2019中考数学押题卷

合集下载

2019年山西省中考数学复习模拟卷压轴【几何模型问题】解析

2019年山西省中考数学复习模拟卷压轴【几何模型问题】解析

2019年山西省中考数学复习模拟卷压轴【几何模型问题】精选解析模型一、一线三等角型基本经验图形1.如图, 折痕EF,D 是等边△ABC 边AB 上的一点,且A 。

: BD=1: 2,现将如也(7折叠,.使点C 与D 重合, 点E 、F 分别在AC 和BC 上,则CE: CF=( )563A. 一44B.—5 c.6D.一7【答案]B【解析】...三角形ABC 为等边三角形,.•.ZA=£B=,C=60°,又•折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF, :. ZEDF=ZC=60°, CE=CE,CF=CF,二 /ADE+/FDB=120°, :. ZAED =ZFDB,・.・ 4AEDs/\BDF,AD DEfiF _ FD .AE * BD设等边△ABC 边长为 6 个单位,CE=x, CF=y, AE=6 - x, BF=6 - y,6—x2x147----=-----=—,解得x=—,y=—,x:y=4:5,故选择B.4 6-y y5-272.如图,在ZSABC中,AB=AC=LO,点D是边BC±一动点(不与B,C重合),ZADE=ZB=a,DE交AC于点E,且cosa=—.下列结论:①△ADEs^ACD;②当BD=6时,AABD与Z\DCE全等;5③左DCE为直角三角形时,BD为8或类;©0<CE<6.4.其中正确的结论是.(把你认2为正确结论的序号都填上)[答案]①②③④【解析】VAB=AC,.,.ZB=ZC,又V ZADE=ZB.\ZADE=ZC,AAADE^AACD故①正确;作4AG J_BC于G,AB=AC=10,/ADE=NB=a,cosa=—,BG=ABcosB,.•.BC=2BG=2ABcosB=2xl0xy=16,VBD=6,.,.DC=10,.,.AB=DC,AAABD^ADCE(ASA).故②正确;当ZAED=90°时,由①可知:AADE^AACD,A ZADC=ZAED,V ZAED=90°,4.•.ZADC=90°,即AD_LBC,VAB=AC,.-.BD=CD,A ZADE=ZB=a且cosa=—,AB=10,BD=8.当ZCDE=90。

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.13.(2019安徽省六安市模拟)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③△POF∽△BNF;④当△PMN ∽△AMP时,点P是AB的中点,其中一定正确的结论有.(填上所有正确的序号).14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy中,已知A(2,0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹角为60°,那么点P的坐标是.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.25.(2019重庆市长寿区模拟)在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H=.处,过点H作HN⊥HG交AB于N点,交AE于M点,则S△MNF26.(2019北京市海淀区模拟)一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.27.(2019福建省龙岩市模拟)如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.28.(2019深圳市光明新区模拟)用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.29.(2019江苏省徐州市模拟)我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.30.(2019山东省济南市模拟)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.【分析】由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积.【解答】解:设正三角形的边长为a,则a2×=2,解得a=2.则图中阴影部分的面积=2×﹣2=2.故答案是:2.【点评】考查了二次根式的应用.解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.根据二次根式恒等时,有理数部分与有理数部分和无理数部分与无理数部分对应相等的关系,列出恒等式即可解答【解答】解:(a+)(a+)==(b+)(c+)=(bc+2)+(b+c)根据题意得=(bc+2)+(b+c)∵a,b,c都为有理数,∴bc=a2,b+c=2a∴b(2a﹣b)=a2,∵b2﹣2ab+a2=0,∴(a﹣b)2=0,∴a=b=c又∵(a+)2=(a+﹣1)(b,∴(a+)含有因式(),而a又是有理数,故a=2,当a=b=c=2时,A=B=C,【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.得到等式找出abc之间的数量关系.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.【分析】(1)根据勾股定理可得CD,AD,BD的长度,当O,D,C共线时,OC的长度最大,即△AOB是等腰直角三角形时,OC的长度最大,可求t.(2)分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【解答】解:(1)∵BC=AC=5,AB=8,CD⊥AB∴BD=4=AD,∴由勾股定理得:CD=3∵AD=BD,∠AOB=90°∴OD=AB=4∵在△OCD中,OC<OD+DC∴当O,D,C三点共线时,OC值最大,即OD⊥AB,∵AD=BD,DO⊥AB∴BO=AO,且AB=8∴AO=BO=4,且点A的速度为每秒1个单位长度∴t==4(2)若BC∥x轴∴∠CBA=∠BAO且∠CDB=∠AOB∴△BOC∽△AOB∴,即∴t=若AC∥y轴,∴∠CAB=∠ABO且∠CDA=∠AOB∴△ACD∽△AOB∴即∴t=∴当t=或时,△ABC的边与坐标轴平行【点评】本题考查的是勾股定理,等腰三角形的性质,相似三角形的性质和判定,关键是利用分类思想解决问题.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.【解答】解:连接CD,∵在直角三角形ABC中,∠C=90°,∴AB===10,∵点D是AB的中点,∴CD=AD=AB=5,∴∠A=∠ACD,∵DM=DN,∴∠DMN=∠DNM,∵∠DMN=∠A+∠ADM,∠DNM=∠ACD+∠CDN,∴∠ADM=∠CDN,∴△ADM≌△CDN(SAS),∴AM=CN,∵∠CDM=∠MDN+∠CDN,∠A=∠MDN,∴∠CMD=∠CDM,∴AM=CD=5,∴AM=CN=AC﹣CM=3,∴MN=2.故答案为:2.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)【解答】解:如图所示:∵斜边与半圆相切,点B是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=4,∴OC=OB=2,BC=2.∴S阴影=S扇形BOD+S△BOC=+×2×2=+2.故答案为:+2.6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.【解答】解:如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.∵F A=FB,OA=OB,∴OF⊥AB,AH=BH=,∴sin∠BOH=,∴∠BOH=∠AOH=60°,∴∠AOB=120°∴∠C=∠AOB=60°,∵DB⊥BC,∴∠DBC=90°,∴∠CDB=30°,∵∠AFB=60°,∴∠ADB=∠AFB,∴点D的运动轨迹是以F为圆心,F A为半径的圆,∴当D在OF的延长线上时,△ABD的面积最大,最大面积=×(2+3)=6+3,故答案为6+3.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.【分析】连接BE,作EF⊥BD于F,由折叠的性质得:∠DAC=∠DAE,DE=CD=,求出,得出BE=DE=,由圆周角定理得出∠DAE=∠BAE=∠BDE=∠DBE,得出∠DAC=∠DAE=∠BAE,求出∠BAE=∠BDE=∠DBE=30°,由等腰三角形的性质和直角三角形的性质得出DF=BF,EF=DE=,求出DF=EF=,即可得出结果.【解答】解:连接BE,作EF⊥BD于F,如图所示:由折叠的性质得:∠DAC=∠DAE,DE=CD=,∵点E是的中点,∴,∴BE=DE=,∠DAE=∠BAE=∠BDE=∠DBE,∴∠DAC=∠DAE=∠BAE,∵∠CAB=90°,∴∠BAE=30°,∴∠BDE=∠DBE=30°,∵EF⊥BD,∴DF=BF,EF=DE=,∴DF=EF=,∴BD=2DF=;故答案为:.【点评】本题考查了翻折变换的性质、圆周角定理、垂径定理、等腰三角形的判定与性质、勾股定理等知识;熟练掌握圆周角定理,求出∠BAE=30°是解题关键.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.【分析】设PD=t.则PA=10﹣t.首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题.【解答】解:如图,设PD=t.则PA=6﹣t.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=10,在Rt△ABP中,∵AB2+AP2=PB2,∴62+(10﹣t)2=102,∴t=2或18(舍去),∴PD=2,∴t=2s时,B、E、P共线.故答案为:2.【点评】本题考查了矩形的性质、勾股定理等知识,解题的关键是学会利用特殊位置解决问题.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.【分析】如图,连接AC、BD交于点O,连接OM.首先说明点E从点A运动到点D时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点O,连接OM,∵BF⊥CE∴∠BFC=90°,∴点F的运动轨迹在以边长BC为直径的⊙M上,当点E从点A运动到点D时,点F的运动路径长为,∵四边形ABCD是菱形∴AB=BC=5,∠ABD=∠DBC=∠ABC=30°∵BM=MO∴∠MBO=∠BOM=30°,∴∠OMC=60°∴的长==π故答案为:π【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)【解答】解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴+=>0,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:【点评】本题考查圆的切线性质,主要涉及相似三角形的判定与性质,勾股定理,切线的性质等知识,题目综合程度较高,很好地考查学生综合运用知识的能力.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.【分析】作辅助线,构建直角三角形,设OF=x,则DF=x,OD=x,证明△DFC∽△OGD,则,得DC=,根据勾股定理列方程可得,计算x2=50﹣25,根据两条对角线乘积的一半可得菱形的面积.【解答】解:连接OE,CD交于点G,过D作DF⊥OB于F,∵∠AOB=45°,∴△ODF是等腰直角三角形,设OF=x,则DF=x,OD=x,∵四边形OCED是菱形,∴OE⊥CD,OG=EG=OE=5,∵OC=OD,∴∠ODG=∠DCF,∵∠DFC=∠OGD=90°,∴△DFC∽△OGD,∴,∴,DC =,在Rt △OCG 中,,解得x 2=50+25(舍)或50﹣25,∴菱形OCED 的面积=CD •OE =•10==50﹣50,故答案为:50﹣50.【点评】本题考查了菱形的性质、半径的性质、相似三角形的判定和性质、勾股定理等知识,寻找相似三角形利用相似三角形性质求线段是常用的数学方法.13.(2019安徽省六安市模拟)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③△POF ∽△BNF ;④当△PMN ∽△AMP 时,点P 是AB 的中点,其中一定正确的结论有 .(填上所有正确的序号).【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形,从而作出判断. 【解答】解:∵四边形ABCD 是正方形, ∴∠BAC =∠DAC =45°. 在△APE 和△AME 中,,∴△APE ≌△AME (ASA ),故①正确; ∴PE =EM =PM ,同理,FP=FN=NP.∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故③错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故④正确.故答案为:①②④.14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.【分析】根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.【解答】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF==4,∴EF=4﹣4,∴PD+PE的长度最小值为4﹣4,故答案为:4﹣4.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,所以所作的第2018个菱形的边长是()2017,故答案为()2017.【点评】此题主要考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是掌握探究规律的方法,属于中考常考题型.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB ∥x 轴,BC ∥y 轴,点C 在x 轴上,则△ABC 的面积为 .【分析】作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图,根据反比例函数比例系数k 的几何意义得S 矩形AEOD =1,S 矩形BFOD =4,于是得到S 矩形AEFB =3,然后根据矩形的性质和三角形面积公式易得S △ABC =S △FAB =1.5.【解答】解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图, ∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4, ∴S 矩形AEFB =4﹣1=3, ∴S △FAB =1.5, ∴S △ABC =S △FAB =1.5. 故答案为1.5.【点评】本题考查了反比例函数系数k 的几何意义,矩形的面积,熟练掌握反比例函数系数k 的几何意义是解题的关键.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy 中,已知A (2,0),B (0,6),M(0,2).点Q 在直线AB 上,把△BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ .如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是 .【分析】先求出OA=2,OB=6,OM=2,BM=OB﹣OM=4,tan∠BAO=,得出∠BAO=60°,AB=2OA=4,分∠PQB=120°或∠PQB=60°两种情况,(1)当∠PQB=120°时,又分两种情况:①延长PQ交OB于点N,则∠BQN=60°,QN⊥BM,由折叠得出BM=MP=4,求出BN=NM=BM=2,由勾股定理得出NP==2,ON=OM+NM=4,即可得出P点的坐标;②QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,即可得出P点的坐标;(2)当∠PQB=60°时,Q点与A点重合,AB=AP=4,OP=AP﹣OA=2,即可得出P点的坐标;综上情况即可P点的坐标.【解答】解:∵A(2,0),B(0,6),M(0,2),∴OA=2,OB=6,OM=2,BM=OB﹣OM=4,∴tan∠BAO===,∴∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,∵直线PQ与直线AB所构成的夹角为60°,∴∠PQB=120°或∠PQB=60°,(1)当∠PQB=120°时,分两种情况:①如图1所示:延长PQ交OB于点N,则∠BQN=60°,∴∠QNB=90°,即QN⊥BM,由折叠得:BM=MP=4,∠BQM=∠PQM,∵∠PQB=120°,∴∠BQM=∠PQM=120°,∴∠BQN=∠MQN=60°,∵QN⊥BM,∴BN=NM=BM=2,在Rt△PNM中,NP===2,ON=OM+NM=4,∴P点的坐标为:(2,4);②如图2所示:QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,∴P点的坐标为:(0,﹣2);(2)当∠PQB=60°时,如图3所示:Q点与A点重合,由折叠得:AB=AP=4,OP=AP﹣OA=4﹣2=2,∴P点的坐标为:(﹣2,0);综上所述:P点的坐标为:(2,4)或(0,﹣2)或(﹣2,0).【点评】本题考查了翻折变换的性质、直角三角形的性质、勾股定理、三角函数、坐标等知识,熟练掌握翻折变换的性质、直角三角形的性质,并进行分类讨论是关键.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC 的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.【点评】此题考查了圆周角定理,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意掌握转化思想的应用.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)【分析】根据已知条件得到当x=﹣1时,y>0,即a﹣b+c>0,故①正确;根据抛物线的对称轴为直线x=1,即﹣=1,得到3a+b≠0,故②错误;根据已知条件得到方程ax2+bx+c=n有两个相等的实数根,得到b2=4a(c﹣n),故③正确;根据抛物线的开口向下,得到y=n,于是得到直最大线y=n﹣1与抛物线由两个交点,即可得到一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确.【解答】解:∵抛物线顶点坐标为(1,n),∴抛物线的对称轴为直线x=1,∵与x轴的一个交点在点(3,0)和(4,0)之间,∴当x=﹣1时,y>0,即a﹣b+c>0,故①正确;∵抛物线的对称轴为直线x=1,即﹣=1,∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n),∴抛物线y=ax2+bx+c(a≠0)与直线y=n有唯一一个交点,即方程ax2+bx+c=n有两个相等的实数根,∴△=b2﹣4a(c﹣n)=0,∴b2=4a(c﹣n),故③正确;∵抛物线的开口向下,=n,∴y最大∴直线y=n﹣1与抛物线由两个交点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确;故答案为:①③④.【点评】本题考查的是二次函数图象与系数的关系,图象开口方向判断出a,由对称轴得出b,抛物线与y轴的交点判断c,抛物线与x轴交点的个数确定b2﹣4ac.22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.【分析】设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,通过角的关系得到PE∥BF,由平行得到△PEA∽△BFP;由相似得到x与y的关系,在Rt△FEP中,FE2=FP2+EP2,得到FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,结合x的取值范围,确定EF的范围.【解答】解:设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,∵∠AEP=∠EPF=∠PFB=90°,∴PE∥BF,∴△PEA∽△BFP,∴=,∴4y=3x,在Rt△FEP中,FE2=FP2+EP2,∴FE2=y2+(8﹣x)2,∴FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,∵0<x<8,∴当x=时,FE有最小值,当x=0时,EF有最大值8,∴≤EF<8.故答案为≤EF<8.【点评】本题考查二次函数最值,三角形相似,勾股定理,平行线的判定,是综合性很强的一道题;能够通过平行得到三角形相似,能够通过相似得到边的关系,利用勾股定理得到二次函数的解析式,再由二次函数的值的范围求解,因此熟练掌握相似、平行、二次函数最值的求法是解题的关键.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.【分析】分两种情况:直线BC在OA的下方和上方,画图计算边界时点c的值,可得c的取值.【解答】解:如图所示1,直线BC在OA的下方时当c=﹣1时,区域S内的整点有(1,0),(2,0),(3,0),有3个;当直线BC:y=+c过(1,﹣1)时,c=﹣,且经过(5,0)∴区域S内恰有4个整点,c的取值范围是﹣≤c<﹣1.如图2,直线BC在OA的上方时,∵点(2,2)在函数y=(x>0)的图象上,当直线BC:y=过(1,2)时,c=,。

2019年中考数学原创押题密卷(河北卷)(全解全析)

2019年中考数学原创押题密卷(河北卷)(全解全析)

