北师大版数学七年级下册6.3等可能时间的概率练习题(word无答案)
2020-2021学年北师大版数学七年级下册6.3等可能事件的概率练习题
七年级数学 6.3等可能事件的概率【挑战自我 】1.如图,是自由转动的转盘,被均匀分成10部分,随机转动,则1.P(指针指向6)= ; 2.P(指针指向奇数)= ;3.P(指针指向3的倍数)= ;4.P(指针指向15)= ;5.P(指针指向的数大于4)= ;6.P(指针指向的数小于11)= .2.“十运会”射箭比赛休息之余,一名工作人员发现这样的一幕 :有一只蜘蛛在箭靶上爬来爬去,最终停下来,已知两圆的半径分别是1cm 和2cm ,则P(蜘蛛停留在黄色区域内)= 。
【典型例题】例 1 某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会。
如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以获得100元、50元,20元的购物券。
(转盘被等分成20个扇形)甲顾客购物120元,他获得的购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少?解:P (获得购物券)=P (获得100元购物券)=P (获得50元购物券)=P (获得20元购物券)=例2、 转动如图所示的转盘,当转盘停止时,指针落在蓝色区域和红色区域 的概率分别是多少?红例3、某路口南北方向红绿灯的设置时间为:红灯20秒、绿灯60秒、黄灯3秒。
小明的爸爸随机地由南往北开车经过该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到红灯的概率是多少?【芝麻开门】1、一位汽车司机准备去商场购物,然后他随意把汽车停在某个停车场内,停车场内一个停车位置正好占一个格且每个格除颜色外完全一样,则汽车停在蓝色区域的概率( )。
2、一张写有密码的纸片被随意地埋在下面矩形区域内(每个方格大小相同)(1)埋在哪个区域的可能性大?(2)分别计算出埋在三个区域内的概率;(3)埋在哪两个区域的概率相同。
3、如图是一个转盘,扇形1,2,3,4,5所对的圆心角分别是180°,90°,45°,30°,15°,任意转动转盘,求出指针分别指向1,2,3,4,5的概率。
七年级数学下册6_3等可能事件的概率习题新版北师大版
《等可能事件的概率》一、选择题1.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A.本市明天将有85%的地区下雨B.本市明天将有85%的时间下雨C.本市明天下雨的可能性比较大D.本市明天肯定下雨2.下列推理正确的是( )A.某期彩票的中奖概率是1%,小明买了100张彩票,一定有一张中奖B.将-2、-3、1、4代入代数式-x2+4x-4,其值都是负数,所以-x2+4x-4一定是个负数C.将一张纸对折一次后展开后一条折痕,对折两次后展开有三道折痕,所以,对折n次后展开有2n+1条折痕D.对于任意有理数x,代数式x2+2x+2一定是一个正数3.已知抛一枚均匀硬币正面朝上的概率是0.5,下列说法正确的是( )A.连续抛一枚均匀硬币2次,必有1次正面朝上B.连续抛一枚均匀硬币2次,一次是正面一次是反面的概率是1 4C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的4.以下说法正确的是( )A.要考察抛一枚硬币时反面朝上的概率,可以用啤酒盖代替硬币B.在一次抽奖活动中,“中奖的概率是1%”表示抽奖100次就一定会中奖C.通过多次试验得到某事件发生的频率等于这一事件发生的概率D.随机事件发生的概率介于0-1之间5.在某一场比赛前,教练预测:这场比赛我们队有50%的机会获胜,那么相比之下在下面4种情形的哪一种情形下,我们可以说这位教练说得比较准( )A.该队真的赢了这场比赛B.该队真的输了这场比赛C.假如这场比赛可以重复进行10场而这个队赢了6场D.假如这场比赛可以重复进行100场而这个队赢了51场6.掷一枚正方体骰子,恰好掷得点数为4的概率为16的意思是( )A.掷6次骰子,恰好有一次掷得4点B.掷6次骰子,一定有5次不是4点C.掷6次骰子,一定有一次掷得4点D.若掷骰子若干次,则平均6次有一次掷得4点7.在三(1)与三(3)班举行的拔河友谊赛前,根据双方实力,小明预测:“三(3)班获胜的机会是80%,”那么( )A.三(3)班肯定会赢得这场比赛B.三(1)班肯定会输掉这场比赛C.若比赛5次,则三(3)会赢得4次D.三(1)也有可能会赢得这场比赛二、填空题8.下列四种说法:①若一个三角形三个内角的度数比为2:3:4,则这个三角形是锐角三角形;②“掷两枚质地均匀的正方体骰子点数之和一定大于6”是必然事件;③购买一张彩票可能中奖;④已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为100°.其中正确的序号是_____.9.一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为_____.10.如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为_____.11.如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.三、解答题12.袋中有红色和黄色两种球:①若红色球有10个,黄色球有5个,那么从袋中摸出一个球是红颜色的可能性P是多少?②若黄色球有5个,如何配置袋中的红色球使摸出的黄色球的概率为25%?13.甲.乙.丙三个事件发生的概率分别为0.5,0.1,0.9,它们各与下面的哪句话相配.(A)发生的可能性很大,但不一定发生;(B)发生的可能性很小;(C)发生与不发生的可能性一样.14.对下列说法谈谈你的看法:(1)某彩票的中奖机会是2%,如果我买10000张彩票一定有200张会中奖;(2)我和同学玩飞行棋游戏,我掷了20次骰子还没掷得“6点”,说明我掷得“6点”的机会比其他同学掷得“6点”的机会小;(3)我们知道,抛掷一枚普通硬币得到正面和反面的机会各为50%,出就是说,虽然没人能保证抛掷1000次会得到500次正面和500次反面,但是,我敢保证得到正面的次数会非常接近得到反面的次数.15.在一个盒子里装有3个红球和1个白球,它们除颜色外完全相同,小明从盒中任意摸出一球.(1)你认为小明摸出的球可能是什么颜色?与同伴进行交流;(2)如果将每个球都编上号,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(白),那么摸到每个球的可能性一样吗?(3)任意摸出一球,说出所有可能出现的结果.参考答案一、选择题1.答案:C解析:【解答】本市明天下雨概率是85%,表示本市明天下雨的可能性很大,但是不是将有85%的地区下雨,不是85%的时间下雨,也不是明天肯定下雨,故选C.【分析】根据概率是反映事件发生机会的大小,只是表示发生的机会的大小,机会大也不一定发生即可得出答案.2.答案:D解析:【解答】A、错误,是随机事件;B、错误,当x=2时不成立;C、错误,当对折三次时不成立;D、正确,因为原式可化为(x+1)2+1,所以对于任意有理数x,代数式x2+2x+2一定是一个正数.故选D【分析】分别根据概率的意义对四个选项进行逐一解答即可.3.答案:D解析:【解答】A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面C、大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次,不正确,有可能都朝上,【分析】根据概率的意义即可判断.4.答案:D解析:【解答】A、因为考察的是一枚硬币,所以不可以用啤酒盖代替;B、抽奖100次不一定会中奖;C、一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率;D、随机事件发生的概率介于0-1之间,说发正确.故选D.【分析】根据概率的意义,结合选项进行判断即可.【分析】根据概率的意义即可判断.7.答案:D解析:【解答】80%的机会获胜是说明机会发生机会的大小,80%的机会并不是说明比赛胜的场数一定是80%.故选D【分析】根据概率的意义找到正确选项即可.二、填空题8.答案:①③解析:【解答】①若一个三角形三个内角的度数比为2:3:4,即可得出2x +3x +4x =180°,解得:x =20°,∴三角形三个内角的度数分别为:40°,60°,80°,∴这个三角形是锐角三角形;故此选项正确;②“掷两枚质地均匀的正方体骰子点数之和一定大于6”是必然事件;根据掷两枚质地均匀的正方体骰子也可能出现两点数之和小于6,故此是随机事件,故此选项错误;③购买一张彩票可能中奖;是随机事件,故此选项正确;④已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为100°,此三角形顶角也可能是40°,故此选项错误,故答案为:①③.【分析】根据三角形内角和定理和等腰三角形的性质以及随意事件的意义分别判断出事件的正确性即可.9.