示:复数通常用字母z 表示.记作:()=+z a bi a b ∈R ,.要点诠释:(1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.(2)复数=+z a bi 中,实部a 和虚部b 都是实数,这一点不容忽视,它列方程求复数的重要依据..(3)i 是-1的一个平方根,即方程12=x -的一个根. 方程12=x -有两个根,另一个根是i -;并且i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2.复数集概念:复数的全体组成的集合叫作复数集.表示:通常用大写字母C 表示.要点诠释:⊆⊆⊆⊆N Z Q R C ,其中N 表示自然数集,Z 表示整数集Q 表示有理数集,R 表示实数集.3.复数相等概念:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.表示:如果,,,a b c d R ∈,那么a c a bi c di b d=⎧+=+⇔⎨=⎩ 特别地,00a bi a b +=⇔==.要点诠释:(1)根据复数a +b i 与c+di 相等的定义,可知在a =c ,b =d 两式中,只要有一个不成立,那么就有a +b i≠c+di (a ,b ,c ,d ∈R ).(2)一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小.(3)复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.要点二:复数的分类表示:用集合表示如下图:要点三:复数的几何意义1. 复平面、实轴、虚轴:如图所示,复数z a bi =+(,a b R ∈)可用点(,)Z a b 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.要点诠释:实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数.2.复数集与复平面内点的对应关系按照复数的几何表示法,每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应.复数集C 和复平面内所有的点所成的集合是一一对应关系,即 复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b 这是复数的一种几何意义.3.复数集与复平面中的向量的对应关系在平面直角坐标系中,每一个平面向量都可以用一个有序实数对来表示,而有序实数对与复数是一一对应的,所以,我们还可以用向量来表示复数.设复平面内的点(,)Z a b 表示复数z a bi =+(,a b R ∈),向量OZ 由点(,)Z a b 唯一确定;反过来,点(,)Z a b 也可以由向量OZ 唯一确定.复数集C 和复平面内的向量OZ 所成的集合是一一对应的,即复数z a bi =+←−−−→一一对应平面向量OZ 这是复数的另一种几何意义.4.复数的模 设OZ a bi =+u u u r (,a b R ∈),则向量OZ 的长度叫做复数z a bi =+的模,记作||a bi +.即22||||0z OZ a b ==+u u u r .要点诠释:①两个复数不全是实数时不能比较大小,但它们的模可以比较大小.②复平面内,表示两个共轭复数的点关于x 轴对称,并且他们的模相等.【典型例题】类型一:复数的概念例1.请说出下面各复数的实部和虚部,有没有纯虚数?(1)23i +; (2)132i -; (3)1-3i ; (4)3-52i ; (5)π; (6)0.【思路点拨】将复数化为()+a bi a b ∈R ,的标准形式,实数为a ,虚部为b .当实部0a =,而虚部0b ≠时,该复数为纯虚数.【解析】(1)复数23i +的实部是2,虚部是3,不是纯虚数;(2)132i -=132i -+,其实部是-3,虚部是21,不是纯虚数; (3)1-3i 的实部是0,虚部是-31,是纯虚数;(4)2=-22i ,其实部是2-,虚部是-2,不是纯虚数; (5)π是实数,可写成+0i π⋅,其实部为π,虚部为0,不是纯虚数;(6)0是实数,可写出0+0i ⋅,其实部为0,虚部为0,不是纯虚数.【总结升华】准确理解复数的概念,明确实部、虚部的所指是关键.举一反三:【变式1】符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.(1)实部为-2的虚数;(2)虚部为-2的虚数;(3)虚部为-2的纯虚数;(4)实部为-2的纯虚数.【答案】(1)存在且有无数个,如-2+i 等;(2)存在且不唯一,如1-2i 等;(3)存在且唯一,即-2i ;(4)不存在,因为纯虚数的实部为0.【变式2】以2i 22i +的实部为虚部的新复数是________.【答案】2i -222i +的实部为-2,所以新复数为2-2i .【高清课堂:数系的扩充和复数的概念 401749 例题1】例2.当实数m 取何值时,复数22(34)(56)i,(m )z m m m m =--+--∈R ,表示:(1)实数;(2)虚数;(3)纯虚数.【思路点拨】根据复数z 为实数、虚数及纯虚数的概念,判断实部与虚部取值情况.利用它们的充要条件可分别求出相应的m 值.【解析】(1)当z 为实数时,要求虚部为0,即2560m m --=,6m =,解得或1m =-.(2)当z 表示虚数,要求虚部非0,即2560m m --≠,解得6m ≠且1m ≠-. (3)当z 表示纯虚数,要求实部为0,且虚部非0,即22340560m m m m ⎧--=⎪⎨--≠⎪⎩,解得4m =. 【总结升华】 复数包括实数和虚数,虚数又分为纯虚数和非纯虚数,合理利用复数是实数、虚数以及纯虚数的条件是解决本类题目的关键.举一反三:【变式1】 若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为_________.【答案】1-. 由复数z 为纯虚数,得21010x x ⎧-=⎨-≠⎩,解得1x =-.【变式2】已知复数22276(56)i (R)1a a z a a a a -+=+-+∈-,试求实数a 分别取什么值时,z 为: (1)实数; (2)虚数; (3)纯虚数.【答案】(1)当z 为实数时,则225601a a a ⎧--=⎪⎨≠⎪⎩ ∴161a a a =-=⎧⎨≠±⎩或,故a =6, ∴当a =6时,z 为实数.(2)当z 为虚数时,则有225601a a a ⎧--≠⎪⎨≠⎪⎩,∴161a a a ≠-≠⎧⎨≠±⎩且, ∴a ≠±1且a ≠6,∴当a ∈(-∞,-1)∪(―1,1)∪(1,6)∪(6,+∞)时,z 为虚数.(3)当z 为纯虚数时,则有2225607601a a a a a ⎧--≠⎪⎨-+=⎪-⎩,∴166a a a ≠-≠⎧⎨=⎩且, ∴不存在实数a 使z 为纯虚数.【变式3】设复数22lg(22)(32)i z m m m m =--+++,m ∈R ,当m 为何值时,z 是:(1)实数; (2)z 是纯虚数.【答案】(1)要使z 是实数,则需22320220m m m m ⎧++=⎪⎨-->⎪⎩⇒m =―1或m =―2,所以当m =-1或m =-2时,z 是实数. (2)要使z 是纯虚数,则需222213320m m m m m ⎧--=⎪⇒=⎨++≠⎪⎩,所以m =3时,z 是纯虚数. 类型二:两个复数相等例3. 已知(21)(3)x i y y i -+=--,其中,x y R ∈,求x 与y .【思路点拨】利用复数相等的条件,列方程组,求解x y ,.【解析】根据复数相等的定义,得方程组⎩⎨⎧--==-)3(1,12y y x ,所以52x =,4y = 【总结升华】两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.举一反三:【变式1】已知,x y ∈R 且22712+=+x y xyi i -,求以x 为实部、以y 虚部的复数. 【答案】由题意知22712x y xy ⎧-=⎨=⎩,解得44x y =⎧⎨=⎩ 或 43x y =-⎧⎨=-⎩. 所以x+yi 的值为4+3i 或-4-3i .【高清课堂:数系的扩充和复数的概念 401749 例题2】【变式2】,x y ∈R ,复数(32)5x y xi ++与复数(2)18y i -+相等,求x y ,.【答案】(2)1818(2)y i y i -+=--,所以321852x y x y+=⎧⎨=-⎩,解得212x y =-⎧⎨=⎩. 【变式3】已知集合M={(a +3)+(b 2-1)i,8},集合N={3i ,(a 2-1)+(b +2)i }同时满足:N≠⊂M ,M N ≠I Φ,求整数a ,b .【答案】 2(3)(1)3a b i i ++-=依题意得 ①或28(1)(2)a b i =-++ ②或223(1)1(2)a b i a b i ++-=-++ ③由①得a =-3,b =±2,经检验,a =-3,b =-2不合题意,舍去.∴a =-3,b =2由②得a =±3, b =-2.又a =-3,b =-2不合题意,∴a =3,b =-2; 由③得222231401230a a a ab b b b ⎧⎧+=---=⎪⎪⎨⎨-=+--=⎪⎪⎩⎩即,此方程组无整数解. 综合①②③得a =-3,b =2或a =3,b =-2.类型三、复数的几何意义例4. 在复平面内,若复数22(2)(32)=--+-+z m m m m i 对应点(1)在虚轴上;(2)在第二象限;(3)在直线=y x 上,分别求实数m 的取值范围.【思路点拨】复数()+a bi a b ∈R ,在复平面内对应的点为()a b ,: =0a ⇔()a b ,在虚轴上;0,0a b <⎧⇔⎨>⎩()a b ,在第二象限;=a b ⇔()a b ,在=y x 上. 【解析】复数22(2)(32)=--+-+z m m m m i 在复平面内的对应点为()22(2)(32)---+m m m m ,.(1)由题意得22--=0m m ,解得m =2或m =-1.(2)由题意得2220,320.---+m m m m ⎧<⎪⎨>⎪⎩,解得12,2 1.m m m -<<⎧⎨><⎩或 ∴-1<m <1. (3)由已知得22232--=-+m m m m ,解得m =2.【总结升华】按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.举一反三:【高清课堂:数系的扩充和复数的概念 401749 例题3】【变式1】已知复数22(23)(43)z m m m m i =--+-+(m ∈R )在复平面上对应的点为Z ,求实数m 取什么值时,点Z (1)在实轴上;(2)在虚轴上;(3)在第一象限.【答案】(1)点Z 在实轴上,即复数z 为实数,由2-43031m m m m +=⇒==或∴当31m m ==或时,点Z 在实轴上.(2)点Z 在虚轴上,即复数z 为纯虚数或0,故2230m m --=-13m m ⇒==或∴当-13m m ==或时,点Z 在虚轴上.3)点Z 在第一象限,即复数z 的实部虚部均大于0由22230430m m m m ⎧-->⎪⎨-+>⎪⎩ ,解得m <―1或m >3 ∴当m <―1或m >3时,点Z 在第一象限.【变式2】在复平面内,复数sin 2cos2z i =+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】∵22ππ<<,∴sin20>,cos20<,故相应的点在第四象限,选D.【变式3】 已知复数(2k 2-3k -2)+(k 2-k)i 在复平面内对应的点在第二象限,则实数k 的取值范围.【答案】∵复数对应的点在第二象限,∴⎪⎩⎪⎨⎧>-<--,0,023222k k k k 即⎪⎩⎪⎨⎧><<<-.10,221k k k 或解得:10122k k -<<<<或 例5. 在复平面内,O 是原点,向量OA u u u r 对应的复数是2+i .(1)如果点A 关于实轴的对称点为点B ,求向量OB uuu r 对应的复数;(2)如果(1)中点B 关于虚轴的对称点为点C ,求点C 对应的复数.【解析】(1)设所求向量OB uuu r 对应的复数z 1=x 1+y 1i (x 1,y 1∈R ),则点B 的坐标为(x 1,y 1).由题意可知点A 的坐标为(2,1),根据对称性可知x 1=2,y 1=-1,故z 1=2-i .(2)设所求点C 对应的复数为z 2=x 2+y 2i (x 2,y 2∈R ),则点C 的坐标为(x 2,y 2).由对称性可知x 2=-2,y 2=-1,故z 2=-2-i .【总结升华】 由复数的几何意义知,复数与复平面上的点建立起一一对应的关系,因而在解决复数的相关问题时,我们可以利用复平面上的点的一些数学关系来解决.举一反三:【变式】在复平面内,复数z 1=1+i 、z 2=2+3i 对应的点分别为A 、B ,O 为坐标原点,OP OA OB λ=+u u u r u u u r u u u r .若点P 在第四象限内,则实数λ的取值范围是________.【答案】(12,13)OP λλ=++u u u r 由题意:120130λλ+>⎧⎨+<⎩,解得:1123λ-<<- 例6. 已知12z i =+,求z .【解析】z ==【总结升华】依据复数的模的定义,即可求得.举一反三:【变式1】若复数21(1)z a a i =-++(a R ∈)是纯虚数,则z = . 【答案】由210110a a a ⎧-=⇒=⎨+≠⎩, 所以z =2. 【变式2】已知z -|z|=-1+i ,求复数z .【答案】方法一:设z=x+yi (x ,y ∈R ),由题意,得i 1i x y +=-+,即(i 1i x y +=-+.根据复数相等的定义,得11x y ⎧-=-⎪⎨=⎪⎩,解得01x y =⎧⎨=⎩,∴z=i .方法二:由已知可得z=(|z|-1)+i ,等式两边取模,得||z =两边平方,得|z|2=|z|2-2|z|+1+1⇒|z|=1.把|z|=1代入原方程,可得z=i .。

