瓦楞纸板边压强度的测定法

瓦楞纸板边压强度的测定法
瓦楞纸板边压强度的测定法

前言

本标准等同采用ISO3070:1987《瓦楞纸板—边缘耐压强度的测定》。

本标准是GB6546—86《瓦楞纸板边压强度的测定法》的修订稿。

本标准是根据GB/T1.1-1993《标准化工作导则第1单元:标准的起草与表述规则第1部分:标准编写的基本规定》编写的。

本标准从实施之日起,同时代替GB6546-86。

本标准起草单位:中国制浆造纸工业研究所。

本标准主要起草人:李兰芬、张少玲。

本标准首次发布于1986年6月30日。

中华人民共和国国家标准

瓦楞纸板边压强度的测定法GB/T6546-1998 idt ISO3070:1987

Corrugated fibreboard-Determination of edgewise crush

resistance

代替GB6546-86

1范围

本标准规定了瓦楞纸板边压强度的测定方法。

本标准适用于单楞(三层)、双楞(五层)、三楞(七层)瓦楞纸板边压强度的测定。

2引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可性能性。

GB450-89纸和纸板试样的采取

GB10739-89纸浆、纸和纸板试样处理与试验的标准大气

3试验原理

矩形的瓦楞纸板试样置于压缩试验仪的两压板之间,并使试样的瓦楞方向垂直于压缩试验仪的两压板,然后对试样施加压力,直至试样压溃为止。测定每一试样所能承受的最大压力。

4试验仪器

4.1固定压板式电子压缩试验仪

该压缩仪是采用一块固定压板和另一块直接刚性驱动压板操作的,动压板的移动速度为

(12.5±2.5)mm/min。压板尺寸应满足试样的选定尺寸,使试样不致超出压板之外,压板还应满足以下要求:

a.压板的平行度偏差不大于1:1000;

b.横向窜动不超过0.05mm。

4.2弯曲梁式压缩仪

该压缩仪是根据梁弯曲的工作原理,对上下压板的要求与固定压板式电子压缩仪相同。测试时,压溃瞬间的刻度应在仪器可能测量的挠度量程的20%-80%范围内;当压板开始接触到试样时,压板压力增加的速度应为(67±13)N/s。

使用该种仪器试验时应在报告中注明,并不得用于促裁检验。

4.3切样装置

可以使用带锯或刀子,也可使用模具准备试样,但必须切出光滑、笔直且垂直于纸板表面的边缘。4.4导块

两块打磨平滑的和蓄谋形金属块,其截面大小为20mm×20mm,长度小于100mm;导块用于支持试样,并使试样垂直于压板。

5试样的采取和处理

5.1试样的采取按GB450的规定进行。

5.2试样应按GB10739的规定进行温湿处理。

6试样的制备

节取瓦楞方向为短边的矩形试样,其尺寸为(25±0.5)mm×(100±0.5)mm。试样上不得有压痕、印刷痕迹和损坏。除非经双方同意,至少需切取10个试样。

7试验步骤

在5.2条规定的大气条件下进行裁样和试验。

将试样置于压板的正中,使试样的短边垂直于两压板,再用导块支持试样,使之端面与两压板之间垂直,两导块彼此平行且垂直于试样的表面。

开动试验仪,施加压力。当加压接近50N时移开导块,直至试样压溃。记录试样所能承受的最大压力,精确至1N。

按上述步骤测试剩余的试样。

8结果表示

垂直边缘抗压强度按式(1)进行计算,以N/表示:

R=F×103/L

式中:R—垂直边缘抗压强度,N/m

F—最大压力,N;

L—试样长边的尺寸,mm。

9试验报告

试验报告包括如下内容:

a.本国家标准的编号;

b.样品种类、规格;

c.试验所用的标准;

d.试验场所的大气条件;

e.所用试验仪的型号和加压速度;

f.试验结果的算术平均值;

g.其他有助于说明试验结果的资料。

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

瓦楞纸板边压强度测定实验

瓦楞纸板边压强度测定实验 一、实验目的 1. 进一步学习瓦楞纸板边压强度的相关知识,了解纸板性能测试的基本原理。 2. 掌握瓦楞纸板边压强度的测定方法。 3. 了解DYSY—1压缩试验仪的基本构成与工作原理,熟悉试验仪器的基本操作。 二、实验设备 DYSY—1压缩试验仪 1.主要用途: 进行瓦楞纸板边压强度试验(ECT)。 2.主要规格及技术指标 (1)测量范围 压力60~3000N (2)试验速度 12.5 2.5mm/min (3)分辨力1N (4)打印机Epson M—150Ⅱ微型打印机 (5)电源AC220V 50Hz 1A (6)环境条件温度0—40℃,相对湿度<85% 3.结构特点 图1 压缩试验仪外观图 1.键盘 2. 液晶显示窗 3. 打印机 4. 下压板 5. 上压板 6. 传感器 7. 限位开关位置紧固螺钉 8. 上限位开关

图2压缩试验仪背面图 1. 电源开关 2. 电源插座 3.保险丝座 4.电机 5. 手动上下旋钮 三、实验原理 1.瓦楞纸板的边压强度与瓦楞方向有关,纵向最高,斜向次之,横向最低。技术指标中的边压强度指的是纵向强度。矩形的瓦楞纸板试样置于压缩试验仪的两压板之间,瓦楞方向垂直于试片的长边(瓦楞方向为短边),用特制的附件支持试片在上下压板正中,并使瓦楞方向垂直于压缩试验仪的两板平面,开动试验仪,使上压板以12.5±2.5mm/min 的速度沿着瓦楞方向给试样均匀加压,试片被压溃时单位长度上的压力就成为瓦楞纸片的边压强度,单位牛顿/米(N/m )。边压强度实际是试片单位长度上的临界压力,是对瓦楞纸片纵向稳定性的度量。 四、仪器的使用及注意事项 1.实验仪器安置 仪器应安放在坚固平稳的平台上,最好在仪器背部没有其他物品,以备需要时用(手动调节下压板位置)。 2.操作面板说明 图 3 操作面板 (1)“校准”键:用于力值准确度校验。 (2)“试验选择”键:用于选择要试验的项目。 (3) “定量置入”键:用于在环压试验状态下置入试验定量,并据此计算环