答案:13解析:【解答】根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P (摸到黄色乒乓球)=26=13.【分析】概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【分析】根据概率求面积.三、解答题12.答案:袋中应有15个红球,摸出的黄色球的概率为25%.解析:【解答】①∵红色球有10个,黄色球有5个,∴总球的个数是10+5=15(个),∴从袋中摸出一个球是红颜色的可能性是:P(红)=102 153=;②设袋中有x个红球,则55x+=25%,解得:x=15;【分析】根据概率的公式.13.答案:见解答过程.解析:【解答】(A)发生的可能性很大,但不一定发生,0.9;(B)发生的可能性很小,0.1;(C)发生与不发生的可能性一样,0.5.【分析】根据概率的意义分别相配即可.实验次数较少时得到的机会估计值不可靠;(3)这种说法是合理的.【分析】根据频率和概率的关系,对各题的概率进行估算.15.答案:见解答过程解析:【解答】(1)小明摸到的可能是红球,也可能是白球;(2)由于球的形状和大小相同,所以摸到每个球的可能性是一样的;(3)任意摸出一个球,可能的出现的结果有:1号球、2号球、3号球、4号球;摸到红球可能出现的结果有:1号球、2号球、3号球;摸到白球可能出现的结果有:4号球.【分析】利用频率估计概率,大量反复试验下频率稳定值即概率.。
2020北师大版七年级数学下册6.3等可能事件的概率同步训练(含解析)
6.3等可能事件的概率同步训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.从-3,5,-7,10四个数中任取一个数为奇数的概率是()A.14B.12C.34D.12.从单词“hello”中随机抽取一个字母,抽中l的概率为( )A.14B.15C.25D.123.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000B.1200C.12D.154.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a等于()A.1B.2C.3D.45.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.12B.13C.14D.166.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大7.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.598.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是A.大量反复抛掷每100次出现正面朝上50次B.连续抛掷10次不可能都正面朝上C.抛掷硬币确定谁先发球的规则是公平的D.连续抛掷2次必有1次正面朝上二、填空题9.在一个不透明的袋中装有黑色和红色两种颜色的球共15个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为__________.10.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于_____.11.一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是_____.12.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.13.四张扑克牌的牌面如图①,将扑克牌洗匀后,背面朝上放置在桌面上如图①,随机同时抽取两张扑克牌,牌面数字是2和4的概率为___.14.一个盒子中装有10个红球和若干个白球,这些求除颜色外都相同,再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为____.三、解答题15.在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或画树状图求2次摸出的球都是白球的概率;(2)搅匀后从中任意一次摸出2个球,则摸出的2个球都是白球的概率为;(3)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为.16.在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,蓝球1个,若从中任意摸出一个球,摸到的球是红球的概率为1 2 .(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,利用树状图或刘表格求两次摸到球的颜色是红色与黄色的概率.17.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?参考答案1.C【解析】【分析】从-3,5,-7,10这4个数字中,奇数有3个,根据概率公式计算即可.【详解】解答:解:从-3,5,-7,10这4个数字中,奇数有3个,①这个数是奇数的概率是P=34,故答案为:C.【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.2.C【解析】【分析】由题意得:hello中有2个l,利用概率公式求出答案即可【详解】因为hello中有2个l,而总共有5个字母,所以抽中l的概率=2 5故答案为C选项【点睛】本题主要考查了概率的求取,掌握基本的概率求取方法即可3.B【解析】【分析】直接根据求概率的公式即可得到结果.【详解】因为抽取1000个进行质量检验,结果发现有10个次品,所以从中抽取一个是次品的概率约为51 1000200,【点睛】本题考查的是概率公式,解答本题的关键是熟练掌握概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率()mP An=. 4.A【解析】【详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:21233a=++,解得:a=1,经检验,a=1是原分式方程的解,故本题选A.5.D【解析】【分析】用阴影部分扇形个数除以扇形的总个数即可得.【详解】解:当转盘停止转动时,指针指向阴影部分的概率是16,故选:D.【点睛】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.6.D【解析】【详解】A.摸到红球是随机事件,故此选项错误;B.摸到白球是随机事件,故此选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确;7.C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】①总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,①飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.C【解析】【分析】根据概率的意义逐一判断即可得.【详解】A. 大量反复抛掷每100次出现正面朝上接近50次,此选项错误;B. 连续抛掷10次可能都正面朝上,但可能性较小,此选项错误;C. 通过抛掷硬币确定两人谁先发球的比赛规则是公平的,此选项正确;D. 连续抛掷2次可能有1次正面朝上,此选项错误.故选C【点睛】本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.9.6【解析】【分析】根据频率的定义先求出黑球的个数,即可知红球个数. 【详解】解:黑球个数为:150.69⨯=,红球个数:1596-=. 故答案为:6 【点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键. 10.13. 【解析】 【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在红色区域的概率. 【详解】由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的, 所以指针指向每个扇形的可能性相等,即有8种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果, 所以指针落在红色区域的概率是2163=; 故答案为13. 【点睛】此题考查了概率公式,用到的知识点为:概率=相应的面积与总面积之比. 11.49【解析】 【分析】根据题意画出树状图,再利用概率公式进行求解. 【详解】:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种, ①两次摸出的小球颜色不同的概率为49;故答案为:49.