高中数学数系的扩充与复数的引入数系的扩充与负数的引入复数的有关概念

高中数学数系的扩充与复数的引入数系的扩充与负数的引入复数的有关概念
2 + -6 < 0,
(1)当实数 x 满足 2
即-3<x<2 时,点 Z 位于第三象
-2-15 < 0,
限.
2 + -6 > 0,
(2)当实数 x 满足 2
-2-15 < 0,
即 2<x<5 时,点 Z 位于第四象限.
(3)当实数 x 满足(x2+x-6)-(x2-2x-15)-3=0,即 3x+6=0,x=-2 时,点 Z
分析:复数a+bi(a,b∈R)表示的点为Z(a,b),根据点满足的条件列出关系式,
可求x的值.
12/8/2021
第十一页,共二十六页。
目标导航
题型一
题型二
题型三
Z 知识梳理 D典例透析
HISHISHULI
IANLITOUXI
S随堂演练
UITANGYANLIAN
题型四
解:因为 x 是实数,所以 x2+x-6,x2-2x-15 也是实数.
题型二
Z 知识梳理 D典例透析
HISHISHULI
IANLITOUXI
S随堂演练
UITANGYANLIAN
题型四
复数与复平面内的点
【例2】 当实数x取什么值时,复平面内表示复数z=x2+x-6+(x2-2x-15)i的
点Z:
(1)位于第三象限;
(2)位于第四象限;
(3)位于直线(zhíxiàn)x-y-3=0上.
由复数相等的充要条件,得
20 + = 0,
0 = 2,
= - 2,
或 0
= -2 2
= 2 2.