3112019年河北中考押题密卷数学·全解全析1.【参考答案】B【全解全析】∵a 与–3互为倒数,∴–3a =1,∴a =.故选B . 2.【参考答案】A【全解全析】170000用科学记数法表示为1.7×105,故选A .3.【参考答案】C【全解全析】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选C . 4.【参考答案】C【全解全析】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、是中心对称图形,故此选项正确;D 、不是中心对称图形,故此选项错误;故选C . 5.【参考答案】D【全解全析】∵AE ∥BC ,∴∠B =∠DAE =65°,又∵∠DAC =100°,∴∠EAC =∠DAC –∠DAE =100°–65°=35°,故选D . 6.【参考答案】B【全解全析】∵实数–3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q ,原点在点M 与P 之间,N 在点M 与原点之间,∴这四个数中绝对值最小的数对应的点是点N .故选B . 7.【参考答案】B【全解全析】乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等;在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等;不能判定甲与△ABC 全等;故选B . 8.【参考答案】A【全解全析】红红和娜娜玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:3131 2由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布). 因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以选项B ,C ,D 说法正确,不合题意;选项A 说法错误,符合题意,故选A . 9.【参考答案】C【全解全析】∵∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,∴∠A ′B ′C =60°,AB =A ′B ′=A ′C =4,∴△A ′B ′C 是等边三角形,∴B ′C =4,∠B ′A ′C =60°,∴BB ′=6–4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选C . 10.【参考答案】D【全解全析】A 、当t =9时,h =136;当t =13时,h =144;所以点火后9s 和点火后13s 的升空高度不相同,此选项错误;B 、当t =24时h =1≠0,所以点火后24s 火箭离地面的高度为1m ,此选项错误;C 、当t =10时h =141m ,此选项错误;D 、由h =–t 2+24t +1=–(t –12)2+145知火箭升空的最大高度为145m ,此选项正确; 故选D . 11.【参考答案】A【全解全析】A 、Δ=0–24=–24<0,即方程没有实数根,符合题意;B 、Δ=4–0=4>0,方程有两个不相等的实数根,不符合题意;C 、Δ=16+4=20>0,方程有两个不相等的实数根,不符合题意;D 、Δ=64–64=0,方程有两个相等的实数根,不符合题意,故选A . 12.【参考答案】C【全解全析】∵点P (1,a )与Q (b ,2)关于x 轴成轴对称,∴b =1,a =–2,∴a –b =–3,故选C . 13.【参考答案】A【全解全析】去分母得:1–2(x –1)=–3,即1–2x +2=–3,故选A . 14.【参考答案】D=2331=××18438=+x 3348=34⋅⋅+⋅⋅=k k 2232321116163⎩=+⎪⎨⎪=⎧y k x k xy k 23343834+-a b b (5)(5)-=ab a 252+-a b b (5)(5)21∥MN AB ∠BMC ,∠ABC MN BM =105843【全解全析】如图,连接AD .∵OD 是直径,∴∠OAD =90°,∵∠AOB +∠AOD =90°,∠AOD +∠ADO =90°,∴∠AOB =∠ADO ,∴sin ∠AOB =sin ∠ADO =.故选D .15.【参考答案】D【全解全析】∵平分平分,∴∠MBA =∠MBC ,∠BMN =∠CMN ,∵,∴∠MBA =∠MBC =∠BMN =∠CMN =∠A ,∴∠ABC =2∠A ,MN =NB ,又∵∠C =90°,∴∠A =∠CMN =30°,∴MN =2CN =2,∴BC =CN +BN =CN +MN =3,∴AB =2BC =6.故选D . 16.【参考答案】B【全解全析】作DE ⊥AB 于E ,由基本作图可知,AP 平分∠CA B .∵AP 平分∠CAB ,∠C =90°,DE ⊥AB ,∴DE =DC =4,∴△ABD 的面积=×AB ×DE =30.故选B .17.【参考答案】【全解全析】a (b 2–25)=a (b +5)(b –5).故答案为:.18.【参考答案】AF【全解全析】∵AF ⊥BC 于F ,∴AF 是△ABC 的高线,故答案为:AF . 19.【参考答案】y =x +, 【全解全析】把M (–2,0)代入y =kx +b ,可得b =2k ,∴y =kx +2k ,由消去y 得到x 2+2x –3=0,解得x =–3或1,∴B (–3,–k ),A (1,3k ),∵△ABO 的面积为,∴,解得k ,∴直线l 的解析式为y .可求得点N 的坐标为(0,),则S △ABD .34=+x 3348 4故答案为:y ,. 20.【参考答案】(1)x <1.(2)②.【全解全析】(1)∵点A 在点B 的左侧,(4分) ∴1<–2x +3,解得x <1. (2)②.(8分) ∵x <1,∴–x >–1,–x +2>1,数轴上表示–x +2的点在点A 的右侧. ∵–2x +3–(–x +2)=–x +1>0,∴–2x +3>–x +2, 数轴上表示–x +2的点在点B 的左侧,即数轴上表示–x +2的点落在线段AB 上,故选②.21.【参考答案】(1)120°.(2)这个多边形的边数可以是6,这个外角的度数为30°.【全解全析】(1)设这个外角的度数是x °, 则(5–2)×180–(180–x )+x =600, 解得x =120.故这个外角的度数是120°.(4分) (2)存在.设边数为n ,这个外角的度数是x °,则(n –2)×180–(180–x )+x =600,整理得x =570–90n ,∵0<x <180,即0<570–90n <180,并且n 为正整数,∴n =5或n =6. 故这个多边形的边数可以是6,这个外角的度数为30°.(9分) 22.【参考答案】(1)(–2)n .(2)b =a –1.(3)x +y +z =–1.【全解全析】(1)由题意知,第①行第n 个数为(–2)n ,故答案为:(–2)n.(3分)(2)b =a –1;(6分) 第②行第m 个数a =(–2)m –1,第③行第m 个数b =(–2)m –1–1,第③行的数是第②行的数与1的差,即b =a –1;(3)第①行数的第2019个数字为(–2)2019,即x =(–2)2019, 第②行数的第2019个数字为(–2)2018,即y =(–2)2018,第③行数的第2019个数字为(–2)2018–1,即z =(–2)2018–1,200245所以x +y +z =(–2)2019+(–2)2018+(–2)2018–1=–22019+22018+22018–1=–22019+22019–1=–1.(9分)23.【参考答案】(1)200.(2)43.2°.(3)见全解全析.(4)6万人.【全解全析】(1)本次接受调查的市民共有:50÷25%=200(人),故答案为:200.(2分) (2)扇形统计图中,扇形B 的圆心角度数=360°×=43.2°;故答案为:43.2°.(4分) (3)C 组人数=200×40%=80(人),A 组人数=200–24–80–50–16=30(人). 条形统计图如图所示:(8分)(4)15×40%=6(万人). 答:估计乘公交车上班的人数为6万人.(9分)24.【参考答案】(1)3;x ≥5.(2)x 的值为–4或3.(3)①画图见全解全析;②–2.【全解全析】(1)max{1,2,3}中3为最大数,故max{1,2,3}=3, ∵max{3,4,2x –6}=2x –6,∴2x –6≥4,解得x ≥5, 故答案为:3;x ≥5.(2分) (2)∵max{2,x +2,–3x –7}=5,∴①x +2=5,解得x =3,验证得–3×3–7=–16<5,故成立, ②–3x –7=5,解得x =–4,验证得–4+2=–2<2<5,故成立, 故max{2,x +2,–3x –7}=5时,x 的值为–4或3.(6分) (3)①图象如图所示:2123232323r 66r 2AB AO BE OM 21236②由图象可以知,max{–x –3,x –1,3x –3}的最小值为直线y =–x –3与y =x –1的交点处的y 值,解得y =–2, 即最小值为–2,故答案为:–2.(10分) 25.【参考答案】(1)见全解全析.(2).(3)BG =1. 【全解全析】(1)连接OM ,如图,∵BM 是∠ABC 的平分线,∴∠OBM =∠CBM , ∵OB =OM ,∴∠OBM =∠OMB , ∴∠CBM =∠OMB ,∴OM ∥BC ,∵AB =AC ,AE 是∠BAC 的平分线,∴AE ⊥BC , ∴OM ⊥AE ,∴AE 为⊙O 的切线;(4分)(2)设⊙O 的半径为r ,∵AB =AC =6,AE 是∠BAC 的平分线,∴BE =CE =BC =2, ∵OM ∥BE ,∴△AOM ∽△ABE ,∴=,即=,解得r =, 即⊙O 的半径为;(8分)(3)作OH ⊥BE 于H ,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形, ∴HE =OM =,∴BH =BE -HE =2-=,202892028921551516515165151651516515151512028951217∵OH ⊥BG ,∴BH =HG =,∴BG =2BH =1.(10分) 26.【参考答案】(1)y =–(x –3)2+5(0<x <8).(2)在离水池中心7米以内.(3)扩建改造后喷水池水柱的最大高度为米.【全解全析】(1)设水柱所在抛物线(第一象限部分)的函数表达式为y =a (x –3)2+5(a ≠0), 将(8,0)代入y =a (x –3)2+5,得:25a +5=0,解得a =–, ∴水柱所在抛物线(第一象限部分)的函数表达式为y =–(x –3)2+5(0<x <8).(4分) (2)当y =1.8时,有–(x –3)2+5=1.8, 解得x 1=–1,x 2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(8分) (3)当x =0时,y =–(x –3)2+5=. 设改造后水柱所在抛物线(第一象限部分)的函数表达式为y =–x 2+bx +, ∵该函数图象过点(16,0), ∴0=–×162+16b +,解得b =3, ∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y =–x 2+3x +=–(x –)2+. ∴扩建改造后喷水池水柱的最大高度为米.(11分)。

2019年中考数学原创押题密卷(福建卷)(考试版)

2019年中考数学原创押题密卷(福建卷)(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前2019年福建中考押题密卷数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.–2019绝对值的倒数是 A .12019B .–12019C .2019D .–20192.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为 A .5×107B .5×10–7C .0.5×10–6D.5×10–63.一个几何体的三视图如图所示,则这个几何体是A .B .C .D .4.下列等式中,一定成立的是 A .3a +2a 2=5a 3B .44a a a ⋅=C .632a a a ÷=D .32611()39x x -=5.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球4只,黑球3只,将袋中的球搅匀,随机从袋中取出1只球,则取出黑球的概率是A .12B .13C .14D .166.直线a ∥b ,直角三角形如图放置,若∠1+∠A =65°,则∠2的度数为A .15°B .20°C .25°D .30°7.如图,已知一次函数y =ax +b 和反比例函数y =k x 的图象相交于A (–2,y 1)、B (1,y 2)两点,则不等式ax +b –kx<0的解集为A .x <–2B .x <–2或0<x <1C .0<x <1D .–2<x <0或x >18.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =26°,则∠CAB 的度数为A .26°B .74°C .64°D .54°9.如图,在Rt △ABC 中,∠B =90°,BC =3,AB =4,点D ,E 分别是AB ,AC 的中点,CF 平分Rt △ABC 的一个外角∠ACM ,交DE 的延长线于点F ,则DF 的长为数学试题 第3页(共6页) 数学试题 第4页(共6页)A .4B .5C .5.5D .6A .–10B .–12C .–16D .–18第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)11.计算:011(π2019)()2---=__________.12在实数范围内有意义,则x 的取值范围是__________.13.已知一组数据是3,4,7,a ,中位数为4,则a =__________. 14.如图,AC 、AD 是正五边形的对角线,则∠CAD 的度数是__________.15.若关于x 的一元二次方程x 2–3x +2+m =0无实数根,则m 的取值范围是__________.16.等腰直角△ABO 在平面直角坐标系中如图所示,点O 为坐标原点,直角顶点A 的坐标为(2,4),点B 在反比例函数y=kx(x >0)的图象上,则k 的值为__________.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:52312x y x y +=⎧⎨+=⎩.19.(本小题满分8分)某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?20.(本小题满分8分)在△ABC 中,AB =AC ,∠ABC =70°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)的条件下,求∠BDC 的度数.21.(本小题满分8分)如图,四边形ABCD 是平行四边形,BE 、DF 分别是∠ABC 、∠ADC 的平分线,且与对角线AC 分别相交于点E 、F .求证:AE =CF .22.(本小题满分10分)如图,⊙O 是△ABC 的外接圆,AB =AC =10,BC =12,P 是BC 上的一个动点,过点P 作BC 的平行线交AB 的延长线于点D .(1)当点P 在什么位置时,DP 是⊙O 的切线?请说明理由; (2)当DP 为⊙O 的切线时,求线段DP 的长.数学试题 第5页(共6页) 数学试题 第6页(共6页)23.(本小题满分10分)蔬菜基地为选出适应市场需求的西红柿秧苗,在条件基本相同的情况下,将甲、乙两个品种的西红柿秧苗各500株种植在同一个大棚.对市场最为关注的产量进行了抽样调查,随机从甲、乙两个品种的西红柿秧苗中各收集了50株秧苗上的挂果数(西红柿的个数),并对数据(个数)进行整理、描述和分析,下面给出了部分信息.a .甲品种挂果数频数分布直方图(数据分成6组:25≤x <35,35≤x <45,45≤x <55,55≤x <65,65≤x <75,75≤x <85).b .甲品种挂果数在45≤x <55这一组的是:45,45,46,47,47,49,49,49,49,50,50,51,51,54.c .甲、乙品种挂果数的平均数、中位数、众数如下:根据以上信息,回答下列问题: (1)表中m =__________;(2)试估计甲品种挂果数超过49个的西红柿秧苗的数量;(3)根据所给信息可以推断出哪种品种的西红柿秧苗更适应市场需求,请说明理由(至少从两个不同的角度说明推断的合理性).24.(本小题满分12分)等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,两边分别交直线BC 、CD 于M 、N .(1)如图1,作AE ⊥AN 交线段CB 的延长线于E ,求证:△ABE ≌△ADN ; (2)如图2,若M 、N 分别在边CB 、DC 所在的直线上时. ①求证:BM +MN =DN ;②作直线BD 交直线AM 、AN 于P 、Q 两点,如图3,若MN =10,CM =8,求AP 的长.25.(本小题满分14分)如图1,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E . (1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.。

2019年全国各地中考数学压轴题汇编:选择、填空(一)(山东专版)(解析卷)

2019年全国各地中考数学压轴题汇编:选择、填空(一)(山东专版)(解析卷)

2019年全国各地中考数学压轴题汇编(山东专版)选择、填空(一)参考答案与试题解析一.选择题(共12小题)1.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.2.(2019•淄博)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019•青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.4.(2019•枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.解:∵S△ABC=16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE=S△A′EF=,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=3或A′D=﹣(舍),故选:B.5.(2019•潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.6.(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.16解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.7.(2019•枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1B.C.D.2解:∵等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1,故选:A.8.(2019•济宁)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.18解:作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(﹣2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数y=的图象经过点D,∴k=15.故选:C.9.(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.10.(2019•德州)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x+1(x<0)解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.11.(2019•济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.12.(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.二.填空题(共13小题)13.(2019•青岛)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠F AD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.14.(2019•枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=36度.解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.15.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块.解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:1616.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.17.(2019•枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.(2019•济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是x<﹣3或x>1.解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方,∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.故答案为:x<﹣3或x>1.19.(2019•潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.20.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.21.(2019•德州)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为.解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r﹣1,OA=r,在Rt△OAE中,32+(r﹣1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5﹣OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.22.(2019•枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为2018.解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.23.(2019•潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为(n,).(n为正整数)解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,24.(2019•德州)如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为(﹣1)n+1().(用含n的式子表示)解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=﹣,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,﹣),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1﹣(舍),x2=1+,∴EF====2(﹣1)=2﹣2,A2D2===,即A2的纵坐标为﹣;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△F A3D3中,∠F A3D3=30°,∴FD3=,∵OD3=2+2﹣2+=x,解得:x1=(舍),x2=+;∴GF===2(﹣)=2﹣2,A3D3===(﹣),即A3的纵坐标为(﹣);…∴A n(n为正整数)的纵坐标为:(﹣1)n+1();故答案为:(﹣1)n+1();25.(2019•淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn ==.故答案为:.。

2019-中考数学押题卷及答案

2019-中考数学押题卷及答案

猜押终究扫扫刊——数学5.1 —特别题型猜押题型一解析图形和函数图象,判断结论正确性1. 如图①,在矩形ABCD中 , AC、BD交于点O,点P在边AD上运动 ,PM ⊥AC于点M,PN BD 于点 N .设PM﹦x,PN y ,且 y 与x满足一次函数关系,其图象如图②所示,其中 a ﹦6.以下判断中,不正确的选项是()A.Rt △ABD中斜边BD上的高为6B. 无论点P在AD上哪处,PM与PN的和向来保持不变C.当x﹦3 时,OP垂直均分ADD.若AD﹦10,则矩形ABCD 的面积为60第1题图题型二结论正误判断2.如图,将矩形 ABCD沿直线EF折叠,使点 C与点 A重合,折痕交 AD于点 E、交 BC于点 F,连接AF、 CE.① AF=CD′;②△CEF 是等腰三角形;③四边形AFCE为菱形;④设AE=a, ED=b, DC=c,则 a、b、c 三者之间的数量关系式为a2=b2+c2,其中正确的结论是.(将所有正确结论的序号都填在横线上)2019-2020年中考数学押题卷及答案题型三中位线及勾股定理的相关计算3.如图,在△ ABC中, BC=AC=4,∠ACB=90°,点M是边 AC的中点,点P是边 AB上的动点,则 PM +PC的最小值为.第3题图题型四二次函数的性质应用4.如图,抛物线表示的是某企业年利润y(万元)与新招员工数 x(人)的函数关系,当新招员工 200 人时,企业的年利润达到最大值900 万元 .( 1)求y与x的函数关系式;( 2)为了响应国家号召,增加更多的就业机遇,又要保证企业的年利润达800万元,那么该企业应招新员工多少人?(3)若该企业原有员工 400 人,那么应招新员工多少人时才能令人均创立的年利润与原来的相同?第4题图题型五一次函数、反比率函数、二次函数结合的实质应用题5. 某工艺品厂生产一种汽车装饰品,每件生产成本为20 元,销售价格在30 元至 80 元之间(含 30 元和 80 元),销售过程中的管理、仓储、运输等各种花销(不含生产成本)总计50 万元 . 其销售量y (万个)与销售价格(元/ 个)的函数关系以以下图所示.(1)当 30≤x≤ 60 时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?第5题图题型六解直角三角形的实质应用6.某地下车库出口处“两段式栏杆” 如图①所示,点 A是栏杆转动的支点,点 E 是栏杆两段的连接点 . 当车辆经过时,栏杆AEF升起所的地址如图②所示,其表示图如图③所示,其中 AB⊥ BC,EF∥ BC,∠ EAB=143°, AB= AE 米,求当车辆经过时,栏杆 EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到米,栏杆宽度忽略不计 .参照数据: sin37 °≈ 0.60 , cos37 °≈ 0.80 , tan37 °≈ 0.75 )第6题图题型七几何图形的证明与计算题1.涉及三角形相似的证明及性质7.如图,已知四边形 ABCD是圆内接四边形,点 E 在线段 CB的延长线上,且∠ EAB=∠ CAD.(1)当BC⊥CD时,求证:∠EAC= 90°;(2)求证:ABAC=ADAE.第7题图题型八着手操作题8. 如图,把一个边长为 6 的正方形经过三次对折后沿图④中平行于MN的虚线剪下,获得图⑤,它张开后获得的图形的面积为32,则AN的长为.第8题图创新题猜押命题点一新定义问题1. 设二次函数y1、y2的图象的极点分别为( a,b) 、(c,d),当a=c, b=2d,且张口方向相同时,则称 y1是 y2的“反倍顶二次函数”.(1)请写出二次函数y=x2+x+1 的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y1 =x2+和二次函数2=2, 函数y1+ 2正是y1nx y nx +x yy2的“反倍顶二次函数”,求n.名校内部模拟试题命题点一一次函数、反比率函数、二次函数结合的实质应用题1.( 淮北五校联考模拟) 某水果店试营销一种新进水果,进价为20元/件,试营销期为销售价 y (元/件)与销售天数x (天)满足当1≤x≤ 9 时,错误!未找到引用源。

