无穷限广义积分的数值计算[文献综述]
无穷限广义积分的几种计算方法
中国分类号:0 . I2 72
文献标识码:e
文章编号 :1 1 3 l 020. 0 2 3 - 5( 0) 0 9 7 1 2 20 0
方法 一 :利用广 义积 分 的定义求广 义积 分
e
1x3 g )= d
d y
划 义 分r ,x 广 积 (d ) r
若 v > () 0i rrx A I m r d
f 一I
:I 2 n
先将 广 义积 分 、B实分 析 中的积分 转化 为 复变函 数 ¨ 的积 分 ,再 用残数理 论 计算 出复变 函数 的积 分 ,从 而得 到 实分析 中广 义积 分 的值 。
方法_ :利 用 一重积 分理 论 计算广 义积分
利用_ 重积 分计算 广 义积 分 时 .麻分 两步
j而
e
d ・ e d = -’ x r 珏e (
函数() I式有两 个 一级极 点 z l 3 = + i及: 3 = 一i
其却D: o f .+一 ) xf .+一) O
骶 = 毛丽ll ) = z  ̄ l + 3
维普资讯
A…
而 P ” =
.
 ̄I ) P9 8
称 积分上 fxd 收 称上上极限 广义 () 敛且 r £ 值
:: d 孚 , r :
! = ̄ s 型 ; ox c y
l
:
为 义 分 值lr, ) = f (d 广 积 的 日 (d , ) j r r
= 击 ÷ 出
去・ ・ =
同理可 利用 正志分 布 密度 函数及 指数 分郝 密度 函数 ,求 出一些广 义积分 的值 。川 ( 5 ) P8 方法 六 :利 出 时
故在 汁算广 义积 分时看 所给 广 义积 分 ?S P、 I、 ' l
无穷限的广义积分.
cos
x 0
.
极限不存在
sin xdx
是发散的
若认为积分区间关于原点对称,被积函数为
奇函数,按定积分公式③计算就错了.
例3 计算广义积分 ex sin xdx . 0
解 先计算定积分 Aex sin xdx 0
A
0
e
x
sin
xdx
A 0
sin
xd
ex
ex
sin
x
A 0
A ex cos xdx
a
f xdx
lim Ft Fa F Fa; t
b
f xdx
Fb lim Ft Fb F ; t
f
xdx
lim
t
F
t
lim
t
F
t
F F .
(2)当
f x为奇函数时,
f
x
dx
不能按积
分区间关于原点对称的定积分处理为零。因为
f
xdx
lim
A
B
A
f
xdx,
B
这里A与B是相互独立的.
3.例题
例1
计算广义积分
0 e
x
dx
.
解
0exdx
ex
0
1.
y
这个广义积分值的几
何意义是,当t
时,图5-7中阴影部
1
y ex
分向左无限延伸,但 其面积却有极限值1 .
t
ox
图5-7
例2 计算广义积分 sin xdx .
解
sin
xdx
0 sin
xdx
0
sin
xdx
积分区间为无穷区间的广义积分
存在,
记作:
,
即:
=
此时也就是说广义积分
收敛。如果上述即先不存在,则说广义积分
时虽然用同样的记号,但它已不表示数值了。
类似地,设函数 f(x)在区间(-∞,b]上连续,取 a<b.如果极限
. 发散,此
则此极限叫做函数 f(x)在无穷区间(-∞,b]上的广义积分,
存在,
此时也就是说广义积分
如果广义积分
广义积分
在一些实际问题中,我们常遇到积分区间为无穷区间,或者被积函数在积分区间上具有无穷间断点的 积分,它们已不属于前面我们所学习的定积分了。为此我们对定积分加以推广,也就是———广义积分。 一:积分区间为无穷区间的广义积分
设函数 f(x)在区间[a,+∞)上连续,取 b>a.如果极限
则此极限叫做函数 f(x)在无穷区间[a,+∞)上的广义积分,
和
(-∞,+∞)上的广义积分,
记作:
,
即:
=
收敛。如果上述极限不存在,就说广义积分
. 发散。
都收敛,则称上述两广义积分之和为函数 f(x)在无穷区间
记作:
,
即:
=
上述广义积分统称积分区间为无穷的广义积分。
例题:计算广义பைடு நூலகம்分 解答:
广义积分的计算方法
广义积分的计算方法广义积分是微积分中的一个重要概念,它是对函数在某一区间上的积分进行推广,可以用来求解曲线下面的面积、求解物体的质量、求解电荷的总量等问题。
在实际问题中,广义积分的计算方法非常重要,下面我们将介绍一些常见的广义积分的计算方法。
首先,我们来看一下对于无界函数的广义积分。
对于函数f(x)在区间[a, +∞)上的广义积分,可以通过极限的方法来进行计算。
具体来说,如果极限lim┬(t→+∞)∫(a)^t f(x)dx存在且有限,则称广义积分∫(a)^+∞ f(x)dx收敛,记为∫(a)^+∞f(x)dx=lim┬(t→+∞)∫(a)^t f(x)dx。
否则,称广义积分∫(a)^+∞ f(x)dx发散。
在计算无界函数的广义积分时,我们需要先对函数进行适当的变形,使得积分变为有限的形式,然后再进行极限的计算。
其次,对于在有限区间上发散的函数,我们可以通过分段积分的方法来进行计算。
具体来说,如果函数f(x)在区间[a, b]上有一个或多个无界点,那么我们可以将积分区间分成若干个有界区间,然后分别计算每个有界区间上的广义积分,最后将这些广义积分的极限相加得到原广义积分的值。
另外,对于奇异点的处理也是广义积分计算中需要注意的问题。
在计算广义积分时,如果积分区间上存在奇异点,我们需要先对奇异点进行适当的处理,例如使用柯西主值等方法,然后再进行积分的计算。
最后,需要注意的是,在计算广义积分时,我们还需要考虑函数的性质、积分区间的选择等因素。
有时候,我们需要对函数进行分解、变形,以便于进行积分的计算。
同时,选择合适的积分区间也是非常重要的,可以通过变量替换、对称性等方法来简化积分的计算。
总之,广义积分的计算方法涉及到许多微积分的知识和技巧,需要我们对函数的性质有深入的理解,熟练掌握各种积分计算方法。
通过不断的练习和实践,我们可以更加熟练地运用广义积分的计算方法,解决实际问题,提高数学建模和问题求解的能力。
无穷限广义积分的计算
指导教师:陈一虎作者简介:陈雪静(1986-),女,陕西咸阳人,数学与应用数学专业2008级专升本1班.无穷限广义积分的计算陈雪静(宝鸡文理学院 数学系,陕西 宝鸡 721013)摘 要: 文章归纳总结了利用数学分析、复变函数、积分变换、概率论统计理论等知识计算无穷限广义积分的几种方法.在学习中运用这几种方法可开拓视野,激发学习数学的兴趣.关键词: 广义积分;收敛;计算方法广义积分是《高等数学》学习中的一个难点知识,广义积分的概念不仅抽象,而且计算方法灵活,不易掌握.广义积分包括两大类,一类是积分区间无穷型的广义积分,另一类是积分区间虽为有穷,但被积函数在该区间内含有有限个无穷型间断点(瑕点)的广义积分.一般的判别法是对积分区间无穷型的广义积分,先将积分限视为有限的积分区间按常义积分处理,待积分求出原函数后再考查其极限是否存在,在用此极限去判定原积分是否收敛.对于第二类广义积分,我们可将积分区间改动,使被积函数在改动后的积分区间内成为有界函数再按常义积分处理,求出原函数之后考查它在原积分区间上的极限是否收敛.但是有些被积函数的原函数不易求出或无法用初等函数表示,使得广义积分无法用常规方法计算,因此需寻求其它的计算方法.本文主要研究无穷限广义积分的计算方法,主要方法包括利用广义积分定义、参量积分、变量代换、二重积分、留数定理、级数展开、概率论知识以及拉普拉斯变换等方法.1 无穷限广义积分的定义定义1 设函数()f x 在区间[,)a +∞上连续,取t a >.如果极限lim ()d tat f x x →+∞⎰存在,则称此极限为函数()f x 在无穷区间[,)a +∞上的反常积分(也称作广义积分),记作()d af x x +∞⎰,即()d af x x +∞⎰=lim ()d tat f x x →+∞⎰;这时也称反常积分()d a f x x +∞⎰收敛;如果上述极限不存在,函数()f x 在无穷区间[,)a +∞上的反常积分()d af x x +∞⎰就没有意义,习惯上称为反常积分()d af x x +∞⎰发散,这时记号()d af x x +∞⎰不再表示数值了.类似地,设函数()f x 在区间(,]b -∞上连续,取t b <. 如果极限lim ()d btt f x x →-∞⎰存在,则称此极限为函数()f x 在无穷区间(,]b -∞上的反常积分,记作()d b f x x -∞⎰,即()d bf x x -∞⎰=lim ()d btt f x x →-∞⎰;这时也称反常积分()d b f x x -∞⎰收敛;如果上述极限不存在,就称反常积分()d bf x x-∞⎰发散.设函数()f x 在无穷区间(,)-∞+∞内连续,如果广义积分()d cf x x -∞⎰和()d cf x x +∞⎰(c 为常数)都收敛,则称上述两个反常积分之和为函数()f x 在无穷区间(,)-∞+∞内的广义积分,记作()f x dx +∞-∞⎰,即()d f x x +∞-∞⎰=()d cf x x -∞⎰+()d cf x x +∞⎰=lim ()d ctt f x x →-∞⎰+lim ()d tct f x x →+∞⎰这时也称广义积分()d f x x +∞-∞⎰收敛;否则就称反常积分()d f x x +∞-∞⎰发散.上述反常积分统称为积分区间为无穷区间的广义积分或无穷限广义积分.2 无穷限广义积分的计算方法2.1利用广义积分的定义求无穷限广义积分由定义计算可以分两步:1求定积分()d Aaf x x ⎰=()F A .需要说明的是原函数()F A 均指有限形式.2取极限lim ()d AaA f x x →+∞⎰=lim A →+∞()F A .