【点睛】此题主要考查概率的计算,解题的关键是画出所有的情况,再用概率公式进行求解.12.1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:①总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积①飞镖落在阴影部分的概率是31 93 ,故答案为:13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.13.1 6【解析】【分析】先算出一共有多少种情况,再算出牌面是2和4的多少种情况,代入概率公式即可求出.【详解】①随机同时抽取两张扑克牌的等可能情况是12种,牌面是2和4的情况是2种,①随机同时抽取两张扑克牌,牌面数字是2和4的概率为1 6 .【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键. 14.20.【解析】【分析】设原有白球x 个,则放入5个白球后变为(5)x +个,根据概率公式列出方程即可求解. 【详解】设原有白球x 个,则放入5个白球后变为(5)x +个,由题意可得555107x x +=++,解之得20x =,故原有白球20个【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式. 15.(1)49;(2)13 ;(3)49【解析】 【分析】(1)根据概率的求法,找准两点:①全部情况的总数;①符合条件的情况数目;二者的比值就是其发生的概率;(2)利用树状图法表示出所有结果,然后利用概率公式即可求解;(3)白色和红色的比值是2:1,则可以认为是2个白,1个红.与(1)解法相同. 【详解】 (1)画树状图,,有9种结果,摸到两个白球的有4种结果,所以P (摸出2个白球)=49. (2)如图,共有6种结果,摸出的2个球都是白球的有2种结果,则P (两个都是白球)=21=63;(3)白色和红色的比值是2:1,则可以认为是2个白,1个红.与(1)相同, P (指针2次都指向白色区域)=49.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16.(1)1个;(2) 1 3 .【解析】【分析】(1)首先设袋中的黄球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;(2)首先画表格,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.【详解】.解:(1)设袋中的黄球个数为x个,由题意得21 212x= ++解得:1x=①袋中黄球的个数1个.(2)这是随机事件中的等可能事件,列表如下:由表可知,共有12神等可能的結果,其中両次摸到球的顔色是紅色与黄色的有4种:(红1,黄),(红2,黄),(黄,红1),(黄,红2),所以两次摸到球的颜色是红色与黄色的概率为:41 123=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.17.(1)34;(2)125【解析】【分析】根据题意求出概率,进行简单计算即可求解.【详解】解:(1)指针指向1,2,3,5,6,8都获奖,①获奖概率P=68=3,4(2)获得一等奖的概率为1 8 ,100018⨯=125(人),①获得一等奖的人数可能是125人.【点睛】本题考查了概率的简单应用,概率的求法,属于简单题,熟悉概率的实际含义是解题关键. 18.选择A转盘.理由见解析【解析】试题分析:由题意可以画出树状图,然后根据树状图求得到所有等可能的结果,找全满足条件的所有情况,再利用概率公式即可求得答案.试题解析:选择A转盘.画树状图得:①共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,①P(A大于B)=,P(A小于B)=,①选择A转盘.考点:列表法与树状图法求概率。
北师大版数学七年级下册第六章6.3等可能事件的概率课时练习
初中数学试卷北师大版数学七年级下册第六章6.3等可能事件的概率课时练习一、选择题(共15个小题)1.任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A.12B.13C.23D.16答案:B解析:解答:任意掷一枚质地均匀的骰子,掷出的点数可以是1,2,3,4,5,6,共6种可能,而大于4的点数只有5,6,所以掷出的点数大于4的概率是2163=,故选B.分析:本题关键是算出共有多少球,以及有几个红球.2.一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P(摸到红球)等于()A.12B.23C.15D.110答案:C解析:解答:袋中有2个红球,3个蓝球和5个白球,故共有球10个,所以从中任意摸出一个球,则P(摸到红球)=21105=,故选C.分析:本题关键是算出共有多少球,以及有几个红球.3.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A. P1> P2B.P1< P2C.P1=P2D.以上都有可能答案:A解析:解答:在甲图中,小球最终停留在黑色区域的概率为P1=63168=,在乙图中,小球最终停留在黑色区域的概率为P2= 39,38>39故选A.分析:本题关键是分别算出在各个图中各自的概率,然后进行比较.4.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是()A.120B.19100C.14D.以上都不对答案:C解析:解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=,故选C.分析:本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.5.一个事件的概率不可能是()A.0B.12C.1D.32答案:D解析:解答:不论任何事件的概率,最小为0,最大为1,没有大于1的存在.故选D.分析:本题关键是清楚概率取值的范围是不小于0且不大于1.6.从1至9这些数字中任意取一个,取出的数字是偶数的概率是()A.0B.1C.59D.49答案:D解析:解答:在1至9这些数字中,共有2,4,6,8四个偶数,因此从这九个数字中任意取一个,取出的数字是偶数的概率是.故选D.分析:本题关键是清楚偶数有几个,然后运用比例就求出来了.7.小刚掷一枚硬币,一连9次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A.0B.1C.12D.23答案:C解析:解答:小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.分析:本题关键是清楚每次掷硬币,都是相互独立的事件.8.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )A.能开门的可能性大于不能开门的可能性B.不能开门的可能性大于能开门的可能性C.能开门的可能性与不能开门的可能性相等D.无法确定答案:B解析:解答:既然是一大串钥匙,那么应该多于3把,而其中只有一把是能够开锁的,因此任取一把,不能开门的可能性大于能开门的可能性,故选B.分析:本题关键是清楚一大串钥匙的含义.9.有100个相同大小的球,用1至100个数编号,则摸出一个是5的倍数号的球的概率是()A.120B.19100C.15D.以上都不对答案:C解析:解答:100个相同大小的球,用1至100个数编号,那么编号是5的倍数的共有20个,因此摸出一个是5的倍数号的球的概率是2011005,故选C.分析:本题关键是找出5的倍数号的球共有多少个.10.某商店举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设立特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是()A.110000B.5010000C.10010000D.15110000答案:D解析:解答:每10000张奖券为一个开奖单位,共有奖:特等奖1个+一等奖50个+二等奖100个=151个奖,所以买100元商品的中奖的概率是15110000,故选D.分析:本题关键是找出共有奖多少个.11.在一个口袋中,共有50个球,其中白球20个,红球20个,其余为篮球,从中任摸一球,摸到不是白球的概率是()A.15B.25C.35D.45答案:C解析:解答:口袋中,共有50个球,其中白球20个,那么不是白球的球共有30个,所以摸到不是白球的概率是303505=,故选C.分析:本题关键是找出不是白球的球有多少个.12.在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是()A. 0.34B. 0.17C. 0.66D. 0.76答案:C解析:解答:在一次抽奖中,抽中的概率和抽不中的概率之和是1,抽中的概率是0.34,则抽不中的概率是1-0.34=0.76,故选C.分析:本题关键是清楚抽中的概率和抽不中的概率之和是1.13.