环压计算抗压

瓦楞纸箱抗压强度计算中凯里卡特公式的应用: 瓦楞纸箱抗压强度的计算公式很多: 常用的有凯里卡特(K.Q.Kellicutt)公式、马丁荷尔特(Maltenfort)公式、沃福(Wolf)公式、马基(Makee)公式、澳大利亚APM公司计算公式,等等。 其中,凯里卡特公式常被应用于0201型瓦楞纸箱抗压强度的计算。 凯里卡特公式表达式: 美国的凯里卡特根据瓦楞纸箱的边压强度和周长提出了计算纸箱抗压强度的公式 BCT=ECT×(4aXz/Z)2/3×Z×J 式中BCT——瓦楞纸箱的抗压强度(lb) ECT——瓦楞纸板的边压强度(lb/in) Z ——瓦楞纸箱的周长(lb) aXz——瓦楞常数 J ——纸箱常数 相应的瓦楞纸箱常数见表1。 倘若知道瓦楞纸箱的外尺寸和楞型,可根据瓦楞纸板的边压强度ECT推测瓦楞纸箱的抗压强度BCT,或者根据瓦楞纸箱的抗压强度BCT推测瓦楞纸板的边压强度ECT。 例如,29英寸彩电包装纸箱采用AB型瓦楞纸板 ? 纸箱外尺寸为904×644×743mm; ? 毛重G=48Kg; ? 经多次使用修正确定安全系数为K=6.5; ? 堆码层数为N=300/74.3=4(堆码限高为3米, 堆码层数取整数); 因为1磅(lb)=0.454千克(Kg)=4.453牛顿(N),1英寸(in)=2.54厘米(cm),所以空箱抗压强度为: BCT=KG(N?1) =6.5×48×9.81×(4-1) =9182.16(N) =2061.67(lb) 因为瓦楞纸箱的周长Z=(90.4+64.4)×2=309.6(cm)=121.89(in), 瓦楞常数aXz=13.36, 纸箱常数J=0.54, 故瓦楞纸板的边压强度: ECT=BCT/【(4aXz/Z)2/3×Z×J】 =2061.67/【(4×13.36 /121.89)2/3×121.89×0.54】 =54.27(lb/in) =95.2(N/cm) =9520 (N/m)

如何提高瓦楞纸箱抗压强度

如何提高瓦楞纸箱抗压强度 纸箱最重要的功能在于它对商品具有良好的保护性,而纸箱的整体抗压强度则是纸箱保护性能的综合体现,抗压强度对纸箱的重要性是不言而喻的。近几年来,随着我国包装业的迅猛发展,许多工厂对纸箱的认识逐渐从凭手感判定纸箱的优劣发展到运用各种仪器对纸箱的物理性能进行测试分析的阶段,很多厂家还配备了抗压仪对纸箱抗压强度进行测试。不仅如此,许多客户特别是国外一些大型跨国公司对纸箱的认识也发生了深刻变化,即从关注纸板耐破强度逐渐转向纸箱的抗压强度,并将抗压强度作为质量验收的最重要指标。 如此一来,如何为客户提供满足抗压强度要求的纸箱便成为众多纸箱厂关注的焦点。特别是近二年原纸价格居高不下,纸箱利润空间一缩再缩的情况下,制造出用纸成本最省而又能满足客户抗压要求的纸箱已成为众多纸箱厂共同的目标。 在此着重就影响纸箱抗压强度的因素、纸箱抗压强度的推算方法、抗压强度的用纸配置方法及抗压强度的测试方法等几个方面对纸箱的抗压强度进行综合论述与分析。有些地方难免会有孔见之嫌,但希望能为广大同行提供有益的参考。 影响纸箱抗压强度的因素: 影响纸箱抗压强度的因素有很多,大致可归纳为边压强度、结构尺寸、加工工艺、水分及装箱后的堆码运输方式等。由于各因素的交互影响,常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。 瓦楞纸板的边压强度 边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的坑型组合及纸板的粘合强度有关。 瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。一般来讲,克重较高、造纸材料质量较好及紧度较高的原纸,其横向环压强度也相应越高。但并非克重高的原纸环压就一定比克重低的原纸高。以箱板纸为例,进口牛皮横向环压指数可达到12N·m/g以上,而内地一些小型造纸厂生产的箱板纸仅为8 N·m/ g,相差了30个百分点。也就是说克重为175 g / m2的进口牛卡,其环压强度相当于260 g / m2。因此,鉴定纸箱保护性能的好坏,不能以纸箱用纸克重而论。 瓦楞纸板的结构设计是很科学的,其瓦楞的楞形就如一个个连接的小小拱形门,排成一排,相互支撑,形成三角结构体,强而有力,而且平面上也能承受一定压力,富有弹性,缓冲力强,能起到防震和保护商品的作用。瓦楞形状依圆弧半径不同一般分为U形、V形和UV形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C 楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。 瓦楞纸板的各种坑型及其组合,就单坑纸板来说,一般A坑纸箱抗压强度最高,但易受到损坏; B坑强度较差,但稳定性好;C坑抗压力及稳定性居中。A型瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B型瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B型瓦