湖南省2019年中考数学押题卷(含解析)

湖南省2019年中考数学押题卷(含解析)

2019年湖南省中考数学押题卷一.选择题(每小题3分,满分36分)1.(3分)的倒数是()A.5 B.C.D.﹣52.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a2)2=﹣4a4C.a5÷a3=a2D.a4+a7=a114.(3分)如图所示的几何体,它的左视图是()A.B.C.D.5.(3分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.116.(3分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°7.(3分)某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生8.(3分)某商店库存清仓,将最后两件羽绒服特价出售,甲款羽绒服卖出1200元,盈利20%,乙款羽绒服同样卖1200元,但亏损20%,该商店在这两笔交易中()A.盈利100元B.亏损125元C.不赔不赚D.亏损100元9.(3分)在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1 10.(3分)如图,这是某市政道路的交通指示牌.BD的距离为3m,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A.3B.3C.3﹣3D.3﹣3 11.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一平面直角坐标系中的大致图象为()A.B.C.D.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(每小题3分,满分18分)13.(3分)﹣的系数是,次数是.14.(3分)如图钢架中,焊上等长的7根钢条来加固钢架,若AA1=A1A2=A2A3=…=A7A8=A8A,则∠A的度数是.15.(3分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为.16.(3分)已知一组数据3,4,1,a,2,a的平均数为2,则这组数据的中位数是.17.(3分)已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.18.(3分)如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是cm.三.解答题19.(6分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;20.(6分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.21.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.22.(8分)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.23.(9分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B种型号的篮球,问A种型号的篮球采购多少个?24.(9分)如图,CD是⊙O的直径,AB是⊙O的一条弦,=,AO的延长线交⊙O于点F、交DB的延长线于点P,连接PC且恰好PC∥AB,连接DF交AB于点G,延长DF交CP于点E,连接BF.(1)求证:PC是⊙O的切线;(2)求证:CE=PE;(3)当BF=2时,求tan∠APD的值.25.(10分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.26.(10分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.2019年湖南省中考数学押题卷参考答案与试题解析一.选择题(每小题3分,满分36分)1.(3分)的倒数是()A.5 B.C.D.﹣5【分析】根据倒数的概念可得出结果.【解答】解:的倒数是﹣5,故选:D.【点评】本题考查了倒数的概念.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【解答】解:0.000000039=3.9×10﹣8.故选:A.3.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a2)2=﹣4a4C.a5÷a3=a2D.a4+a7=a11【分析】根据完全平方公式、幂的乘方与积的乘方、同底数幂的除法运算法则逐一计算可得.【解答】解:A、(a+b)2=a2+2ab+b2,此选项错误;B、(﹣2a2)2=4a4,此选项计算错误;C、a5÷a3=a2,此选项计算正确;D、a4,a7不是同类项,此选项计算错误;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握完全平方公式、幂的乘方与积的乘方、同底数幂的除法运算法则及同类项概念等知识点.4.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(3分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.6.(3分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.7.(3分)某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生【分析】根据概率的意义,可知发生地震的概率是,说明发生地震的可能性大于不发生地政的可能性,从而可以解答本题.【解答】解:∵某地质学家预测:在未来的20年内,F市发生地震的概率是,∴未来20年内,F市发生地震的可能性比没有发生地震的可能性大,故选:C.【点评】本题考查概率的意义,解题的关键是明确概率的意义,理论联系实际.8.(3分)某商店库存清仓,将最后两件羽绒服特价出售,甲款羽绒服卖出1200元,盈利20%,乙款羽绒服同样卖1200元,但亏损20%,该商店在这两笔交易中()A.盈利100元B.亏损125元C.不赔不赚D.亏损100元【分析】根据两件羽绒服买进的价格,利用买价+利润=卖价,列方程求解即可.【解答】解:设款羽绒服的买价是x元,根据题意得:(1+20%)x=1200,解得x=1000.设乙款羽绒服的买价是y元,根据题意得:(1﹣20%)y=1200,解得y=1500.1000+1500>1200+1200,即这两笔交易亏损了100元.故选:D.【点评】此题主要考查了一元一次方程的应用,关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.9.(3分)在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1 【分析】根据分式和二次根式有意义的条件进行计算即可.【解答】解:由x≥0且x﹣1≠0得出x≥0且x≠1,x的取值范围是x≥0且x≠1,故选:C.【点评】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.10.(3分)如图,这是某市政道路的交通指示牌.BD的距离为3m,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A.3B.3C.3﹣3D.3﹣3【分析】直接利用等腰直角三角形的性质结合锐角三角函数关系得出答案.【解答】解:由题意可得:∠CDB=∠DCB=45°,故BD=BC=3m,设AC=x,则tan60°==,解得:x=3﹣3,故选:D.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.11.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一平面直角坐标系中的大致图象为()A.B.C.D.【分析】直接利用二次函数图象得出a,b,c的符号,进而得出答案.【解答】解:由二次函数图形可得:开口向上,则a>0,对称轴在x轴的右侧,则﹣>0,故b<0,图象与y轴交在正半轴上,故c>0;则反比例函数y=图象分布在第一、三象限,一次函数y=ax+b图象经过第一、三象限,且图象与y轴交在负半轴上,故选:D.【点评】此题主要考查了二次函数以及反比例函数、一次函数的图象,正确把握图象分布是解题关键.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正确的有()A.1个B.2个C.3个D.4个【分析】①将x=﹣2代入y=ax2+bx+c,可以结合图象得出x=﹣2时,y<0;②由y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),a﹣b+c=2,与y轴交于(0,1)点,c=1,从而得出a﹣b=1,二次函数的开口向下,a<0,∴2a﹣b<0;③根据抛物线的开口方向判定a<0;④利用③的解析式得出,b2+8a>4ac.【解答】解:二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),与y轴交于(0,2)点,且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论①4a﹣2b+c<0;当x=﹣2时,y=ax2+bx+c,y=4a﹣2b+c,∵﹣2<x1<﹣1,∴y<0,故①正确;②2a﹣b<0;∵二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),∴a﹣b+c=2,与y轴交于(0,1)点,c=1,∴a﹣b=1,二次函数的开口向下,a<0,又﹣1<﹣<0,∴2a﹣b<0,故②正确;③因为抛物线的开口方向向下,所以a<0,故③正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确,故选:D.【点评】此题主要考查了抛物线与x轴的交点坐标性质,以及利用函数图象得出函数与坐标轴的近似值,进而得出函数解析式,这种题型是中考中新题型.二.填空题(每小题3分,满分18分)13.(3分)﹣的系数是﹣,次数是 3 .【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:﹣的系数是:﹣,次数是:3.故答案为:﹣;3.【点评】此题主要考查了单项式,关键是掌握单项式相关定义.14.(3分)如图钢架中,焊上等长的7根钢条来加固钢架,若AA1=A1A2=A2A3=…=A7A8=A8A,则∠A的度数是20°.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AA4A5,∠AA5A4,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AA1=A1A2=A2A3=…=A7A8=A8A,∴∠A=∠AA2A1=∠AA7A8=x,∴∠A2A1A3=∠A2A3PA1=2x,∴∠A3A2A4=∠A2A4A3=3x,…,∠A4PA3A5=∠A4A5A3=4x,∴∠AA4A5=4x,∠AA5A4=4x,在△AA4A5中,∠A+∠AA4A5+∠AA5A4=180°,即x+4x+4x=20°,解得x=20°,即∠A=20°.故答案为:20°.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.15.(3分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AD=CD,再根据等边对等角可得∠A=∠ACD,然后利用锐角的正切值等于对边比邻边列式计算即可得解.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AD=CD,∴∠A=∠ACD,∴tan∠ACD=tan∠A===.故答案为:.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,锐角三角函数的定义,熟记性质并求出∠A=∠ACD是解题的关键.16.(3分)已知一组数据3,4,1,a,2,a的平均数为2,则这组数据的中位数是 1.5 .【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:由题意知3+4+1+a+2+a=2×6,解得:a=1,则这组数据为1,1,1,2,3,4,所以这组数据的中位数是=1.5,故答案为:1.5.【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.17.(3分)已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是m≥﹣.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.(3分)如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是cm.【分析】根据垂径定理求出BE,根据相交弦定理求出EC,根据勾股定理求出BC,根据垂径定理、勾股定理计算,得到答案.【解答】解:∵BD⊥AO,∴BE=ED=BD=4,由相交弦定理得,EA•EC=EB•ED,即2×EC=4×4,解得,EC=8,∴AC=10,由勾股定理得,BC==4,∵OF⊥BC,∴CF=BC=2,∴OF==(cm),故答案为:.【点评】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分弦是解题的关键.三.解答题19.(6分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;【分析】本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4﹣(2﹣2)+4×,=1+4﹣2+2+2,=7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第③步开始出错的;(2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.21.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是40 人;(2)图2中α是54 度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有330 人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)由×360°=54°,40×35%=14;即可求得答案;(3)首先求得这40名学生自主学习时间不少于1.5小时的百分比,然后可求得该校九年级学生自主学习时间不少于1.5小时的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;…(2分)(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(3)600×=330;…(2分)故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…(2分)【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(8分)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.【分析】根据AAS证明△ABM≌△EFA,可得结论.【解答】证明:∵四边形ABCD为正方形,∴∠B=90°,AD∥BC,(2分)∴∠EAF=∠BMA,∵EF⊥AM,∴∠AFE=90°=∠B,(4分)在△ABM和△EFA中,∵,∴△ABM≌△EFA(AAS),(5分)∴AB=EF.(6分)【点评】本题考查了正方形的性质、三角形全等的性质和判定,熟练掌握三角形全等的判定是关键.23.(9分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B种型号的篮球,问A种型号的篮球采购多少个?【分析】(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y 元/个,根据总价=单价×数量结合甲、乙两校购买篮球所花费用及购买数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据A种型号的篮球数量小于B种型号的篮球及购买总费用不多于1000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可求出结论.【解答】解:(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y元/个,根据题意得:,解得:.答:A种型号的篮球的销售单价为26元/个,B种型号的篮球的销售单价为68元/个.(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据题意得:,解得:≤m<10.又∵m为整数,∴m=9.答:A种型号的篮球采购9个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(9分)如图,CD是⊙O的直径,AB是⊙O的一条弦,=,AO的延长线交⊙O于点F、交DB的延长线于点P,连接PC且恰好PC∥AB,连接DF交AB于点G,延长DF交CP于点E,连接BF.(1)求证:PC是⊙O的切线;(2)求证:CE=PE;(3)当BF=2时,求tan∠APD的值.【分析】(1)根据垂径定理证明CD⊥AB,由PC∥AB,可得PC⊥CD,可得结论;(2)证明△FEP∽△PED,得,则PE2=EF•ED,同理得:△ECF∽△EDC,则EC2=EF•ED,可得CE=PE;(3)根据平行线分线段成比例定理得:,,则,可得GH=BG,证明△DHG≌△FBG(ASA),得DH=BF=2,作辅助线,根据等腰三角形三线合一得:,分别由勾股定理计算各线段的长,最后由三角函数定义可得结论.【解答】(1)证明:∵CD是⊙O的直径,∴CD⊥AB,又∵PC∥AB,∴PC⊥CD,∴PC为⊙O的切线;……(3分)(2)∵PC∥AB,∴∠EPF=∠PAB,∠FDB=∠PAB,∴∠EPF=∠FDB,∵∠PEF=∠DEP,∴△FEP∽△PED,∴,∴PE2=EF•ED,连接CF,同理得:△ECF∽△EDC,∴,即EC2=EF•ED,∴CE2=PE2,∴CE=PE;……(7分)(3)∵PC∥AB,∴,,∴,由(2)知:CE=PE,∴GH=BG,∴∠HGD=∠BGF,∠DHG=∠FBG=90°,∴△DHG≌△FBG(ASA),∴DH=BF=2,又AO=OF,AH=HB,∴OH=BF=1,∴OD=3,CD=6,连接OB,过点O作OM⊥DB,则OB=OD=3,∴,∴,,∴,又PC∥AB,∴,∴,∴,∴MP=5,在Rt△POM中,tan∠APD===……(10分)【点评】本题考查了切线的判断和性质,三角形全等的判定和性质,相似三角形的判断和性质,平行线分线段成比例定理,三角函数等,第三问有难度,作出辅助线构建直角三角形,根据平行线分线段成比例定理和勾股定理求各边的长是解题的关键.25.(10分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)①根据相似三角形的判定,可得答案,②根据相似三角形的性质,可得PM与ME的关系,根据解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).【点评】本题考查了二次函数综合题,解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=3ME.26.(10分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【分析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、全等三角形与相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

北京市2019年中考数学押题卷1(含解析)

北京市2019年中考数学押题卷1(含解析)