用1、2、3这三个数字,组成一个三位数,则组成的数是偶数的概率是()A.13B.14C.15D.16答案:A解析:解答:用1、2、3这三个数字,组成一个三位数,共有6个不同的数为:123,132,213,231,312,321,其中偶数有132,312两个,所以组成的数是偶数的概率为21 63 =,故选A.分析:本题关键是找出共有几个数,以及偶数有几个.14.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方()A.公平B.对甲有利C.对乙有利D.无法确定公平性答案:A解析:解答:同时掷两枚相同的硬币,所有等可能的事件如下表所示:硬币朝上的面朝上的面朝上的面朝上的面硬币一国徽国徽数字数字硬币二国徽数字国徽数字是否同面同面异面同面异面同面朝上的概率为2142=,异面朝上的概率为2142=,故选A.分析:本题关键是弄清楚等可能的事件是什么.15.小伟向一袋中装进a只红球,b只白球,它们除颜色外,无其他差别.小红从袋中任意摸出一球,问他摸出的球是红球的概率为()A.abB.baC.+aa bD.+ba b答案:C解析:解答:袋中装进a 只红球,b 只白球,共有球(a +b )只,所以从袋中任意摸出一球,摸出的球是红球的概率等于+aa b,故选C . 分析:本题关键是弄清楚红球的个数和共有球数. 二、填空题(共5个小题)16.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于_______.答案:38. 解析:解答:由图可以看出,一共有最小规格的正三角形16个,其中涂黑了的有6个.有等可能的情况之下,扔沙包1次击中阴影区域的概率等于63168=. 分析:本题关键是数出共有的最小三角形和涂黑的三角形个数.17.必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______. 答案:必然事件发生的概率是1,即P(必然事件)= 1;不可能事件发生的概率是0,即P (不可能事件)=0;若A 是不确定事件,则0)<(<A P 1.解析:解答:根据必然事件、不可能事件、不确定事件的意义,可得必然事件发生的概率是1,即P(必然事件)= 1;不可能事件发生的概率是0,即P (不可能事件)=0;若A 是不确定事件,则0)<(<A P 1.分析:本题考察对概率意义的理解,关键是明确各事件的概率.18.一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______. 答案:14|113解析:解答:一副扑克牌去掉大王、小王后还有52张,其中方块有13张,所以随意抽取一张,抽到方块的概率是131524=;在这52张中,3共有4张,因此抽到3的概率是415213=.分析:本题考察对概率意义的理解,关键是分析出朝上的点数中有几个是奇数.19.任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.答案:1 2解析:解答:任意掷一枚质地均匀的骰子,朝上的点数可能是1,2,3,4,5,6,其中有三个奇数,因此朝上的点数是奇数的概率是12.分析:本题考察对概率意义的理解,关键是分析出朝上的点数中有几个是奇数.20.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.答案:1 4解析:解答:因为选择题有四个选项,所以小明靠猜测获得结果,其答对的概率是14.分析:本题考察对概率意义的理解,关键是根据选项个数,分析出概率是多少.三、解答题(共5个小题)21.下列事件中,哪些是确定事件?哪些是不确定事件?(1)任意掷一枚质地均匀的骰子,朝上的点数是6.答案:不确定事件;解答:任意掷一枚质地均匀的骰子,朝上的点数可能是1,2,3,4,5,6,因此,朝上的点数是6是不确定事件.(2)在一个平面内,三角形三个内角的和是190度.答案:确定事件,也是不可能事件;解答:根据三角形的内角和定理,在一个平面内,三角形三个内角的和是180度.因此,三角形三个内角的和是190度是确定事件,也是不可能事件.(3)线段垂直平分线上的点到线段两端的距离相等.答案:确定事件,也是必然事件;解答:根据线段的垂直平分线的性质可知,线段垂直平分线上的点到线段两端的距离相等,故是一个确定事件,也是必然事件.解析:分析:本题考察对概率意义的理解,关键是根据各小题题干,分析出概率是多少.22.请将下列事件发生的概率标在图中:(50%)0.5不可能发生必然发生(100%)1(1)随意掷两枚质地均匀的骰子,朝上面的点数之和为1;答案:(50%)0.5不可能发生必然发生(100%)1解答:因为每一枚质地均匀的骰子,抛掷后朝上面的点数最小为1,所以两枚朝上面的点数之和最小为2,因此,点数之和为1是不可能发生的.(2)抛出的篮球会下落;答案:(50%)0.5不可能发生必然发生(100%)1解答:在地球万有引力的作用下,抛出的篮球会下落,这是必然发生的.所以可能性为1. (3)从装有3个红球、7个白球的口袋中任取一个球,恰好是红球(这些球除颜色外完全相同);答案:310(50%)0.5不可能发生必然发生(100%)1解答:口袋中装有3个红球、7个白球,共有10个球,任取一个球,恰好是红球的概率为3 10,所以点应该标在310处.(4)掷一枚质地均匀的硬币,硬币落下后,正面朝上.答案:(50%)0.5不可能发生必然发生(100%)1解答:掷一枚质地均匀的硬币,硬币落下后,正面朝上与反面朝上的概率相同,都为12,所以点应该标在12即50%处.解析:分析:本题考察对概率意义的理解,关键是根据各小题题干,分析出概率是多少.23.下面是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率.答案:14|38解答:由图可以看出,在第一个转盘内,红色区域的圆心角是90°,因此可以算得指针落在红色区域的概率是9013604=;在第二个转盘内,红色区域的圆心角是135°,因此可以算得指针落在红色区域的概率是135273 360728==.解析:分析:本题考察对概率意义的理解,关键是根据图示,由圆心角的度数求出概率.24.用10个球设计一个摸球游戏:(1)使摸到红球的概率为15;答案:2个红球,8个白球;解答:在一个不透明的口袋内装大小材质相同的小球,其中2个红球,8个为白球,则摸到红球的概率符合要求.(2)使摸到红球和白球的概率都是2 5 .答案:4个红球,4个白球,2个其他颜色球.解答:在一个不透明的口袋内装大小材质相同的小球,其中4个红球,4个白球,2个黑球,则摸到红球和白球的的概率符合要求.解析:分析:本题考察对概率意义的理解,关键是根据要求,算出符合条件的各色小球的个数. 25.一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,请问(1)取出的小球编号是偶数的概率是多少?答案:1 2解答:一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,那么每一个小球被取到的概率是相同的.这其中,编号为偶数的有25个,所以取出的小球编号是偶数的概率是251 502=.(2)取出的小球编号是3的倍数的概率是多少?答案:8 25解答:一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,那么每一个小球被取到的概率是相同的.这其中,编号为3的倍数的小球共有16个,所以所频率为168 5025=.(3)取出的小球编号是质数的概率是多少?答案:6 25解答:从1到50这50个编号中,质数有2,3,5,7,11,13,17,19,23,29,31,37,共12个,所以小球编号是质数概率是126 5025=.解析:分析:本题考察对概率意义的理解,关键是找出各种符合条件的编号的个数.。
最新北师大版七年级数学下册6.3等可能事件的概率同步练习习题
等可能事件地概率
姓名___________ 学号_____ 【基础过关】
1. 用扇形统计图反应地球上陆地面
积与海洋面积所占比例时,陆地面
积所对应地圆心角是108°,当宇宙中一块
陨石落在地球上,则落在陆地上地概率是
()
A.0.2 B.0.3 C.0.4 D.0.5
2.向如图所示地正三角形区域扔沙包(区域中
2
每一个小正三角形除颜色外完全 相同),假设包击中每一个小三角形是等可能地,扔沙包1次击中阴影区域地概率等于( )
A . 1 6
B . 1 4
C . 3 8
D . 5 8
3.一张写有密码地纸片被随意地埋在下面矩形区域内(每个方格大小一样)
(1)埋在哪个区域地可
能性大?
(2)分别计算出埋在三个区域内地概率;
4.如图是一个转盘,扇形1,2,3,
4,5所对地圆心角分别是
180°, 90°,45°,30°,15°,任意转动转盘,求出指针分别指向2,3,5地概率(指针恰好指向两扇形交线地概率视为零).
【拓展提升】
5.在班上组织地“元旦迎新晚会”中,小丽和小芳都想当节目主持人,但现在只有一个名额.小芳想出了一个用游戏来选人地办法,她将一个转盘(均质地)平均分成6份,如图所
示.游戏规定:随意转动转盘,若指针指到偶数,则小丽去;反之,则小芳去.你认为这个游戏公平吗?为什么?如果不公平,请你修改转盘中地数字,使这个游戏变得公平.