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结
数系的扩充和复数的概念
复数的概念:形如a + bi (a∈R。

b∈R)的数叫做复数,其中a和b分别叫做实部和虚部。

根据b的值,复数可以分类为实数(当b=0),虚数(当b≠0),以及纯虚数(当a=0且
b≠0)。

复数的几何意义:复数可以用点在平面内的位置来表示,这个平面叫做复平面(或高斯平面),其中实轴和虚轴分别表示实部和虚部。

复数集C和复平面内所有的点是一一对应的关系,即每一个复数都有复平面内唯一的一个点和它对应,反之亦然。

复数的运算:复数的加、减、乘、除可以按照特定的法则进行。

例如,设z1=a+bi,z2=c+di,则z1±z2=(a±c)+(b±d)i,z1•z2=(ac-bd)+(ad+bc)i,z1/z2=(ac+bd)/(c^2+d^2)+(bc-
ad)/(c^2+d^2)i(其中z2≠0)。

关于虚数单位i的一些固定结论:i^2=-1,i^3=-i,i^4=1,i^n+i^(n+1)+i^(n+2)+i^(n+3)=0(其中n为自然数)。

注意事项:(1)两个复数不能比较大小,但是两个复数
的模可以比较大小;(2)在实数范围内的求根公式在复数范
围内同样适用。

1.复数$a+bi$与$c+di$的积是实数的充要条件是$ad+bc=0$。

2.当$m<1$时,复数$m(3+i)-(2+i)$在复平面内对应的点位
于第三象限。

3.复数$\frac{13}{2}+\frac{1}{2}i$位于第一象限。

4.已知复数$z$和$z+2-8i$都是纯虚数,求$z$。

5.删除此段。

人教版数学 选修1-2 1 数系的扩充和复数的概念(共14张ppt)教育课件

人教版数学 选修1-2 1 数系的扩充和复数的概念(共14张ppt)教育课件

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。

数系的扩充与复数的引入 (2).

数系的扩充与复数的引入 (2).

课堂教学单元教案科目:高二数学课题:数系的扩充与复数的引入一.数学分析:(1)复数系是在实数系的基础上扩充儿得到的,为了帮助学生了解学习复数的必要性,了解实际需求和数学内部的矛盾在数系扩充中的作用,本章从一个思考问题开始,在问题情境中简单介绍了由实数系扩到复数系的过程,这样不仅可以激发学生的学习复数的欲望,而且也可以比较自然的引入复数的学习之中。

复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数形式展开的,虚数单位、实部、虚部、复数相等的充要条件、以及虚数,纯虚数等概念的理解都应促进对复数实质的理解,即复数实际上一有序的实数对。

类比实数可以用数轴上的点表示,把复数在直角坐标系中表示出来,就得到了复数的集合表示。

用复平面内的点或平面向量表示复数,不仅使抽象的复数得到直观形象的表示,而且也使数和形得到了有机的结合。

(2)复数代数形式的四个运算,及复数代数形式的加法,减法,乘法和除法,重点是加法和乘法。

复数加法和乘法的法则是规定的,是具有其合理性的;这种规定与实数的加法,乘法的法则是一致的,而且实数的加法,乘法的有关运算仍然成立的。

二.学情分析:1.知识掌握上,高二年级的学生已经学过实数的扩充,已经有一定基础,但是扩充的过程可能会有所遗忘,所以首先应该进行适当的引入复习,同时高二的学生已经掌握了一些分析思考的能力,所以教学中通过问题的提出到解决过程有意识地进一步应用、提高学生的这些能力;2.心理上,多数学生感觉到数学过于枯燥繁琐,而且刚刚学的一章内容“推理与证明”又是数学中的难点,所以学生对新的一块内容可能也带有异样情绪,因此在引入、学习时要能让学生们能够感兴趣并且愿意去了解;3.学生学习本节内容可能存在的知识障碍:学生学习本节内容可能会遇到一些障碍,如对复数的理解,复数的引入是否具有实际意义,复数的引入是否具有实际应用,复数相等条件的理解等。

所以教学中对复数概念的讲解中尽量以简单明白、深入浅出的分析为主,在引入后花少许时间对复数的实际意义、复数的实际应用作以解释。

高中数学数系的扩充与复数的引入数系的扩充与负数的引入数的概念的扩展

高中数学数系的扩充与复数的引入数系的扩充与负数的引入数的概念的扩展

A.M∪R=I
C.∁IM∩R=R
B.∁IM∪R=I
D.M∩∁IR=I
答案:C
12/8/2021
第六页,共二十页。
)
目标导航
题型一
题型二
Z 知识梳理 D典例透析
HISHISHULI
IANLITOUXI
S随堂演练
UITANGYANLIAN
题型三
题型一
复数的概念
【例1】 请写出下列复数的实部和虚部,并指出它们是实数还是虚数,如果是
(6)0 的实部为 0,虚部为 0,它是实数.
反思(fǎn sī)当复数写成代数形式a+bi,且a,b∈R时,才可确定a是实部,b是
虚部.复数2+ai(a∈C)的虚部不一定是a,实部也不一定是2,复数ai也不一定是
虚数.
12/8/2021
第八页,共二十页。
目标导航
题型一
题型二
Z 知识梳理 D典例透析
目标导航
Z 知识梳理 D典例透析
HISHISHULI
S随堂演练
IANLITOUXI
UITANGYANLIAN
2.复数的分类
根据复数中实数a,b的取值不同,复数可以(kěyǐ)有以下的分类:
实数( = 0)
复数 a+bi
虚数( ≠ 0)
纯虚数( = 0)
非纯虚数( ≠ 0)
【做一做2】 设全集I={复数},R={实数},M={纯虚数},则有(
部与虚部,并且分别用Re z与Im z表示,即a=Re z,b=Im z.
(4)复数集:复数的全体组成的集合叫作复数集,记作C,显然R⫋C.
【做一做1】 复数1-i的虚部是(
A.1
B.-1

高中数学 第三章 数系的扩充与复数的引入 3.1 数系的扩充与复数的概念 3.1.1 数系的扩充和

高中数学 第三章 数系的扩充与复数的引入 3.1 数系的扩充与复数的概念 3.1.1 数系的扩充和

湖北省松滋市高中数学第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念3.1.1 数系的扩充和复数的概念导学案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省松滋市高中数学第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念3.1.1 数系的扩充和复数的概念导学案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省松滋市高中数学第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念3.1.1 数系的扩充和复数的概念导学案新人教A版选修2-2的全部内容。

3.1.1 数系的扩充和复数的概念【学习目标】1.理解复数的有关概念以及符号表示;2.了解复数的代数表示方法及几何意义;3.掌握复数的分类及复数相等的充要条件.【重点难点】重点:复数的有关概念以及符号表示。

难点:了解复数的代数表示方法及几何意义,复数的分类及复数相等的充要条件.【使用说明与学法指导】1。

课前用20分钟预习课本P102-104内容。

并完成书本上练、习题及导学案上的问题导学。

2.独立思考,认真限时完成,规范书写。

课上小组合作探究,答疑解惑.【问题导学】1.如何引入数i?我们引入一个新数i,i叫做虚数单位,并规定:(1)i2= —1 ;(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.根据前面规定,-1可以开平方,而且-1的平方根是.2.复数的概念?根据虚数单位i的第(2)条性质,i可以与实数b相乘,再与实数a相加.由于满足乘法交换律及加法交换律,从而可以把结果写成a+bi 。

形如a+bi的数,我们把它们叫做复数.复数的代数形式、复数、虚数、纯虚数、实部、虚部。

(完整版)数系的扩充与复数的引入

(完整版)数系的扩充与复数的引入

数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
1.虚数单位i的引入; 2.复数有关概念:
复数的代数形式:z a bi (a R,b R)
2 7 , 0.618, 2 i, 0
7
i i 2 , i 1 3 , 3 9 2i, 5 +8,
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
例1: 实数m取什么值时,复数
z m 1 (m 1)i
(1)实数? (2)虚数?(3)纯虚数?
满足 i2 1
数系的扩充
复数的概念
现在我们就引入这样一个数 i ,把 i 叫做虚数单位,
并且规定:
(1)i21;
(2)实数可以与 i 进行四则运算,在进行四则运
算时,原有的加法与乘法的运算律(包括交换律、结 合律和分配律)仍然成立。
形如a+bi(a,b∈R)的数叫做复数.
全体复数所形成的集合叫做复数集, 一般用字母C表示 .
数系的扩充
复数的概念
复数的代数形式: 通常用字母 z 表示,即
z a bi (a R位。
讨 论?
复数集C和实数集R之间有什么关系?
实数b 0
R C
复数a+bi虚数b