瓦楞纸板五项性能测试方法

瓦楞纸板五项性能测试方法 瓦楞纸板五项性能测试方法 瓦楞纸板和瓦楞纸箱的边压强度、耐破强度、戳穿强度、粘合强度和抗压试验等五项性能测试方法。 性能测试必须对所以试样进行前处理。就是将试样放在温度23℃±2℃,湿度50%±5%的恒温恒湿的环境里处理24小时后作试验。 一、边压强度的测试 仪器:BF-F-200A压缩试验仪,又名微电脑边压强度试验机,边压强度试验机,边压试验机,微电脑环压强度试验机,环压强度试验机,环压试验机 在瓦楞方向上,一定厚度(25mm)的瓦楞纸板,单位长度所能承受的垂直均匀增大的力,称为瓦楞纸板的边压强度。 边压强度的单位是:N/m。 从三个样箱上各取三块规格为100mm±0.5mm×25mm±0.5mm,无印刷、无机械压痕、破损的试样共九块。 边压强度测试的仪器是压缩强度试验仪 BF-F-200A试验机的主要参数是: 测量范围:0-3000N 准确度:±1% 显示值相对变动值:<1% 最小读数值:1N 上压板下降速度:12.5mm<min 下压板板面尺寸:120mm×120mm 边压强度的测试方法是将试样置于试验仪下压板正中间,使试样的瓦楞方向垂直于两压板,用导块支持试样,使试样的表面垂直于压板,开动试验仪施加压力。当加压接近50N时移开导块,直至试样压坏,记录试样所能承受的最大压力。读数要求精确至1N。 对测试结果,求出算术平均值,并按下列公式计算出边压强度。 R=F×1000÷L 式中:R-边压强度单位N/m; F-试样承受最大压力N; L-试样长边尺寸mm。 边压强度的单位是N/m,而试样的长边尺寸为100mm,这就需要进行数据处理。首先把100mm转换为0.1m,按上述公式计算。假设测试中试样承受的最大压力算术平均值为680N,经过数据处理就是: 680N/0.1m=6800N/m 那么,按上述公式列出,该试样的边压强度值为:6.80×103N/m 瓦楞纸板的边压强度直接影响瓦楞纸箱的支撑强度。而瓦楞纸板的生产工艺,瓦楞纸板的结构、楞形、粘合剂的质量等因素都能影响瓦楞纸板的边压强度。 二、耐破强度的测试 仪器:BF-B-100破裂强度试验机,又名耐破度仪,电子式破裂强度试验机,耐破度试验机,破裂强度试验机,耐破度仪,电子式破裂强度试验机,耐破度试验机,破裂强度试验机

瓦楞纸板问题汇总1

瓦楞纸板生产线问题综述国产瓦楞纸板生产线常规的双面机烘干部加热、加压机构均由固定式的加热板和重力辊压力装置组成。这两个装置在机器速度运行变化时,热传递是一固定值,在生产纸板的过程中,根据纸质等级、定量、厚度,通过蒸汽压力来调整热板热量来满足不同纸板的供热要求。但当生产过程中特别是生产中、低档瓦楞纸板,由于纸板拉力不够,原级接头、缺口及断头情况常常会使纸板生产线运行速度发生变化(无全自动接纸装置)。任何显着的速度变化都将打破热传递的平衡,而常规的双面烘干机热板是固定的不能调整。此时纸板'十时间" 处于加热加压状态,过多的热量造成纸板受热过度,致使瓦楞纸板出现过量横向收缩.(翘曲)、发一脆和搓板状,甚至在压线处破裂等,最终导致成型后的瓦楞纸板压缩强度降低、印刷套印不准确、纸箱破损等缺陷。根据热传递平衡,在热板中供给瓦楞纸板的热量必须适应瓦楞纸板生产线运行速度。原纸的种类,这是制作质地均匀、不弯曲、不脆曲纸板的关键。可将瓦楞板生产线常现双面机固定式的加热板设计为一套液压提升可变热量的加热系统。因为在实际生产中要改变热板的温度是不可能的,只能通过调整热板的倾斜程度,使热板与一瓦楞纸板形成一个楔形,产生一定的空隙使部分热量从空隙散出,从而减少热板对瓦楞纸板供给的热量,达到热传递平衡的目的,确保瓦楞纸板通过双面烘干机时能有效地按不同瓦楞纸板烘干要求调节供给热量,保证瓦楞纸板的各种技术指标。现有固定式热板装置的瓦楞纸板生产线无法改造成为可变热量加热系统(若要改,除非花大量资金投入进行改造),可设计一套空气注入系统,也就是隔层加热板烘干法。它是在热板间的空隙处设计安装上窄小的喷管,用一组空气调气阀门,根据纸板运行速度的大小而调节阀门开闭角度,以控制喷管注入的空气量的大小,空气在热板与瓦楞纸板之间形成薄薄的空气层,以减少热板对瓦楞纸板热的传递,其原理就是当瓦楞纸板生产线运行速度降低时开启调节阀门,使吹火热板与纸板间的空气扩散,形成一个刚好能把瓦楞纸板与帆布带从热板上托起的薄片状空气股,从而减少热板对纸板过多热量的传递。各种翘曲的主要原因和对策向上翘曲单面瓦楞纸板在单面瓦楞机及裱糊机处均要上胶,横向伸长大,而挂面纸(面纸张)由于直接与预热器和双面机的平板烘缸接触形成过干燥状态,进入双面机的冷却部后成为瓦楞纸板送出。瓦楞纸板暴露到空气中,为达到水分平衡,水分大的单面瓦楞侧放出水分,同时发生收缩;而干燥的挂面纸吸收水分而伸长,因此产生上翘曲现象。若当上述情况相反时(实际上是与平板烘缸的干燥能力相比粘合速度过快)则产生下翘。使用单面瓦楞纸板的挂面纸比瓦楞纸板的面纸水分多3%的纸卷时,92%成为上翘曲。使用瓦楞纸板的面纸水分比单瓦楞纸板的挂面纸水分多3%的纸卷时,75%成为下翘曲。故在选择原纸时,挂面纸(单面机的挂面纸与瓦楞纸板的面纸)的水分波动必须保持3%以内。作为解决上翘曲,除了原纸水分之外在瓦楞纸板机上还要注意:增加单面瓦楞机处的预热机与预处理机的包角。尽量减少单面瓦楞机的上胶量。减少过桥上单面瓦楞纸板的堆积量,尽可能保持单面瓦楞机与双面机的速度一致。尽量减少瓦楞纸板在裱糊机处的上胶量。以上4 条都是为了解决纸板上翘,尽可能减少单面瓦楞纸板进入双面机时水分过多设置的。S 型翘曲上翘曲和下翘曲都是单纯的翘曲,s 型翘曲和以后叙述的对角翘曲,是很麻烦的翘曲。发生这种翘曲时在生产线收纸处要以10-20 张纸板为一组进行翻转180 度方可堆积起来。同时,这种翘曲严重时,除用上述方法堆积外,上面还要加上重物来压平翘曲,否则会造成后道制箱工序上的障碍。发生S 型翘曲的原因是:挂机纸卷的横向的湿条斑。挂面纸卷筒边的水分大。双面机加热温度不均匀。从上述3 条中得出克服S 型翘曲的主要关键是原纸的含水量要均匀,其次为双面机控制温度要均匀。长度方向的翘曲瓦楞纸板的长度方向翘曲与原纸无关,这是因为在瓦楞纸板生产过程中张力调整方面而引起的。即是由于瓦楞纸板面纸在放纸架、三层预热机上的拉力过紧,与单面瓦楞纸板的张力差过大而引起。同时瓦楞纸板的面纸拉力过紧,也是在切纸机上产生长度误差的原因之一。解决方法就是在操作上减少作用在单面瓦楞纸板与瓦楞纸板面纸上张力的差值。对角翘曲对角翘曲,是由纵向和横向翘曲合成而产生的翘曲。其原因主要在桥架上