例1[1]计算23121()d 1x x x+∞++⎰解 =23121lim()d 1bb x x x →+∞++⎰231121lim[d d ]1b b b x x x x→+∞=++⎰⎰ 2111lim[2arctan ]2bbb x x →+∞=-211lim[2arctan arctan1]22b b b →+∞=--+ 2π11lim 2arctan lim 222b b b b →+∞→+∞=--+ π122=+ 2.2利用含参量积分的理论求无穷限广义积分含参量积分:10()e d s x s x x +∞--Γ=⎰(0s >)1110(,)(1)d p q p q x x x --B =-⎰ (0,0p q >>)统称为欧拉积分.其中()s Γ称为格马函数.(,)p q B 称为贝塔函数.且有递推公式(1)()s s s Γ+=Γ 及 1(,)(,1)1q p q p q p q -B =B -+-.因此在计算广义积分时看所给广义积分当,,s p q 为何值时对应的欧拉积分,然后用欧拉积分公式直接算出广义积分的值.例2[5] 求220e d n x x x +∞-⎰(n 为正整数)解 此广义积分与表达式相似,因此可用Γ函数法求解.220ed n x x x +∞-⎰=limA →+∞220ed An x x x -⎰2t x =21201lim e d 2A n t A t t --→+∞⎰=12112e d n t t t +∞+--⎰==121()2n Γ+=121[()1]2n Γ-+ =121()2n -1()2n Γ-=121()2n -3()2n -3()2n Γ-17(21)2n n +-注:1()2Γ=2.3利用变量代换法求无穷限广义积分有些函数的原函数不易求出或直接积分不出来,但如果对被积函数施以变量代换,在辅以一定的技巧就可以求出这类积分.作变量带换时,首先要对被积函数的结构进行分析,然后再看积分限与被积函数的关系.变换的方向是求出原函数或求出一个含原积分的方程,从而求得所含广义积分的值.例3[2] 求I=401d 1x x +∞+⎰解 令x=1t ,则I=204d d 11t t x t +∞-+⎰上式加上I=04d 11t t +∞+⎰ 得2I=2401d 1t t t +∞++⎰=202211d 1t t t t +∞++⎰=021d()1()2t t t t +∞--+⎰故2.4利用二重积分理论计算无穷限广义积分.利用二重积分理论计算广义积分时,应分两步: 1把广义积分巧妙的化为一个二重积分.2计算二重积分,从而间接的计算出广义积分的值. 例4[5]计算广义积分2ed x x +∞-⎰解 由于20ed x x +∞-⎰=2e d y y +∞-⎰所以22[ed ]x x +∞-⎰=22ed ed x y x y +∞+∞--⋅⎰⎰而22e d e d x y x y +∞+∞--⋅⎰⎰=22()e d d xy Dx y -+⎰⎰ 其中D=[0,)[0,)∞⨯∞故()22ed x x +∞-⎰=22()e d d x y Dx y -+⎰⎰而22()e d d xy Dx y -+⎰⎰=π42ed x x +∞-⎰=2. 例5[3]计算广义积分I=0sin sin e d pxbx axx x+∞--⎰ 解 因为sin sin bx ax x-=cos()d ba xy y ⎰ 所以I=0sin sin e d px bx ax x x+∞--⎰=0e (cos()d )d bpx axy y x +∞-⎰⎰=0d e cos()d b px ax xy y +∞-⎰⎰=0d e cos()d b px ay xy x +∞-⎰⎰=22d bap y p y +⎰=arctan b p -arctan ap. 2.5积分号下求导法计算无穷限广义积分.收敛因子法:此方法是对被积函数引入一个收敛因子,因子中有一个参数, 对参数(不一定是收敛因子中的参数)求导,有时可求得原积分的值.在此情况下引入的收敛因子加强了原积分的收敛性(如条件收敛的成为绝对收敛,或求导后发散的,变成一致收敛).这样使积分号下求导条件得以满足.一般采用e kx -(k>0)作为收敛因子.例65]求积分0sin d axx x+∞⎰(0a ≥) 解 引入积分因子e px -(p >0)作积分()F p =0sin e d px axx x+∞-⎰ ()F p '=0e cos d px ax x +∞-⎰=22pp a+ 故 ()F p = arctana p +C =arctan ap(显然C =I(0)=0)由此有 0lim arctanp a p +→=π2所以 I=π2 故同样可得 0sin d ax x x +∞⎰=-π2(0)a <2.6积分号下求积分法算无穷限广义积分这种方法是将被积函数中某一因子表为一个适当的积分.于是将原积分化成二次积分.交换这两个积分的顺序,就可求出所给的积分.例7[2]求积分I=2cos d 1xx x β+∞+⎰(0)β> 解 由201e sin d 1xy y y x+∞-=+⎰,于是 I=0cos d e sin d xy x x y y β+∞+∞-⋅⎰⎰=0sin d e cos d xy y y x x β+∞+∞-⋅⎰⎰=22sin d y yy yβ+∞+⎰y t β==2sin d 1t tt t β+∞+⎰由20d sin d d 1I x x x x ββ+∞=-+⎰,有d d I β=I -所以 I =C e β-为了确定C ,令0β=. 得 020d π12x I C x +∞===+⎰故πe 2I β-=.2.7利用复变函数理论中的留数定理计算无穷限广义积分.定理1[5] 设函数()f z 在实轴上处处解析,在上半平面Im 0z >除有限个孤立奇点1,2z z ⋅⋅⋅n z 外处处解析,且存在常数00R >,0M >,0δ>,使得当0z R >,且Im 0z >时, 1()M f z zδ+≤,则1()d 2πi [(),]nk k f x x Res f z z +∞-∞==∑⎰推论 1[5]设()()()P z f z Q z =是有理函数,()P z 与()Q z 为z 的n ,m 次多项,多项式()Q z 的次数比()P z 至少高2次,()Q z 在实轴上没有零点,1,2z z ⋅⋅⋅n z 是()f z 在上半平面Im 0z >的孤立奇点,则1()d 2πi [(),]nk k f x x Res f z z +∞-∞==∑⎰例84]计算广义积分22222d ()()x x x a x b +∞-∞++⎰解 因为22222()()()z f z z a z b =++,显然()f z 满足推论的条件,且1z =i a ,2z =i b 是()f z 在上半平面的孤立奇点,这两个点都是()f z 的一级极点,因此有22222ai Re [(),i]lim[(i)]()()z z s f z a z a z a z b →=-++ 2222i()a ab a -=- 222i()aa b =- 同理Re [(),i]s f z b =222i()bb a - 故22222d ()()x x x a x b +∞-∞++⎰=2πi [222()a i a b -+222()bi b a -] =πa b+ 2.8级数展开法求广义积分利用无穷级数计算广义积分也是常用的一种技巧.常有两种方法. 其一是将被积函数展成级数以求积分;其二是将无穷区间上的广义积分表示成级数的形式以求积分.例92]求积分I=2e cos 2d x bx x +∞-⎰解 利用余弦函数的幂级数展开以及指数函数的展开式0e !nxn x n ∞==∑ (2)!2!(21)!n n n n =⋅-我们有2ecos 2d x bx x +∞-⎰=22200(1)(2)ed (2)!n n x n n b x x n ∞+∞-=-∑⎰=22200(1)(2)e d (2)!n n x nn b x x n ∞+∞-=-∑⎰=0n ∞=20()2!nn b n ∞=-∑2b - 例10[5]计算广义积分1ln d (1)xx x x +∞-⎰. 解 由于1ln d (1)xx x x +∞-⎰=211n n∞=-∑ 而211n n∞=∑=2π6 故原式=-2π6.利用级数展开求积分,展开的仅是被积函数的某个因子,“展开因子”选择应是其展开的级数形式比较简单;展开的级数连同被积函数剩下的因子可逐项积分;这些积分容易求出.因此记住一些常用函数的展开式及一些数项级数的和对积分计算是有益的.2.9利用概率统计知识求无穷限广义积分.例11[5] 计算广义积分I=0sin sin e d pxbx axx x+∞--⎰. 解因为22()x f x -=为标准的正态分布密度函数所以()d f x x +∞-∞⎰= 1.即22d x x +∞--∞⎰=1.所以2201d 2xx +∞-=⎰即22ed x x +∞--∞⎰令222x u -=⇒u =⇒20e d uu +∞-⎰220e d x x +∞-2 2.10用拉普拉斯变换求无穷限广义积分定义2[6] 设()f t 在0t ≥上有定义,且积分0()()e d st F s f t t +∞-=⎰(s 是复变参量)关于某一范围内的s 收敛,则由这个积分确定的函数0()()e d st F s f t t +∞-=⎰称为函数()f t 的拉普拉斯变换.并记做[()]L f t ,即[()]L f t =0()()e d st F s f t t +∞-=⎰,其中的()F s 称为()f t 的像函数,()f t 称为()F s 的像原函数.定理 2[5] (Laplace 变换存在定理) 设函数()f t 在0t ≥的任何有限区间内分段连续,并且当t →+∞时, ()f t 的增长速度不超过某一指数函数,即存在常数0M >,和00s >,使得在[0,]+∞上,0()e s t f t M ≤,则在半平面0Re s s >上,[()]L f t 存在,且()F s =[()]L f t 是s 的解析函数.