北师大版高中数学选修数系的扩充与复数的引入综合教案

北师大版高中数学选修数系的扩充与复数的引入综合教案

数系的扩充与复数的引入教学目标:1. 知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i2. 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念教学重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立教具准备:多媒体、实物投影仪教学设想:生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾. 教学过程:学生探究过程:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数讲解新课:1.虚数单位i :(1)它的平方等于-1,即 21i =-;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i !3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:N Z Q R C .6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小例1请说出复数i i i i 53,31,213,32---+-+的实部和虚部,有没有纯虚数? 答:它们都是虚数,它们的实部分别是2,-3,0,-3;虚部分别是3,21,-31,-5;-31i 是纯虚数. 例2 复数-2i +3.14的实部和虚部是什么?答:实部是3.14,虚部是-2.易错为:实部是-2,虚部是3.14!例3(课本例1)实数m 取什么数值时,复数z =m +1+(m -1)i 是:(1)实数? (2)虚数? (3)纯虚数?[分析]因为m ∈R ,所以m +1,m -1都是实数,由复数z =a +bi 是实数、虚数和纯虚数的条件可以确定m 的值.解:(1)当m -1=0,即m =1时,复数z 是实数;(2)当m -1≠0,即m ≠1时,复数z 是虚数;(3)当m +1=0,且m -1≠0时,即m =-1时,复数z 是纯虚数.例4 已知(2x -1)+i =y -(3-y )i ,其中x ,y ∈R ,求x 与y .解:根据复数相等的定义,得方程组⎩⎨⎧--==-)3(1,12y y x ,所以x =25,y =4 巩固练习:1.设集合C ={复数},A={实数},B ={纯虚数},若全集S=C ,则下列结论正确的是( )A.A ∪B =CB. S C A =BC.A ∩S C B =∅D.B ∪S C B =C2.复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足( )A.x =-21B.x =-2或-21 C.x ≠-2 D.x ≠1且x ≠-2 3.已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i },集合P ={-1,3}.M ∩P ={3},则实数m 的值为( )A.-1 B .-1或4 C.6 D.6或-14.满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数是______.5.复数z 1=a +|b |i ,z 2=c +|d |i (a 、b 、c 、d ∈R ),则z 1=z 2的充要条件是______.6.设复数z =log 2(m 2-3m -3)+i log 2(3-m )(m ∈R ),如果z 是纯虚数,求m 的值.7.若方程x 2+(m +2i )x +(2+mi )=0至少有一个实数根,试求实数m 的值.8.已知m ∈R ,复数z =1)2(-+m m m +(m 2+2m -3)i ,当m 为何值时, (1)z ∈R ; (2)z 是虚数;(3)z 是纯虚数;(4)z =21+4i . 答案:1.D 2.D 3. 解析:由题设知3∈M ,∴m 2-3m -1+(m 2-5m -6)i =3∴⎩⎨⎧=--=--06531322m m m m ,∴⎩⎨⎧-==-==1614m m m m 或或∴m =-1,故选A. 4. 解析:由题意知⎩⎨⎧=+-=--,0169,03222y y x x ∴⎪⎩⎪⎨⎧=-==3113y x x 或 ∴点对有(3,31),(-1,31)共有2个.答案:2 5. 解析:z 1=z 2⇔⎩⎨⎧==⇔||||d b c a a =c 且b 2=d 2.答案:a =c 且b 2=d 2 6.解:由题意知⎩⎨⎧≠-=--,0)3(log ,0)33(log 222m m m ∴⎪⎩⎪⎨⎧>-≠-=--03131332m m m m∴⎩⎨⎧<≠=--320432m m m m 且∴⎩⎨⎧≠<-==2314m m m m 且或,∴m =-1. 7. 解:方程化为(x 2+mx +2)+(2x +m )i =0.∴⎩⎨⎧=+=++02022m x mx x ,∴x =-2m ,∴,02242=+-m m ∴m 2=8,∴m =±22. 8. 解:(1)m 须满足⎩⎨⎧≠-=-+.11,0322m m m 解之得:m =-3.(2)m 须满足m 2+2m -3≠0且m -1≠0,解之得:m ≠1且m ≠-3.(3)m 须满足⎪⎩⎪⎨⎧≠-+=-+.032,01)2(2m m m m m 解之得:m =0或m =-2.(4)m 须满足⎪⎩⎪⎨⎧=-+=-+.432211)2(2m m m m m 解之得:m ∈∅教学反思:这节课我们学习了虚数单位i 及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件,复平面等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。

《高中数学知识梳理》 系数的扩充与复数的引入

《高中数学知识梳理》 系数的扩充与复数的引入

-@>% )一复数的相关概念1.虚数单位i是虚数单位,满足i2=-1,实数可以与i进行四则运算,进行四则运算时原有的加法㊁乘法运算律仍然成立.2.复数形如a+b i(a,bɪR)的数叫作复数,其中a是复数的实部,b是复数的虚部.全体复数组成的集合叫作复数集,用字母C表示.复数a+b i(a,bɪR),当b=0时,就是实数;当bʂ0时,叫作虚数;当a=0,bʂ0时,叫作纯虚数.把复数表示成a+b i(a,bɪR)的形式,叫作复数的代数形式.3.数系的发展自然数集N㊁整数集Z㊁有理数集Q㊁实数集R以及复数集C之间有如下关系:N⫋Z⫋Q⫋R⫋C.11两个复数z1=a+b i(a,bɪR),z2=c+d i(c,dɪR),当且仅当a=c且b=d时,z1=z2.特别地,当且仅当a=b=0时,a+b i=0.5.复数的模复数z=a+b i(a,bɪR)的模记作z或|a+b i|,有|z|=|a+b i|=a2+b2.6.共轭复数当两个复数的实部相等㊁虚部互为相反数时,这两个复数叫作互为共轭复数.在复平面内,表示两个共轭复数的点关于实轴对称.特别地,实数a的共轭复数仍是它本身.7.复数的几何意义从复数相等的定义我们知道,任何一个复数z= a+b i(a,bɪR)都可以用一个有序实数对(a,b)唯一确定,这样我们可以用建立了直角坐标系的平面来表示复数.建立了直角坐标系来表示复数的平面叫作复平面. x轴叫作实轴,y轴叫作虚轴.这样,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.复数z=a+b i(a,bɪR)与复平面内的点Z(a,b)及向量O Pң=(a,b)是一一对应的.复数的模表示复数对应的点到原点的距离.1811 二复数的运算对于复数z 1=a +b i (a ,b ɪR ),z 2=c +d i (c ,d ɪR ).(1)复数的加减运算:z 1ʃz 2=(a ʃc )+(b ʃd )i .(2)复数的乘除运算:z 1㊃z 2=(a +b i )(c +d i )=(a c -b d )+(b c +a d )i;z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=a c +b d c 2+d 2+b c -a d c 2+d 2i (c 2+d 2ʂ0).。

高中数学教学课例《数系的扩充和复数的概念》课程思政核心素养教学设计及总结反思

高中数学教学课例《数系的扩充和复数的概念》课程思政核心素养教学设计及总结反思

(四)巩固练习——知识的应用
(五)学习小结——概括知识体系,布置作业
本节课通过创设问题情境,引导学生思考,通过类
比思想,使学生了解扩充数系要引入新数,引入复数的
课例研究综 概念及分类,降低学生的学习难度。学生也掌握了复数