纸箱环压强度测试方法

1范围 本标准规定了使用HSD-A型压缩试验仪测定纸和 纸板环压强度的方法. 本标准适用于厚度0.28-0.51mm制造纸箱和纸盒的纸和纸板, 也可用于厚度低到0.15mm高到1.00mm的纸或纸板,但表示试样 的边压强度可靠性较差. 2引用标准 a)中华人民共和国国家标准GB/T 2679.8-1995 b)GB/T450-89纸和纸板试样的采取 c)GB/T451.2-89纸和纸板定量的测定法 d)GB/T451.3-89纸和纸板厚度的测定法 e)GB/T10739-89纸浆\纸和纸板试样处理和试验的标准大气 3试验原理 a)矩形的瓦楞纸板试样置于压缩试验仪的两压板之间,并使试样的瓦 楞方向垂直于压缩试验仪的两压板. b)然后对试样施加压力,直至试样压溃为止。测定每一试样所能承受 的最大压力。 4试验仪器 a)切样冲刀(HYD环压取样器) 可冲切尺寸精度达到本标准要求的专用冲刀。 b)试样座 ●内径49.30+0.05mm槽深6.35+0.25mm。 ●圆形槽底与试样座底面平行度偏斜不大于0.01mm。 ●槽壁与槽底呈直角,夹角处不得有倒角与圆弧。 ●为此,最好槽底和槽壁分两件加工再组装成一体。 ●槽壁切线方向加工有宽度不大于1.25mm的试样插缝。 ●试样座配有不同直径的内盘,使试样座插入内盘所产生的试样夹 缝适不同厚度的试样(如下表一)

c)电子压缩仪 仪器上装有尺寸不小于 100mm×100mm 的上下两压板, 板面平直,满足如下要求: ●两板间平行度偏差不大于1:2000 ●两板的横向晃动量不超过0.05mm 试验时,压板由马达驱动压向另一压板,压板运行速度 12.5+2.5 mm/min。仪器测力准确度为示值的1%。 d)弯梁式压缩仪 对上下压板的要求与固定板式电子压缩仪相同。 试验时上板压向下板的速度为12.5+2.5mm/min, 加荷速度为110+23n/s,仪器的适用范围为弹簧板最大量程的 20%-80%。仪器测力准确度为示值的1%。使用该型仪器应在报 告中注明,并不得用于仲裁试验。 e)细线手套 棉质细线手套,防尘,防割,防静电用于实验室操作使用。 5试样的采取和处理 a)试样的采取按GB/T 450的规定取样,对试样按GB/T 10739 的规定进行处理并在该条件下进行试验。 b)从处理后的纸样上严格按纵向切取长152.0+0.2mm, 12.70+0.1mm的试样。纵横向至少各切10片,切片边缘不许 有毛边或影响测定结果的其他缺陷。试样长边垂直于纵向的 试样用以测定纵向环压强度,试样长边平行于纵向的试样用 以测定横向环压强度,试样两长边的平行度误差不大于0.015mm。6测试步骤 a)试验中均需用戴手套的手接触试样。 b)首先测定试样厚度,根据试样厚度选择试样座的内盘。 c)小心地把试样插入试样座,并确保插到底部。 d)试样座放在下压板中间位置,同时试样环开口朝向操作者。 e)然后开动仪器,使试样受压直至压溃。

瓦楞纸板的边压强度和耐破强度计算公式

瓦楞纸板的边压强度、戳穿强度和耐破强度计算公式 1.耐破强度:BST(Bursting Strength Test) 耐破强度是静态破裂强度,单位千帕(Kpa)。耐破强度可由耐破强度测试仪测定。瓦 楞原纸和箱纸板等原料的耐破强度符合相关标准,瓦楞纸板的耐破强度可以由所用的 原料推测得出,它等于各层箱纸板的耐破强度之和再乘以系数0.95,与瓦楞层无关。 例如,单瓦楞纸板和双瓦楞纸板的耐破强度分别计算如下: 单瓦楞纸板(耐破强度)BST=(面纸BST+里纸BST)×0.95 双瓦楞纸板(耐破强度)BST=(面纸BST+夹芯BST+里纸BST)*0.95 因为瓦楞纸板各层箱纸板之间有空隙,缓冲能力增加了,但是更容易被各个击破,所以上述公式中,各层箱纸板的耐破强度之和再乘以系数0.95得到的结果,才与实际情况相符。耐破强度与瓦楞层无关,是因为:一方面,瓦楞层的耐破强度比箱纸板低得 多,另一方面,由于耐破强度是静态耐破裂强度,瓦楞层的缓冲更大,从而大大降低其耐破强度,以至于可忽略不计。 2.戳穿强度PET(Puncture Energy Test) 戳穿强度是动态破裂强度,单位焦耳(J)。它真实的反应了瓦楞纸板和纸箱受冲击的情况。戳穿强度的确定比耐破强度复杂的多,因为它不仅与箱板纸有关,还与瓦楞层有关。戳穿强度与耐破强度两者线性相关,实际推测中,可以根据耐破强度得到大致的戳穿强度,计算公式如下:PET=0.0054BST+2.16358 3.边压强度ECT(Edge Crush Test of Corrugated Fiberboard)和环压强度RCT(Ring Crush Test) 边压强度即瓦楞纸板的边缘压缩强度,单位牛/米(N/m)。环压强度RCT主要是指箱板 纸和瓦楞纸的横向压缩强度,单位牛/米(N/m)。瓦楞纸板的边压强度与箱板纸和瓦 楞纸的环压强度RCT有关,计算公式如下: 单瓦楞纸板边压强度ECT=面纸RCT+里纸RCT+瓦楞纸RCT×楞率 双瓦楞纸板边压强度ECT=面纸RCT+里纸RCT+夹芯纸RCT+第一层瓦楞纸RCT×相应楞率+第二层瓦楞纸RCT×相应楞率 注:原纸环压强度=原纸横向环压指数*原纸克重。