其中0s 称为()f t 的增长指数.性质1[1](积分性质)若[()]()L f t F p =,则0()[()d ]tF p L f t t p=⎰(p 为复数) (1)性质2[1](终值性质) 若[()]()L f t F p =,且()p F p 的所有奇点全在p 平面的部0lim ()lim ()t p f t p F p →+∞→=⋅ (2)性质3[1] 若[()]()L f t F p =,()F p 在Re 0p >上解析,且0()d n t f t t +∞⎰收敛,则0(1)lim ()n n p F p →-存在,且(1)lim ()()d n nn p F p t f t t +∞→-=⎰(3)证明 [()]()L f t F p = 由微分性知 ()n F p =[()()]n L t f t -[()]n L t f t =(1)()n n F p -由性质1 0(1)()[()d ]n n t nF p L t f t t p-=⎰所以由性质2 00(1)()lim[()d ]lim n n t nt p F p t f t t p→+∞→-=⎰即 0()d n t f t t +∞⎰=0(1)lim ()n n p F p →-特别的,0n =时,有()d lim ()p f t t F p +∞→=⎰. (4)性质4[1](象函数的积分性质)若[()]()L f t F p =,且积分()d F p p ∞⎰收敛()[]()d p f t L F p p t∞=⎰. (5)性质 5[1]设[()]()L f t F p =,且()d F p p ∞⎰与0()d f t t t∞⎰皆收敛,则 0()()d d f t F p p t t∞∞=⎰⎰(6) 证明 由(5)式,()[]()d p f t L F p p t∞=⎰ 由(4)式,()d f t t t∞⎰=0lim ()d p p F p p ∞→⎰()d F p p ∞=⎰例12[4] 求sin ()tf t t =的拉普拉斯变换,并求积分0sin d t t t+∞⎰.解 由定理2,因为0()1e f t ≤⋅,故在s 的实部大于零上, 拉普拉斯变换存在,且esin d stt t ω+∞-⎰=22e [sin cos ]st s t t s ωωωω---+=22s ωω+于是 22[sin ]L t s ωωω=+ (在s 的实部大于零) 那么 2sin 1[]1t L t s =+ 由命题4知 sin []t L t =21d 1s s s +∞+⎰=πarctan 2s -在利用命题5知0sin d t t t +∞⎰=201d 1s s +∞+⎰=π2. 例13[6] 计算下列积分30e sin d t t t t +∞-⎰ 解 21[sin ]1L t s =+, 由微分性质知, 22212[sin ]()1(1)s L t t s s '=-=++ 但是另一方面 0[sin ]sin e st L t t t t dt +∞-=⋅⎰当3s =时,即30e sin d t t t t +∞-⎰=2232(1)s s +=350致谢:本文在写作过程中得到陈一虎老师的指导.在此表示感谢!参考文献:[1] 白水周.无穷限广义积分的几种有效解法[J].开封大学学报,2000,14(1):49-50.[2] 李绍成.论广义积分的计算[J].绵阳农专学报:自然科学版,1996,13(2):65-70.[3] 数学分析.华东师范大学数学系[M].高等教育出版社,2001.[4] 宋叔尼,孙涛.复变函数与积分变换[M].北京:科学出版社,2006.[5] 刘开生,杨钟玄.无穷限广义积分的几种计算方法[J].天水师范学院学报:自然科学版,2002,22(2):9-10.[6] 盖云英,包革军.复变函数与积分变换学习指导[M].科学出版社,2004.Ways of calculating limitless generalized integralCHEN Xue-Jing(Department of Mathematic,Baoji University of Arts and Science Baoji 721013,Shaanxi ,China) Abstract:ways of calculating generlazed integral are given by using maths analysis, complex variable and integral transform, complex function and proabability statistical theroy. In the study the use of these methods can broaden their horizons, stimulate interest in learning mathematics.Key words:generalized integration; convergence; calculation method.。
广义积分
b→ +∞
∫
b a
f ( x )d x
此时也称广义积分收敛 此时也称广义积分收敛, 收敛,若上述极限不存在, 若上述极限不存在,则称广义 积分发散 积分发散。 发散。
定义2
设函数 f ( x) 在 ( −∞ , b ] 上连续, 上连续,极限
a → −∞
lim
∫
b a
f ( x )d x
存在, 存在,称此极限为在区间 ( −∞ , b ] 上的广义积分, 记作
−t b 0
b→ +∞
∫
b
b 0
te
−t
dt
lim {[ − te = b → +∞
] + ∫ 0 e − t dt }
= lim ( − be b → +∞
→ +∞
−b
− e −b + 1)
= 1 .
若广义积分收敛可以直接用“ 若广义积分收敛可以直接用“=”.
例2 计算 ∫− ∞ sin xdx.
讨论
∫
1 − 1
1 d x 的收敛性. 2 x
∫
1 −1
dx = 2 x
1 0
∫
0 −1
dx + 2 x
∫
1 0
dx x2
其中 ∫
1 dx 1 dx = lim 2 2 + ∫ε ε → 0 x x
1 1 1 = lim [ − ]ε = lim ( −1 + ) + + ε →0 ε →0 x ε = +∞
a →+∞
∴ ∫ sin xdx = 0.
−∞
∵ ∫ 0 sin xdx 发散 −∞ ∴ ∫− ∞ sin xdx 发散.
无穷限的广义积分
b
c
b
f ( x )dx
16
思考题
积分 ∫0
1
ln x dx 的瑕点是哪几点? x −1
2010-1-4
广义积分(22)
17
思考题解答 积分 ∫0
1
ln x dx 可能的瑕点是 x = 0, x −1
x =1
ln x 1 = lim = 1, ∵ lim x →1 x x →1 x − 1
ln x ∵ lim =∞ x →0 x − 1
∴ x = 1 不是瑕点,
是瑕点,
∴ x=0
∴ ∫0
2010-1-4
1
ln x dx x −1
的瑕点是 x = 0.
广义积分(22) 18
2010-1-4 广义积分(22) 12
a −ε
1 例 6 证明广义积分 ∫0 q dx 当q < 1时收敛,当 x q ≥ 1时发散.
1
11 1 dx = ∫0 dx = [ln x ]1 = +∞ , 证 (1) q = 1, ∫0 q 0 x x ⎧+ ∞, q > 1 1− q 1 1 1 ⎡x ⎤ ⎪ ( 2) q ≠ 1, ∫ q dx = ⎢ ⎥ = ⎨ 1 ,q<1 0 x ⎣1 − q ⎦ 0 ⎪ ⎩1 − q 1 因此当q < 1时广义积分收敛,其值为 ; 1− q 当q ≥ 1时广义积分发散.
广义积分(22)
10
设函数 f ( x ) 在区间[a , b]上除点 c (a < c < b ) 外连 续,而在点 c 的邻域内无界.如果两个广义积分
∫a f ( x )dx 和 ∫c
b
c
b
f ( x )dx 都收敛,则定义
无穷限的广义积分
a
F(x)bF(b)F(a). a
若 F(x) 是 f (x) 的一个原函数, 则定义 4,5,6 中的广义积分可表示为
例 7 判断
解 故积分收敛.
1 dx
0 1 x
1 dx 收 敛 性.
1 x 1
2 1x 2.
0
0
例 8 讨论广义积分
解 当 p = 1 时,
1 dx
0 xp
的 收 敛 性 .
e xln x
解 故该积分发散.
1
1 x p dx,
dx lnx
1x
1
例 6 证明广义积分 当 p > 1 时,收敛;当 p ≤ 1 时,发散 . 证 p = 1 时,则 所以该广义积分发散.
当 p > 1 时, 综合上述,
该广义积分收敛. 当 p ≤ 1 时,
该广义积分发散. 1 时,则
a
c
都收敛, 则称这两个广义积分之和为函数 f (x) 在区
间 [a, b] 上的广义积分,记作
b
f (x)dx,
即
a
b
c
b
af(x )d xaf(x )d x cf(x )d x .
这时也称广义积分收敛, 否则,称广义积分发散.
F(x) F(b)F(a) b
bcb
af(x)dxaf(x)dxcf(x)dx
取实数 b
b
lim f(x)dx
b a
存在, 则称此极限为函数 f (x) 在无穷区间[a, + )
上的广义积分, 记作
f(x)dx,
即
a
b
f(x)dxlim f(x)dx.
a
b a
这时也称广义积分收敛,
无穷区间上的广义积分.
b
a
f
(
x
)dx
.
或 b f ( x)dx F ( x) b F (b) lim F (a) F(b) F(a)
a
a
xa
当极限存在时,称广义积分收敛;当极限不存在
时,称广义积分发散.