的概念及复数相等的定义;对基础薄弱的学生在“练习
1,3”中多给他们创造机会,力争使每一个层次的学生
2.理解复数的基本概念;
过程与方法:
教学目标
通过回顾数系扩充的历史,让学生体会数系扩充的
一般方法。
情感态度与价值观:通过数系扩充的过程,让学生
体会其中的创新精神和实践能力,体会人类理性思维在
数系扩充中的作用。
学生已经掌握了整数与分数,正数与负数,有理数
学生学习能 与无理数,以及实数这些概念,但是学生对数的分类主
力分析 要依靠的是简单记忆,所以对数系扩充的过程以及扩充
的必要性不甚了解。,由实数系扩充到复数系比较抽象,
理解起来比较困难.
创设问题情境,引导学生思考,通过类比思想,使 教学策略选
学生了解扩充数系要引入新数,引入复数的概念及分 择与设计
类,降低学生的学习难度。
(一)情景引入——得到学习课题,明确学习目标
都能有所发展。
高中数学教学课例《数系的扩充和复数的概念》教学设计及 总结反思
学科
高中数学
教学课例名
《数系的扩充和复数的概念》

本节主要内容是数系的扩充和复数的概念;重点是
对引入复数的必要性的认识及复数概念的理解;难点事 教材分析
学生对数系扩充的只是不熟悉,对了解实数系扩充到复
数系的过程比较困难。
知识与技能目标:
1.了解数系的扩充过程;

高中数学数系的扩充和复数的引入数系的扩充与复数的概念数系的扩充和复数的概念数学.doc

高中数学数系的扩充和复数的引入数系的扩充与复数的概念数系的扩充和复数的概念数学.doc

3.1.1 数系的扩充和复数的概念1.虚数单位i在实数集R中添加新数i,规定:(1)i2=□01-1,其中i叫做02四则运算,且原有的加、乘运算虚数单位;(2)i可与实数进行□律仍然成立.2.复数的相关概念集合C={a+b i|a∈R,b∈R}中的数,即形如a+b i(a,b∈R) 03复数,其中i叫做□04虚数单位.全体复数的集合C叫做的数叫做□05复数集.□复数通用字母z表示,即z=a+b i(a,b∈R),这一表示形式06复数的代数形式.其中的a与b分别叫做复数z的□07实部与叫做□虚部.3.复数的分类对于复数z=a+b i,当且仅当□08b=0时,它是实数;当且仅当09a=b=0时,它是实数0;当且仅当□10b≠0时,叫做虚数;当□11□a=0,且b≠0时,叫做纯虚数.4.复数相等的充要条件在复数集C={a+b i|a,b∈R}中任取两个数a+b i,c+d i(a,b,c,d∈R),规定:a+b i与c+d i的充要条件是□12a=c且b=d(a,b,c,d∈R).复数相等的充要条件(1)两个复数相等的充要条件中,注意前提条件是a,b,c,d ∈R,若忽略这一条件,则不能成立.因此解决复数相等问题时,一定要把复数的实部与虚部分离出来,再利用相等条件.(2)复数相等的条件是把复数问题转化为实数问题是重要依据,是复数问题实数化这一重要数学思想方法的体现.利用这一结论,可以把“复数相等”这一条件转化为两个实数等式,为应用方程思想提供了条件,这一思想在解决复数问题中非常重要.1.判一判(正确的打“√”,错误的打“×”)(1)若a,b为实数,则z=a+b i为虚数.( )(2)若z=m+n i(m,n∈C),则当且仅当m=0,n≠0时,z为纯虚数.( )(3)b i是纯虚数.( )(4)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( )答案(1)×(2)×(3)×(4)√2.做一做(1)若a+b i=0,则实数a=________,实数b=________.(2)(1+3)i的实部与虚部分别是________.(3)若复数(a+1)+(a2-1)i(a∈R)是实数,则a=________.答案(1)0 0 (2)0,1+ 3 (3)±1探究1复数的有关概念例1 给出下列四个命题:①两个复数不能比较大小;②若x,y∈C,则x+y i=1+i的充要条件是x=y=1;③若实数a与a i对应,则实数集与纯虚数集一一对应;④纯虚数集相对复数集的补集是虚数集.其中真命题的个数是________.[解析]①中当这两个复数都是实数时,可以比较大小;②由于x,y都是复数,故x+y i不一定是复数的代数形式,不符合复数相等的充要条件;③若a=0,则a i不是纯虚数;④由纯虚数集、虚数集、复数集之间的关系知,所求补集应是非纯虚数集与实数集的并集.[答案]0拓展提升数集从实数集扩充到复数集后,某些结论不再成立.如:两数大小的比较,某数的平方是非负数等.但i与实数的运算及运算律仍成立.【跟踪训练1】下列命题中:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R且a>b,则a+i>b+i;③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1;④两个虚数不能比较大小.其中,正确命题的序号是( )A.① B.② C.③ D.④答案D解析对于复数a+b i(a,b∈R),当a=0且b≠0时为纯虚数.在①中,若a=-1,则(a+1)i不是纯虚数,故①错误;在②中,两个虚数不能比较大小,故②错误;在③中,若x=-1,x2+3x+2≠0不成立,故③错误;④正确.探究2 复数的分类例2 当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为:(1)实数?(2)虚数?(3)纯虚数?[解](1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数;(2)当m 2-2m ≠0,即m ≠0且m ≠2时,复数z 是虚数;(3)当⎩⎪⎨⎪⎧m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.[条件探究] 是否存在实数m ,使z =(m 2-2m )+m 2+m -6mi 是纯虚数?[解] 由z =(m 2-2m )+m 2+m -6m i 是纯虚数,得⎩⎪⎨⎪⎧m 2-2m =0,m 2+m -6m≠0,解得m ∈∅.即不存在实数m ,使z =(m 2-2m )+m 2+m -6mi 是纯虚数.拓展提升利用复数的分类求参数的值或取值范围的一般步骤(1)判定复数是否为a +b i(a ,b ∈R )的形式,实部与虚部分别为哪些;(2)依据复数的有关概念将复数问题转化为实数问题; (3)解相应的方程(组)或不等式(组);(4)求出参数的值或取值范围.【跟踪训练2】 已知m ∈R ,复数z =m m +2m -1+(m 2+2m -3)i ,当m 为何值时,(1)z 为实数? (2)z 为虚数? (3)z 为纯虚数?解 (1)要使z 为实数,需满足m 2+2m -3=0,且m m +2m -1有意义,即m -1≠0,解得m =-3.(2)要使z 为虚数,需满足m 2+2m -3≠0,且m m +2m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 为纯虚数,需满足m m +2m -1=0,且m 2+2m -3≠0,解得m =0或m =-2.探究3 复数相等例3 已知M ={1,(m 2-2m )+(m 2+m -2)i},P ={-1,1,4i},若M ∪P =P ,求实数m 的值.[解] ∵M ∪P =P ,∴M ⊆P ,即(m 2-2m )+(m 2+m -2)i =-1或(m 2-2m )+(m 2+m -2)i =4i.由(m 2-2m )+(m 2+m -2)i =-1,得⎩⎪⎨⎪⎧m 2-2m =-1,m 2+m -2=0,解得m =1.由(m 2-2m )+(m 2+m -2)i =4i ,得⎩⎪⎨⎪⎧m 2-2m =0,m 2+m -2=4,解得m =2.∴实数m 的值为1或2. 拓展提升复数相等的充要条件是实部相等且虚部相等.复数问题实数化多用来求参数,其步骤是:分别确定两个复数的实部和虚部,利用实部与实部、虚部与虚部分别相等,列方程组.【跟踪训练3】 已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解 由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),∴⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0.解得⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1,∴a =-1.故实数a 的值为-1.1.在复数a +b i 中,a ,b 必须是实数,否则不是复数的代数形式.2.复数的虚部是实数而不是虚数,即为“b ”,不是“b i”,更不是“i”.3.当且仅当b ≠0且a =0时,复数a +b i 才是纯虚数,解题时不能只注意a =0而忽视了b ≠0的限制.4.复数相等的充要条件是把复数问题转化为实数问题的重要依据,是复数问题实数化这一重要数学思想的体现.1.“a =0”是“复数a +b i(a ,b ∈R )是纯虚数”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案A解析因为复数a+b i(a,b∈R)是纯虚数⇔a=0且b≠0,所以“a=0”是“复数a+b i(a,b∈R)是纯虚数”的必要不充分条件.2.以3i-2的虚部为实部,以3i2+2i的实部为虚部的复数是( )A.3-3i B.3+iC.-2+2i D.2+2i答案A解析3i-2的虚部为3,3i2+2i的实部为-3,所以所求复数为3-3i.3.已知复数z=a2-(2-b)i的实部和虚部分别是2和3,则实数a,b的值分别是________.答案±2,5解析由题意得:a2=2,-(2-b)=3,所以a=±2,b=5.4.设复数z=1m+5+(m2+2m-15)i为实数,则实数m的值是________.答案3解析依题意有⎩⎪⎨⎪⎧m 2+2m -15=0,m +5≠0,解得m =3.5.如果log 12 (m +n )-(m 2-3m )i≥-1,求自然数m ,n 的值.解 ∵log 12(m +n )-(m 2-3m )i≥-1,∴⎩⎪⎨⎪⎧log 12 m +n ≥-1,-m 2-3m =0.∴⎩⎪⎨⎪⎧0<m +n ≤2,m =0或m =3.∵m ,n ∈N ,∴m =0,n =1或n =2.。