北京市中考数学押题卷1学校姓名准考据号1.本试卷共 8 页,共三道大题, 28道小题.满分 100 分,考试时间 120 分钟.考在试卷和答题卡上正确填写学校名称、姓名和准考据号.2.生3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选须知择题、作图题用2B 铅笔作答,其余试题用黑色笔迹署名笔作答.4.考试结束,将本试卷和答题卡一并交回.评卷人得分一、选择题 ( 本题共 16分,每题2分)下边各题均有四个选项,此中只有一个是切合题意的..1.以下几何体中,其面既有平面又有曲面的有()A. 1 个B. 2个C.3个D.4 个【分析】依据立体图形的特点,可得答案.【解答】解:球只有1个曲面;圆锥既有曲面又有平面;正方体只有平面;圆柱既有平面又有曲面;应选: B.【说明】本题考察了认识立体图形,熟记立体图形的特点是解题重点.2.已知实数 a, b在数轴上的地点以下图,以下结论中正确的选项是()A.>B. |a | < |b|C.>0D.﹣a>ba b ab【分析】依据数轴能够判断a、b 的正负,从而能够判断各个选项中的结论能否正确,从而能够解答本题.【解答】解:由数轴可得,﹣ 2<a<﹣ 1< 0<b< 1,∴ a<b,应选项 A错误,| a| >| b| ,应选项B错误,ab<0,应选项 C 错误,﹣a>b,应选项 D 正确,应选: D.【说明】本题考察实数与数轴、绝对值,解答本题的重点是明确题意,利用数形联合的思想解答.3.二元一次方程组的解是()A.B.C.D.【分析】依据方程组的解法解答判断即可.【解答】解:解方程组,可得:,应选: B.【说明】本题主要考察二元一次方程组的解,知道二元一次方程组的解是两个方程的公共解是解题的重点,别的,本题还能够逐项解方程组.4. 2018 年我国在人工智能领域获得明显成就,自主研发的人工智能“绝艺”获取全世界最前沿的人工智能赛事冠军,这受益于所成立的大数据中心的规模和数据储存量,它们决定着人工智能深度学习的质量和速度,此中的一个大数据中心能储存 58000000000 本书本.将58000000000 用科学记数法表示应为()A.58×10 9B.5.8 ×10 10C.5.8 ×10 11D.0.58 ×10 11【分析】科学记数法的表示形式为a×10n的形式,此中1≤|a| < 10,n为整数.确立n的值时,要看把原数变为a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时,n是正数;当原数的绝对值< 1 时,n是负数.580 0000 0000 5.8 ×10 10.应选: B.【说明】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中1≤|a| < 10,n为整数,表示时重点要正确确立a的值以及n的值.5.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A. 4B. 6C. 8D. 10【分析】依据多边形的外角和是360 度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数为:360÷45=8.应选:C.【说明】本题主要考察了多边形的外角和定理,理解多边形外角和中外角的个数与正多边形的边数之间的关系,是解题重点.6.化简的结果是()A.B.C.a﹣b D.b﹣a【分析】先将分母分解因式,再约分即可.【解答】解:原式==.应选: B.【说明】本题考察了分式的化简,正确将分母分解因式是解题的重点.7.如图,排球运动员站在点 O处练习发球,将球从 O点正上方2 m的 A处发出,把球当作点,其运转的高度y( m)与运转的水平距离x( m)知足关系式y= a( x﹣ k)2+h.已知球与D点的水平距离为6 m时,达到最高 2.6 m,球网与D点的水平距离为9 m.高度为 2.43 m,球场的界限距O 点的水平距离为18 m,则以下判断正确的选项是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.没法确立【分析】利用球与 O点的水平距离为6m时,达到最高 2.6 m,可得k=6,h= 2.6 ,球从O点正上方 2m的A处发出,将点(0,2)代入分析式求出函数分析式;利用当x=9时,y=﹣( x﹣6)2+2.6=2.45,当 y=0时,﹣( x﹣6)2+2.6=0,分别得出即可.【解答】解:( 1)∵球与O点的水平距离为 6m时,达到最高 2.6 m,∴抛物线为y=a( x﹣6)2+2.6过点,∵抛物线 y= a( x﹣6)2+2.6过点(0,2),∴2=a( 0﹣ 6 )2+2.6 ,解得: a=﹣,故 y与x的关系式为: y=﹣( x﹣6)2+2.6,当x=9时, y=﹣(x﹣6)2+2.6=2.45>2.43,因此球能过球网;当 y=0时,﹣(x﹣6)2+2.6=0,解得: x1=6+2> 18,x2=6﹣2(舍去)故会出界.应选: C.【说明】本题主要考察了二次函数的应用题,依据题意求出函数分析式是解题重点.8.第六届北京农业嘉年光在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学依据数学知识将草莓博览园的旅行线路进行了精简.如图,分别以正东、正北方向为 x轴、 y 轴成立平面直角坐标系,假如表示国际特点农产品馆的坐标为(﹣ 5, 0),表示科技生活馆的点的坐标为( 6, 2),则表示多彩农业馆所在的点的坐标为()A.(3, 5)B.(5,﹣ 4)C.(﹣ 2, 5)D.(﹣ 3,3)【分析】依据国际特点农产品馆的坐标为(﹣5, 0),科技生活馆的点的坐标为(6, 2)成立平面直角坐标系,据此可得.【解答】解:∵国际特点农产品馆的坐标为(﹣5,0),科技生活馆的点的坐标为(6,2),∴可成立以下图的平面直角坐标系:由坐标系可知表示多彩农业馆所在的点的坐标为(﹣2, 5),应选: C.【说明】本题主要考察了坐标确立地点,正确利用已知点坐标得出原点地点是解题重点.二、填空题( 本题共16分,每题2分)9.以下图的网格是正方形网格,∠AOB∠ COD.(填“>“,“=”或“<“)【分析】连结 CD,则 CD⊥OD,过 B 作 BE⊥ OA 于 E,在Rt△ OBE与Rt△ OCD中,分别求∠AOB、∠ COD的正切,依据锐角的正切值跟着角度的增大而增大作判断即可.【解答】解:连结 CD,则 CD⊥ OD,过 B 作 BE⊥ OA 于 E,在Rt△OBE中, tan ∠AOB=2,=== 1,在Rt△OCD中, tan ∠COD=∵锐角的正切值跟着角度的增大而增大,∴∠ AOB>∠ COD,故答案为:>.【说明】本题考察了锐角三角函数的增减性,建立直角三角形求角的三角函数值进行判断,娴熟掌握锐角三角函数的增减性是重点.10. a b都是实数,b+﹣ 2,则ab的值为.若,=【分析】直接利用二次根式存心义的条件得出 a 的值,从而利用负指数幂的性质得出答案.【解答】解:∵ b=+﹣ 2,∴1﹣ 2a= 0,解得: a=,则=﹣2,b故 a b=()﹣2=4.故答案为: 4.【说明】本题主要考察了二次根式存心义的条件以及负指数幂的性质,正确得出 a 的值是解题重点.11.我们已经学习了一些定理,比如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③线段垂直均分线上的点到线段两头的距离相等;④等腰三角形的两个底角相等上述定理中存在逆定理的是(只填序号)【分析】依据勾股定理的逆定理、线段的垂直均分线的判断、等腰三角形的判断即可判断;【解答】解:①直角三角形两条直角边的平方和等于斜边的平方;有逆定理;②全等三角形的对应角相等;没有逆定理;③线段垂直均分线上的点到线段两头的距离相等;有逆定理;④等腰三角形的两个底角相等;有逆定理;故答案为①③④【说明】本题考察勾股定理以及逆定理、线段的垂直均分线的性质和判断、等腰三角形的性质和判断等知识,解题的重点是娴熟掌握基本知识,属于中考常考题型.12.如图,点A、B、C、D、E在⊙ O上,且的度数为50°,则∠B+∠D的度数为.【分析】连结 AB、DE,先求得∠ ABE=∠ ADE=25°,依据圆内接四边形的性质得出∠ABE+∠ EBC+∠ADC=180°,即可求得∠B+∠ D=155°.【解答】解:连结AB、 DE,则∠ ABE=∠ ADE,∵为50°,∴∠ ABE=∠ ADE=25°,∵点A、 B、 C、D 在⊙ O 上,∴四边形ABCD是圆内接四边形,∴∠ ABC+∠ ADC=180°,∴∠ ABE+∠ EBC+∠ ADC=180°,∴∠ B+∠D=180°﹣∠ ABE=180°﹣25°=155°.故答案为:155°【说明】本题考察了圆周角定理和圆内接四边形的性质,作出协助线建立内接四边形是解题的重点.13.如图,在矩形 ABCD中, E是边 AB的中点,连结 DE 交对角线 AC于点 F.若 AB=8, AD=6,则CF的长为.【分析】在 Rt△ABC中,利用勾股定理可求出AC的长,由 AB∥CD可得出∠ DCF=∠EAF,∠ CDF=∠ AEF,从而可得出△ AEF∽△ CDF,利用相像三角形的性质联合CD= AB=2AE,即可得出CF= 2AF,再联合AC=AF+CF=10,即可得出CF=AC=,本题得解.【解答】解:在Rt△ABC中,AB= 8,BC=AD= 6,∠B=90°,∴ AC==10.∵AB∥CD,∴∠ DCF=∠ EAF,∠ CDF=∠ AEF,∴△ AEF∽△ CDF,∴=.又∵ E 是边AB 的中点,∴CD=AB=2AE,∴= 2,∴CF=2AF.∵AC=AF+CD=10,∴ CF= AC=.故答案为:.【说明】本题考察了相像三角形的判断与性质、勾股定理以及矩形的性质,利用相像三角形的性质联合AC= AF+CF,找出 CF=AC是解题的重点.14. 以下图,有一电路连着三个开关,每个开封闭合的可能性均为,若不考虑元件的故障要素,则电灯点亮的可能性为.【分析】用列举法列举出可能出现的状况,在依据概率公式求解即可.【解答】解:因为每个开封闭合的可能性均为,则共有8种状况;1、K1关、K2关、K3开;2、K1关、K2关、K3关;3、K1关、K2开、K3开;4、K1关、K2开、K3关;5、K1开、K2开、关K3;6、K1开、K2关、K3关;7、K1开、K2开、K3开;8、K1开、K2开、K3关.只有 5、 7、8电灯可点亮,可能性为.【说明】本题考察的是可能性大小的判断,用到的知识点为:可能性等于所讨状况数与总状况数之比.15.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则以下:购物每满 100元,返购物券 50元,此购物券在本商场通用,且用购物券购置商品不再返券.小明只购置了单价分别为 60元、 80元和 120元的书包、T恤、运动鞋,在使用购物券参加购置的状况下,他的实质花销为元.【分析】分四种状况议论:①先付 60元, 80元,获取 50 元优惠券,再去买120 元的运动鞋;②先付 60元, 120元,获取 50 元的优惠券,再去买80 元的恤;T③先付 120 元,获取 50 元的优惠券,再去付60元, 80元的书包和T 恤;④先付 120 元, 80 元,获取 100 元的优惠券,再去付 60元的书包;分别计算出实质花销即可.【解答】解:①先付 60 元, 80元,获取 50元优惠券,再去买 120 元的运动鞋;实质花销为: 60+80﹣50+120 =210 元;②先付 60元, 120 元,获取 50元的优惠券,再去买 80 元的T恤;实质花销为: 60+120﹣50+80= 210 元;③先付 120元,获取50元的优惠券,再去付60元,80元的书包和T恤;实质花销为:120﹣ 50+60+80= 210 元;④先付 120元,80元,获取100元的优惠券,再去付60元的书包;实质花销为:120+80=200 元;综上可得:他的实质花销为210 元或 200 元.【说明】本题旨在学生养成认真读题的习惯.16. 在平面直角坐标系中,对于点P( x,y),若点 Q的坐标为( ax+y,x+ay),此中 a为常数,则称点 Q是点 P的“ a级关系点”,比如,点 P(1,4)的3级关系点”为 Q(3×1+4,1+3×4)即Q( 7,13),若点B的“ 2级关系点” 是B('3 ,3),则点B的坐标为;已知点 M( m﹣1,2m)的“﹣3级关系点” M′位于 y轴上,则 M′的坐标为.【分析】由点 B的“2级关系点”是B'(3,3)得出,解之求得x、y的值即可得;由点 M( m﹣1,2m)的“﹣3级关系点” M′的坐标为(﹣ m+3,﹣5m﹣1),且点M′在 y 轴上知﹣ m+3=0,据此求得m 的值,再进一步求解可得.【解答】解:∵点 B的“2级关系点”是 B'(3,3),则点 B的坐标为(1,1),∵点 M( m﹣1,2m)的“﹣3级关系点” M′的坐标为(﹣ m+3,﹣5m﹣1),且点 M′在y 轴上,∴﹣ m+3=0,解得m=3,则﹣ 5m﹣ 1=﹣ 16,∴点 M′坐标为(0,﹣16),故答案为:( 1, 1),( 0,﹣ 16).【说明】本题主要考察点的坐标,解题的重点是理解题并掌握“ a 级关系点”的定义,并娴熟运用.三、解答题 ( 本题共 68 分,第 17-22 题,每题 5 分,第 23-26 题,每题 6 分,第 27 、 28题,每题7分)解答应写出文字说明、验算步骤或证明过程。

2019年中考数学原创押题密卷(河南卷)(全解全析)

2019年中考数学原创押题密卷(河南卷)(全解全析)

<m 2-+m 4()9∆+-+=x x m 409221-⋅=-a a a ()235⨯8.91410989.14 12019年河南中考押题密卷数学·全解全析1.【参考答案】A【全解全析】因为正数是比0大的数,负数是比0小的数,正数比负数大,负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A . 2.【参考答案】D【全解全析】数据亿用科学记数法表示为,故选D . 3.【参考答案】D【全解全析】A 、,此选项错误;B 、a 6÷a 3=a 3,此选项错误;C 、(2a )2=4a 2,此选项错误;D 、(a 2)3=a 6,此选项正确,故选D .4.【参考答案】C【全解全析】如图,由四个正方体组成的几何体的俯视图是,故选C .5.【参考答案】D【全解全析】这5组数据的平均数是:(74.19+61.91+66.34+61.71+57.38)÷5=64.306(分); 把这些数从小到大排列为:57.38分、61.71分、61.91分、66.34分、74.19分,最中间的数是61.91分, 则这5组数据的中位数是61.91分,故选D . 6.【参考答案】D【全解全析】∵AB ∥CD ,∴∠BEF +∠EFD =180°.∵∠EFD =56°,∴∠BEF =124°. ∵∠1=∠2=∠BEF ,∴∠1=62°.∵AB ∥CD ,∴∠D =∠1=62°.故选D . 7.【参考答案】A【全解全析】∵关于x 的一元二次方程没有实数根, ∴=b 2-4ac <0,即12-4×1×<0,解这个不等式得:.故选A . 8.【参考答案】B【全解全析】如图所示,作EH ⊥BC 交BC 的延长线于H ,=-+=583>AB BC >AB AD ,==x x 3412-=x x 4(7)31⋅AB BC 221121=126105===BE⨯=2211⨯=22 2由作法得AE 垂直平分CD ,∴∠AED =90°,CE =DE =2,∵四边形ABCD 为菱形,∴AD =2DE ,∴∠DAE =30°,∴∠D =60°, ∵AD ∥BC ,∴∠ECH =∠D =60°, 在Rt △ECH 中,EH =CE ·sin60°=,CH =CE ·cos60°=,∴BH =4+1=5, 在Rt △BEH 中,由勾股定理得,B .9.【参考答案】D【全解全析】如图所示:共有12种可能,至少有一个小球为蓝色的有10种结果,∴摸到的两个小球中,至少有一个小球为蓝色的概率为,故选D . 10.【参考答案】B【全解全析】观察图象可知:AB +BC =7,S △AOB =3,∵四边形ABCD 是矩形,∴点O 到AB 的距离是BC 的长,设AB =x ,则BC =7-x ,∵S △AOB ==3,∴,解得, ∵,即,∴AB =4,故选B . 11.【参考答案】3【全解全析】原式,故答案为:3.23==AB BC BF BD 2121=12π15=-122π15=-⨯⋅⋅⋅⋅360236011π2190π6022==∠=OE OCE 2cos 1-122π5=x 1-<≤x 223>-x 2≤x 23②①⎩+>⎪⎨⎪-≤⎧x x 251211=x 1-32-32n m -32 312.【参考答案】 【全解全析】由反比例函数定义可知:3m =-2n ,即=,故答案为:. 13.【参考答案】【全解全析】,解不等式①,得,解不等式②,得,故不等式组的解集是,所以整数解是:-1,0,1,最大是1,故答案为:. 14.【参考答案】【全解全析】连接CE ,如图,∵AC ⊥BC ,∴∠ACB =90°,∵AC ∥OE ,∴∠COE =∠EOB =90°, ∵OC =1,CE =2,∴,∴∠OCE =60°, ∴S 阴影部分=S 扇形BCE -S △OCE -S 扇形BOD ,故答案为: 15. 2【全解全析】∵∠A =90°,AC =2,∠B =30°,∴BC =2AC =4,AB ∴BD =AB 由翻转变换的性质可知,B 1D =BD B 1FC =90°时,DF =BD ,则B 1F ∵∠B 1FC =90°,∠A =90°,∴△BFD ∽△BAC ,∴,解得BF =,808-x 33+--x x x (3)(3)2-+x x 23(3)--x x 922-+x x 23(3)--÷++--x x x x x 223(3)(2)(2)5-x 25-+x x 239-x 33⎩=⎨⎧=CD CD AD B D1==22354则CF =4-,∴CB 1 当∠CB 1F =90°时,连接CD ,如图,在Rt △CAD 和Rt △CB 1D 中,,∴Rt △CAD ≌Rt △CB 1D ,∴CB 1=CA =2,2.16.【参考答案】【全解全析】÷(x +2-) = =·(2分)=·=,(4分) 当x 8分)17.【参考答案】(1)80,0.2.(2)36°.(3)500人.【全解全析】(1)80,0.2.(4分)a =36÷0.45=80,b =16÷80=0.2,故答案为:80,0.2. (2)36°.(6分)“D ”对应扇形的圆心角为:360°×=36°,故答案为:36°. (3)2000×25%=500(人), 答:该校2000名学生中最喜欢“数学编程”创客课程的有500人.(9分) 18.【参考答案】(1)证明见全解全析.(2)①30°.②【全解全析】(1)∵F 为弦AC 的中点,5∴AF =CF ,且OF 过圆心O ,(2分) ∴FO ⊥AC , ∵DE 是⊙O 切线, ∴OD ⊥DE , ∴DE ∥AC .(5分) (2)①30°.(7分)理由如下:如图,连接CD ,AD ,OC ,∵∠OAC =30°,OF ⊥AC , ∴∠AOF =60°,∵AO =DO ,∠AOF =60°, ∴△ADO 是等边三角形, 又∵AF ⊥DO , ∴DF =FO ,且AF =CF , ∴四边形AOCD 是平行四边形, 又∵AO =CO ,∴四边形AOCD 是菱形. ②9分) 如图,连接CD ,∵AC ∥DE , ∴△OFA ∽△ODE ,∠=︒ACB 60△ABC Rt ==-=-BC EF DF DE x 4︒==DE CEtan 374∠=︒EDC 37△CDE Rt ==DF AF x ∠=︒ADF 45∠=︒AFD 90△AFD Rt =AF x ===DG CE BF 3∠=︒ACB 60∠=︒EDC 37∠=︒ADF 45G BC⊥D G B C E DF ⊥C E D F F AB ⊥DF AB==1=+====OE OD DE AO OF AF 222216∴, ∴OD =2OF ,DE =2AF , ∵AC =2AF ,∴DE =AC ,且DE ∥AC , ∴四边形ACDE 是平行四边形, ∵OA =AE =OD =2, ∴OF =DF =1,OE =4,∵在Rt △ODE 中,DE ∴S 四边形ACDE =DE ×DF 故答案为: 19.【参考答案】16.6米.【全解全析】如图,作交于点,作交于点,作交直线于点,由题意知,,,,设,∵在中,,, ∴,(3分) 在中,, ∴,∴, 在中,,+x (150)x m ,-24()55=-n 25⋅--=⋅-+AC n BD n 2222(4)|2()|1115△PDB △PCA -+n 22|2()|15BD P --n (4)AC P ,+n n 22()15P =y 2BD =-x 4AC =AC 21=BD 1,D (02),-C (40)D ⊥BD y C ⊥AC x ,-B (12),-A 2(4)1=-m 2-=m12,-B (12)=+y x 2215⎩⎪=⎪⎨⎪⎪=⎧b k 2521⎩-+=⎪⎨⎪-+=⎧k b k b 2241,-B (12),-A 2(4)1,-24()55=-m 2=+y x 2215=+≈AB AF FB 16.6≈x 13.6+=-x x 34)=AB 7∴,(6分) ∴,,.∴旗杆的高度约为16.6米.(9分) 20.【参考答案】(1),.(2)点P 的坐标为. 【全解全析】(1)将,代入一次函数解析式中,得 ,解得, 故一次函数的解析式为.(2分) 将代入反比例函数解析式中,得, 解得:.(4分)(2)∵,,且轴于,轴于, ∴,,,, 直线的解析式为,直线的解析式为, 设点的坐标为,(6分)点到直线的距离为,点到直线的距离为,∵面积和面积相等,∴, 解得,点P 的坐标为.(9分)21.【参考答案】(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(2)的值为95.【全解全析】(1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,=CP CEBD BP2525=m 02=m 951-⋅+=-⋅+m a m a m (4502)(1 2.5%)(600150)(1%)a +=x 150600=x 450=x 450+=⨯x x 150218000120008根据题意,得,(3分) 解方程,得,经检验,是原方程的解,且符合题意, 所以.答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(5分) (2)设今年原计划购买茶艺耗材和陶艺耗材的数量均为,由题意得:,(8分)解方程,得,(舍去), 所以m 的值为95.(10分)22.【参考答案】(1)证明见全解全析.(2)证明见全解全析.(3). 【全解全析】(1)∵∠APD =90°, ∴∠APB +∠DPC =90°, ∵∠B =90°,∴∠APB +∠BAP =90°, ∴∠BAP =∠DPC ,(2分) ∵AB ∥CD ,∠B =90°, ∴∠C =∠B =90°,∴△ABP ∽△DCP .(4分)(2)∵∠APC =∠BAP +∠B ,∠APC =∠APD +∠CPD , ∴∠BAP +∠B =∠APD +∠CPD . ∵∠B =∠APD ,∴∠BAP =∠CPD .(6分) ∵∠B =∠C ,∴△ABP ∽△PCD .(8分) (3).(10分) 同探究的方法得出,△BDP ∽△CPE , ∴,=--y x x 222132=--y x x 222132⎩=-⎪⎨⎪=-⎧c b 223⎩⎪⨯++=⎪⎨⎪⎪-+=⎧b c b c 24401201221=--y x x 22213225==25232929=9∵点P 是边BC 的中点, ∴BP =CP ∵CE =4, , ∴BD =, ∵∠B =∠C =45°,∴∠A =180°-∠B -∠C =90°, 即AC ⊥AB 且AC =AB =6, ∴AD =AB -BD =6-=,AE =AC -CE =6-4=2, 在Rt △ADE 中,DE .故答案为:. 23.【参考答案】(1).(2)当m =2时,四边形CQMD 为平行四边形.(3)Q 1(8,18),Q 2(-1,0),Q 3(3,-2). 【全解全析】(1)由题意知,∵点A (-1,0),B (4,0)在抛物线y =x 2+bx +c 上, ∴,解得,∴所求抛物线的解析式为.(3分) (2)由(1)知抛物线的解析式为,令x =0,得y =-2,∴点C 的坐标为C (0,-2), ∵点D 与点C 关于x 轴对称, ∴点D 的坐标为D (0,2),+-+--=+--m m m m m m 222220(4)(2)(4)1313222222++--=-+--m m m m m m 222220(4)(4)(2)1313222222+--m m m 22(4)13222-+--m m m 22(4)(2)13222,--m m m 22(2)132-++m m 2412-++m m 2412,--m m m 22(2)132,-+m m 2(2)1=-+y x 221=-k 2110设直线BD 的解析式为:y =kx +2且B (4,0), ∴0=4k +2,解得:, ∴直线BD 的解析式为:, ∵点P 的坐标为(m ,0),过点P 作x 轴的垂线l ,交BD 于点M ,交抛物线于点Q ,∴可设点M ,Q , ∴MQ =, ∵四边形CQMD 是平行四边形, ∴QM =CD =4,即=4, 解得:m 1=2,m 2=0(舍去),∴当m =2时,四边形CQMD 为平行四边形.(7分)(3)存在,Q 的坐标分别为:Q 1(8,18)、Q 2(-1,0)、Q 3(3,-2).(11分) 由题意,可设点Q 且B (4,0)、D (0,2), ∴BQ 2=,DQ 2=,BD 2=20.①当∠BDQ =90°时,则BD 2+DQ 2=BQ 2,∴, 解得:m 1=8,m 2=-1,此时Q 1(8,18),Q 2(-1,0),②当∠DBQ =90°时,则BD 2+BQ 2=DQ 2,∴, 解得:m 3=3,m 4=4(舍去),此时Q 3(3,-2),∴满足条件的点Q 的坐标有三个,分别为:Q 1(8,18)、Q 2(-1,0)、Q 3(3,-2).。