例1 计算广义积分
例题
41
41
1) 0
x dx , 2) 0 x2 dx
解 1) 因为 lim 1 , 所以 1 在x 0的右邻域无界.
x2
1 x
2
dx
1 3
2
1 x 1
1 x
1
dx
1 3
ln
x
1
ln
x
1 2
1 3
lim
b
ln
b1 b2
ln 4
1 3
ln 4.
例题
例6
证明广义积分
1
1 xp
dx
当
p
1时收敛,
当 p 1时发散.
证
(1)
p
1,1
1 xp
dx
1
1 x
dx
ln
x
1
,
(2)
p
1,
1
1 xp
dx
x1 p 1 p1
b
f ( x)dx
a
0 a
或
b f ( x)dx F ( x) b lim F ( x) F (a)
a
a xb
3)设 f ( x)在[a,b]上除点c (a c b)外连续,
lim
xc
f
(x)
.则
b
a
f
( x)dx
拉普拉斯变换求解无穷限的广义积分
— 428 —
验。 (6)将程序输入 PLC 当使用简易编程器将程序输入 PLC 时,需要先将梯形图转换成指
令助记符,以便输入。当使用可编程序控制器的辅助编程软件在计算机 上编程时,可通过上下位机的连接电缆将程序下载到 PLC 中去。
(7)进行软件测试 程序输入 PLC 后,应先进行测试工作。因为在程序设计过程中,难 免会有疏漏的地方。因此,在将 PLC 连接到现场设备上去之前,必需进 行软件测试,以排除程序中的错误,同时也为整体调试打好基础,缩短 整体调试的周期。 (8)应用系统整体调试 在 PLC 软硬件设计和控制柜及现场施工完成后,就可以进行整个 系统的联机调试,如果控制系统是由几个部分组成,则应先作局部调 试,然后再进行整体调试;如果控制程序的步序较多,则可先进行分段 调试,然后再连接起来总调。调试中发现的问题,要逐一排除,直至调试 成功。 (9)编制技术文件 系统技术文件包括说明书、电气原理图、电器布置图、电气元件明 细表、PLC 梯形图。
我们只要求出 cos2t 的拉普拉斯变换后,令 s=3 即可。
乙 解:L[cos2t]=
+∞ 0
e-
stcos2tdt=
s s2+4
,(该结果是常规要记住的)
乙 对照要求积分,令
无穷区间广义积分的几种计算方法
广义积分在平常 的应用 中涉及面比较 广,但对其的 计算往往成为 个难点。在计算无穷区间的广义 积分的时候 ,我们发现有时候从定 义出发有一定的困难 。本文从基本积分方法 引入 ,结合 了分部积分和 换元积分法 , 出了其他的几种积分方法 ,以供大家参考 。 给 方法一 : 换元积分法 在解决 被积函数 中含有无理式 的定积分 的计算时 ,我们通常会用 到换 元法 , 通过换元达到简化 被积 函数而求 出积分结果的 目的。而正 常积分的这种换元法对广义积分也适用 ,我们在进行求解时可以考虑
方法五 : 利用级数理论计算广 义 积分
则 r
孽
一 )
…
n,, Ic co s, cl -
器积’ 另 的级’ 出 数和 求 著性得 一 幂数 求新 的为 到新 再 级 所
例.算r s 计 -
分积 主是决积数几不 函 的分 部分要解被函是种同型数积鼢计 类函乘 的 计 积
作者简介
究。
李 坚 (17 一),讲 师 。研 究方 向 :体 育教 育训 练 与研 91
( 收稿 日期 :2 1 - 7 2 ) 00 0- 0
璺,
基 璺 J 0 年第 期
高 校 论 坛
无 穷 区 间广 义 积 分 的 几 种计 算 方 法
李 志 军
( 疆 轻 工 职 业 技 术 学 院 新 疆 师 范 大学 数理 信 息 学 院 ) 新
摘 要 利用概率统计、数学分析理论给 出无 穷限广义积分 的几种计算方 法,在教 学 中运用这几种方法开拓学生视 野。激发 学生 的学习兴趣 。 关键词 无穷限广义积分 正态分布 计算方法
( 9 ) 接6 页 合体 育文化实现培养全面发展 大学生的教育新 目标 ,才能 保证高校大学 生在新时期更具有竞争力 。
5.6无限区间上的广义积分
f (x)dx F(x) a b
f ( x)d x F(x)
f (x)d x F(x)
F() F(a)
F(b) F() F() F()
其中 F() lim F( x),F() lim F( x)
x
x
例1 计算广义积分
解
arctan x
π 2
(
π) 2
π
练习 计算广义积分 0 xe x2 dx
常义积分
积分限有限 推广 无限区间的广义积分 被积函数有界 无界函数的广义积分
一.无限区间上的广义积分的定义
引例 求曲线
和直线 及 x 轴所围成的开
口曲边梯形的面积。
y
A
o 1b
A
dx
1
x2
lim b
b dx 1 x2
lim (
1
b
)
lim (1 1)
x
x b 1
b
b
1
定义 设f ( x)在[a , )内连续, 任取b a , 如果
31 2
因为
p
=
1 ,则广义积分发散。
2
小结
无限区间上的广义积分
b
f ( x)dx f ( x)dx
a f ( x)dx
作业 习题5.6 1,2
存在 , 则称此极限为 f (x) 的无限区间上的广义积分, 记为
这时也称广义积分 则称广义积分
收敛 ; 如果极限不存在, 发散 。
类似可定义 f (x)在(, b]与(-,+)的广义积分
0
b
lim f (x)dx lim f (x)dx
a a
b 0
只要有一个极限不存在 , 就称
第七章第四节广义积分
t a 0 t
b
f ( x )dx
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
类似地,设函数 f ( x ) 在区间[a , b )上连续, 而在点b 的左邻域内无界.取 tb ,极限
t b 0 a
lim
t
f ( x )dx 称为函数
f ( x ) 在区间[a , b ) 上的广
二、无界函数的广义积分
设函数 f ( x ) 在区间 (a , b] 上连续,
则对任意a<t<b,f(x)在区 间[t,b]上连续。 所以积分下限函数
y
y f ( x)
b
t
f ( x )dx
O a t
t a 0 t
存在。 考虑它的极限
b x
lim
b
f ( x )dx
不妨记为
baf (Fra bibliotekx )dx lim arctan x a lim arctan x 0
0 b a b
lim arctan a lim arctan b . a b 2 2
例2 讨论广义积分 解
0
cos xdx 敛散性
由于 sin x是 cos x的一个原函数,
则 cos xdx sin a, 而 limsin a
0 a
a
极限不存在,所以广义积分发散
例3
解
计算广义积分
b
0
te
pt
dt (p是常数,且p>0)。
0
te
pt
无穷限广义积分
(3) a [ f (x) g(x)]d x a f (x) d x a g(x) d x .
(4)
u(x)v(x) d x
a
u(x)v(x)
a
u(x)v(x) d x .
a
(5) 无穷积分也可按照定积分的换元法进行计算.
(6) 若在[a, ) 上 f (x) g(x) , 则
d x x1 p
a xp 1 p
,
a
a 1 p , p 1
p 1, p 1.
发散 收敛
例3
计算
cos x d x .
0
解
cos x d x sin x
0
0
lim sin x sin 0 , x
由于 lim sin x 不存在,故原积分
的敛散性.
因为
lim
x
x
1
x3 x2
lim x2 x 1
x x2
,
故无穷积分
1
x3 d x 1 x2
是发散的.
例7
判别无穷积分 d x 的敛散性 . 1 x 1 x2
解 因为
lim x2 1 lim x 1, ( p 2 1) x x 1 x2 x 1 x2
cos x d x
发散 .
x
0
无穷积分的基本运算性质
设以下所有出现的积分均存在,则
a
(1) f (x) d x f (x) d x .
a
其它类型的无穷 积分的情形类似 于此.
无穷限广义积分的几种计算方法
无穷限广义积分的几种计算方法
刘开生;杨钟玄
【期刊名称】《天水师范学院学报》
【年(卷),期】2002(22)2
【摘要】利用数学分析、复变函数、概率统计理论给出计算广义积分的几种方法.在教学中运用这几种方法可开拓学生视野,激发学生学习数学的兴趣.
【总页数】2页(P9-10)
【作者】刘开生;杨钟玄
【作者单位】天水师范学院,数学系,甘肃,天水,741001;天水师范学院,数学系,甘肃,天水,741001
【正文语种】中文
【中图分类】O172.2
【相关文献】
1.无穷区间广义积分的几种计算方法 [J], 李志军
2.无穷限广义积分求值的几种方法 [J], 韩建玲
3.无穷限广义积分的计算方法及技巧 [J], 陈朝晖
4.无穷限广义积分的几种有效求解法 [J], 白水周
5.探究无穷限广义积分的计算方法 [J], 陈飞
因版权原因,仅展示原文概要,查看原文内容请购买。
无穷限广义积分的计算方法及技巧
积 的 质 ,I‘ ) ≠” 一” 分 性 1 ” 一 d I 故 I - x 1 I L l
1无穷限广义积分 的直接 积分 法
_ (
由定积分性质及极限运算 法则得
+∞
. .