高中数学数系的扩充与复数的引入数的概念的扩展复数的有

高中数学数系的扩充与复数的引入数的概念的扩展复数的有

5.1.1 数的概念的扩展5.1.2 复数的有关概念1.了解引入虚数单位i的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 重点3.掌握复数代数形式的表示方法,理解复数相等的充要条件. 易混点4.理解复数的几何表示. 难点基础·初探教材整理1 复数的有关概念及分类阅读教材P99部分,完成下列问题.1.复数的有关概念1 复数①定义:形如a+b i的数叫作复数,其中a,b∈R,i叫作虚数单位.a叫作复数的实部,b 叫作复数的虚部.②表示方法:复数通常用字母z表示,即z=a+b i.2 复数集①定义:复数的全体组成的集合叫作复数集.②表示:通常用大写字母C表示.2.复数的分类及包含关系1 复数a+b i,a,b∈R2 集合表示:判断正确的打“√”,错误的打“×”1 若a,b为实数,则z=a+b i为虚数.2 若a为实数,则z=a一定不是虚数.3 b i是纯虚数.4 如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.答案 1 × 2 √ 3 × 4 √教材整理2 复数的有关概念阅读教材P100“1.2复数的有关概念”以下至P101“练习”以上部分,完成下列问题.1.两个复数相等a+b i=c+d i当且仅当a=c,且b=d.2.复数的几何意义1 复数z=a+b i a,b∈R错误!复平面内的点Z a,b;2 复数z=a+b i a,b∈R错误!平面向量错误!=a,b .3.复数的模设复数z=a+b i在复平面内对应的点是Z a,b ,点Z到原点的距离|OZ|叫作复数z的模或绝对值,记作|z|,且|z|=错误!.如果x+y i=x-1,则实数x,y的值分别为A.x=1,y=-1B.x=0,y=-1C.x=1,y=0D.x=0,y=0解析∵ x+y i=x-1,∴错误!∴x=1,y=-1.答案 A质疑·手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:小组合作型复数的概念与分类1 若x2-1 +x2+3x+2 i是纯虚数,则实数x的值是A.-1B.1C.±1D.-1或-22 已知复数z=a+a2-1 i是实数,则实数a的值为________.3 当实数m为何值时,复数z=错误!+m2-2m i为:①实数②虚数③纯虚数精彩点拨依据复数的分类标准,列出方程不等式组求解.自主解答 1 ∵ x2-1 +x2+3x+2 i是纯虚数,∴错误!由x2-1=0,得x=±1,又由x2+3x+2≠0,得x≠-2且x≠-1,∴x=1.2 ∵z是实数,∴a2-1=0,∴a=±1.答案 1 B 2 ±13 ①当错误!即m=2时,复数z是实数.②当m2-2m≠0,且m≠0,即m≠0且m≠2时,复数z是虚数.③当错误!即m=-3时,复数z是纯虚数.利用复数的分类求参数时,要先确定构成实部、虚部的式子有意义的条件,再结合实部与虚部的取值求解.要特别注意复数z=a+b i a,b∈R为纯虚数的充要条件是a=0且b≠0.再练一题1.复数z=a2-b2+a+|a| i a,b∈R为纯虚数的充要条件是A.|a|=|b|B.a<0且a=-bC.a>0且a≠bD.a>0且a=±b解析要使复数z为纯虚数,则错误!∴a>0,a=±b.故选D.答案 D复数相等1 下列命题:①若a+b i=0,则a=b=0;②x+y i=2+2i x=y=2;③若y∈R,且y2-1 -y-1 i=0,则y=1.其中正确命题的个数为A.0B.1C.2D.32 已知x,y∈R, x+2y-1 +x-3y+4 i=10-5i,求x,y.精彩点拨根据复数相等的充要条件求解.自主解答 1 命题①,②中未明确a,b,x,y是否为实数,从而a,x不一定为复数的实部,b,y不一定是复数的虚部,故命题①②错误;命题③中,y∈R,从而y2-1,-y-1 是实数,根据复数相等的条件得错误!∴y=1,故③正确.答案 B2 因为x,y∈R,所以x+2y-1 , x-3y+4 是实数,所以由复数相等的条件得错误!解得错误!所以x=3,y=4.1.复数z1=a+b i,z2=c+d i,其中a,b,c,d∈R,则z1=z2a=c且b=d.2.复数问题实数化是解决复数相等问题最基本的也是最重要的思想方法.转化过程主要依据复数相等的充要条件.基本思路是:①等式两边整理为a+b i a,b∈R的形式;②由复数相等的充要条件可以得到由两个实数等式所组成的方程组;③解方程组,求出相应的参数.再练一题2. 1 2016·重庆高二检测若x-y+ 2x-3 i= 3x+y+x+2y i 其中x,y为实数 ,则x=________,y=________.2 已知 2x+8y+x-6y i=14-13i,则xy=________.解析 1 由复数相等的意义得错误!所以错误!2 由复数相等的意义,得错误!解得错误!所以xy=-2.答案 1 1 -1 2 -2探究共研型复数的几何意义探究 1 若向量错误!对应的复数是5-4i,向量错误!2对应的复数是-5+4i,如何求错误!1+错误!2对应的复数提示因为向量错误!对应的复数是5-4i,向量错误!2对应的复数是-5+4i,所以错误!1= 5,-4 ,错误!2=-5,4 ,所以错误!1+错误!2= 5,-4 +-5,4 = 0,0 ,所以错误!1+错误!2对应的复数是0.探究2 若复数a+1 +a-1 i a∈R在复平面内对应的点P在第四象限,则a满足什么条件提示a满足错误!即-1<a<1.1 已知复数z的实部为1,且|z|=2,则复数z的虚部是A.-错误!B.错误!iC.±错误!iD.±错误!2 求复数z1=6+8i及z2=-错误!-错误!i的模,并比较它们模的大小.精彩点拨 1 设出复数z的虚部,由模的公式建立方程求解.2 用求模的公式直接计算.自主解答 1 设复数z的虚部为b,∵|z|=2,实部为1,∴1+b2=4,∴b=±错误!,选D.答案 D2 因为z1=6+8i,z2=-错误!-错误!i,所以|z1|=错误!=10,|z2|=错误!=错误!.因为10>错误!,所以|z1|>|z2|.1.复数集和复平面内所有的点构成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可以根据点的位置判断复数实部、虚部的取值.2.计算复数的模时,应先找出复数的实部和虚部,再利用复数模的公式进行计算.3.两个复数不能比较大小,但它们的模可以比较大小.再练一题3. 1 复数4+3i与-2-5i分别表示向量错误!与错误!,则向量错误!表示的复数是________.2 已知复数z=3+a i,且|z|<4,求实数a的取值范围.解析 1 因为复数4+3i与-2-5i分别表示向量错误!与错误!,所以错误!= 4,3 ,错误!=-2,-5 ,又错误!=错误!-错误!=-2,-5 - 4,3 =-6,-8 ,所以向量错误!表示的复数是-6-8i.答案-6-8i2 ∵z=3+a i a∈R ,|z|=错误!,由已知得错误!<4,∴a2<7,∴a∈-错误!, 错误! .构建·体系错误!—错误!1.给出下列三个命题:①若z∈C,则z2≥0;②2i-1的虚部是2i;③2i的实部是0.其中真命题的个数为A.0B.1C.2D.3解析复数的平方不一定大于0,故①错误;2i-1的虚部为2,故②错误;2i的实部是0,③正确,故选B.答案 B2.已知复数z=错误!-3i,则复数的模|z|等于A.5B.8C.6D.错误!解析|z|=错误!=错误!.答案 D3.下列命题正确的是__________ 填序号 .①若x,y∈C,则x+y i=1+2i的充要条件是x=1,y=2;②若实数a与a i对应,则实数集与纯虚数集一一对应;③实数集的补集是虚数集.解析①由于x,y都是复数,故x+y i不一定是代数形式,因此不符合两个复数相等的充要条件,故①是假命题.②当a=0时,a i=0为实数,故②为假命题.③由复数集的分类知,③正确,是真命题.答案③4.复数z=x-2+ 3-x i在复平面内的对应点在第四象限,则实数x的取值范围是________.解析∵复数z在复平面内对应的点在第四象限,∴错误!解得x>3.答案 3,+∞5.已知复数z=m2+3m+2 +m2-m-6 i,则当实数m为何值时,复数z1 是实数;2 是虚数;3 是纯虚数.解z=m2+3m+2 +m2-m-6 i.1 令m2-m-6=0 m=3或m=-2,即m=3或m=-2时,z为实数.2 令m2-m-6≠0,解得m≠-2且m≠3,所以m≠-2且m≠3时,z是虚数.3 由错误!解得m=-1,所以m=-1时,z是纯虚数.我还有这些不足:12我的课下提升方案:12。