【反思梳理】
4。
6.3等可能事件的概率3 练习-北师大版七年级数学下册(无答案)
初一数学下6.3等可能事件的概率3(P154-155)编号:605班别:_____________姓名:_____________学号:__________出题者:教学目标:1、了解概率的大小与面积的关系,会进行简单的概率计算;2、能设计符合要求的简单概率模型重点:了解概率的大小与面积的关系,会进行简单的概率计算; 难点:能设计符合要求的简单概率模型一、 课前训练:1.小明掷一枚硬币,一连10次都掷出正面朝上,当他第11次掷硬币时,出现正面朝上的概率是( )A 、0B 、1C 、101D 、21 2.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是21,则n 为( ) A 、1 B 、2 C 、3 D 、63.如图,在△ABC 中,AC =4cm ,BC =6cm ,AB 的垂直平分线交BC 于D ,则△ACD 的周长为=________二、新课学习:1.如图,是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?2.转动如图所示的转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?3.(学习例3)某路口南北方向红绿灯的设置时间为:红灯40秒、绿灯60秒、黄灯3秒。
小明的爸爸随机地由南往北开车经过该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到红灯的概率是多少?三、对应练习1.如右图是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率。
2.如图是一个被分成6等份的扇形转盘,小明转了1次,指针停留在红色区域的概率是( )(1)(2)A 、1B 、0C 、23D 、133.如图所示,转盘被等分成16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为83.4.如图是一个转盘,扇形1,2,3,4,5所对的圆心角分别是180°,90°,45°,30°,15°,任意转动转盘,求出指针分别指向1,2,3,4,5的概率。
北师大版七年级数学下册第六章概率初步第三节等可能事件的概率(无答案)
等可能事件的概率等可能事件1.如图,甲、乙两个转盘转动一次,最终指针指向红色区域(填“是”或“不是”)等可能性事件.2.判断下列随机现象是否属于等可能事件,若是,有几个等可能结果?(1)抛掷火柴盒;(2)从6件正品和2件次品中,随机抽取3件的质量情况;(3)一次射击命中的环数;(4)三枚硬币投抛一次.概率的意义3.某商场利用摸奖开展促销活动,中奖率为,则下列说法正确的是()A.若连续摸奖两次,则都不会中奖B.若连续摸奖两次,则不会都中奖C.若只摸奖一次,则也有可能中奖D.若摸奖三次,则至少中奖一次概率的计算4.在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.5.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A.B.C.D.6.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A.B.C.D.7.从单词“happy”中随机抽取一个字母,抽中p的概率为()A.B.C.D.8.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.9.某校某次外出游学活动分为三类,因资源有限,七年级2班分配到25个名额,其中甲类4个、乙类11个、丙类10个,已知该班有50名学生,班主任准备了50个签,其中甲类、乙类、丙类按名额设置、25个空签,采取抽签的方式来确定名额分配,请解决下列问题(1)该班小明同学恰好抽到丙类名额的概率是多少?(2)该班小丽同学能有幸去参加游学活动的概率是多少?(3)后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到20%,则还要争取甲类名额多少个?游戏中的概率游戏的公平性1.一箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球者获得1分,这个游戏是()A. 公平的B. 先摸者得分的可能性大C. 无法判断公平与否D. 后摸者得分的可能性大2.小兰和小青两人做游戏,有一个质量分布均匀的六面体骰子,骰子的六面分别标有1,2,3,4,5,6,如果掷出的骰子的点数是偶数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢,那么游戏规则对有利.3.甲、乙两人玩抽扑克牌游戏,他们准备了13张从A(1)到K的牌,并规定甲抽到10至K的牌,那么算甲胜,如果抽到的是10以下的牌,则算乙胜,这种游戏对甲乙来说(填“公平”或“不公平”)4.将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.游戏设计5.某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜,要使游戏对甲、乙双方公平,则x应该是()A.3B.4C.1D.26.用10个除颜色外完全相同的球设计一个摸球游戏.(1)使得摸到红球的概率是,摸到白球的概率也是;(2)使得摸到红球的概率是,摸到白球和黄球的概率都是.7.在一个不透明的袋子里装有10个除号码外其余都相同的小球,每个小球的号码分别是1,2,3,4,5,6,7,8,9,10将它们充分摇匀,并从中任意摸出一个小球.规定摸出小球号码能被3整除时,甲获胜;摸出小球号码能被5整除时,乙获胜;这个游戏对甲乙双方公平么?请说明理由.如果不公平,应该如何修改游戏规则才能对双方公平?(游戏对双方公平的原则是:双方获胜的概率相等)面积中的概率几何中的概率1.如图是一个可以自由转动的正六边形转盘,其中两个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为()A.B.C.D.2.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是()A.B.C.D.3.如图是计算机中的一种益智小游戏“扫雷”的画面,在一个9×9的小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能埋藏1颗地雷.小红在游戏开始时首先随机地点击一个方格,该方格中出现了数字“3”,其意义表示该格的外围区域(图中阴影部分,记为A区域)有3颗地雷;接着,小红又点击了左上角第一个方格,出现了数字“1”,其外围区域(图中阴影部分)记为B区域;“A区域与B区域以及出现数字‘1’和‘3’两格”以外的部分记为C区域.小红在下一步点击时要尽可能地避开地雷,那么她应点击A、B、C中的哪个区域?请说明理由.均分转盘中的概率4.在如图所示的正方形和圆形组成的盘面上投掷飞镖,飞镖落在阴影区域的概率是()A.B.C.D.5.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是.6.某商人制成了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖3元;若指针指向字母“C”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?转盘中的概率不均分转盘中的概率1.如图,把一个圆形转盘按1:2:3:4的比例分成A,B,C,D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为()A.B.C.D.2.转动下列名转盘,指针指向红色区域的概率最大的是()A.B.C.D.3.如图,转动的转盘停止转动后,指针指向白色区域的概率是.4.某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费200元(含200元)以上,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折,七折区域,顾客就可以获得此项优惠,如果指针恰好在分割线上时,则需重新转动转盘.(1)某顾客正好消费220元,他转一次转盘,他获得九折八折、七折优惠的概率分别是多少?(2)某顾客消费中获得了转动一次转盘的机会,实际付费168元,请问他消费所购物品的原价应为多少元.5.(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为,落在白色区域的概率为,落在黄色区域的概率为.其他问题中的概率6.如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体;(1)只有一面涂有颜色的概率;(2)至少有两面涂有颜色的概率;(3)各个面都没有颜色的概率.练习1.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.3.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6B.7C.8D.94.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.5.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是.6.