我们在计算无穷 限广义积分时 , 如果利用定义求值 , 比 较繁琐 , 而直接利用牛顿一莱布 尼兹公式 及无穷 限广义积 分 的基 本性质计算 , 比较简便 。 则
关键词 : 穷限广义积分 ; 无 基本性质 ; 奇函数 ; 函数 偶
Cac l t eho sa d k l o n nt i td e a ac ls lu ai m t d n s il fif iel ng i mie i grlc lu u nt Ab ta t hsat l i1 to u e h ac ltn to so fnt mi d itga ac ls i c nerto sr c :T i ri emanyi rd cstecluaigmeh d fii iel t ne rlcluu :dr titgain,c a g atr c n n i e e h n efco
o n e rto fi t ga in,s b e t n i tg ai n t loi t d c st ef n a n a h r ce fi n t n e rlc l u u n e c l u a in o t n e u s ci n e rto .I s r u e h d me tlc a a tro o a no u i f n i i tg a a c l sa d t a c lt fsr g e h o a u oi v n f o i . f n t na d e e n t n o n u o
广 义 积 分
广义积分
前面介绍的定积分有两个限制条件:积分 区间有限和被积函数有界.实际问题中还需要某 些函数在无穷区间上的积分以及某些无界函数在 有限区间上的积分.因此要求将定积分概念加以 推广,这就是广义积分.广义积分包括无穷区间 的广义积分和无界函数的广义积分两类.
一、 无穷区间的广义积分
定义2
二、 无界函数的广义积分
【例35】
二、 无界函数的广义积分
【例36】
二、 无界函数的广义积分
【例37】
二、 无界函数的广义积分
【例38】
பைடு நூலகம்
二、 无界函数的广义积分
二、 无界函数的广义积分
由这个递推公式不难看出该积分收敛.特别地,对任何正整 数n
Γ(n+1)=n!
Γ(n+1)=nΓ(n)=n(n-1)Γ(n-1)=…=n!Γ(1)
以及∫baf(x)dx收敛和发散的概念.
(6-13)
二、 无界函数的广义积分
定义5
设f(x)在区间[a,b]上除点c(a<c<b) limx→cf(x)=∞,如果两个广义积分∫caf(x)dx和∫bcf(x)dx 都收敛,则称广义积分∫baf(x)dx收敛
∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx; (6-14) 否则,称其没有意义或发散.
∫baf(x)dx=limε→0+∫ba+εf(x)dx, (6-12) 此时称广义积分∫baf(x)dx存在或收敛;否则称广义积分 ∫baf(x)dx没有意义或发散.这种广义积分又称为瑕积分,a为瑕点.
类似地,可定义f(x)在区间[a,b) ∫baf(x)dx=limε→0+∫b-εaf(x)dx
无穷限广义积分的数值计算[文献综述]
毕业论文文献综述信息与计算科学无穷限广义积分的数值计算一.前言部分定积分的数值近似称为数值求积.[1]它起源于古代用铺贴小方块近似计算不规则图形或曲边形的面积.在近似积分中,主要从定义积分的黎曼和出发,用被积函数在积分区间上有限个点上值的加权和来近似计算积分.我们一般使用牛顿-科茨求积公式,梯形公式及其复合公式,辛普森公式及其复合公式,Gauss 求积公式,切比雪夫求积法,三次样条函数求积法,自适应积分法等方法来进行数值求积.在讨论积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”.根据函数的变化率,利用定积分我们可以计算函数在指定区间上的增量,利用变限定积分可以把握函数变化区间上增量的变化,为了把握函数在无穷区间上增量的变化,我们还需要引进并讨论无穷限积分[2].比如现在人类要发射人造地球卫星或发射完成星际航行的飞行器,就要摆脱地球强大的引力,那如何离开地球呢?地球上的物体要脱离地球引力成为环绕太阳运动的人造行星,需要的最小速度是第二宇宙速度.第二宇宙速度为11.2公里/秒,是第一宇宙速度的2倍.地面物体获得这样的速度即能沿一条抛物线轨道脱离地球.我们可以运用无穷限广义积分解决第二宇宙速度问题.在黎曼积分的定义中,被积函数和积分区间都是有界的.若被积函数或积分区间无界,则称为广义积分.对无界区间,如[)∞,a ,如果对任何有限的b ,f 在区间[]b a ,上可积,并且下列极限存在且为有限数,则广义积分的定义为()()⎰⎰∞∞→=alim bab dx x f dx x f .对无界的积分区间,可以使用有限区间上的标准求积程序计算广义积分,具体方法如下:•用有限的积分区间代替无限的积分区间.选择积分范围时要注意所截掉的部分应是极小的,另外应对这一部分在整个积分中所占的份额作出估计.同时这个有限区间也不应太大,以免在利用自适应求积程序时,陷入无休止的积分函数调用之中.•通过适当的变换将无界区间变成有界区间.典型的变换包括,t x ln -=或者()t tx -=1.但是在变换的时候一定要注意不要引入新的奇异点或产生其它问题. 还有一种方法就是采用专门计算无界区间积分的求积公式,比如说高斯-拉盖尔(Gauss-laguerre )或者高斯-艾尔米特求积公式.一般采用变量替换,无穷区间的截断,无穷区间上的高斯求积公式,极限过程等方法去解决无穷限广义积分的数值计算.二.主题部分2.1数值积分的一般方法许多定积分都无法用解析方法求出.对于那些并不知道函数()f x 的表达式只能通过实验得到()f x 在一系列点上的值的积分问题也只能用数值方法.[3]2.1.1梯形法则[4]把以曲线()f x 为曲边的曲边梯形分解成小曲边梯形以后,估计小曲边梯形面积的一个方法是用左矩形或右矩形面积代替小曲边梯形面积;但是这时误差会比较大.事实上,这种方法相当于用一系列的水平线逼近曲线()f x .我们可以把这些水平线看成是函数的零次插值多项式.一个更好的方法就是用一条折线逼近曲线()f x ;事实上,我们让小矩形的上边连续倾斜直到最好地拟合曲线.得到相应的求积公式是()()()2bab af x dx f a f b -≈+⎡⎤⎣⎦⎰, ()2.1.1 对所有1f ∈∏(即次数最多是1次的全体多项式)公式精确成立.此外,它的误差项是()()31''12b a f ξ--, 其中(),a b ξ∈.通过多项式逼近中的误差()()()()()1''x f x p x f x a x b ξ-=--积分,再利用积分中值定理,可以确定梯形法则的误差项. 2.1.2复合梯形法则如果划分区间[],a b 为:01n a x x x b =<<⋅⋅⋅<=.那么在每个子区间上可应用梯形法则.这时结点未必是等距的.这样,我们得到复合梯形法则()()()()()1111112ii nnbx i i i i ax i i f x dx f x dx x x f x f x ---==-=≈-+⎡⎤⎣⎦∑∑⎰⎰.()2.1.2 对等间距()h b a n =-及结点i x a ih =+,复合梯形法则具有形式()()0''nbai f x dx h f a ih =≈+∑⎰, ()2.1.3其中求和符号上的两撇表示求和式中的第一项和最后一项都被减半.复合梯形法则的误差项是()()21''12b a h f ξ--, 其中(),a b ξ∈.对于每个子区间上的误差项求和并利用以下事实:在[],a b 内存在一点ξ使得()()()1''1''nii f n f ξξ==∑,其中()1,i i i xx ξ-∈以及()1n b a h =-,即平均值,这样便得到总误差项. 2.1.3辛普森法则[5]对任意区间[],a b 的类似计算可得到熟悉的辛普森法则:()()()462bab a a b f x dx f a f f b -⎡+⎤⎛⎫≈++ ⎪⎢⎥⎝⎭⎣⎦⎰. ()2.1.4 从它的推导过程可知,对于所有次数2≤的多项式辛普森法则是精确成立的.出乎意料的是, 对于所有次数3≤的多项式它也精确成立.与辛普森法则联系在一起的误差项是: ()()()541290b a f ξ--⎡⎤⎣⎦, 其中(),a b ξ∈. 2.1.4 Gauss 公式[6]设有计算()()baI f f x dx =⎰ ()2.1.5的求积公式()()0nn kkk I f A f x ==∑, ()2.1.6其中求积节点()0,1,k x k n =L ,求积系数()0,1,k A k n =L .如果其代数精度为()21n +,则称为求积公式为Gauss-Legendre 公式(简称Gauss 公式),称相应的求积节点为Gauss 点.由代数精度的定义知,式()2.1.6为Gauss 公式的充分必要条件是求积节点{}0nk k x =和求积系数{}0nk k A =满足下列方程组:022212101n b k a k n b k k a k nb k k ak nbn n k k ak A dx x A xdxx A x dx x A x dx===++=⎧=⎪⎪⎪=⎪⎪⎪⎨=⎪⎪⎪⎪⎪=⎪⎩∑⎰∑⎰∑⎰∑⎰M . ()2.1.7 Gauss 积分不但具有高精度,而且是稳定的,其原因是由于它的求积系数具有非负性.Gauss 公式()()0nbkkak f x dx A f x =≈∑⎰的求积系数()0,1,kA k n =L 全是正的.高斯求积公式,[7]它不但具有最高的代数精度,而且收敛性和稳定性都有保证.因此是高精度的求积公式,高斯公式的主要缺点是节点和系数无规律,所以不便编程实现,在实际应用中,可以把低阶高斯公式进行复化. 