【高中数学】数系的扩充与复数的引入

【高中数学】数系的扩充与复数的引入

【高中数学】数系的扩充与复数的引入知识讲解1. 复数的有关概念 (1)复数的概念形如a+bi (a,b ∈R)的数叫做复数,其中a,b 分别是它的实部和虚部。

若b=0,则a+bi 为实数;若b≠0,则a+bi 为虚数;若a=0且b≠0,则a+bi 为纯虚数。

{}{}虚数纯虚数⊂,{}{}{}实数虚数复数 ==C(2)复数相等:a+bi=c+di ⇔=⎧⎨=⎩a c b d(a,b,c,d ∈R).(3)共轭复数:a+bi 与c+di 共轭⇔=⎧⎨=-⎩a c b d(a,b,c,d ∈R)两个重要命题:定理:复数是实数的充要条件是;1z z z =定理:复数是纯虚数的充要条件是()200z z z z +=≠ (4)复平面建立直角坐标系来表示复数的平面,叫做复平面。

x 轴叫做实轴,y 轴叫做虚轴。

实轴上的点表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。

复数集与平面上的点集之间能建立一一对应关系,故可用平面上的点来表示复数,一般的,可用Z (a,b) (a,b ∈R)表示复数a+bi (a,b ∈R)或用向量O Z表示复数a+bi.(5)复数的模向量O Z的模叫做复数z=a+bi 的模,记为|z|或|a+bi|,即|z|=|a+bi|=22a b +。