2019年中考数学原创押题密卷(安徽卷)(考试版)

2019年中考数学原创押题密卷(安徽卷)(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前|2019年安徽中考押题密卷数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.−2的相反数的倒数是 A .2B .2-C .12-D .122.下列运算正确的是 A .624a a a -= B .235()a a =C .235a a a ⋅=D .623a a a ÷=3.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为 A .28.3×107吨B .2.83×108吨C .0.283×1010吨D .2.83×109吨4.如图所示是倒置的实心圆台,其俯视图是A .B .C .D .5.下列各式因式分解正确的A .a 2+4ab +4b 2=(a +4b )2B .2a 2−4ab +9b 2=(2a −3b )2C .3a 2−12b 2=3(a +4b )(a −4b )D .a (2a −b )+b (b −2a )=(a −b )(2a −b )6.一台饮水机成本价为a 元销售价比成本价高22%,因库存积压需降价促销,按销售价的80%出售,售价为b 元,则A .b =(1+22%)(1+80%)a 元B .b =(1+22%)·80%·a 元C .b =(1+22%)(1−80%)a 元D .b =(1+22%+80%)a 元7.若关于x 的一元二次方程(a ﹣1)x 2﹣2x +1=0有实数根,则整数a 的最大值为 A .0B .﹣1C .1D .28.2019年5月26日上午7时18分,2019怀宁“蓝莓之乡”国际马拉松赛在高河镇鸣枪开跑.在这次马拉松长跑比赛中,抽取了10名女子选手,记录他们的成绩(所用的时间)如下:关于这组数据,下列说法不正确的是A .这组样本数据的中位数是186B .这组样本数据的众数是195C .这组样本数据的平均数超过170D .这组样本数据的方差小于309.如图,平行四边形ABCD 中,60,B G ∠=是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF ,下列说法不正确的是A .四边形CEDF 是平行四边形B .当CE AD ⊥时,四边形CEDF 是矩形C .当120AEC ∠=时,四边形CEDF 是菱形D .当AE ED =时,四边形CEDF 是菱形10.如图,边长为4个单位长度的正方形ABCD 的边AB 与等腰直角三角形EFG 的斜边FG 重合,△EFG以每秒1个单位长度的速度沿BC 向右匀速运动(保持FG ⊥BC ),当点E 运动到CD 边上时△EFG 停止运动.设△EFG 的运动时间为t 秒,△EFG 与正方形ABCD 重叠部分的面积为S ,则S 关于t 的数学试题 第3页(共6页) 数学试题 第4页(共6页)函数大致图象为A .B .C .D .第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)11.不等式2x﹣2<4x +12的解集是___________.12.如图,,PA PB 分别切⊙O 于点,A B ,若70P ∠=︒,点C 为⊙O 上任一动点,则C ∠的大小为___________.13.如图,已知直线y x b =+与x、y 轴分别交于A 、B 两点,与反比例函数6(0)y x x=>交于点C ,AB BC =,则点B 的坐标是___________.14.如图,将一个直角的顶点P 放在矩形ABCD 的对角线BD 上滑动,并使其一条直角边始终经过点A ,另一条直角边与边BC 相交于点E ,且AD =8,DC =6,则APPE=___________.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|()2cos302--+-.16.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八。

(完整版)2019年中考数学压轴题汇编(几何1)解析版

(完整版)2019年中考数学压轴题汇编(几何1)解析版

(2019年安徽23题)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.(2019年北京27题)27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP =∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD =NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP【点评】本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP为条件反推OP的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP.(2019年北京28题)28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE 为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP 满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE 垂直平分线FP,作EG⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.【点评】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.(2019年福建24题)24.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD 的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,从而得到∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=4,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tan∠BAD的值.【解答】解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.【点评】本题属于圆综合题,考查了圆周角定理,勾股定理,锐角三角函数,圆心角、弧、弦的关系,相交弦定理,等腰三角形的判定和性质等知识,解题的关键是熟练掌握并灵活运用性质定理,属于中考压轴题.(2019年甘肃兰州27题)27.(10分)通过对下面数学模型的研究学习,解决问题.【模型呈现】如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D 作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型成为“K型”.推理过程如下:【模型应用】如图,在Rt△ABC内接于⊙O,∠ACB=90°,BC=2,将斜边AB绕点A顺时针旋转一定的角度得到AD,过点D作DE⊥AC于点E,∠DAE=∠ABC,DE=1,连接DO交⊙O 于点F.(1)求证:AD是⊙O的切线;(2)连接FC交AB于点G,连接FB.求证:FG2=GO•GB.【分析】(1)因为直角三角形的外心为斜边中点,所以点O在AB上,AB为⊙O直径,故只需证AD⊥AB即可.由∠ABC+∠BAC=90°和∠DAE=∠ABC可证得∠DAE+∠BAC =90°,而E、A、C在同一直线上,用180°减去90°即为∠BAD=90°,得证.(2)依题意画出图形,由要证的结论FG2=GO•GB联想到对应边成比例,所以需证△FGO∽△BGF.其中∠FGO=∠BGF为公共角,即需证∠FOG=∠BFG.∠BFG为圆周角,所对的弧为弧BC,故连接OC后有∠BFG=∠BOC,问题又转化为证∠FOG=∠BOC.把DO延长交BC于点H后,有∠FOG=∠BOH,故问题转化为证∠BOH=∠BOC.只要OH⊥BC,由等腰三角形三线合一即有∠BOH=∠BOC,故问题继续转化为证DH∥CE.联系【模型呈现】发现能证△DEA≌△ACB,得到AE=BC=2,AC=DE =1,即能求AD=AB=.又因为O为AB中点,可得到,再加上第(1)题证得∠BAD=90°,可得△DAO∽△AED,所以∠ADO=∠EAD,DO∥EA,得证.【解答】证明:(1)∵⊙O为Rt△ABC的外接圆∴O为斜边AB中点,AB为直径∵∠ACB=90°∴∠ABC+∠BAC=90°∵∠DAE=∠ABC∴∠DAE+∠BAC=90°∴∠BAD=180°﹣(∠DAE+∠BAC)=90°∴AD⊥AB∴AD是⊙O的切线(2)延长DO交BC于点H,连接OC∵DE⊥AC于点E∴∠DEA=90°∵AB绕点A旋转得到AD∴AB=AD在△DEA与△ACB中∴△DEA≌△ACB(AAS)∴AE=BC=2,AC=DE=1∴AD=AB=∵O为AB中点∴AO=AB=∴∵∠DAO=∠AED=90°∴△DAO∽△AED∴∠ADO=∠EAD∴DO∥EA∴∠OHB=∠ACB=90°,即DH⊥BC∵OB=OC∴OH平分∠BOC,即∠BOH=∠BOC∵∠FOG=∠BOH,∠BFG=∠BOC∴∠FOG=∠BFG∵∠FGO=∠BGF∴△FGO∽△BGF∴∴FG2=GO•GB【点评】本题考查了三角形外心定义,圆的切线判定,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的判定和性质,垂径定理,等腰三角形三线合一,圆周角定理.其中第(2)题证明DO∥EA进而得到DO垂直BC是解题关键.(2019年甘肃陇南27题)27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.【答案】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°-90°=90°.【解析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,得出△EB1C1是等腰直角三角形,由等腰直角三角形的性质得出∠B1EC1=∠B1C1E=45°,证出∠B1C1E+∠M1C1N1=180°,得出E、C1、N1,三点共线,由SAS证明△A1B1M1≌△EB1M1得出A1M1=EM1,∠1=∠2,得出EM1=M1N1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论.此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.(2019年甘肃天水25题)25.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.(2019年广东深圳23题)23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②如图4,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CFCF=∵CG2+BG2=BC2,∴BG2=BC2﹣CG2∴==∴=令y=CG2(64﹣CG2)=﹣CG4+64CG2=﹣[(CG2﹣32)2﹣322]=﹣(CG2﹣32)2+322∴当CG2=32时,此时CG=4==.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.(2019年广东24题)24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CF A知∠ACD=∠CAF+∠CF A=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC•BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG =∠GDC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴=,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CF A,∴∠ACD=∠CAF+∠CF A=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴=,∴AB2=BC•BE,∴BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.【点评】本题是圆的综合问题,解题的关键是掌握圆心角定理、切线的判定与性质、相似三角形的判定与性质等知识点.(2019年广东广州24题)24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=﹣(6﹣6)=3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.(2019年广西池州25题)25.(10分)如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.【分析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG =OH,由等边三角形的性质得出∠OBH=30°,由直角三角形的性质得出OH=OB =1,OG=,即可得出答案.【解答】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F=45°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD=60°,∴∠OBH=30°,∴OH=OB=1,∴OG=,∴CF=CG=OC+OG=2+.【点评】本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.(2019年广西贺州25题)25.(10分)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.【分析】(1)由切线的性质得出AF⊥OA,由圆周角定理好已知条件得出∠F=∠DBC,证出AF∥BC,得出OA⊥BC,求出∠BOA=90°﹣30°=60°,由圆周角定理即可得出结果;(2)由垂径定理得出BE=CE=BC=4,得出AB=AC,证明△AOB是等边三角形,得出AB=OB,由直角三角形的性质得出OE=OB,BE=OE=4,求出OE=,即可得出AC=AB=OB=2OE=.【解答】解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵BD是⊙O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°﹣30°=60°,∴∠ADB=∠AOB=30°;(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA⊥BC是解题的关键.(2019年广西柳州25题)25.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且=,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON•OP=OE•OM.【解答】解:(1)如图1,连接BC,AC,AD,∵CD⊥AB,AB是直径∴,CE=DE=CD=3∴∠ACD=∠ABC,且∠AEC=∠CEB∴△ACE∽△CEB∴∴∴BE=9∴AB=AE+BE=10∴⊙O的半径为5(2)∵=∴∠ACD=∠ADC=∠CDF,且DE=DE,∠AED=∠NED=90°∴△ADE≌△NDE(ASA)∴∠DAN=∠DNA,AE=EN∵∠DAB=∠DFB,∠AND=∠FNB∴∠FNB=∠DFB∴BN=BF,∴△BNF是等腰三角形(3)如图2,连接AC,CE,CO,DO,∵MD是切线,∴MD⊥DO,∴∠MDO=∠DEO=90°,∠DOE=∠DOE∴△MDO∽△DEO∴∴OD2=OE•OM∵AE=EN,CD⊥AO∴∠ANC=∠CAN,∴∠CAP=∠CNO,∵∴∠AOC=∠ABF∵CO∥BF∴∠PCO=∠PFB∵四边形ACFB是圆内接四边形∴∠P AC=∠PFB∴∠P AC=∠PFB=∠PCO=∠CNO,且∠POC=∠COE∴△CNO∽△PCO∴∴CO2=PO•NO,∴ON•OP=OE•OM.(2019年广西北部湾等25题)25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE =90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=•DQ=CH•DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.(2019年广西梧州25题)25.(10分)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【分析】(1)由AD∥CF,AF平分∠DAC,可得∠F AC=∠AFC,得出AC=CF=5,可证出△ADE∽△FCE,则,可求出DE长;(2)由△ADG∽△HBG,可求出DG,则,可得EG∥BC,则∠1=∠AHC,根据DF∥AH,可得∠AHC=∠DFC,结论得证.【解答】(1)解:∵矩形ABCD中,AD∥CF,∴∠DAF=∠ACF,∵AF平分∠DAC,∴∠DAF=∠CAF,∴∠F AC=∠AFC,∴AC=CF,∵AB=4,BC=3,∴==5,∴CF=5,∵AD∥CF,∴△ADE∽△FCE,∴,设DE=x,则,解得x=∴;(2)∵AD∥FH,AF∥DH,∴四边形ADFH是平行四边形,∴AD=FH=3,∴CH=2,BH=5,∵AD∥BH,∴△ADG∽△HBG,∴,∴,∴DG=,∵DE=,∴=,∴EG∥BC,∴∠1=∠AHC,又∵DF∥AH,∴∠AHC=∠DFC,∠1=∠DFC.【点评】本题考查了矩形的相关证明与计算,熟练掌握矩形的性质、平行四边形的判定与性质与相似三角形的性质与判定是解题的关键.(2019年广西梧州25题)25.(10分)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.【分析】(1)证明△ABE≌△CDF(AAS),得BE=DF,根据一组对边平行且相等的四边形是平行四边形可得结论;(2)如图,连接BD,交EF于O,计算EO和BO的长,得∠OEB=30°,根据三角函数可得HM的长,从而得EM和EH的长,利用勾股定理计算FH的长,最后根据四边的和计算结论.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD,AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠CFD=∠BEA,∵∠BAC=∠BEA+∠ABE,∠DCA=∠CFD+∠CDF,∴∠ABE=∠CDF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(AAS),∴BE=DF,∵BH=DG,∴BE+BH=DF+DG,即EH=GF,∵EH∥GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,∵四边形ABCD是正方形,∴BD⊥AC,∴∠AOB=90°,∵AB=2,∴OA=OB=2,Rt△BOE中,EB=4,∴∠OEB=30°,∴EO=2,∵OD=OB,∠EOB=∠DOF,∵DF∥EB,∴∠DFC=∠BEA,∴△DOF≌△BOE(AAS),∴OF=OE=2,∴EF=4,∴FM=2,EM=6,过F作FM⊥EH于M,交EH的延长线于M,∵EG∥FH,∴∠FHM=∠GEH,∵tan∠GEH=tan∠FHM==2,∴,∴HM=1,∴EH=EM﹣HM=6﹣1=5,FH===,∴四边形EHFG的周长=2EH+2FH=2×5+2=10+2.【点评】此题主要考查了正方形的性质,平行四边形的判定和性质,三角函数和全等三角形的判定等知识.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题,第二问有难度,恰当地作出辅助线是关键.(2019年广西百色25题)25.(10分)如图,已知AC、AD是⊙O的两条割线,AC与⊙O交于B、C两点,AD过圆心O且与⊙O交于E、D两点,OB平分∠AOC.(1)求证:△ACD∽△ABO;(2)过点E的切线交AC于F,若EF∥OC,OC=3,求EF的值.[提示:(+1)(﹣1)=1]【解答】证明:(1)∵OB平分∠AOC∴∠BOE=∠AOC∵OC=OD∴∠D=∠OCD∵∠AOC=∠D+∠OCD∴∠D=∠AOC∴∠D=∠BOE,且∠A=∠A∴△ACD∽△ABO(2)∵EF切⊙O于E∴∠OEF=90°∵EF∥OC∴∠DOC=∠OEF=90°∵OC=OD=3∴CD==3∵△ACD∽△ABO∴∴∴AE=3∵EF∥OC∴∴∴EF=6﹣3(2019年广西贵港26题)26.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB =,求线段P A+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CF A′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出P A+PF=P A+PB′≥AB′,求出AB′即可解决问题.【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠F A′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=P A+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴P A+PF的最小值为.【点评】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.(2019年广西桂林25题)25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD 交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.【分析】(1)由切线的性质和圆周角定理可得∠ACB=∠ABM=90°,由角平分线的性质可得∠CAB=∠CBA=45°;(2)通过证明△EDO∽△ODC,可得,即可得结论;(3)连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,由外角的性质可得∠CAB =∠CDB=45°=∠EDO+∠ODB=3∠ODB,可求∠ODB=15°=∠OBD,由直角三角形的性质可得BD=DF+BF=AD+2AD,即可求tan∠ACD的值.【解答】证明:(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DE•DC∴OA2=DE•DC=EO•DC(2)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣【点评】本题属于圆的综合题,考查了圆周角定理、垂径定理、相似三角形的判定与性质以及锐角三角函数等知识.注意准确作出辅助线是解此题的关键.(2019年贵州毕节10题)10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.(2019年贵州安顺25题)25.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.【分析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5,在Rt△CDH中可计算出CH =,则CE=2CH=2,然后计算AC﹣CE即可得到AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cos C==,∴AC=5,在Rt△CDH中,∵cos C==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.【点评】本题考查了圆的综合题:熟练掌握圆周角定理、切线的判定定理和等腰三角形的判定与性质;会利用三角函数的定义解直角三角形.(2019年贵州贵阳25题)25.(12分)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.【分析】数学理解:(1)由等腰直角三角形的性质可得AC=BC,∠A=∠B=45°,AB=AC,由正方形的性质可得DE=DF=CE,∠DFC=∠DEC=90°,可求AF=DF=CE,即可得AB=(AF+BE);问题解决:(2)延长AC,使FM=BE,通过证明△DFM≌△DEB,可得DM=DB,通过△ADM≌。