瓦楞纸板弯翘的原因及其解决方案

整体上说,纸板扭曲并不是单一课题。阻止这种现象的出现,可通过同时清除纸板在瓦楞方向上和与机器平行方向上的翘曲(水份含量的不平衡以及纸幅张力)完成。纸板扭曲通常是由于瓦楞方向上的纸幅张力不均匀(通常发生在双面底纸的粘合处)造成的。这种不均匀的纸幅张力可能是由辊筒状态(受到损坏并且形状不一致),原纸架和下游设备的纸幅未套准,或者热板上面瓦楞方向上的不同磨擦程度引起的。此外,瓦楞纸板生产线皮带上,尤其是分裂式皮带上的故障也可能是造成纸板扭曲的原因。 引起纸板翘曲的真正原因 广义上,纸板翘曲是由瓦楞纸板上组合部件尺寸大小的不均匀变化,尤其是芯纸造成的,通常发生在瓦楞楞尖和底纸牢固粘和并且在两者之间不再发生相对移动(滑动)后。机器方向(MD)纸板翘曲是由于机件滚动方向各种力原先就不平衡和这种不平衡的周期变化所引起的上下面纸在机件滚动方向的不均匀改变而产生的(端对端的S-型纸板翘曲)。这里起主要作用的力是纸幅张力。 如果是上层面纸的张力高于下层底纸的张力,则会造成端对端的上翘型纸板翘曲。发生这种翘曲是因为纸板粘合后,上层面纸比下层底纸的伸展程度高。因此,纸板背部的弹力更大,当纸板经过切割后张力得以释放。反之,如果下层底纸的张力高于上层面纸的张力,则造成端对端的下弯型纸板翘曲。因此,如果纸板的任何一面的面纸或两面的张力都发生大规模的波动,则会发生端对端的S-型纸板翘曲。瓦楞方向纸板翘曲主要是由于瓦楞平行方向原先不平衡力产生的上下面纸在瓦楞方向上的不均匀变化所引起的。这里主要的力是由于水份含量变化引起,即所谓原纸的"湿涨性"的特点引起的收缩力和扩张力。这种湿涨性在瓦楞方向上远大于机器方向上,这说明我们遇到的最严重的问题是瓦楞方向上的纸板翘曲,也说明原纸中湿杂纹是多么麻烦。因此,很多纸箱企业做大部分的工作都是关于瓦楞方向上的纸板翘曲,即瓦楞方向纸板翘曲的研究和控制。 粗略的讲,原纸的水份含量每改变1%将使瓦楞方向纸板的尺寸大小改变 0.06%~0.10%。因为在纸板通过瓦楞纸板生产线期间,水份含量的改变可以达到l5%~20%,因而可能造成纸板0.9%~2%尺寸的相对变化。在一张80

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算 公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

瓦楞纸箱抗压强度计算公式 一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/)

Rmn ——瓦楞芯纸环压强度测试值(N/) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 公式中的(cm)为测定原纸环压强度时的试样长度。Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表 类纸箱抗压强度计算公式:

P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数,

凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式 P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 Dx——瓦楞纸板纵向挺度(MN·m) Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式:

包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N);Pm ——瓦楞纸板边压强度(N/m)a——常数 b——常数 ⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。 a——箱面分类系数;

瓦楞纸板边压强度的测定法

前言 本标准等同采用ISO3070:1987《瓦楞纸板—边缘耐压强度的测定》。 本标准是GB6546—86《瓦楞纸板边压强度的测定法》的修订稿。 本标准是根据GB/T1.1-1993《标准化工作导则第1单元:标准的起草与表述规则第1部分:标准编写的基本规定》编写的。 本标准从实施之日起,同时代替GB6546-86。 本标准起草单位:中国制浆造纸工业研究所。 本标准主要起草人:李兰芬、张少玲。 本标准首次发布于1986年6月30日。 中华人民共和国国家标准 瓦楞纸板边压强度的测定法GB/T6546-1998 idt ISO3070:1987 Corrugated fibreboard-Determination of edgewise crush resistance 代替GB6546-86 1范围 本标准规定了瓦楞纸板边压强度的测定方法。 本标准适用于单楞(三层)、双楞(五层)、三楞(七层)瓦楞纸板边压强度的测定。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可性能性。 GB450-89纸和纸板试样的采取 GB10739-89纸浆、纸和纸板试样处理与试验的标准大气 3试验原理 矩形的瓦楞纸板试样置于压缩试验仪的两压板之间,并使试样的瓦楞方向垂直于压缩试验仪的两压板,然后对试样施加压力,直至试样压溃为止。测定每一试样所能承受的最大压力。 4试验仪器 4.1固定压板式电子压缩试验仪 该压缩仪是采用一块固定压板和另一块直接刚性驱动压板操作的,动压板的移动速度为 (12.5±2.5)mm/min。压板尺寸应满足试样的选定尺寸,使试样不致超出压板之外,压板还应满足以下要求: a.压板的平行度偏差不大于1:1000; b.横向窜动不超过0.05mm。 4.2弯曲梁式压缩仪 该压缩仪是根据梁弯曲的工作原理,对上下压板的要求与固定压板式电子压缩仪相同。测试时,压溃瞬间的刻度应在仪器可能测量的挠度量程的20%-80%范围内;当压板开始接触到试样时,压板压力增加的速度应为(67±13)N/s。 使用该种仪器试验时应在报告中注明,并不得用于促裁检验。 4.3切样装置 可以使用带锯或刀子,也可使用模具准备试样,但必须切出光滑、笔直且垂直于纸板表面的边缘。4.4导块 两块打磨平滑的和蓄谋形金属块,其截面大小为20mm×20mm,长度小于100mm;导块用于支持试样,并使试样垂直于压板。