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是.7.若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是.8.一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是.9.今年“五一”假期期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖;指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)“五一”这天有1800人参与这项活动,估计获得一等奖的人数是多少?10.永辉超市进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会(转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件.商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:奖次特等奖一等奖二等奖三等奖圆心角1°36°53°150°促销公告:凡购买我商场商品均有可能获得下列大奖特等奖:彩电一台一等奖;自行车一辆二等奖:圆珠笔一支三等奖:卡通画一张(1)获得圆珠笔的概率是多少?(2)不获奖的概率是多少?(3)如果不用转盘,请设计一种等效试验方案.(要求写清楚替代工具和实验规则)。
北师大版七年级下册 6.3 等可能事件的概率 同步测试(无答案)
2020春北师大版七下数学6.3等可能事件的概率同步测试1一、选择题:1、某小组有成员3人.每人在一个星期中参加一天劳动如果劳动日期可随机安排,则3人在不同的3天参加劳动的概率为( )A .73 B .353 C .4930 D .701 2、从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是( )A .51B .52 C .103 D .107 3、十个人站成一排,其中甲、乙、丙三人恰巧站在一起的概率为( ) A .151 B .901 C .1201 D .7201 4、从长度分别为1、3、5、7、9个单位的5条线段中任取3条作边,能组成三角形的概率为( )A .51B .52 C .53 D .103 二、填空题:5、圆周上有十个等分圆周的点,以这十个点中,任取三点为顶作一个三角形.则所作的三角形是直角三角形的概率是 .6、一批产品中,有n 件正品和m 件次品,对产品逐个进行检测,如果已检测的前k 个均为正品,那么第k +1次检测的产品为正品的概率为 .7、如图是一个正方形的飞镖游戏板,小明每次都能击中镖板,试求:P (击中白色正方形)= P (击中黑色正方形)=8.如图,有三个同心圆,由里向外的半径依次是2cm,4cm,6cm将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是2020春北师大版七下数学6.3等可能事件的概率同步测试2 1、如图1,小朋友张迪最爱乱丢东西,他把他的玩具车丢在黑色方框内的概率是()A、61B、31C、41D、322、如图2,欢欢在玩飞镖投掷游戏,如果大圆半径是5,小圆半径是3,请你算一下欢欢没投掷一次,击中圆环的概率是()A、53B、253C、259D、25163、如图3所示,转盘平面被等分成四个扇形,并分别填上红、黄两种颜色,自由转动这个转盘,当它停止转动时,指针停在黄色区域的概率为.4、如图4所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率图2图1红红红黄是.2020春北师大版七下数学6.3等可能事件的概率同步测试3 (1)如图,是自由转动的转盘,被均匀分成10部分,随机转动,则:1.P(指针指向6)= ;2.P(指针指向奇数)= ;3.P(指针指向3的倍数)= ;4.P(指针指向15)= ;5.P(指针指向的数大于4)= ;6.P(指针指向的数小于11)= .(2)宁宁家客厅的地板有黑、白、蓝三种颜色组成,黑、白、蓝的比是2:2:6,一只小狗在地板上走来走去,它恰好停在黑色地板上的概率是________.(3)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.(4)如图,一个圆形转盘被等分为八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)P(4),(填“>”、“=”或“<”)图4123456789102020春北师大版七下数学6.3等可能事件的概率同步测试41.把1,2,3,4,5各数分别写在5张卡片上,随机地取出3张排成自左向右的顺序,组成三位数,求:(1)所得三位数是偶数的概率;(2)所得三位数小于350的概率;(3)所得三位数是5的概率.2.某组有16名学生,其中男、女生各占一半,把全组学生分成人数相等的两小组,求每小组里男、女生人数相同的概率.3.把10个运动队一部平均分成两组进行预赛.求最强两队被分在(1)不同组内;(2)同一组内的概率.4.外形相同的电子管100只,其中A 类40只,B 类30只,C 类30只.在运输过程中损坏了3只,如果这100只电子管中,每只损坏的可能性相同.试求这3只中,每类恰有1只的概率.5.n 个同学随机坐成一排,求其中甲、乙坐在一起的概率.6.将4个编号的球放入3个编号的盒中,对于每一个盒来说,所放的球数k 满足40≤≤k .在各种放法的可能性相等的条件下,求:(1)第一个盒没有球的概率;(2)第一个盒恰有1个球的概率;(3)第一个盒恰有2个球的概率;(4)第一个盒有1个球,第二个盒恰有2个球的概率.7.抽签口语测试,共有a +b 张不同的考签,每个考生抽1张考签,抽过的考签不再放回,某考生只会考其中的a 张,他是第k 个抽签的,求该考生抽到会考考签的概率.8.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖的概率是多少?。
北师大版七年级下册:《6.3等可能事件的概率》备用习题
备用习题
1. 小张决定于周日上午8时到下午5时去拜访他的朋友小李,但小李上午9时至10时要去菜场买菜,下午2时到3时要午休,当小张周日拜访小李时, 求下列事件发生的概率?
(1)小李在家;(2)小张上午去拜访,小李不在家;(3)小李在午休;(4)小李在家,但未午休。
2.在射击比赛中,假设每弹都打在靶上并取得了环数,中心50环的半径r=10cm ,30环的半径R=20cm ,最外环10环的半径R=40cm ,则击中中心50环的概率为 。
3.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108度.宇宙中一块陨石落在地球上,落在陆地的概率是 。
4. 密码锁的密码是一个五位数字的号码,每位上的数字都可以是0到9中的任一个,某人忘了密码的最后一位号码,此人开锁时,随意拔动最后一位号码正好开锁的概率是 。
5. 如图所示,转盘分成20个相等的扇形,请在这个转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针停在黄色区域的概率为10
3,仿此,请设计一个不确定事件,其发生的概率也为103。
北师大版数学七年级下册6.3等可能时间的概率练习(word无答案)
6.3等可能时间的概率练习一、选择题1.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%2.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次3.必然事件的概率是()A.0 B.0.5 C.1 D.不能确定4.袋中有3个红球,4个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出1个球,则摸出白球的概率是()A.B.C.D.5.在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,在看不到数字的情况下,从中任意抽取一张卡片,则抽到的数字是奇数的概率是()A.B.C.D.6.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为()A.B.C.D.7.一个不透明的口袋里装有分别标有汉字“陕”、“西”、“美”、“丽”的4个小球,除汉字不同之外,小球没有任何区别,小航从中任取两球,则取出的两个球上的汉字恰能组成“陕西”或“美丽”的概率是()A.B.C.D.8.两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除了颜色外都相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的概率是()A.B.C.D.9.有一个质地均匀的骰子,6个面上分别写有1,1,2,2,3,3这6个数字.连续投掷两次,第一次向上一面的数字作为十位数字,第二次向上一面的数字作为个位数字,这个两位数是奇数的概率为()A.B.C.D.10.现有4条线段,长度依次是1,2,3,4,从中任选3条,能组成三角形的概率是()A.B.C.D.111.现有规格接近的三把钥匙和相应的三把锁,能一次性打开三把锁的概率是()A.B.C.D.二、填空题12.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n=.13.