2019年中考数学原创押题密卷(安徽卷)(全解全析)

2019年中考数学原创押题密卷(安徽卷)(全解全析)

S= 2 2 t 4 2 t 4 =(6−t)2(4≤t≤6),
2
由上可得,选项 B 中函数图象符合要求,
故选 B.
3
11.【参考答案】x>﹣7 【全解全析】2x﹣4x<12+2, ﹣2x<14, x>﹣7, 故答案为:x>﹣7.
12.【参考答案】 55 或125 【全解全析】连接 OA,OB , ∵ PA, PB 分别切⊙ O 于点 A, B , ∴ OA PA, OB PB , 即 PAO PBO 90, ∴ AOB 360 PAO P PBO 360 90 70 90 110 , 当点 C 在优弧 AB 上时, C 1 AOB 55 . 2 同理可得:当点 C 在劣弧 AB 上时, C 180 55 125 . 故答案为: 55 或125 .
CG DG

CGF DGE
2
△FCG ≌△EDG ASA ,
FG EG , CG DG ,
四边形 CEDF 是平行四边形,故 A 选项正确;
B、 四边形 CEDF 是平行四边形,
CE AD , 四边形 CEDF 是矩形,故 B 选项正确; C、 AEC 120 , CED 60 , △CDE 是等边三角形, CE DE ,
当点 E 从开始到点 E 到边 AB 上的过程中,
S= 4 2 22 t 2 t t2 4t (0≤t≤2),
2
2
当点 E 从 AB 边上运动到边 FG 与 DC 重合时,S= 4 2 =4(2≤t≤4), 2
当从边 FG 与 DC 重合到点 E 到边 DC 的过程中,
3.【参考答案】D 【全解全析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看

2019年中考数学原创押题密卷(福建卷)(全解全析)

2019年中考数学原创押题密卷(福建卷)(全解全析)

12019 年福建中考押题密卷数学·全解全析1. 【参考答案】A【全解全析】–2019 的绝对值是 2019,2019 的倒数是2. 【参考答案】B【全解全析】0.0000005=5×10 –7,故选 B . 3.【参考答案】C12019,故选A . 【全解全析】A 中主视图和左视图与题干不符;B 中三视图与题干均不符;C 符合要求;D 中三视图与题干均不符;故选C .4. 【参考答案】D【全解全析】A .不是同类项,不能合并,故错误;B .a ⋅ a 4 = a 5 ,故错误;C .a 6 ÷ a 3 = a 3 ,故错误;D 正确.故选D .5. 【参考答案】B3【全解全析】取出黑球的概率为= 1.故选B .6. 【参考答案】C【全解全析】如图所示:2 + 4 +3 3∵∠BDE 是△ADE 的外角,∴∠BDE =∠3+∠A =∠1+∠A =65°,∵a ∥b ,∴∠DBF =∠BDE =65°, 又∵∠ABC =90°,∴∠2=180°–90°–65°=25° .故选 C . 7. 【参考答案】D2⎪【全解全析】观察函数图象,发现:当−2<x <0 或 x >1 时,一次函数图象在反比例函数图象的下方,∴不 等式 ax +b < k 的解集是−2<x <0 或 x >1,即不等式 ax +b – k<0 的解集为−2<x <0 或 x >1,故选 D .xx8. 【参考答案】C【全解全析】由圆周角定理得,∠ABC =∠ADC =26°,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°–∠ABC =64°,故选C .9. 【参考答案】A【全解全析】∠B = 90, BC = 3, AB = 4 ,∴ AC == 5 ,D ,E 分别是 AB ,AC的中点,∴ DE = 1 BC = 3 ,EC = 1 AC = 5,DE ∥BC ,∴∠FCM = ∠EFC , CF 平分∠ACM ,2 2 2 2∴∠FCM = ∠FCE ,∴∠EFC = ∠FCE ,∴ EF = EC = 5,∴DF = DE + EF = 4 ,故选A .210. 【参考答案】B⎧1x -1 1 (x -1)①3 + a 【全解全析】⎨3 2,解①得 x ≥–3,解②得 x ≤ 5 ,不等式组的解集是–3≤x ≤ 3 + a ⎪⎩2x - a 3(1- x )②3 + a 3ya +12.∵仅有三个整数解,∴–1≤5a +10 <0,∴–8≤a <–3.∵5a +10 y - 2 +2 - y=1,整理得 3y –a –12=y –2,∴y =.∵y ≠2,∴a ≠–6,又y = 有整数解,∴a =–8 或–4,所有满足条件的整数a 的值之 22和是(–8)+(–4)=–12,故选B . 11.【参考答案】2【全解全析】原式=1+3–2=2.故答案为:2.12. 【参考答案】x ≤3【全解全析】根据题意得:3–x ≥0,解得 x ≤3,故答案为:x ≤3.13. 【参考答案】4【全解全析】∵数据个数是偶数,且中位数是 4,∴a =4,故答案为:4. 14.【参考答案】36°【全解全析】∵五边形 ABCDE 是正五边形,∴AB =BC =CD =AE =ED ,∠B =∠E =∠BCD =∠CDE =108°, ∴△ABC ≌△AED ,∴∠CAB =∠DAE = 1(180°–108°)=36°,∴∠CAD =108°–36°–36°=36° .故答案为: 236°.32 3 + 3 ⎩⎩⎩ ⋅15. 【参考答案】m >1 4【全解全析】根据题意得 Δ=(–3)2–4(2+m )<0,解得 m > 1 .故答案为:m > 1.4416. 【参考答案】12【全解全析】如图,过点 A 作 AC ⊥x 轴于点 C ,过点 B 作 BD ⊥AC 于点 D ,则∠ACO =∠BDA =90°,∵△ABO 是等腰直角三角形,∴AO =BA ,∠BAO =90°,∴∠OAC +∠BAD =∠ABD +∠BAD =90°,∴∠OAC = ∠ABD ,∴△AOC ≌△BAD (AAS ),∴AD =OC =2,BD =AC =4,∴点 B 的坐标为(6,2),∴2= k,6解得 k =12,故答案为:12.⎧ x = 3 17.【参考答案】⎨ y = 2 .⎧x + y = 5①【全解全析】⎨2x + 3y = 12② ,②–①×2 得 y =2,(3 分)把 y =2 代入①得 x =3,(6 分)⎧ x = 3则方程组的解为⎨ y = 2.(8 分)a18. 【参考答案】,. a - 23(a -1)(a +1) 2a -1 a +1【全解全析】原式=[a +1 - ]⋅ a +1 (a - 2)2 a 2 - 2a a +1= a +1 (a - 2)2a (a - 2) = ⋅a +1 a +1 (a - 2)243 2 + 3 3a=a - 2,(4 分)当 a =2+ 时,原式=2 3 + 3= = .(8 分) 319. 【参考答案】这种玩具的销售单价为 460 元时,厂家每天可获利润 20000 元.【全解全析】设这种玩具的销售单价为 x 元时,厂家每天可获利润 20000 元, 由题意得,(x –360)[160+2(480–x )]=20000,(4 分) 整理得 x 2 - 920x + 211600 = 0 , 解得 x 1 = x 2 = 460 ,∴这种玩具的销售单价为 460 元时,厂家每天可获利润 20000 元.(8 分)20. 【参考答案】(1)见全解全析;(2)75°.【全解全析】(1)如图所示,BD 即为所求;(4 分)(2)∵在△ABC 中,AB =AC ,∠ABC =70°,∴∠ABC =∠ACB =70°,∴∠A =180°–2∠ABC =180°–140°=40°.(6 分)∵BD 是∠ABC 的平分线, 1 1∴∠ABD = ∠ABC = ×70°=35°,22∵∠BDC 是△ABD 的外角,∴∠BDC =∠A +∠ABD =40°+35° =75°.(8 分)21.【参考答案】证明见全解全析.【全解全析】∵四边形 ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠ABC =∠ADC ,∴∠BAE =∠DCF .(2 分)2 +3 2 + 3 - 2⎨⎩∵BE、DF 分别是∠ABC、∠ADC 的平分线,∴∠ABE=1∠ABC,∠CDF=1∠ADC,2 2∴∠ABE=∠CDF.(4 分)⎧∠ABE =∠CDF在△ABE 与△CDF 中,∵⎪AB =CD ,⎪∠BAE =∠DCF∴△ABE≌△CDF(ASA),∴AE=CF.(8 分)22.【参考答案】(1)当点P 是BC 的中点时,DP 是⊙O 的切线.(2)75.8【全解全析】(1)当点P 是BC 的中点时,DP 是⊙O 的切线.(1 分)理由如下:连接AP,∵AB=AC,∴ AB = AC .又∵ PB = PC ,∴ PBA = PCA .∴PA 是⊙O 的直径.(2 分)∵PB = PC ,∴∠1=∠2.又∵AB=AC,∴PA⊥BC.(3 分)又∵DP∥BC,∴DP⊥PA.∴DP 是⊙O 的切线.(4 分)(2)连接OB,设PA 交BC 于点E.由垂径定理,得BE=EC=1BC =6.(5 分)2在Rt△ABE 中,由勾股定理得AE.(6 分)设⊙O 的半径为r,则OE=8–r,在Rt△OBE 中,由勾股定理得r2 =62 +(8-r)2 ,解得r=25.(8 分)4∵DP∥BC,∴∠ABE=∠D.56又∵∠1=∠1,∴△ABE ∽△ADP ,BEAE6875∴=,即=DPAPDP 25 ,解得 DP =2 ⨯ 4.(10 分)23. 【参考答案】(1)50.5.(2)甲品种挂果数超过 49 个的西红柿秧苗的数量有 270 株.(3)甲品种的小西红柿秧苗更适应市场需求,理由见全解全析.【全解全析】(1)把这组数据按从小到大的顺序排列,因为数据的总数是 50 个,其中位数为中间两 50 + 51 个数(25 和26 个数)的平均数,即 =50.5,故中位数 m =50.5;(2 分)2(2) 样品中,甲品种挂果数超过 49 个的西红柿秧苗有 27 株,∴27⨯ 500 = 270 (株), 50∴估计甲品种挂果数超过 49 个的小西红柿秧苗的数量有 270 株.(6 分)(3) 可以推断出甲品种的小西红柿秧苗更适应市场需求,(8 分)理由为:①甲品种挂果数的平均数高,说明甲品种平均产量高;②甲品种挂果数的中位数比乙高,说明甲品种有一半秧苗的产量高于乙品种;③甲品种产量的方差小于乙品种,说明甲品种的产量比较稳定,挂果数相差不大.(10 分)24. 【参考答案】(1)见全解全析.(2)①见全解全析.②AP =310 .【全解全析】(1)如图 1,∵AE 垂直于 AN ,∴∠EAB +∠BAN =90°,∵四边形 ABCD 是正方形,∴∠BAD =90°,∴∠NAD +∠BAN =90°,∴∠EAB =∠NAD , 又∵∠ABE =∠D =90°,AB =AD ,∴△ABE ≌△ADN ;(4 分) (2)①如图 2,在 ND 上截取 DG =BM ,连接 AG 、MG ,∵AD =AB ,∠ADG =∠ABM =90°,∴△ADG ≌△ABM ,∴AG =AM ,∠MAB =∠GAD ,∵∠BAD =∠BAG +∠GAD =90°,∴∠MAG =∠BAG +∠MAB =90°,∴△AMG 为等腰直角三角形,872 6 5 由题可知∠MAN =45°,则∠GAN =45°,∴AN ⊥MG ,∴AN 为 MG 的垂直平分线,∴NM =NG ,∴DN –DG =GN ,即 DN –BM =MN ,即 MN +BM =DN ;(8 分)②如图 3,连接 AC ,由①可知 MN +BM =DN ,∴MN +CM –BC =DC +CN ,∴CM –CN +MN =DC +BC =2BC , 即 8–CN +10=2BC ,即 CN =18–2BC ,在 Rt △MNC 中,根据勾股定理得 MN 2=CM 2+CN 2,即 102=82+CN 2,∴CN =6,∴BC =6,∴AC =6 ,∵∠BAP +∠BAQ =45°,∠NAC +∠BAQ =45°,∴∠BAP =∠NAC ,又∵∠ABP =∠ACN =135°,∴△ABP ∽△ACN ,∴AP= AB = 1 ,AN AC 2在 Rt △AND 中,根据勾股定理得 AN 2=AD 2+DN 2=36+144,解得 AN =6 5 ,∴ AP = 1,∴AP =3 210 .(12 分)8⎨25.【参考答案】(1)y =– 2 x 2– 4x +2.(2)l =–2 (m + 1 )2+ 49 2,当 m =– 1 时,l 有最大值,最333 4 484大值为49 2 .(3)点 M 的坐标为(2,–10 )或(–4,–10 )或(–2,2).4833【全解全析】(1)∵矩形 OBDC 的边 CD =1,∴OB =1,∵AB =4,∴OA =3,∴A (–3,0),B (1,0),⎧a + b + 2 = 0把 A 、B 两点坐标代入抛物线解析式可得 , ⎩9a - 3b + 2 = 0⎧a =- 2 ⎪ 32 2 4解得⎨,∴抛物线解析式为 y =– x – x +2;(4 分) 4 3 3 ⎪b =- ⎩⎪ 3(2)在 y =– 2 x 2– 4 x +2 中,令 y =2 可得 2=– 2 x 2– 4x +2,解得 x =0 或 x =–2,3 3 3 3∴E (–2,2),∴直线 OE 解析式为 y =–x ,由题意可得 P (m ,– 2m 2– 4m +2),(6 分)3 3∵PG ∥y 轴,∴G (m ,–m ),∵P 在直线OE 的上方,∴PG =– 2 m 2– 4 m +2–(–m )=– 2212(m + 1 )2+49,(8 分)33 3m – m +2=–3 34 24∵直线 OE 的解析式为 y =–x ,∴∠PGH =∠COE =45°,∴l =2 PG = 2 [– 2 (m + 1 )2+ 49 ]=– 2 (m + 1 )2+ 49 2 ,2 234 24 34 48∴当 m =– 1时,l 有最大值,最大值为49 2;(11 分)44810 10 (3)点M 的坐标为(2,– )或(–4,–)或(–2,2).(14 分)33①当 AC 为平行四边形的边时,则有 MN ∥AC ,且 MN =AC ,如图,过 M 作对称轴的垂线,垂足为 F , 设 AC 交对称轴于点 L ,则∠ALF =∠ACO =∠FNM ,9⎨ ⎩⎧∠MFN = ∠AOC 在△MFN 和△AOC 中, ⎪∠FNM = ∠ACO ,⎪MN = AC ∴△MFN ≌△AOC (AAS ),∴MF =AO =3,∴点 M 到对称轴的距离为 3,又 y =– 2 x 2– 4x +2,∴抛物线对称轴为 x =–1,3 3 设 M 点坐标为(x ,y ),则|x +1|=3,解得 x =2 或 x =–4, 10 10当x =2 时,y =– ,当x =–4 时,y =– , 3310 10 ∴M 点坐标为(2,–)或(–4,–);33②当 AC 为对角线时,设 AC 的中点为 K , 3 ∵A (–3,0),C (0,2),∴K (– ,1),2∵点 N 在对称轴上,∴点 N 的横坐标为–1,设 M 点横坐标为 x ,3 ∴x +(–1)=2×(– )=–3,解得 x =–2,此时 y =2,∴M (–2,2);210 10 综上可知点M 的坐标为(2,– )或(–4,–)或(–2,2).33。

2019年中考数学复习冲刺预测卷:方程与不等式(含答案)

2019年中考数学复习冲刺预测卷:方程与不等式(含答案)