瓦楞纸板生产过程中出现的问题

一、概述 辩证唯物主义认为,劳动创造了人类。当今社会人类的生存离不开生产活动,而一切生产活动都离不开产品包装,古今中外无不如此。所谓包装的定义是:“为在流通过程中保护产品、方便存储、促进销售,按一定技术方法而采用的容器、材料及辅助物的总称。”在整个包装所用材料中,纸制品包装所占比例最大为45.25%,其它依次为玻璃、塑料、木制品和金属材料包装。而在纸制品包装中,瓦楞纸板(箱)包装又占绝大多数。 瓦楞纸板包装容器在功能上具有优越于其它种类包装的10 种特性: 造型结构的可塑性──可以任意裁切、冲孔、折叠等;包装使用的方便性──使用起来材质轻、结构巧、质地柔韧;刚柔兼备的保护性──能成为包装物与外力作用之间理想的保护介体;美化商品的促销性──能制出各种变异结构及美观的装潢印刷;流动作用的适宜性──能采用不同定量、不同等级原纸,生产出不同大小的容器;包装成本低廉性──主要材料为原纸;利用资源有效性──与传统木制品相比,瓦楞纸箱原纸耗用的木材只占木制品包装的30%;易于回收利用性──基本原材料为原纸,使用后可以方便地回收,回收再生利用率可达75%;优越的绿色环保性──使用后瓦楞纸板可燃烧、无毒害、降解快、不会对环境造成污染;仓储运输经济性──由于是可折叠的轻质硬体包装,可以有效利用仓位和运输装载空间。 综观我国纸箱行业的现状,可以用12 个字来概括,即:快速发展,产能过剩,前途光明。纸箱行业在过去25 年中经历了第一次大变革,从今年起,将进入第二次大变革,这场变革的特征就是调整。 我国纸箱行业进入初级工业化阶段是从1995 年开始的,当时生产线600 条;2000 年为1600条;至2005 年达4000 条。 1995 年世界瓦楞纸板产量是1104 亿m2,2000 年为1253 亿m2,2003 年是1395 亿m2,年增长率3.3%。2000 年世界产量排前三位依次是:北美洲(占34%)、亚洲(占31%)、欧洲(占27%)。我国瓦楞纸板的产量1995 年是74 亿m2,2000 年上升到123 亿m2,2003 年则达到158 亿m2,是亚洲总产量的34%,占世界11.3%。1995 年至2000 年,我国纸板产量平均增长率为12%,世界平均增长率是2%;2000 年至2003 年我国的纸板产量年增长率是9%,世界年增长率是3%。我国1996 年产量是80 亿m2,只及日本一半,2003 年是158 亿m2,已超过日本。 我国五层以上纸箱占总量80%以上,美国三层箱占89.4%,日本三层为84.6%,多用两层纸等于浪费2/5 的纸。这是因为西方国家已认识到,必须节约有限的木材资源。采用高强度、低克重的原纸已成为必然趋势。 上海烟草集团已完成了跨地域的联合重组,将成为中国烟草总公司下属几个龙头企业的排头兵。作为其主要专业配套工厂,上海白玉兰烟草材料有限公司承担了集团85%以上纸箱包装生产任务。 二、原始楞型的确定、生产线原纸的选配和粘合剂的调配 瓦楞形状是指瓦楞齿形轮廓的波纹形状,它的区别在于波峰与波谷圆弧半径大小。形状有三种:U 形、V 形和UV 形。U 形的峰、谷半径较大;V 形较小;UV 形处于中间状态。不同楞形具有不同性能特点。 综观以上三种瓦楞形状的优缺点,U 形和V 形的利弊是显而易见的,而UV 形状的综合性能是适应大多数瓦楞包装的普遍要求,其优越性彰显无疑。因此,我国及世界各国大多使用UV 形瓦楞。