2.2 无穷积分的敛散性判别[8]无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件.由定义知道,无穷积分()af x dx +∞⎰收敛与否,取决于函数()()uaF u f x dx=⎰在u →+∞时是否存在极限.因此可由函数极限的柯西准则导出无穷积分的柯西准则.无穷积分()af x dx +∞⎰收敛的充要条件是:任给0ε>,存在G a ≥,只要1u 、2u G >,便有()()()2121u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.()2.2.1 我们知道,[9]无穷限反常积分和数项级数两者之间有很多结论是相似的.在数项级数里面,当数项级数收敛时,其通项是收敛于零的.那么在无穷限反常积分里是不是也有相似的结论呢.首先我们看看无穷限反常积分在收敛时的几何意义:()af x dx +∞⎰收敛时的几何意义:若()f x 是[),a +∞上的非负连续函数,则()af x dx +∞⎰是介于曲线()y f x =,直线x a =以及x 轴之间那一块向右无限延伸的阴影区域的面积J .从而可知:()af x dx +∞⎰实际上是表示曲线()y f x =与坐标轴所围成的面积的代数和.而当()af x dx +∞⎰收敛时,是否()f x 在无穷远处的极限一定为零时,图形的面积才可以计算呢?如果回答否定,那么在哪些情况下,被积函数在无穷远处的极限才等于零呢?经过对若干例子的研究,我们得出结论:上述第一个问题的回答是否定的,并且有这样的事实:()af x dx +∞⎰收敛时()f x 在无穷远处的极限并不一定为零.被积函数在无穷远处极限为零的充分条件: 当()af x dx +∞⎰收敛时,在无穷远处的极限为零.以下就是经过对()f x 作某些限制而得出的几个结论,而这些结论就是对引言中的问题的回答.定理1. 若()a f x dx +∞⎰收敛且()lim x f x →+∞存在,则有()lim 0x f x →+∞=;定理2. 若()a f x dx +∞⎰收敛且()f x 单调,则()lim 0x f x →+∞=;定理3. 若()a f x dx +∞⎰收敛且()f x 一致连续,则有()lim 0x f x →+∞=;定理4. 若()af x dx +∞⎰收敛且导函数()f x 有界,()lim 0x f x →+∞=.2.3无穷区间上的积分的计算方法考虑无穷区间上的积分 ()()aI f f x dx ∞=⎰, ()2.3.1其中a 为有限值或-∞.常用的无穷区间上的积分的求解方法:[10]2.3.1变量替换对于式()2.3.1,作变量替换xt e -=,可将区间[)0,+∞变为区间()0,1.因此有()()()110001ln g t f x dx f t dt dt t t∞=-=⎰⎰⎰. ()2.3.2这样就把无穷区间上的一个积分化成为了有限区间上的积分.若()g t t在0t =的邻域内有界,那么式()2.3.2的右边是一个正常积分,反之,积分是一个反常积分,上述变换只是把一种困难装换成另一个困难.变量替换还有很多不同类型. 例 计算积分22111sin dx x x∞⎰. 解 令1y x=,那么有12221011sin sin dx y dy x x∞=⎰⎰, 对2sin y 泰勒级数展开,有122210111111sin sin 342132075600dx y dy x x ∞==-+-+⎰⎰L 0.310268≈. 2.3.2无穷区间的截断将被积函数的“尾巴”略去,可使无穷区间化为一个有限区间,此方法要求事先用某种简单的解析方法估算出尾部的量值.选取R a >,使()0f x dx ε∞<⎰, ()2.3.3其中ε为允许误差,那么无穷区间上的积分()2.3.3可以用()Raf x dx ⎰来近似.例 计算2x e dx ∞-⎰.解:当x R ≥时有2x Rx ≥,所以有估计式221x Rx R RRedx e dx e R∞∞---≤=⎰⎰. 对于4R =,则28110R e R--≈.因此对于允许误差为710-来说,只要计算240x e dx -⎰就可以了.2.3.3无穷区间上的高斯求积公式无穷区间上的积分.高斯-拉盖尔求积公式和高斯-艾尔米特求积公式是最广泛实用的.下面作些补充.将插值型求积公式()()()()()()00,,nbk k a k n bi k a i k i i k x f x dx A f x x x A x dx x x ρρ==≠⎧≈⎪⎪⎨-⎪=∏⎪-⎩∑⎰⎰ ()2.3.4 中的[],a b 换为半无穷区间[)0,+∞,权函数()xx e ρ-=,并取节点()0,1,,k x k n =L 为1n +次拉盖尔多项式()()1111n xn xn n d L x e x e dx ++-++=的零点,称这样的高斯求积公式为高斯-拉盖尔求积公式,其表示形式为()()0,nxk k k e f x dx A f x +∞-=≈∑⎰()2.3.5系数k A 为()()122'1!n k k k n A x L x ++⎡⎤⎣⎦=⎡⎤⎣⎦()0,1,2,,k n =L , ()2.3.6 截断误差为[]()()()()2221!22!n n R f f n ζ++⎡⎤⎣⎦=+, ()0,ζ∈+∞. ()2.3.7 高斯-艾尔米特求积公式是全无穷区间上的高斯型求积公式()()2nx k k k ef x dx A f x +∞--∞=≈∑⎰, ()2.3.8其中节点()0,1,,k x k n =L 为(),-∞+∞上带权()x x e ρ-=正交的1n +次艾尔米特多项式()()()2211111n n x x n n d H x e e dx++-++=-的零点,系数k A 为 ()()22'121n k n k n A Hx +++=⎡⎤⎣⎦, ()2.3.9截断误差为[]()()()()2211222!n n n R f f n ζ+++=+,(),ζ∈-∞+∞. ()2.3.10 在实际应用中有时希望一个或几个节点预先固定,然后确定其他节点和系数以使求积公式具有尽可能高的代数精度,这种固定部分节点的高斯型求积公式理论上总是可以按代数精度的等价定义[11].2.3.4极限过程()()0lim r f x dx f x dx ∞∞→∞=⎰⎰,提供了极限过程.令010r r <<<L 是趋向于∞的数列.记()()()()0121r r r r r f x dx f x dx f x dx f x dx ∞=+++⎰⎰⎰⎰L ,右端每个积分都是正常积分,当()1n nr r f x dx ε+<⎰时,计算终止.2.4无穷限广义积分的新方法最近提出了一种基于进化策略算法的广义积分计算新方法,[12-15]该方法根据被积函数的变量区间任意选取分割点,作为进化策略的初始的群体,通过进化策略算法来优化这些分割点,最终可得到一些最优的分割点,然后再求和,再根据和函数定义适应度函数,在给定的终止条件下,可获得精度较高的积分值.最后,以广义积分(无穷限广义积分)为例,仿真结果表明,该算法相比传统的一些方法,具有计算精度高,自适应性强等特点.三、总结部分定积分的积分区间是有限的,但在实际问题中,往往需要突破这个限制,把积分区间从有限的推广到无限区间,形成了无穷限广义积分,因此,无穷限广义积分的基本性质、计算方法与定积分相类似[16].在工程计算中也会遇到广义积分的数值计算问题,尤其是在近代物理等领域中会经常遇到广义积分(无穷限广义积分)的数值计算问题,不同的理论和方法的难易程度不同,我们应该注意观察总结,举一反三、巧妙地应用这些方法.同时也应该积极探索更新更有效的理论和方法去解决这些问题.四、参考文献[1]Michael T.Health.Scientific Computing: An Introductory Survey[M].第2版影印版.北京 :清华大学出版社,2001.10:297-311.[2]李国莹,姜诗章,杨平,王国清.应用数学基础[M].第2版.上海:复旦大学出版社,2003.2:97-97.[3]Leader J.J.Numerical Analysis and Scientific Computation[M].影印版.北京:清华大学出版社,2008.5:314-314.[4]Curtis F.Gerald Partrick O.Wheatley著,吕淑娟译.应用数值分析[M].第7版.北京:机械工业出版社,2006.9:22-223.[5]David Kincaid,Ward Cheneny著,王国荣,俞耀明,徐兆亮译.数值分析[M].第3版.北京:机械工业出版社,2005.9:385-386.[6]孙志忠,袁慰平,闻震初.数值分析[M].第2版.南京:东南大学出版社,2002.1:203-211.[7]李桂成.计算方法[M].北京:电子工业出版社,2005.10:186-186.[8]华东师范大学数学系.数学分析上册[M].第3版.北京:高等教育出版社,2001.6:264-270.[9]戴培亮.无穷限积分的被积函数在无穷远处的极限[J].常熟理工学院学报.2006.11,20(6) :1-4.[10]《代应用数学手册》编委会.现代应用数学手册-计算与数值分析卷[M].北京:清华大学出版社,2005.1:227-230.[11]封建湖,车刚明,聂玉峰.数值分析原理[M].北京:科学出版社,2001.9:118-118.[12]郭德龙,周永权.基于进化策略的广义积分计算方法研究[J].计算机工程与设计. 2008.10,29(19):5026-5028.[13]张艳红.一种工程实用的数值积分方法[J].工程力学报.2005.6,22(3):39-45.[14]陈泽文,朱玉灿.高阶奇异积分的小波逼近及数值计算[J].数学物理学报.2002.6,22(2):281-288.[15]张新育,杨松华.矩形域上非正常积分的一种数值算法[J].郑州工业大学报. 1999.3,12(4):101-102.[16]李承家,胡晓敏.数学分析导教.导学.导考[M].第3版.陕西:西北工业大学出版社,2003.6:234-234.。