2、复数的几何意义(1)复数z=a+bi ←−−−→一一对应复平面内的点Z (a,b) (a,b ∈R) (2)复数z=a+bi ←−−−→一一对应平面向量O Z(a,b ∈R) 3、复数的运算(1)四则运算法则(可类比多项式的运算)加法:R d c b a i d b c a di c bi a ∈+++=+++,,,)()()()( 减法:i d b c a di c bi a )()()()(-+-=+-+ 乘法:i ad bc bd ac di c bi a )()())((++-=++除法:)())(())(()()(转化为乘法运算…=-+-+=++=+÷+di c di c di c bia dic bi a di c bi a ,简记为“分母实数化”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.1 数的概念的扩展 5.1.2 复数的有关概念1.了解引入虚数单位i 的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.(重点)3.掌握复数代数形式的表示方法,理解复数相等的充要条件.(易混点)4.理解复数的几何表示.(难点)[基础·初探]教材整理1 复数的有关概念及分类 阅读教材P 99部分,完成下列问题. 1.复数的有关概念 (1)复数①定义:形如a +b i 的数叫作复数,其中a ,b ∈R ,i 叫作虚数单位.a 叫作复数的实部,b 叫作复数的虚部.②表示方法:复数通常用字母z 表示,即z =a +b i. (2)复数集①定义:复数的全体组成的集合叫作复数集. ②表示:通常用大写字母C 表示. 2.复数的分类及包含关系 (1)复数a +b i ,a ,b ∈R (2)集合表示:判断(正确的打“√”,错误的打“×”) (1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)若a 为实数,则z =a 一定不是虚数.( ) (3)b i 是纯虚数.( )(4)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( ) 【答案】 (1)× (2)√ (3)× (4)√ 教材整理2 复数的有关概念阅读教材P 100“1.2复数的有关概念”以下至P 101“练习”以上部分,完成下列问题. 1.两个复数相等a +b i =c +d i 当且仅当a =c ,且b =d .2.复数的几何意义(1)复数z =a +b i(a ,b ∈R )←―――一一对应复平面内的点Z (a ,b );(2)复数z =a +b i(a ,b ∈R )←――一一对应平面向量OZ →=(a ,b ). 3.复数的模设复数z =a +b i 在复平面内对应的点是Z (a ,b ),点Z 到原点的距离|OZ |叫作复数z 的模或绝对值,记作|z |,且|z |=a 2+b 2.如果(x +y )i =x -1,则实数x ,y 的值分别为( ) A.x =1,y =-1 B.x =0,y =-1 C.x =1,y =0D.x =0,y =0【解析】 ∵(x +y )i =x -1, ∴⎩⎪⎨⎪⎧x +y =0,x -1=0,∴x =1,y =-1.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]复数的概念与分类) A.-1 B.1 C.±1 D.-1或-2(2)已知复数z =a +(a 2-1)i 是实数,则实数a 的值为________.(3)当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为:①实数?②虚数?③纯虚数?【精彩点拨】 依据复数的分类标准,列出方程(不等式)组求解.【自主解答】 (1)∵(x 2-1)+(x 2+3x +2)i 是纯虚数,∴⎩⎪⎨⎪⎧x 2-1=0,x 2+3x +2≠0.由x 2-1=0,得x =±1,又由x 2+3x +2≠0,得x ≠-2且x ≠-1,∴x =1.(2)∵z 是实数,∴a 2-1=0,∴a =±1. 【答案】 (1)B (2)±1(3)①当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.②当m 2-2m ≠0,且m ≠0, 即m ≠0且m ≠2时,复数z 是虚数.③当⎩⎪⎨⎪⎧m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.利用复数的分类求参数时,要先确定构成实部、虚部的式子有意义的条件,再结合实部与虚部的取值求解.要特别注意复数z =a +b i(a ,b ∈R )为纯虚数的充要条件是a =0且b ≠0.[再练一题]1.复数z =a 2-b 2+(a +|a |)i(a ,b ∈R )为纯虚数的充要条件是( ) A.|a |=|b | B.a <0且a =-b C.a >0且a ≠bD.a >0且a =±b【解析】 要使复数z 为纯虚数,则⎩⎪⎨⎪⎧a 2-b 2=0,a +|a |≠0,∴a >0,a =±b .故选D. 【答案】 D复数相等(1)①若a +b i =0,则a =b =0; ②x +y i =2+2i?x =y =2;③若y ∈R ,且(y 2-1)-(y -1)i =0,则y =1. 其中正确命题的个数为( ) A.0 B.1 C.2D.3(2)已知x ,y ∈R ,(x +2y -1)+(x -3y +4)i =10-5i ,求x ,y . 【精彩点拨】 根据复数相等的充要条件求解.【自主解答】 (1)命题①,②中未明确a ,b ,x ,y 是否为实数,从而a ,x 不一定为复数的实部,b ,y 不一定是复数的虚部,故命题①②错误;命题③中,y ∈R ,从而y 2-1,-(y -1)是实数,根据复数相等的条件得⎩⎪⎨⎪⎧y 2-1=0,-(y -1)=0,∴y =1,故③正确. 【答案】 B(2)因为x ,y ∈R ,所以(x +2y -1),(x -3y +4)是实数,所以由复数相等的条件得⎩⎪⎨⎪⎧x +2y -1=10,x -3y +4=-5,解得⎩⎪⎨⎪⎧x =3,y =4.所以x =3,y =4.1.复数z 1=a +b i ,z 2=c +d i ,其中a ,b ,c ,d ∈R ,则z 1=z 2?a =c 且b =d .2.复数问题实数化是解决复数相等问题最基本的也是最重要的思想方法.转化过程主要依据复数相等的充要条件.基本思路是:①等式两边整理为a +b i(a ,b ∈R )的形式;②由复数相等的充要条件可以得到由两个实数等式所组成的方程组; ③解方程组,求出相应的参数. [再练一题]2.(1)(2016·重庆高二检测)若(x -y )+(2x -3)i =(3x +y )+(x +2y )i(其中x ,y 为实数),则x =________,y =________.(2)已知(2x +8y )+(x -6y )i =14-13i ,则xy =________. 【解析】 (1)由复数相等的意义得⎩⎪⎨⎪⎧x -y =3x +y ,2x -3=x +2y ,所以⎩⎪⎨⎪⎧x =1,y =-1. (2)由复数相等的意义,得⎩⎪⎨⎪⎧2x +8y =14,x -6y =-13,解得⎩⎪⎨⎪⎧x =-1,y =2. 所以xy =-2.【答案】 (1)1 -1 (2)-2[探究共研型]复数的几何意义探究1 若向量OZ 1对应的复数是5-4i ,向量OZ 2对应的复数是-5+4i ,如何求OZ →1+OZ→2对应的复数?【提示】 因为向量OZ 1→对应的复数是5-4i ,向量OZ →2对应的复数是-5+4i ,所以OZ →1=(5,-4),OZ →2=(-5,4),所以OZ →1+OZ →2=(5,-4)+(-5,4)=(0,0),所以OZ →1+OZ →2对应的复数是0.探究2 若复数(a +1)+(a -1)i(a ∈R )在复平面内对应的点P 在第四象限,则a 满足什么条件?【提示】 a 满足⎩⎪⎨⎪⎧a +1>0,a -1<0,即-1<a <1.(1)已知复数z 的实部为1,且|z |=2,则复数z 的虚部是( ) A.- 3 B.3i C.±3iD.± 3(2)求复数z 1=6+8i 及z 2=-12-2i 的模,并比较它们模的大小.【精彩点拨】 (1)设出复数z 的虚部,由模的公式建立方程求解. (2)用求模的公式直接计算.【自主解答】 (1)设复数z 的虚部为b ,∵|z |=2,实部为1,∴1+b 2=4,∴b =±3,选D.【答案】 D(2)因为z 1=6+8i ,z 2=-12-2i ,所以|z 1|=62+82=10, |z 2|=⎝ ⎛⎭⎪⎫-122+(-2)2=32. 因为10>32,所以|z 1|>|z 2|.1.复数集和复平面内所有的点构成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可以根据点的位置判断复数实部、虚部的取值.2.计算复数的模时,应先找出复数的实部和虚部,再利用复数模的公式进行计算.3.两个复数不能比较大小,但它们的模可以比较大小. [再练一题]3.(1)复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是________. (2)已知复数z =3+a i ,且|z |<4,求实数a 的取值范围.【解析】 (1)因为复数4+3i 与-2-5i 分别表示向量OA →与OB →,所以OA →=(4,3),OB →=(-2,-5),又AB →=OB →-OA →=(-2,-5)-(4,3)=(-6,-8),所以向量AB →表示的复数是-6-8i.【答案】 -6-8i(2)∵z =3+a i(a ∈R ),|z |= 32+a 2, 由已知得32+a 2<4, ∴a 2<7,∴a ∈(-7, 7).[构建·体系]数系的扩充和复数的概念—⎪⎪⎪⎪⎪⎪⎪—复数的概念—复数的分类—复数相等的充要条件—复数的几何意义—⎪⎪⎪—复平面的概念—复数的几何意义—复数的模1.给出下列三个命题:①若z ∈C ,则z 2≥0;②2i -1的虚部是2i ;③2i 的实部是0.其中真命题的个数为( )A.0B.1C.2D.3【解析】 复数的平方不一定大于0,故①错误;2i -1的虚部为2,故②错误;2i 的实部是0,③正确,故选B.【答案】 B2.已知复数z =2-3i ,则复数的模|z |等于( ) A.5 B.8 C.6D.11【解析】 |z |=(2)2+(-3)2=11. 【答案】 D3.下列命题正确的是__________(填序号).①若x ,y ∈C ,则x +y i =1+2i 的充要条件是x =1,y =2; ②若实数a 与a i 对应,则实数集与纯虚数集一一对应; ③实数集的补集是虚数集.【解析】 ①由于x ,y 都是复数,故x +y i 不一定是代数形式,因此不符合两个复数相等的充要条件,故①是假命题.②当a =0时,a i =0为实数,故②为假命题. ③由复数集的分类知,③正确,是真命题. 【答案】 ③4.复数z =x -2+(3-x )i 在复平面内的对应点在第四象限,则实数x 的取值范围是________.【解析】 ∵复数z 在复平面内对应的点在第四象限,∴⎩⎪⎨⎪⎧x -2>0,3-x <0,解得x >3.【答案】 (3,+∞)5.已知复数z =(m 2+3m +2)+(m 2-m -6)i ,则当实数m 为何值时,复数z (1)是实数;(2)是虚数;(3)是纯虚数. 【解】 z =(m 2+3m +2)+(m 2-m -6)i.(1)令m 2-m -6=0?m =3或m =-2,即m =3或m =-2时,z 为实数. (2)令m 2-m -6≠0,解得m ≠-2且m ≠3,所以m ≠-2且m ≠3时,z 是虚数.(3)由⎩⎪⎨⎪⎧m 2+3m +2=0,m 2-m -6≠0,解得m =-1,所以m =-1时,z 是纯虚数. 我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。

相关文档
最新文档