瓦楞纸箱抗压强度基本知识

瓦楞纸箱抗压强度基本知识 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入瓦楞纸箱耐压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为纸箱抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。影响瓦楞纸箱抗压强度的因素较多,这些因素交互影响,满足顾客对抗压强度的要求。常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。纸箱抗压试验机瓦楞纸板的边压强度边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的楞型组合及纸板的粘合强度有关。测试时需要使用纸板纸箱边压强度试验机,平压强度试验机,粘合强度试验机,环压强度试验机。纸张的防水性能也很重要,特别是冷藏箱对纸张的防水性能要求更高,有时虽然纸箱的抗压强度很高,但由于纸张不防水,纸箱存放在冷库中就容易吸潮,造成塌库。瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。瓦楞纸板的波形分为U形、V形和UV 形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。 瓦楞纸板的各种楞型及其组合,就单瓦纸板来说,一般A瓦纸箱抗压强度最高,但易受到损坏;B瓦强度较差,但稳定性好;C瓦抗压力及稳定性居中。A瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B瓦楞单位长度内瓦楞数较多,与面纸有较多的支承点,因而不易变形,且表面较平。在印刷时有较强抗压能力,可得到良好印刷效果。C瓦楞兼有A和B瓦楞的特点,它的防震性能与A瓦楞相近,平面抗压能力接近B瓦楞。E瓦楞是最细的一种瓦楞,单位长度内的瓦楞数目最多,能承受较大的平面压力,可适应胶版印刷需要,能在包装面上印出质量较高的图文,这种瓦楞纸板和硬纸板强度差不多。根据纸箱箱型选择合适的楞型也很关键在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,容易忽视楞型对变形量的影响。楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长,有效力值与最终力值偏差过大。 三种楞型比较表瓦楞种类平面压力垂直压力平行压力 A:3 1 3 B :1 3 1 C:2 2 2 注:1. 平面压力是指垂直于瓦楞纸板平面的压力。 2. 垂直压力是指与瓦楞方向一致的压力,平行压力是指垂直于瓦楞方向的压力。 3. “1”代表最强。根据上述不同类型瓦楞的不同特点,单瓦楞纸箱用A型和C型为宜;双瓦楞纸箱用AB型, BC型相结合最为理想;接近表面的用B型,能起到抗冲击力较强的作用;接近内层的用A型或C型弹性足、缓冲力强;采有用AB型或BC型结合,使纸箱的物理性能发挥两个

瓦楞纸箱压力测试项目

瓦楞纸箱、纸板压力测试项目(2009-02-20 21:08:46) 分类:包装笔记标签:纸板瓦楞纸板环压强度边压强度平压强 度抗压强度杂谈 注意:(箱)纸板是单层纸,瓦楞纸板是由面纸、芯纸、底纸、中夹纸构成的三层或五层或七层纸板 主要参考:https://www.360docs.net/doc/286444958.html,/blog/?p=14 (箱)纸板 环压强度(RCT=Ring Crush Test) 定义:原纸一项重要性能参数,主要是指箱板纸和瓦楞纸的横向(CD)/纵向(MD)压缩强度,国内常用单位为牛/米(N/m)或千克力/0.152米(kgf/0.152m),国际上比较常用单位为磅/6英寸(lbs/6in)。 R=F(N)/152(mm)(实验得到) 在这里顺便担一下事与环压指数(RCT Index)许多人很容易混淆这两个概念,实际上它们是完全不同的,环压强度是一个具体的强度值,环压指数是环压强度与纸的基本克重之间的关系,其单位是牛.米每克(N·m/g). 环压强度(LBS/6IN)与环压指数(N·m/g)的关系是RCT=INDEX(RCT) x 0.152 x weight of paper/9.8 影响:RCT反映了纸的抗压缩强度,根据纸纹的方向不同,分为横向(CD=Corrugated Direction)和纵向(MD=Machine Direction), 一般来讲横向(CD)方向对我们计算瓦楞纸板的边压强度和选择正确的纸板配纸组合有重要的参考价值,纵向(MD)使用较少。

瓦楞纸板 破裂强度/耐破度(KLB/TLB=Bursting Strength Test) 耐破度测试适用于瓦楞纸板和(箱)纸板 纸板的耐破度P为单位面积上能承受的均匀增大的最大压力。实验时试样破裂的最大压力即为试样的耐破度B(kPa)。为了评价纸板的耐破能力,常用耐破系数X(kPa*g/m2)=B/试样定量G(g/m2)。 瓦楞纸板的耐破度仅与面纸、中夹纸、底纸的耐破度有关+P,瓦楞芯纸的耐破度影响不大,故P=0.95*(P面纸+P中夹纸+P底纸)。

瓦楞纸板的常见问题

瓦楞纸板的常见问题 瓦楞纸板和瓦楞纸箱是目前我们所使用包装材料中所占比例最大的一部分,其性能好坏也直接影响到对所包装产品的保护能力。纸箱的不合格可能导致包装的严重变形、开裂、堆垛倾斜、甚至倒塌。我们都希望自己的终端产品经过一系列不确定的流通环境后能完好地到达客户手中,这不仅是对产品性能的考核,同样是对箱物理性能的不小挑战,而一个完好的外包装能使您的产品更容易得到客户的青睐,这就使实际发货前的包装测试显得尤为重要了。 纸板的对角翘曲的问题 对角翘曲,是由纵向和横向翘曲合成而产生的翘曲。其原因主要在桥架上单面瓦楞纸板堆积过多成为过载、单面瓦楞纸板上的张力过大(张力是纵向翘曲的原因)、另外上翘、下翘或是S型翘曲 如前述是由于瓦楞纸板的水分差破坏了伸缩的平衡而产生的。所以解决对角翘曲需综合考虑上述各种情况,在操作中一一排除上述不良情况,边操作、边观察。 例如:可通过对单面瓦楞纸板或面纸进行喷水,平衡纸板的含水量;可通过调整放纸架刹车松紧调整纸张张力、调整预热机包角、调整预处理机的包角等手段控制纸板的张力;可控制瓦楞纸板生产线的车速在稳定的状况下运行,合理减少桥架上的堆积量而不使其过载。 瓦楞纸板压线破裂的几点分析 (1)上下压线辊轮间隙过小 根据纸板楞形和纸板厚度调整上下压线辊间隙,以保持合理的压力强度,如压线强度过小虽然不会引起压线破裂,但在纸箱组合时必须过分折曲箱盖板,最终会发生裂开现象,这种现象多发生在低级原纸制作的纸板。