2019年中考数学复习冲刺预测卷 方程与不等式一、选择题1. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠2. 已知1x =是关于x 的方程22(1)10k x k x -+-=的根,则常数k 的值为( )A .0B .1C .0或1D .0或-13. 若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ) A .3 B .3- C .13 D .13- 4. 小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A .⊗ = 1,⊕ = 1B .⊗ = 2,⊕ = 1C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 25. 方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x =6. 不等式组⎪⎩⎪⎨⎧≥--+ 2.3,21123x x x >的解集在数轴上表示正确的是( )7. 若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .68. 不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )二、填空题 A .B .C .D .1 2 A . B . 1 2 C . 2 D . 1 29. 分式方程2131x x =+的解是 . 10. 若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += . 11. 不等式5(1)31x x -<+的解集是 . 12. 解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 13. 若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m+n 的值为____________.14. 若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 .三、计算题15. 解不等式组312(1)312x x x -<+⎧⎪⎨+⎪⎩,≥,并在所给的数轴上表示出其解集.16. 解方程:12212+=++-x x xx x17. 解不等式组543121 25x x x x +>⎧⎪--⎨⎪⎩,≤.四、应用题18. 为了整治环境卫生,某地区需要一种消毒药水3250瓶,药业公司接到通知后马上采购两种专用包装箱,将药水包装后送往该地区.已知一个大包装箱价格为5元,可装药水10瓶;一个小包装箱价格为3元,可以装药水5瓶.该公司采购的大小包装箱共用了1700元,刚好能装完所需药水.(1)求该药业公司采购的大小包装箱各是多少个?(2)药业公司准备派A 、B 两种型号的车共10辆运送该批药水,已知A 型车每辆最多可同时装运30大箱和10小箱药水;B 型车每辆最多可同时装运20大箱和40小箱消毒药水,要求每辆车都必须同时装运大小包装箱的药水,求出一次性运完这批药水的所有车型安排方案.(3)如果A 型车比B 型车省油,采用哪个方案最好?19. 关于x 的一元二次方程22(23)0x k x k +-+=有两个不相等的实数根αβ、.(1)求k 的取值范围;(2)若6αβαβ++=,求2()35αβαβ-+-的值.20. 我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)21. “六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种电动玩具x套,购进B种电动玩具y套,三种电动玩具的进价和售价如下表:(1)用含x、y的代数式表示购进C种电动玩具的套数;(2)求出y与x之间的函数关系式;(3)假设所购进的电动玩具全部售出,且在购销这批玩具过程中需要另外支出各种费用共200元.①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时购进三种电动玩具各多少套?22. 已知关于x的一元二次方程x2 + 2(k-1)x + k2-1 = 0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.23. 李大爷一年前买入了相同数量的A、B两种种兔,目前,他所养的这两种种兔数量仍然相同,且A种种兔的数量比买入时增加了20只,B种种兔比买入时的2倍少10只.(1)求一年前李大爷共买了多少只种兔?(2)李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔可获利6元/只.如果要求卖出的A种种兔少于B种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.24. 在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?25. 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?(3)请画出上述函数的大致图象.26. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部8003倍,求彩电、冰箱、手机三大类产元,已知销售的冰箱(含冰柜)数量是彩电数量的2品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?。

(精品考题)四川省成都市中考数学押题卷(含解析)

(精品考题)四川省成都市中考数学押题卷(含解析)

2019年四川省成都市中考数学押题试卷一.选择题(共10小题,每小题3分,满分30分)1.迁安市某天的最低气温为零下9℃,最高气温为零上3℃,则这一天的温差为( )A.6℃B.﹣6℃C.12℃D.﹣12C2.如果y=+2,那么(﹣x)y的值为( )A.1 B.﹣1 C.±1 D.03.下面是小明同学做的四道题:①3m+2m=5m;②5x﹣4x=1;③﹣p2﹣2p2=﹣3p2;④3+x=3x.你认为他做正确了( )A.1道B.2道C.3道D.4道4.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A.55×105B.5.5×104C.0.55×105D.5.5×1055.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是( )A.B.C.D.6.点M(1,2)关于y轴对称点的坐标为( )A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A .B .C .D .8.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数4 5 6 7 8人数 3 6 5 4 2 每天加工零件数的中位数和众数为( )A .6,5B .6,6C .5,5D .5,69.菱形的两条对角线长分别为6,8,则它的周长是( )A .5B .10C .20D .2410.如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC 、CD 分别相交于点G 、H .若AE =3,则EG 的长为( )A .B .C .D .二.填空题(共4小题,每小题4分,满分16分)11.若m +n =1,mn =2,则的值为 .12.二次函数y =2(x +3)2﹣4的最小值为 .13.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2,E为斜边AB的中点,点P 是射线BC上的一个动点,连接AP 、PE ,将△AEP 沿着边PE 折叠,折叠后得到△EPA ′,当折叠后△EPA ′与△BEP 的重叠部分的面积恰好为△ABP 面积的四分之一,则此时BP 的长为 .14.如图,点P在反比例函数y=(x<0)的图象上,过P分别作x轴、y轴的垂线,垂足分别为点A、B.已知矩形PAOB的面积为8,则k= .三.解答题(共6小题,满分54分)15.(12分)(1)计算:(2)解方程组:16.(6分)如图所示,在菱形ABCD中,AC是对角线,CD=CE,连接DE.(1)若AC=16,CD=10,求DE的长.(2)G是BC上一点,若GC=GF=CH且CH⊥GF,垂足为P,求证: DH=CF.17.(8分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN 垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)18.(8分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时) 频数(人数) 频率2≤t<3 4 0.13≤t<4 10 0.254≤t<5 a0.155≤t<6 8 b6≤t<7 12 0.3合计40 1(1)表中的a= ,b= ;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?19.(10分)如图,在平面直角坐标系中,点P(1,4),Q(m,n)在反比例函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y 轴的垂线,垂足为点C,D,QD交PA于点E.(1)求该反比例函数的解析式;(2)用只含n的代数式表示四边形ACQE的面积;(3)随着m的增大,四边形ACQE的面积如何变化?20.(10分)如图,四边形ABCD内接于⊙O.AC为直径,AC、BD交于E,=.(1)求证:AD+CD=BD;(2)过B作AD的平行线,交AC于F,求证:EA2+CF2=EF2;(3)在(2)条件下过E,F分别作AB、BC的垂线垂足分别为G、H,连GH、BO交于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O半径.四.填空题(共5小题,满分20分,每小题4分)21.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为 ;22.在一个不透明的口袋中装有除颜色外其它都相同的3个红球和2个黄球,任意从口袋中摸出两个球,摸到一个红球和一个黄球的概率为 .23.某景区有一复古建筑,其窗户的设计如图所示.圆O的圆心与矩形的对角线交点重合,且圆与矩形上下两边相切(切点为E)与AD交于F,G两点,图中阴影部分为不透光区域,其余部分为透光区域,已知圆的半径为2.若∠EOF=45°,则窗户的透光率为 .24.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是 cm.25.如图1,点E,F,G分别是等边三角形ABC三边AB,BC,CA上的动点,且始终保持AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象大致为图2所示,则等边三角形ABC 的边长为 .五.解答题(共3小题,满分30分)26.(8分)某商店销售A型和B型两种电器,若销售A型电器20台,B型电器10台可获利13000元,若销售A型电器25台,B型电器5台可获利12500元.(1)求销售A型和B型两种电器各获利多少元?(2)该商店计划一次性购进两种型号的电器共100台,其中B型电器的进货量不超过A型电器的2倍,该商店购进A型、B型电器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电器出厂价下调a(0<a<200)元,且限定商店最多购进A型电器60台,若商店保持同种电器的售价不变,请你根据以上信息,设计出使这100台电器销售总利润最大的进货方案.27.(10分)如图1在直线BCE的同一侧作两个正方形ABCD与CEFG,连接BG与DE.(1)请证明下列结论:①BG=DE;②直线BG与直线DE之间的夹角为90°;③直线BG与直线DE 相交于点O,连接OC,则OC平分∠BOE;(2)正方形CEFG旋转到如图2的位置,则(1)中的结论是否依然正确?(3)当正方形CEFG旋转到如图3的位置时,(1)中的结论是否依然正确?28.(12分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于A,点B,与y轴交于点C,过点C作CD⊥y轴交抛物线于点D,过点B作BE⊥x轴,交DC延长线于点E,连接BD,交y轴于点F,直线BD的解析式为y=﹣x+2.(1)点E的坐标为 ;抛物线的解析式为 .(2)如图2,点P在线段EB上从点E向点B以1个单位长度/秒的速度运动,同时,点Q在线段BD上从点B向点D以个单位长度/秒的速度运动,当一个点到达终点时,另一个点随之停止运动,当t为何值时,△PQB为直角三角形?(3)如图3,过点B的直线BG交抛物线于点G,且tan∠ABG=,点M为直线BG上方抛物线上一点,过点M作MH⊥BG,垂足为H,若HF=MF,请直接写出满足条件的点M的坐标.2019年四川省成都市中考数学押题试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据温差是指某天的最高气温与最低气温的差可求解.【解答】解:∵最低气温为零下9℃,最高气温为零上3℃,∴温差为12°故选:C.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解决问题的关键.2.【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.3.【分析】根据合并同类项解答即可.【解答】解:①3m+2m=5m,正确;②5x﹣4x=x,错误;③﹣p2﹣2p2=﹣3p2,正确;④3+x不能合并,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项计算.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据55000用科学记数法表示为5.5×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sin A==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.8.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.10.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,即可求EG的值.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.【点评】本题考查了三角形的外接圆和外心,等边三角形的性质,正方形的性质,要熟练掌握,解答此题的关键是要明确正多边形的有关概念.二.填空题(共4小题,满分16分,每小题4分)11.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.【分析】根据顶点式,可直接得到.【解答】解:二次函数y=2(x+3)2﹣4中当x=﹣3时,取得最小值﹣4,故答案为﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.13.【分析】根据30°角所对的直角边等于斜边的一半可求出AB,即可得到AE的值,然后根据勾股定理求出BC.①若PA′与AB交于点F,连接A′B,如图1,易得S△EFP=S△BEP=S△A′EP,即可得到EF=BE=BF,PF=A′P=A′F.从而可得四边形A′EPB是平行四边形,即可得到BP =A′E,从而可求出BP;②若EA′与BC交于点G,连接AA′,交EP与H,如图2,同理可得GP=BG,EG=EA′=1,根据三角形中位线定理可得AP=2=AC,此时点P与点C重合(BP=BC),从而可求出BP.【解答】解:∵∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,∴AB=4,AE=AB=2,BC=2.①若PA′与AB交于点F,连接A′B,如图1.由折叠可得S△A′EP=S△AEP,A′E=AE=2,.∵点E是AB的中点,∴S△BEP=S△AEP=S△ABP.由题可得S△EFP=S△ABP,∴S△EFP=S△BEP=S△AEP=S△A′EP,∴EF=BE=BF,PF=A′P=A′F.∴四边形A′EPB是平行四边形,∴BP=A′E=2;②若EA′与BC交于点G,连接AA′,交EP与H,如图2..同理可得GP=BP=BG,EG=EA′=×2=1.∵BE=AE,∴EG=AP=1,∴AP=2=AC,∴点P与点C重合,∴BP=BC=2.故答案为2或2.【点评】本题主要考查了轴对称的性质、30°角所对的直角边等于斜边的一半、勾股定理、平行四边形的判定与性质、等高三角形的面积比等于底的比、三角形中位线定理等知识,运用分类讨论的思想是解决本题的关键.14.【分析】根据反比例函数k的几何意义可得|k|=﹣8,再根据图象在二、四象限可确定k<0,进而得到解析式.【解答】解:∵S矩形PAOB=8,∴|k|=8,∵图象在二、四象限,∴k<0,∴k=﹣8,故答案为:﹣8.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.三.解答题(共6小题,满分54分)15.【分析】(1)根据特殊角的三角函数值,负整数指数幂的定义,零指数幂的定义,变形为实数的运算,计算求值即可,(2)利用代入消元法解之即可.【解答】解:(1)cos45°﹣+20190=﹣3+1=1﹣3+1=﹣1,(2),把①代入②得:2(y+5)﹣y=8,解得:y=﹣2,把y=﹣2代入①得:x=﹣2+5=3,即原方程组的解为:.【点评】本题考查了解二元一次方程组,实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,解题的关键:(1)特殊角的三角函数值,负整数指数幂的定义,零指数幂的定义,实数的运算,(2)正确掌握代入消元法.16.【分析】(1)连接BD交AC于K.想办法求出DK,EK,利用勾股定理即可解决问题.(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.想办法证明∠CDH=∠HGJ=45°,可得DH =QH解决问题.【解答】(1)解:连接BD交AC于K.∵四边形ABCD是菱形,∴AC⊥BD,AK=CK=8,在Rt△AKD中,DK==6,∵CD=CE,∴EK=CE﹣CK=10﹣8=2,在Rt△DKE中,DE==2.(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.∵CH⊥GF,∴∠GJF=∠CQH=∠GPC=90°,∴∠QCH=∠JGF,∵CH=GF,∴△CQH≌△GJF(AAS),∴QH=CJ,∵GC=GF,∴∠QCH=∠JGF=∠CGJ,CJ=FJ=CF,∵GC=CH,∴∠CHG=∠CGH,∴∠CDH+∠QCH=∠HGJ+∠CGJ,∴∠CDH=∠HGJ,∵∠GJF=∠CQH=∠GPC=90°,∴∠CDH=∠HGJ=45°,∴DH=QH,∴DH=2QH=CF.【点评】本题考查菱形的性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.【解答】解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.18.【分析】(1)根据题意列式计算即可;(2)根据b的值画出直方图即可;(3)利用样本估计总体的思想解决问题即可;【解答】解:(1)总人数=4÷0.1=40,∴a=40×0.15=6,b==0.2;故答案为6,0.2(2)频数分布直方图如图所示:(3)由题意得,估计全校每周在校参加体育锻炼时间至少有4小时的学生约为1200×(0.15+0.2+0.3)=780名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【分析】(1)首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,于是得到结论;(2)根据矩形的面积公式即可得到结论;(3)根据函数的性质判断即可.【解答】解:(1)AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴该反比例函数的解析式为:y=;(2)∴S四边形ACQE=AC•CQ=4﹣n;(3)∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4﹣n随m的增大而增大.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.20.【分析】(1)延长DA至W,使AW=CD,连接WB,证△BCD和△BAW全等,得到△WBD是等腰直角三角形,然后推出结论;(2)过B作BE的垂线BN,使BN=BE,连接NC,分别证△AEB和△CNB全等,△BFE和△BFN全等,将EA,CF,EF三条线段转化为直角三角形的三边,即可推出结论;(3)延长GE,HF交于K,通过大量的面积法的运用,将AE,CF,EF三条线段用含相同的字母表示出来,再根据第二问的结论求出相关字母的值,再求出AB的值,进一步求出⊙O半径.【解答】解:(1)延长DA至W,使AW=CD,连接WB,∵=,∴∠ADB=∠CDB=45°,AB=BC,∵四边形ABCD内接于⊙O.∴∠BAD+∠BCD=180°,∵∠BAD+∠WAB=180°,∴∠BCD=∠WAB,在△BCD和△BAW中,,∴△BCD≌△BAW(SAS),∴BW=BD,∴△WBD是等腰直角三角形,∴AD+DC=DW=BD;(2)如图2,设∠ABE=α,∠CBF=β,则α+β=45°,过B作BE的垂线BN,使BN=BE,连接NC,在△AEB和△CNB中,,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°,∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN,∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)得EA2+CF2=EF2,∴EA2+CF2=EF2,∴S△AGE+S△CFH=S△EFK,∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,∴S△ABC=S矩形BGKH,∴S△GBH=S△ABO=S△CBO,∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形COMH=8:9,∴S△BMH:S△BGM=8:9,∵BM平分∠GBH,∴BG:BH=9:8,设BG=9k,BH=8k,∴CH=3+k,∴AE=3,CF=(k+3),EF=(8k﹣3),∴(3)2+[(k+3)]2=[(8k﹣3)]2,整理,得7k2﹣6k﹣1=0,解得:k1=﹣(舍去),k2=1,∴AB=12,∴AO=AB=6,∴⊙O半径为6.【点评】本题考查了图形的旋转,三角形的全等,勾股定理,面积法的运用等,综合性非常强,尤其是第(3)问,解题的关键是数学综合能力要非常强.四.填空题(共5小题,满分20分,每小题4分)21.【分析】根据一元二次方程跟与系数的关系,结合“α,β是方程x2﹣x﹣2019=0的两个实数根”,得到α+β的值,代入α3﹣2021α﹣β,再把α代入方程x2﹣x﹣2019=0,经过整理变化,即可得到答案.【解答】解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.22.【分析】根据题意可以用树状图法写出所有的可能性,从而可以求得到一个红球和一个黄球的概率.【解答】解:由题意可得,则摸到一个红球和一个黄球的概率为:=,故答案为:.【点评】本题考查列表法和树状图法,解答本题的关键是明确题意,求出相应的概率.23.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个切M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=2,∴S透明区域=,过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=2,∴S矩形=,∴,故答案为:.【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是解题的关键.24.【分析】先根据三角形面积公式求出腰长,设AE=xcm,则BC=cm,BE=cm,在Rt△ACE 中,根据勾股定理求出x,进一步得到BC,从而得到该三角形的周长,即可求解.【解答】解:腰长为40×2÷8=10(cm),如图1,等腰三角形顶角是锐角,如图2,等腰三角形顶角是钝角,设AE=x,则BC=,BE=,在Rt△ACE中,x2+()2=102,解得x=±4(负值舍去)或x=±2(负值舍去),∴BC=4或8,∴该三角形的周长是(20+4)或(20+8)cm.故答案为:(20+4)或(20+8).【点评】考查了勾股定理,等腰三角形的性质,三角形面积,难点是根据勾股定理得到底边的长.25.【分析】设出等边三角形ABC边长和BE的长,表示等边三角形ABC的面积,讨论最值即可.【解答】解:设等边三角形ABC边长为a,则可知等边三角形ABC的面积为设BE=x,则BF=a﹣xS△BEF=易证△BEF≌△AGE≌△CFGy=﹣3()=当x=时,△EFG的面积为最小.此时,等边△EFG的面积为,则边长为1EF是等边三角形ABC的中位线,则AC=2故答案为:2【点评】本题是动点函数图象问题,考查了等边三角形的性质及判断.解答时要注意通过设出未知量构造数学模型.五.解答题(共3小题,满分30分)26.【分析】(1)根据销售A型电器20台,B型电器10台可获利13000元,销售A型电器25台,B型电器5台可获利12500元可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到利润和甲种型号电器之间的函数关系式,然后根据一次函数的性质解答本题;(3)根据题意,利用分类讨论的方法可以解答本题.【解答】解:(1)设销售A型和B型两种电器分别获利为a元/台,b元/台,,得,答:销售A型和B型两种电器分别获利为400元/台,500元/台;(2)设销售利润为W元,购进A种型号电器x台,W=400x+500(100﹣x)=﹣100x+50000,∵B型电器的进货量不超过A型电器的2倍,∴100﹣x≤2x,解得,x≥,∵x为整数,∴当x=34时,W取得最大值,此时W=﹣100×34+50000=46600,100﹣x=66,答:该商店购进A型、B型电器分别为34台、66台,才能使销售总利润最大,最大利润是46600元;(3)设利润为W元,购进A种型号电器x台,W=(400+a)x+500(100﹣x)=(a﹣100)x+50000,∵0<a<200,0≤x≤60,∴当100<a<200时,x=60时W取得最大值,此时W=60a+44000>50000,100﹣x=40;当a=100时,W=50000;当0<a<100时,x=0时,W取得最大值,此时W=5000,100﹣x=100;由上可得,当100<a<200时,购买A种型号的电器60台,B种型号的电器40台可获得最大利润;当a=100时,利润为定值50000,此时只要A种型号的电器不超过60台即可;当0<a<100时,购买A种型号电器0台,B种型号电器100台可获得最大利润.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的方法解答.27.【分析】(1)①由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG=DE;②由△BCG≌△DCE,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°;③过点C作CM⊥BG于点M,作CN⊥DE于点N,由△BCG≌△DCE,可得S△BCG=S△DCE,可证CM=CN,根据角平分线的性质可得OC平分∠BOE;(2))由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG =DE,∠CDE=∠CBG,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°,过点C作CM⊥BG 于点M,作CN⊥DE于点N,由△BCG≌△DCE,可得S△BCG=S△DCE,可证CM=CN,根据角平分线的性质可得OC平分∠BOE;(3)由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG =DE,∠CDE=∠CBG,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°.由点C在∠BOE外部,可得OC平分∠BOE不成立.【解答】解:(1)①∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴△BCG≌△DCE(SAS)∴BG=DE,∵△BCG≌△DCE,∴∠CBG=∠CDE,∵∠CDE+∠DEC=90°∴∠CBG+∠DEC=90°即∠DOG=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.③如图,过点C作CM⊥BG于点M,作CN⊥DE于点N,∵△BCG≌△DCE,∴S△BCG=S△DCE,∴×BG×CM=×DE×CN,∴CM=CN,且CM⊥BG,CN⊥DE,∴CO平分∠BOE,(2)结论①②③仍然成立,理由如下:如图,连接CO,过点C作CM⊥BG于点M,作CN⊥DE于点N,∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,∵∠CBG+∠BHC=90°,且∠BHC=∠DHO,∴∠CDE+∠DHO=90°即∠DOG=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.∵△BCG≌△DCE,∴S△BCG=S△DCE,∴×BG×CM=×DE×CN,∴CM=CN,且CM⊥BG,CN⊥DE,∴CO平分∠BOE,(3)结论①②成立,③不成立,如图,延长DE交BC于点H,交BG的延长线于点O,∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,∵∠CDE+∠CHD=90°,且∠BHO=∠DHC,∴∠CBG+∠BHO=90°即∠DOB=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.∵点C在∠BOE外部,∴CO不平分∠BOE.【点评】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的外角性质,旋转的性质,关键是证出△BCG≌△DCE,主要训练学生的推理能力和观察图形的能力.28.【分析】(1)由待定系数法求点坐标及函数关系式;(2)根据题意,△DEB为等腰直角三角形,通过分类讨论PQB=90°或∠QPB=90°的情况求出满足条件t值;(3)延长MF交GB于K,由∠MHK=90°,HF=MF可推得HF=FK,即F为MK中点,设出M坐标,利用中点坐标性质,表示K点坐标,代入GB解析式,可求得点M坐标.【解答】解:(1)∵直线BD的解析式为y=﹣x+2∴点B坐标为(2,0)由抛物线解析式可知点C坐标为(0,5)∵CD⊥y,BE⊥x轴∴点D纵坐标为5,代入y=﹣x+2得到横坐标x=﹣3,点D坐标为(﹣3,5)则点E坐标为(2,5)将点D(﹣3,5)点B(2,0)代入y=ax2+bx+5解得∴抛物线解析式为:y=﹣x2﹣+5故答案为:(2,5),y=﹣x2﹣+5(2)由已知∠QBE=45°,PE=t,PB=5﹣t,QB=当∠QPB=90°时,△PQB为直角三角形.∵∠QBE=45°∴QB=∴解得t=当∠PQB=90°时,△PQB为直角三角形.△BPQ∽△BDE∴BQ•BD=BP•BE∴5(5﹣t)=解得:t=∴t=或时,△PQB为直角三角形.(3)由已知tan∠ABG=,且直线GB过B点则直线GB解析式为:y=延长MF交直线BG于点K∵HF=MF∴∠FMH=∠FHM∵MH⊥BG时∴∠FMH+∠MKH=90°∠FHK+∠FHM=90°∴∠FKH=∠FHK∴HF=KF∴F为MK中点设点M坐标为(x,﹣ x2﹣x+5)∵F(0,2)∴点K坐标为(﹣x, x2+x﹣1)把K点坐标代入入y=解得x1=0,x2=﹣4,把x=0代入y=﹣x2﹣+5,解得y=5,把x=﹣4代入y=﹣x2﹣+5解得y=3则点M坐标为(﹣4,3)或(0,5).【点评】本题为代数几何综合题,考查了二次函数性质、一次函数性质、三角形相似以及直角三角形的性质,应用了分类讨论和数形结合思想。