某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是.14.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.15.在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(﹣2≤x≤2,﹣2≤y≤2,x,y均为整数),则所作△OAB为直角三角形的概率是.16.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.三、解答题17.学校新年联欢会上某班矩形有奖竞猜活动,猜对问题的同学即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为台灯、笔记本、签字笔.请问:(1)摇奖一次,获得笔记本的概率是多少?(2)小明答对了问题,可以获得一次摇奖机会,请问小明能获得奖品的概率有多大?请你帮他算算.18.杨成家住宅面积为90平方米,其中大卧室18平方米,客厅30平方米.小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).19.如图,有一个均匀的正二十面体形状的骰子,其中1个面标有“1“,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后.(1)“6”朝上的概率是多少?(2)哪个数字朝上的概率最大?。
七年级数学下册6.3《等可能事件的概率》习题(新版)北师大版
《等可能事件的概率》一、选择题1.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A.本市明天将有85%的地区下雨B.本市明天将有85%的时间下雨C.本市明天下雨的可能性比较大D.本市明天肯定下雨2.下列推理正确的是( )A.某期彩票的中奖概率是1%,小明买了100张彩票,一定有一张中奖B.将-2、-3、1、4代入代数式-x2+4x-4,其值都是负数,所以-x2+4x-4一定是个负数C.将一张纸对折一次后展开后一条折痕,对折两次后展开有三道折痕,所以,对折n次后展开有2n+1条折痕D.对于任意有理数x,代数式x2+2x+2一定是一个正数3.已知抛一枚均匀硬币正面朝上的概率是0.5,下列说法正确的是( )A.连续抛一枚均匀硬币2次,必有1次正面朝上B.连续抛一枚均匀硬币2次,一次是正面一次是反面的概率是1 4C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的4.以下说法正确的是( )A.要考察抛一枚硬币时反面朝上的概率,可以用啤酒盖代替硬币B.在一次抽奖活动中,“中奖的概率是1%”表示抽奖100次就一定会中奖C.通过多次试验得到某事件发生的频率等于这一事件发生的概率D.随机事件发生的概率介于0-1之间5.在某一场比赛前,教练预测:这场比赛我们队有50%的机会获胜,那么相比之下在下面4种情形的哪一种情形下,我们可以说这位教练说得比较准( )A.该队真的赢了这场比赛B.该队真的输了这场比赛C.假如这场比赛可以重复进行10场而这个队赢了6场D.假如这场比赛可以重复进行100场而这个队赢了51场6.掷一枚正方体骰子,恰好掷得点数为4的概率为16的意思是( )A.掷6次骰子,恰好有一次掷得4点B.掷6次骰子,一定有5次不是4点C.掷6次骰子,一定有一次掷得4点D.若掷骰子若干次,则平均6次有一次掷得4点7.在三(1)与三(3)班举行的拔河友谊赛前,根据双方实力,小明预测:“三(3)班获胜的机会是80%,”那么( )A.三(3)班肯定会赢得这场比赛B.三(1)班肯定会输掉这场比赛C.若比赛5次,则三(3)会赢得4次D.三(1)也有可能会赢得这场比赛二、填空题8.下列四种说法:①若一个三角形三个内角的度数比为2:3:4,则这个三角形是锐角三角形;②“掷两枚质地均匀的正方体骰子点数之和一定大于6”是必然事件;③购买一张彩票可能中奖;④已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为100°.其中正确的序号是_____.9.一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为_____.10.如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为_____.11.如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.三、解答题12.袋中有红色和黄色两种球:①若红色球有10个,黄色球有5个,那么从袋中摸出一个球是红颜色的可能性P是多少?②若黄色球有5个,如何配置袋中的红色球使摸出的黄色球的概率为25%?13.甲.乙.丙三个事件发生的概率分别为0.5,0.1,0.9,它们各与下面的哪句话相配.(A)发生的可能性很大,但不一定发生;(B)发生的可能性很小;(C)发生与不发生的可能性一样.14.对下列说法谈谈你的看法:(1)某彩票的中奖机会是2%,如果我买10000张彩票一定有200张会中奖;(2)我和同学玩飞行棋游戏,我掷了20次骰子还没掷得“6点”,说明我掷得“6点”的机会比其他同学掷得“6点”的机会小;(3)我们知道,抛掷一枚普通硬币得到正面和反面的机会各为50%,出就是说,虽然没人能保证抛掷1000次会得到500次正面和500次反面,但是,我敢保证得到正面的次数会非常接近得到反面的次数.15.在一个盒子里装有3个红球和1个白球,它们除颜色外完全相同,小明从盒中任意摸出一球.(1)你认为小明摸出的球可能是什么颜色?与同伴进行交流;(2)如果将每个球都编上号,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(白),那么摸到每个球的可能性一样吗?(3)任意摸出一球,说出所有可能出现的结果.参考答案一、选择题1.答案:C解析:【解答】本市明天下雨概率是85%,表示本市明天下雨的可能性很大,但是不是将有85%的地区下雨,不是85%的时间下雨,也不是明天肯定下雨,故选C.【分析】根据概率是反映事件发生机会的大小,只是表示发生的机会的大小,机会大也不一定发生即可得出答案.2.答案:D解析:【解答】A、错误,是随机事件;B、错误,当x=2时不成立;C、错误,当对折三次时不成立;D、正确,因为原式可化为(x+1)2+1,所以对于任意有理数x,代数式x2+2x+2一定是一个正数.故选D【分析】分别根据概率的意义对四个选项进行逐一解答即可.【分析】根据概率的意义即可判断.4.答案:D解析:【解答】A、因为考察的是一枚硬币,所以不可以用啤酒盖代替;B、抽奖100次不一定会中奖;C、一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率;D、随机事件发生的概率介于0-1之间,说发正确.故选D.【分析】根据概率的意义,结合选项进行判断即可.5.答案:D【分析】根据概率的意义即可判断.7.答案:D解析:【解答】80%的机会获胜是说明机会发生机会的大小,80%的机会并不是说明比赛胜的场数一定是80%.故选D【分析】根据概率的意义找到正确选项即可.二、填空题8.答案:①③解析:【解答】①若一个三角形三个内角的度数比为2:3:4,即可得出2x+3x+4x=180°,解得:x=20°,∴三角形三个内角的度数分别为:40°,60°,80°,∴这个三角形是锐角三角形;故此选项正确;②“掷两枚质地均匀的正方体骰子点数之和一定大于6”是必然事件;根据掷两枚质地均匀的正方体骰子也可能出现两点数之和小于6,故此是随机事件,故此选项错误;③购买一张彩票可能中奖;是随机事件,故此选项正确;④已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为100°,此三角形顶角也可能是40°,故此选项错误,故答案为:①③.【分析】根据三角形内角和定理和等腰三角形的性质以及随意事件的意义分别判断出事件的正确性即可.9.答案:13解析:【解答】根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P (摸到黄色乒乓球)=26=13.【分析】概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【分析】根据概率求面积.三、解答题12.答案:袋中应有15个红球,摸出的黄色球的概率为25%.解析:【解答】①∵红色球有10个,黄色球有5个,∴总球的个数是10+5=15(个),∴从袋中摸出一个球是红颜色的可能性是:P (红)=102153=; ②设袋中有x 个红球,则55x+=25%, 解得:x =15;【分析】根据概率的公式.13.答案:见解答过程.解析:【解答】(A)发生的可能性很大,但不一定发生,0.9;(B)发生的可能性很小,0.1;(C)发生与不发生的可能性一样,0.5.【分析】根据概率的意义分别相配即可.解析:【解答】(1)小明摸到的可能是红球,也可能是白球;(2)由于球的形状和大小相同,所以摸到每个球的可能性是一样的;(3)任意摸出一个球,可能的出现的结果有:1号球、2号球、3号球、4号球;摸到红球可能出现的结果有:1号球、2号球、3号球;摸到白球可能出现的结果有:4号球.【分析】利用频率估计概率,大量反复试验下频率稳定值即概率.。
北师大版七年级下册第六章第三节第三课时等可能事件的概率测试