无界函数广义积分的数值计算[开题报告]
毕业论文开题报告信息与计算科学无界函数广义积分的数值计算一、选题的背景、意义微积分从20世纪初开始进入中学,他作为人类文化的宝贵财富,正在武装一代又一代的新人,终将成为世人皆知的常识[1].通常谈到积分,最先想到的往往是定积分.研究函数的定积分,常常有两个比较重要的约束条件,即积分区间的有界性和被积函数的有界性[2].但在很多实际问题中往往需要突破这两个条件,考虑无穷区间上的积分或是无界函数的积分,通常也称他们为广义积分.通过以往对定积分学习,发现它可以使很多复杂的问题简单化,但是实际生活广义积分的应用更加具有实际意义.因此关于它的计算自然而然地成了很重要的研究课题,这也是本论文的研究中心.广义积分的敛散性的判定是分析学的重要内容,有不少人对其研究,已得出了许多判定方法.有学者认为,由于积分与级数在理论上是统一的,因此有关正项级数的根式判别法可被推广以判别无穷限积分和[3].也有学者认为,将无穷积分及无界函数积分的被积函数运用无穷小和无穷大比较的方法进行比较,得到了相应的反常积分敛散性极限审敛法的等价定理[4],从而可运用等价定理灵活的判断反常积分的敛散性.总之,广义积分目前已有多种判别收敛性的方法,但每个判别法都有其应用的局限性[5],随着广义积分理论的逐渐发展,相信这些局限性会日趋减弱。
广义积分的敛散性的判别方法固然是很重要的问题,对于广义积分的计算的研究具有很重要的现实意义.在解析方法中,收敛的广义积分是通过用非奇异点(或有限点)代替奇异点(无穷点)并对其取极限的方法处理的[6].通常的积分计算直接利用公式()()()baf x dx F b F a =-⎰进行,但是,在实际问题中,这样往往是有困难的,有些被积函数()f x 的原函数不能用初等函数表示成有限的形式;有些被积函数表达式很复杂;有些没有具体的解析表达式.而且,广义积分是指把积分扩展为函数在积分区间上无界或积分区间具有一个或多个无穷端点的情况,无论哪种情况,正常的积分逼近规则必须进行修改[7].因此引进数值计算的方法进行计算.近些年,国内外学者总结出许多处理广义积分的方法,用于计算时,针对具体情况选择具体方法.由于无穷限的反常积分可以通过变量替换化为无界函数的反常积分,也可以直接仿无界函数的反常枳分作类似地处理.本论文以无界函数广义积分为研究重点.用于无界函数广义积分计算的方法有很多,本论文主要讨论:变量替换法、极限过程法、区间截取法、分部积分法、削减奇异性方法、乘积积分法.用到的数值积分计算公式有:梯形公式、抛物线公式、复合公式梯形公式、复合抛物线公式、Romberg 求积公式、Guass 型求积公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述信息与计算科学无穷限广义积分的数值计算一.前言部分定积分的数值近似称为数值求积.[1]它起源于古代用铺贴小方块近似计算不规则图形或曲边形的面积.在近似积分中,主要从定义积分的黎曼和出发,用被积函数在积分区间上有限个点上值的加权和来近似计算积分.我们一般使用牛顿-科茨求积公式,梯形公式及其复合公式,辛普森公式及其复合公式,Gauss 求积公式,切比雪夫求积法,三次样条函数求积法,自适应积分法等方法来进行数值求积.在讨论积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”.根据函数的变化率,利用定积分我们可以计算函数在指定区间上的增量,利用变限定积分可以把握函数变化区间上增量的变化,为了把握函数在无穷区间上增量的变化,我们还需要引进并讨论无穷限积分[2].比如现在人类要发射人造地球卫星或发射完成星际航行的飞行器,就要摆脱地球强大的引力,那如何离开地球呢?地球上的物体要脱离地球引力成为环绕太阳运动的人造行星,需要的最小速度是第二宇宙速度.第二宇宙速度为11.2公里/秒,是第一宇宙速度的2倍.地面物体获得这样的速度即能沿一条抛物线轨道脱离地球.我们可以运用无穷限广义积分解决第二宇宙速度问题.在黎曼积分的定义中,被积函数和积分区间都是有界的.若被积函数或积分区间无界,则称为广义积分.对无界区间,如[)∞,a ,如果对任何有限的b ,f 在区间[]b a ,上可积,并且下列极限存在且为有限数,则广义积分的定义为()()⎰⎰∞∞→=alim bab dx x f dx x f .对无界的积分区间,可以使用有限区间上的标准求积程序计算广义积分,具体方法如下:•用有限的积分区间代替无限的积分区间.选择积分范围时要注意所截掉的部分应是极小的,另外应对这一部分在整个积分中所占的份额作出估计.同时这个有限区间也不应太大,以免在利用自适应求积程序时,陷入无休止的积分函数调用之中.•通过适当的变换将无界区间变成有界区间.典型的变换包括,t x ln -=或者()t tx -=1.但是在变换的时候一定要注意不要引入新的奇异点或产生其它问题. 还有一种方法就是采用专门计算无界区间积分的求积公式,比如说高斯-拉盖尔(Gauss-laguerre )或者高斯-艾尔米特求积公式.一般采用变量替换,无穷区间的截断,无穷区间上的高斯求积公式,极限过程等方法去解决无穷限广义积分的数值计算.二.主题部分2.1数值积分的一般方法许多定积分都无法用解析方法求出.对于那些并不知道函数()f x 的表达式只能通过实验得到()f x 在一系列点上的值的积分问题也只能用数值方法.[3]2.1.1梯形法则[4]把以曲线()f x 为曲边的曲边梯形分解成小曲边梯形以后,估计小曲边梯形面积的一个方法是用左矩形或右矩形面积代替小曲边梯形面积;但是这时误差会比较大.事实上,这种方法相当于用一系列的水平线逼近曲线()f x .我们可以把这些水平线看成是函数的零次插值多项式.一个更好的方法就是用一条折线逼近曲线()f x ;事实上,我们让小矩形的上边连续倾斜直到最好地拟合曲线.得到相应的求积公式是()()()2bab af x dx f a f b -≈+⎡⎤⎣⎦⎰, ()2.1.1 对所有1f ∈∏(即次数最多是1次的全体多项式)公式精确成立.此外,它的误差项是()()31''12b a f ξ--, 其中(),a b ξ∈.通过多项式逼近中的误差()()()()()1''x f x p x f x a x b ξ-=--积分,再利用积分中值定理,可以确定梯形法则的误差项. 2.1.2复合梯形法则如果划分区间[],a b 为:01n a x x x b =<<⋅⋅⋅<=.那么在每个子区间上可应用梯形法则.这时结点未必是等距的.这样,我们得到复合梯形法则()()()()()1111112ii nnbx i i i i ax i i f x dx f x dx x x f x f x ---==-=≈-+⎡⎤⎣⎦∑∑⎰⎰.()2.1.2 对等间距()h b a n =-及结点i x a ih =+,复合梯形法则具有形式()()0''nbai f x dx h f a ih =≈+∑⎰, ()2.1.3其中求和符号上的两撇表示求和式中的第一项和最后一项都被减半.复合梯形法则的误差项是()()21''12b a h f ξ--, 其中(),a b ξ∈.对于每个子区间上的误差项求和并利用以下事实:在[],a b 内存在一点ξ使得()()()1''1''nii f n f ξξ==∑,其中()1,i i i xx ξ-∈以及()1n b a h =-,即平均值,这样便得到总误差项. 2.1.3辛普森法则[5]对任意区间[],a b 的类似计算可得到熟悉的辛普森法则:()()()462bab a a b f x dx f a f f b -⎡+⎤⎛⎫≈++ ⎪⎢⎥⎝⎭⎣⎦⎰. ()2.1.4 从它的推导过程可知,对于所有次数2≤的多项式辛普森法则是精确成立的.出乎意料的是, 对于所有次数3≤的多项式它也精确成立.与辛普森法则联系在一起的误差项是: ()()()541290b a f ξ--⎡⎤⎣⎦, 其中(),a b ξ∈. 2.1.4 Gauss 公式[6]设有计算()()baI f f x dx =⎰ ()2.1.5的求积公式()()0nn kkk I f A f x ==∑, ()2.1.6其中求积节点()0,1,k x k n =,求积系数()0,1,k A k n =.如果其代数精度为()21n +,则称为求积公式为Gauss-Legendre 公式(简称Gauss 公式),称相应的求积节点为Gauss 点.由代数精度的定义知,式()2.1.6为Gauss 公式的充分必要条件是求积节点{}0nk k x =和求积系数{}0nk k A =满足下列方程组:0220212101n b k a k n b k k a k nb k k ak nbn n k k ak A dx x A xdxx A x dx x A x dx===++=⎧=⎪⎪⎪=⎪⎪⎪⎨=⎪⎪⎪⎪⎪=⎪⎩∑⎰∑⎰∑⎰∑⎰. ()2.1.7 Gauss 积分不但具有高精度,而且是稳定的,其原因是由于它的求积系数具有非负性.Gauss 公式()()0nbkkak f x dx A f x =≈∑⎰的求积系数()0,1,kA k n =全是正的.高斯求积公式,[7]它不但具有最高的代数精度,而且收敛性和稳定性都有保证.因此是高精度的求积公式,高斯公式的主要缺点是节点和系数无规律,所以不便编程实现,在实际应用中,可以把低阶高斯公式进行复化. 2.2 无穷积分的敛散性判别[8]无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件.由定义知道,无穷积分()af x dx +∞⎰收敛与否,取决于函数()()uaF u f x dx=⎰在u →+∞时是否存在极限.