云南省2019年中考数学押题卷(含解析)

云南省2019年中考数学押题卷(含解析)

2019年云南省中考数学押题卷考生须知:1. 本试卷满分为120分,考试时间为120分钟。

2. 答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3. 保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D四个选项,其中只有一个是正确的。

)1.在﹣4,2,﹣1,3这四个数中,最小的数是()A.-1 B. 3 C.2 D. -42.运用乘法公式计算(a+3)(a﹣3)的结果是()A.a2﹣6a+9 B.a2﹣3a+9 C.a2﹣9 D.a2﹣6a﹣93.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3 B.0 C.3 D.6≤x<3表示在数轴上,下列表示正确的是()4. 将某不等式组的解集15.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012 B.8×1013 C.8×1014 D.0.8×10136.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有()A.4种 B.6种C.8种 D.10种7.如右图,正方形ABCD的边长为2,点E是BC边上一点,以AB为直径在正方形内作半圆O,将△DCE沿DE翻折,点C刚好落在半圆O的点F处,则CE的长为()A .23B .35 C .34 D .478.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( ) A .y =﹣2(x +1)2+1 B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1 D .y =﹣2(x +1)2﹣19.小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分,根据题意,下面列出的方程正确的是( )A. B.C.D.10.如图,将直线y=x 向下平移b 个单位长度后得到直线l ,l 与反比例函数xky =(k>0,x >0)的图像相交于点A ,与x 轴相交于点B ,则1022=-OB OA ,则k 的值是( )A . 5B .10C .15D .20第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11. 若2a —b=5,则多项式6a —3b 的值是___________。

2019中考数学押题试卷及答案(北师大版)

2019中考数学押题试卷及答案(北师大版)

2019年中考数学押题试卷(测试时间:120分钟;满分:150分)一.选择题(每小题4分,共40分) 1. 2-的相反数是 ( ) A. -2 B.2 C.21 D.21- 2.安徽省人民政府在2019年政府工作报告中指出,2018年经济运行总体平稳、稳中有进,其中财政收入5363亿元、增长10.4%。

5363亿用科学计数法表示为 ( ) A.5.363310⨯ B.8105363⨯ C.1110363.5⨯ D.1210363.5⨯ 3.由6个大小相同的小正方体搭成的几何体如图所示,比较它的主视图、左视图、俯视图的面积,则 ( ) A. 三个视图的面积一样大 B. 主视图的面积最小 C. 左视图的面积最小 D. 俯视图的面积最小第3题 第6题 第8题 4.下列运算正确的是 ( ) A.6332a a a =⋅ B.6332a a a =+ C.623)(a a = D.326a a a =÷ 5.为了加强城市环保工作,市政府计划从2018年起到2020年累计..投入4250万元,已知2018年投入1500万元,设投入经费的年平均增长率为x ,根据题意,下列所列方程正确的是( ) A .1500(1+x )2=4250 B .1500(1+2x )=4250 C .1500+1500x+1500x 2=4250 D .1500(1+x )+1500(1+x )2=4250﹣1500 6.已知直线m ∥n,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A 、B 两点分别落在直线m,n 上。

若∠1=20°,则∠2的度数为 ( ) A.20° B.30° C.45° D.50°7. 已知一组数据:1,3,3,5.若添加一个数据3,则下列各统计量中会发生变化的是( )A.方差B.平均数C.中位数D.众数8.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为 ( )A. 23B.76C. 1D.569.如图,一次函数1y =x 与二次函数2y =ax ²+bx+c 的图象相交于点P,Q 两点,则函数y=ax ²+(b-1)x+c 的图象可能是 ( )学校 班级姓名学号密封线内不要答题 ———————————————————————————————————————————A B C D10.如图,⊙P的半径为1,且点P的坐标为(3,2),点C是⊙P上的一个动点,点A,B是x 轴上的两点,且OA=OB,AC⊥BC,则AB的最小值为()A.2B.4C.1112- D.2132-第10题第13题第14题二.填空题(本大题共4小题,每小题5分,满分20分)11.写出一个比3大比4小的无理数:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考考试模拟试卷 数 学姓名 班级 考号(全卷三个大题,共27个题;满分150分,考试用时120分钟)注意事项:1.本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卷一并交回.一、选择题:(本大题15个小题,每小题3分,共45分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.3的倒数是( )A .-3B .3C .13D .13-2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x 3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定 4.使分式24x x -有意义的x 的取值范围是( )A .x =2B .x ≠2C .x =-2D .x ≠-2 5.不等式组2030x x ->-<⎧⎨⎩的解集是( )A .x>2B .x<3C .2<x<3D .无解6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20°7.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是( )A .3B .4C .5D .6 8.观察市统计局公布的“十五”时期某市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是( )A .2003年农村居民人均收入低于2002年B .农村居民人均收入比上年增长率低于9%的有2年C .农村居民人均收入最多时2004年D .农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( ) A .甲 B .乙 C .丙 D .不能确定10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为x 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118B .112C .19D .1611.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o, 那么∠2的度数是A.32oB.58oC.68oD.60o12.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121 B .61C .41D .31 13.2012年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是A.32,31B.31,32C.31,31D.32,35 14.若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在 A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限15.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直二、填空题:(本大题5个小题,每小题5分,共25分)在每小题中,请将答案直接填在题后的横线上. 16.分解因式:x 2-4=____________.17.如图,已知直线12l l ∥,∠1=40°,那么∠2=____________度.18.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为____________. 19.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,P AOB第8题且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为____________立方米.20.如图,已知函数y =ax+b 和y =kx 的图象交于点P, 则根据图象可得,关于y ax b y kx=+=⎧⎨⎩的二元一次方程组的解是____________.三、解答题:(本大题7个小题,共80分)下列各题解答时必须给出必要的演算过程或推理步骤. 21.(8分)计算:12tan 60(51)3--︒+-+-;22. (8分)先化简,再求值:2244242x x x x x x +++÷---,其中1x =. 23.(12分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有____________套,B 型玩具有____________套,C 型玩具有____________套.(2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为____________,每人每小时能组装C 型玩具____________套.24.(10分)期中考试后,九年级(1)班准备购买一批笔记本在家长会上奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本. (1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,老师决定购买笔记本和钢笔共90件,钢笔每支原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案? (3):那种方案更省钱?25.(12分)如图,在梯形ABCD 中,AB ∥DC ,∠BCD =90°,且AB =1,BC =2,tan ∠ADC =2. ⑴求证:DC =BC ;论;⑶在⑵的条件下,当BE :CE =1:2,∠BEC =135°时,求sin ∠BFE 的值.26.(14分)已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,任选1个结论进行证明); (2)A ∠=30°,CD=233,求O ⊙的半径r .27.(16分)已知:m 、n 是方程2650x x -+=的两个实数根,且m<n ,抛物线2y x bx c =-++的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.DO FBE(第27题图)2018年中考考试模拟试卷 数 学(5)答题卡姓名 班级 考号(全卷三个大题,共27个题;满分150分,考试用时120分钟)一、选择题(本大题共15小题,每小题只有一个正确选项,每小题3分,满分45分)、 1.[A][B][C][D] 2.[A][B][C][D] 3.[A][B][C][D] 4.[A][B][C][D] 5.[A][B][C][D] 6.[A][B][C][D] 7.[A][B][C][D] 8[A][B][C][D] 9.[A][B][C][D] 10.[A][B][C][D] 11.[A][B][C][D] 12.[A][B][C][D] 13[A][B][C][D] 14.[A][B][C][D] 15.[A][B][C][D]二、填空题(本大题共5小题,每小题5分,满分25分)16. .17. 度.18. .19. .20. . 三、解答题(本大题共7个题,满分80分)21.(8分)计算:12tan 601)--︒++;22. (8分)先化简,再求值: 2244242x x x x x x +++÷---,其中1x =.23.(12分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有____________套,B型玩具有____________套,C型玩具有____________套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为____________,每人每小时能组装C型玩具____________套.24.(10分)期中考试后,九年级(1)班准备购买一批笔记本在家长会上奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,老师决定购买笔记本和钢笔共90件,钢笔每支原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?(3):那种方案更省钱?25.(12分)如图,在梯形ABCD 中,AB ∥DC ,∠BCD =90°,且AB =1,BC =2,tan ∠ADC =2. ⑴求证:DC =BC ;⑵E 是梯形内的一点,F 是梯形外的一点,且∠EDC =∠FBC ,DE =BF ,试判断△ECF 的形状,并证明你的结论;⑶在⑵的条件下,当BE :CE =1:2,∠BEC =135°时,求sin ∠BFE 的值.26.(14分)已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,任选1个结论进行证明); (2)A ∠=30°,CD =233,求O ⊙的半径r . DO FBE(第27题图)27.(16分)已知:m 、n 是方程2650x x -+=的两个实数根,且m<n ,抛物线2y x bx c =-++的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.2018中考模拟试卷数学(5)参考答案一、选择题:(每小题3分,共45分)1—5 C A A B C 6—10 D B D C B 11—15 B B C A C 二、填空题:(每小题5分,共25分)16.(x+2)(x -2) 17.40 18.2π或6.28均可 19.4310⨯ 20.42x y =-=-⎧⎨⎩三、解答题:(共80分) 21.32; 22.23.(每空2分)(1)132,48,60;(2)4,6. 24.25.(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2.(1分) 又tan ∠ADC =2,所以212DM ==.(2分)因为MC =AB =1,所以DC =DM+MC =2,即DC =BC .(3分) (2)等腰直角三角形.(4分)证明:因为DE =DF ,∠EDC =∠FBC ,DC =BC . 所以,△DEC ≌△BFC (5分)所以,CE =CF ,∠ECD =∠BCF . 所以,∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(6分)(3)设BE =k ,则CE =CF =2k,所以EF =.(7分)因为∠BEC =135°,又∠CEF =45°,所以∠BEF =90°.(8分)所以3BF k ==(9分) 所以1sin 33BFE k k ∠==.(10分) 26.(1)BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△, BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥等(每写出一个正确结论得1分,满分4分.)(2)解:AB Q 是O ⊙的直径90ADB ∴∠=° ········ 5分 又30E ∠=Q ° 30A ∴∠=° ················ 6分12BD AB r ∴== ··················· 7分(第22题图)90CBA ∴∠=° ····················· 8分 60C ∴∠=︒在Rt BCD △中,3CD =tan 602BD rDC ∴==° ····························9分 2r ∴= 10分27.(1)解方程2650x x -+=,得125,1x x ==(1分)由m<n ,有m =1,n =5 所以点A 、B 的坐标分别为A (1,0),B (0,5).(2分) 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++==⎧⎨⎩解这个方程组,得45b c =-=⎧⎨⎩所以,抛物线的解析式为245y x x =--+(3分)(2)由245y x x =--+,令y =0,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9).(4分) 过D 作x 轴的垂线交x 轴于M . 则1279(52)22DMC S ∆=⨯⨯-=12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯=(5分)所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形.(6分)(3)设P 点的坐标为(a ,0)因为线段BC 过B 、C 两点,所以BC 所在的值线方程为y =x+5. 那么,PH 与直线BC 的交点坐标为E(a ,a+5),(7分)PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.(8分)由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+解这个方程,得32a =-或5a =-(舍去)(9分)②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+解这个方程,得23a =-或5a =-(舍去)P 点的坐标为3(,0)2-或2(,0)3-.(10分)。

相关文档
最新文档