北师大版七年级下册第六章第三节第三课时等可能事件的概率评测练习一、单选题1.一个转盘上有红、黄两种颜色,则指针落在红色区域的概率为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.不确定2.地球上陆地与海洋面积的比是3∶7,宇宙中一块陨石进入地球,落在陆地的概率是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
3.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为错误!未找到引用源。
,如果他将转盘等分成12份,则红色区域应占的份数是()A.3份B.4份C.6份D.9份二、填空题6.转动如图所示的转盘一次,指针指向阴影部分的概率为__________.7.如图,转盘中6个扇形的面积都相等,任意转动转盘一次.当转盘停止转动时(当指针停在分隔线上时再重转一次),指针指向偶数区域的概率是___________.8.下图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_________.三、解答题9.如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为错误!未找到引用源。
.。
2022北师版初中七年级数学下册练习题--等可能事件的概率
初中数学·北师大版·七年级下册——第六章概率初步3等可能事件的概率测试时间:15分钟一、选择题1.一个布袋里放有3个红球和2个白球,它们除颜色外都相同.从布袋中任意摸出1个球,摸到白球的概率是( )A.13B.23C.15D.251.答案 D ∵从放有3个红球和2个白球的布袋中任意摸出一个球,共有5种等可能的结果,其中摸出的球是白球的有2种结果,∴从布袋中任意摸出1个球,摸到白球的概率是25,故选D.2.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )A.16B.14C.13D.122.答案 C 转盘被均匀地分成6份,阴影区域占2份,所以转盘停止转动时指针指向阴影区域的概率是26=13.故选C.3.(2021浙江杭州西湖二模)有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是( )A.120B.110C.118D.9103.答案 D ∵有20瓶饮料,其中有2瓶已过保质期,∴从20瓶饮料中任取1瓶,取到没有过保质期的饮料的概率为20-220=910.故选D.二、填空题4.一个不透明的袋子中装有4个白球,a个红球,这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为13,则a= .4.答案2解析根据题意,得aa+4=13,解得a=2,故答案为2.5.(2021福建漳州模拟)如图,一飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖,击中阴影三角形区域的概率是.5.答案15解析设每个小正方形的边长为1,∴阴影三角形区域的面积为3×4-12×1×3−12×1×3−12×2×4=12−32−32-4=5,飞镖游戏板的面积为25,∴击中阴影三角形区域的概率是525=15.故答案为15.三、解答题6.(2020辽宁锦州凌海期末)某人制成了一个如图所示的游戏转盘,转盘被分成8个相同的扇形,取名为“开心大转盘”.游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则参与者交费2元;若指针指向字母“B”,则参与者获奖3元;若指针指向字母“C”,则参与者获奖1元.那么任意转动转盘一次,转盘停止后,参与者交费2元、参与者获奖3元、参与者获奖1元的概率各为多少?6.解析任意转动转盘一次,转盘停止后,参与者交费2元的概率=48=12;参与者获奖3元的概率=18;参与者获奖1元的概率=38.7.(2021山东济南章丘期末)在一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球的2倍少5个.已知从袋中摸出一个球是红球的概率为310.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)若取走10个球(其中没有红球),求从剩余的球中摸出一个球是红球的概率.7.解析(1)红球的个数为100×310=30.(2)设白球有x个,则黄球有(2x-5)个,由题意得30+x+(2x-5)=100,解得x=25,∴P(从袋中摸出一个球是白球)=25100=14.(3)所求概率=30100-10=3090=13.8.一个转盘被等分成6个扇形,如图.你能否在转盘上涂上适当的颜色,使得自由转动这个转盘,当它停止转动时,分别满足以下的条件:(1)指针停在红色区域和停在黄色区域的概率相同;(2)指针停在蓝色区域的概率大于停在红色区域的概率.你能设计一个方案,使得以上两个条件同时满足吗?8.解析(1)只需涂红色和涂黄色的区域的面积相同即可.(2)只需涂蓝色区域的面积大于涂红色的面积即可.若要以上两个条件同时满足,则需涂红色和涂黄色的区域面积相同,且小于涂蓝色区域的面积即可.方案:4个扇形涂成蓝色,1个扇形涂成红色,1个扇形涂成黄色(答案不唯一).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3等可能时间的概率练习
一、选择题
1.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()
A.明天A地区80%的时间都下雨
B.明天A地区的降雨量是同期的80%
C.明天A地区80%的地方都下雨
D.明天A地区下雨的可能性是80%
2.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是
B.反复大量做这种试验,事件A只发生了7次
C.做100次这种试验,事件A一定发生7次
D.做100次这种试验,事件A可能发生7次
3.必然事件的概率是()
A.0 B.0.5 C.1 D.不能确定
4.袋中有3个红球,4个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出1个球,则摸出白球的概率是()
A.B.C.D.
5.在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,在看不到数字的情况下,从中任意抽取一张卡片,则抽到的数字是奇数的概率是()A.B.C.D.
6.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为()
A.B.C.D.
7.一个不透明的口袋里装有分别标有汉字“陕”、“西”、“美”、“丽”的4个小球,除汉字不同之外,小球没有任何区别,小航从中任取两球,则取出的两个球上的汉字恰能组成“陕西”或“美丽”的概率是()
A.B.C.D.
8.两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除了颜色外都相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的概率是()A.B.C.D.
9.有一个质地均匀的骰子,6个面上分别写有1,1,2,2,3,3这6个数字.连续投掷两次,第一次向上一面的数字作为十位数字,第二次向上一面的数字作为个位数字,这个两位数是奇数的概率为()
A.B.C.D.
10.现有4条线段,长度依次是1,2,3,4,从中任选3条,能组成三角形的概率是()A.B.C.D.1
11.现有规格接近的三把钥匙和相应的三把锁,能一次性打开三把锁的概率是()A.B.C.D.
二、填空题
12.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n=.
13.某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是.
14.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点
数为奇数的概率是.
15.在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(﹣2≤x≤2,﹣2≤y≤2,x,y均为整数),则所作△OAB为直角三角形的概率是.16.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.
三、解答题
17.学校新年联欢会上某班矩形有奖竞猜活动,猜对问题的同学即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为台灯、笔记本、签字笔.请问:
(1)摇奖一次,获得笔记本的概率是多少?
(2)小明答对了问题,可以获得一次摇奖机会,请问小明能获得奖品的概率有多大?请你帮他算算.
18.杨成家住宅面积为90平方米,其中大卧室18平方米,客厅30平方米.小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:
(1)P(在客厅捉到小猫);
(2)P(在小卧室捉到小猫);
(3)P(在卫生间捉到小猫);
(4)P(不在卧室捉到小猫).
19.如图,有一个均匀的正二十面体形状的骰子,其中1个面标有“1“,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后.
(1)“6”朝上的概率是多少?
(2)哪个数字朝上的概率最大?。