因此可由函数极限的柯西准则导出无穷积分的柯西准则.无穷积分()af x dx +∞⎰收敛的充要条件是:任给0ε>,存在G a ≥,只要1u 、2u G >,便有()()()2121u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.()2.2.1 我们知道,[9]无穷限反常积分和数项级数两者之间有很多结论是相似的.在数项级数里面,当数项级数收敛时,其通项是收敛于零的.那么在无穷限反常积分里是不是也有相似的结论呢.首先我们看看无穷限反常积分在收敛时的几何意义:()af x dx +∞⎰收敛时的几何意义:若()f x 是[),a +∞上的非负连续函数,则()af x dx +∞⎰是介于曲线()y f x =,直线x a =以及x 轴之间那一块向右无限延伸的阴影区域的面积J .从而可知:()af x dx +∞⎰实际上是表示曲线()y f x =与坐标轴所围成的面积的代数和.而当()af x dx +∞⎰收敛时,是否()f x 在无穷远处的极限一定为零时,图形的面积才可以计算呢?如果回答否定,那么在哪些情况下,被积函数在无穷远处的极限才等于零呢?经过对若干例子的研究,我们得出结论:上述第一个问题的回答是否定的,并且有这样的事实:()af x dx +∞⎰收敛时()f x 在无穷远处的极限并不一定为零.被积函数在无穷远处极限为零的充分条件: 当()af x dx +∞⎰收敛时,在无穷远处的极限为零.以下就是经过对()f x 作某些限制而得出的几个结论,而这些结论就是对引言中的问题的回答.定理1. 若()a f x dx +∞⎰收敛且()lim x f x →+∞存在,则有()lim 0x f x →+∞=;定理2. 若()a f x dx +∞⎰收敛且()f x 单调,则()lim 0x f x →+∞=;定理3. 若()a f x dx +∞⎰收敛且()f x 一致连续,则有()lim 0x f x →+∞=;定理4. 若()af x dx +∞⎰收敛且导函数()f x 有界,()lim 0x f x →+∞=.2.3无穷区间上的积分的计算方法考虑无穷区间上的积分 ()()aI f f x dx ∞=⎰, ()2.3.1其中a 为有限值或-∞.常用的无穷区间上的积分的求解方法:[10]2.3.1变量替换对于式()2.3.1,作变量替换xt e -=,可将区间[)0,+∞变为区间()0,1.因此有()()()110001ln g t f x dx f t dt dt t t∞=-=⎰⎰⎰. ()2.3.2这样就把无穷区间上的一个积分化成为了有限区间上的积分.若()g t t在0t =的邻域内有界,那么式()2.3.2的右边是一个正常积分,反之,积分是一个反常积分,上述变换只是把一种困难装换成另一个困难.变量替换还有很多不同类型. 例 计算积分22111sin dx x x∞⎰. 解 令1y x=,那么有12221011sin sin dx y dy x x∞=⎰⎰, 对2sin y 泰勒级数展开,有122210111111sin sin 342132075600dx y dy x x ∞==-+-+⎰⎰0.310268≈.2.3.2无穷区间的截断将被积函数的“尾巴”略去,可使无穷区间化为一个有限区间,此方法要求事先用某种简单的解析方法估算出尾部的量值.选取R a >,使()0f x dx ε∞<⎰, ()2.3.3其中ε为允许误差,那么无穷区间上的积分()2.3.3可以用()Raf x dx ⎰来近似.例 计算2x e dx ∞-⎰.解:当x R ≥时有2x Rx ≥,所以有估计式221x Rx R RRedx e dx e R∞∞---≤=⎰⎰. 对于4R =,则28110R e R--≈.因此对于允许误差为710-来说,只要计算240x e dx -⎰就可以了.2.3.3无穷区间上的高斯求积公式无穷区间上的积分.高斯-拉盖尔求积公式和高斯-艾尔米特求积公式是最广泛实用的.下面作些补充.将插值型求积公式()()()()()()00,,nbk k a k n bi k a i k i i k x f x dx A f x x x A x dx x x ρρ==≠⎧≈⎪⎪⎨-⎪=∏⎪-⎩∑⎰⎰ ()2.3.4 中的[],a b 换为半无穷区间[)0,+∞,权函数()xx e ρ-=,并取节点()0,1,,k x k n =为1n +次拉盖尔多项式()()1111n xn xn n d L x e x e dx ++-++=的零点,称这样的高斯求积公式为高斯-拉盖尔求积公式,其表示形式为()()0,nxk k k e f x dx A f x +∞-=≈∑⎰()2.3.5系数k A 为()()122'1!n k k k n A x L x ++⎡⎤⎣⎦=⎡⎤⎣⎦()0,1,2,,k n =,()2.3.6 截断误差为[]()()()()2221!22!n n R f f n ζ++⎡⎤⎣⎦=+, ()0,ζ∈+∞. ()2.3.7 高斯-艾尔米特求积公式是全无穷区间上的高斯型求积公式()()2nx k k k ef x dx A f x +∞--∞=≈∑⎰, ()2.3.8其中节点()0,1,,k x k n =为(),-∞+∞上带权()x x e ρ-=正交的1n +次艾尔米特多项式()()()2211111n n x x n n d H x e e dx++-++=-的零点,系数k A 为 ()()22'121n k n k n A Hx +++=⎡⎤⎣⎦, ()2.3.9截断误差为[]()()()()2211222!n n n R f f n ζ+++=+,(),ζ∈-∞+∞. ()2.3.10 在实际应用中有时希望一个或几个节点预先固定,然后确定其他节点和系数以使求积公式具有尽可能高的代数精度,这种固定部分节点的高斯型求积公式理论上总是可以按代数精度的等价定义[11].2.3.4极限过程()()0lim r f x dx f x dx ∞∞→∞=⎰⎰,提供了极限过程.令010r r <<<是趋向于∞的数列.记()()()()0121r r r r r f x dx f x dx f x dx f x dx ∞=+++⎰⎰⎰⎰,右端每个积分都是正常积分,当()1n nr r f x dx ε+<⎰时,计算终止.2.4无穷限广义积分的新方法最近提出了一种基于进化策略算法的广义积分计算新方法,[12-15]该方法根据被积函数的变量区间任意选取分割点,作为进化策略的初始的群体,通过进化策略算法来优化这些分割点,最终可得到一些最优的分割点,然后再求和,再根据和函数定义适应度函数,在给定的终止条件下,可获得精度较高的积分值.最后,以广义积分(无穷限广义积分)为例,仿真结果表明,该算法相比传统的一些方法,具有计算精度高,自适应性强等特点.三、总结部分定积分的积分区间是有限的,但在实际问题中,往往需要突破这个限制,把积分区间从有限的推广到无限区间,形成了无穷限广义积分,因此,无穷限广义积分的基本性质、计算方法与定积分相类似[16].在工程计算中也会遇到广义积分的数值计算问题,尤其是在近代物理等领域中会经常遇到广义积分(无穷限广义积分)的数值计算问题,不同的理论和方法的难易程度不同,我们应该注意观察总结,举一反三、巧妙地应用这些方法.同时也应该积极探索更新更有效的理论和方法去解决这些问题.四、参考文献[1]Michael T.Health.Scientific Computing: An Introductory Survey[M].第2版影印版.北京 :清华大学出版社,2001.10:297-311.[2]李国莹,姜诗章,杨平,王国清.应用数学基础[M].第2版.上海:复旦大学出版社,2003.2:97-97.[3]Leader J.J.Numerical Analysis and Scientific Computation[M].影印版.北京:清华大学出版社,2008.5:314-314.[4]Curtis F.Gerald Partrick O.Wheatley著,吕淑娟译.应用数值分析[M].第7版.北京:机械工业出版社,2006.9:22-223.[5]David Kincaid,Ward Cheneny著,王国荣,俞耀明,徐兆亮译.数值分析[M].第3版.北京:机械工业出版社,2005.9:385-386.[6]孙志忠,袁慰平,闻震初.数值分析[M].第2版.南京:东南大学出版社,2002.1:203-211.[7]李桂成.计算方法[M].北京:电子工业出版社,2005.10:186-186.[8]华东师范大学数学系.数学分析上册[M].第3版.北京:高等教育出版社,2001.6:264-270.[9]戴培亮.无穷限积分的被积函数在无穷远处的极限[J].常熟理工学院学报.2006.11,20(6) :1-4.[10]《代应用数学手册》编委会.现代应用数学手册-计算与数值分析卷[M].北京:清华大学出版社,2005.1:227-230.[11]封建湖,车刚明,聂玉峰.数值分析原理[M].北京:科学出版社,2001.9:118-118.[12]郭德龙,周永权.基于进化策略的广义积分计算方法研究[J].计算机工程与设计. 2008.10,29(19):5026-5028.[13]张艳红.一种工程实用的数值积分方法[J].工程力学报.2005.6,22(3):39-45.[14]陈泽文,朱玉灿.高阶奇异积分的小波逼近及数值计算[J].数学物理学报.2002.6,22(2):281-288.[15]张新育,杨松华.矩形域上非正常积分的一种数值算法[J].郑州工业大学报. 1999.3,12(4):101-102.[16]李承家,胡晓敏.数学分析导教.导学.导考[M].第3版.陕西:西北工业大学出版社,2003.6:234-234.。