(2)压线轮的组合位置不对中 为了准确安装压线轮,通常在加工压线轮时都有1mm的对中开槽缝,配合不好不但会发生压线破裂和箱体组合时棱角不好,还会发生摇盖虚缝或搭叠现象,造成纸板箱的缺陷。当然,各种机器压线轮本身的加工缺陷也会引起压线破裂。 (3)二次滚压压力问题 上下压线轮滚压的横向压痕线棱角总不如碰线压痕机压痕的结果,但二者生产力和经济性是难以相提并论的。所以要使纸板生产线纵向压痕分纸机器的上下压线轮压痕达到或接近磁线压痕的棱角,需在纸板压痕机前后的两根压线轴上分别安装上下压线轮,纸板经过的第一次滚线为预滚压痕线,改变压痕处瓦楞纸板结构,再经第二次滚压压痕线,第一次预压力略低于第二次滚压压力,这样就能达到良好的棱角。 瓦楞板含水量控制要点 对于瓦楞纸板含水量的控制,应着重对以下几方面进行控制。 1.瓦楞原纸进厂时的含水量应严格按照GB13023-91标准进行检验。 2.进厂后对瓦楞原纸的储存温度应控制在常温状态,相对湿度不大于40%。 3.瓦楞原纸的存放应竖着码垛堆放,地面应做防潮处理。 4.瓦楞原纸的储存时间不宜过长。控制好瓦楞纸板生产过程中的温度温度是直接调整瓦楞原纸含水量,保证粘合剂糊化的重要条件。因此,当瓦楞纸板生产线在80米/分~120米/分时,通常采用的温度应控制在160℃~180℃之间,按其换算锅炉的饱和蒸汽压力应控制在0.9Mpa-1.2Mpa,这样既能调整好瓦楞原纸和单面瓦楞纸板的含水量,又能保证黏合剂的糊化。

纸箱强度计算

包装设计过程中可能要涉及强度计算方面的内容,主要有两个方面的应用: 1.已知最大堆叠高度,需选择适当的瓦楞纸板; 2.产品包装已确定,需计算出允许的最大堆叠高度。 对包装强度影响最大的就是选用的瓦楞纸板了。 1. 瓦楞纸板的构造及分类在介绍乏味的内容之前,我们先了解一下瓦楞纸板的构造及分类。 瓦楞纸板主要由面纸和波形的瓦楞(flute)通过粘合而成。根据瓦楞的不同大小瓦楞可以分为A型,B型,C型,D型,E型,F型,G型楞。如下图: B型和C型瓦楞比较常用,B型楞排列密度大,制成的瓦楞纸板表面平整,承压力高,适于印刷;C型楞有较好的挺度和抗冲击性。 根据需求,瓦楞纸板可以加工成单面瓦楞纸板、三层瓦楞纸板、五层、七层、十一层等瓦楞纸板。层是中文的表述,对应于英文的Layer,但是更常用的一种表述是Wall。通过下面的图你就可以知道它们表示什么含义了。

瓦楞纸板的标注方式 2. 瓦楞纸板的强度包装箱上一般在底部会有一个如下的标识: 纸箱厂商证书 上图是两家厂商的包装箱上的标识,它上面包含的信息有:厂商名称,地址以及关于纸箱的强度参数: ?Edge Crush Test, ECT: 边压强度。边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 ?Brusting Test: ?Size Limt: ?Groos WT LT: 瓦楞纸箱加上内装物总重量极限值

Min Comb WT Facings: Min Combined Weight on Facings 上面两张图片使用的参数不太一样,前面一个用的是Edge Crush Test,后面一个用的是Bursting Test也称为Mullen Test。 边压强度衡量的是瓦楞纸板的堆叠性能强度,而Mullen衡量瓦楞纸的抗破损强度。简单地说前者是沿纸板方向施压,后者是沿纸板垂直方向施压进行测试。Mullen测试更适合于包装比较重的物体,而ECT测试适合比较轻的物体时需考虑其堆叠特性。 ECT 和Brusting Test 的对应值大体如下表所示: Max Wt. Box/Contents (lbs.) Min. Burst Test Single/Double Wall (lbs. per sq. in.)* Min. Edge Crush Test (E (lbs. per in. width) Single Wall Corrugated Boxes 20 125 23 35 150 26 50 175 29 65 200 32 80 250 40 95 275 44 120 350 55 Double Wall Corrugated Boxes 80 200 42 100 275 48 120 350 51 140 400 61 160 500 71 180 600 82 Triple Wall Corrugated Boxes 240 700 67 260 900 80 280 1100 90 300 1300 112

瓦楞纸板常见纸病

瓦楞纸板常见纸病的解决方案 一、开胶、假胶 1、里纸开胶 原因分析:(1)胶质量不符合生产要求或腐败变质;(2)胶量太小;(3)瓦楞辊、压力辊热量不足;(4)压力辊压力不足;(5)瓦辊、压力辊的中高严重磨损。 解决方法:(1)更换合格胶液;(2)适量调大涂胶量;(3)提高压力辊、瓦楞辊的温度,保证在180℃左右温度开机;(4)适当调整压力辊压力,以里、瓦纸粘合良好,里纸不露楞为宜;(5)打磨或更换新压力辊、瓦楞辊。 2、面纸开胶 原因分析:(1)胶量过小,烘干机车速过慢;(2)胶液稀薄,涂胶辊带胶不足;(3)烘干机热板温度不足,胶液未充分糊化;(4)烘干机车速过快、烘干不足;(5)烘干机和传输带上面的压载辊没完成落下。 解决方法:(1)适当加大胶量,并提高车速;(2)更换胶液或在原胶液中加适量乳化剂;(3)提高烘干机热板温度到180℃左右再开机;(4)降低车速;(5)落下压载浮辊。 3、里纸假粘 原因分析:(1)瓦楞辊温度不足;(2)胶量过小,温度过高;(3)车速慢造成粹胶;(4)胶液粘度不够。 解决方法:(1)提高单面机温度;(2)调整涂胶量,关闭热源待 温度降至于180℃以下,160℃以上开机;(3)提高单面机速度;(4)适当增加胶液粘度。 4、面纸假粘 原因分析:(1)烘干机热板温度不足;(2)胶液沉淀变质;(3)纸板在烘干机内停留时间过长。 解决方法:(1)待温度达到胶液能糊化时开机;(2)更换新胶(3)降底面纸无轴支架的张力后仍出现面纸断裂,可更换拉力好的纸筒。估计断纸重续时间可能超过两分钟,立即割断单面瓦楞纸板,将烘干机内的纸板开出后再续纸,尽量减少纸板在烘干机内的停留时间。 二、倒楞

相关文档
最新文档