操作系统课程设计报告

合集下载

操作系统课程设计(小型的操作系统)

操作系统课程设计(小型的操作系统)

操作系统课程设计报告题目:一个小型的操作系统班级:计122(杏)学号:1213023075姓名:贾苏日期:2014/06/231.实验平台(1)软件平台:开发系统平台:Windows 7 (64)Microsoft visual c++ 6.0测试系统平台:Windows 7 (64)(2)硬件平台:cpu:AMD A6-3420 APU内存:4GB硬盘:500G2.所需实现的功能及相应的阐述:(1)进程调度管理为了贴切现实中的os,采用RR(轮转调度算法),且不提供用户显式的选择调度算法,即对用户是透明的。

现实中的处理器主频为1Ghz~3Ghz,选取中间点为1.5Ghz,得时间片大小为0.7ns ,为方便计算*10,则时间片大小定为7ns。

假设进程之间的调度和切换不耗费cpu时间。

(2)死锁的检测与处理检测当然采用的是银行家算法处理:让用户选择kill一个进程,释放他所占有的所有资源。

(3)虚拟分页调度管理虚拟分页:给出的是逻辑值访问磁盘将那个数据块放入到内存中内存中的地址采用一定的算法相对应于磁盘的地址。

特规定访存采用的是按字节寻址内存的大小128KB外存的大小1MB即整个系统可以提供1MB的逻辑地址空间供进程进行访问(在地址总线足够扫描内存的情况下)。

虚拟地址映射采用:直接映射法规定的8kB为一个页面,故内存有16个页面,外存有128个页面。

如果产生了内存已满,便会产生缺页中断,淘汰采用FIFO算法,利用一个队列来做。

部分内外存的对应表0 0,128,2*128+0.......1 1,129,2*128+1.......2 2,130,2*128+2.......16 127,128+16,2*128+16.........(4)I/O中断处理设中断来自两个方面:1.DMA输送开始和结束时的中断设定一个宏定义为DMA一次传输的数据量的大小->DmaNum 假定为10kb每次DMA开始:耗费1ns cpu时间进行中断处理DMA 结束:耗费2ns cpu 时间进行中断处理由操作系统课程知,DMA 传输数据时不需要CPU 的干预。

《操作系统》课程设计报告

《操作系统》课程设计报告

《操作系统》课程设计报告一、读者/写者的问题模拟实现读者/写者问题,是指保证一个writer 进程必须与其他进程互斥地访问共享对象的同步问题。

读者写者问题可以这样的描述:有一群写者和一群读者,写者在写同一本书,读者也在读这本书,多个读者可以同时读这本书,但是只能有一个写者在写书,并且读者必优先,也就是说,读者和写者同时提出请求时,读者优先。

当读者提出请求时,需要有一个互斥操作,另外需要有一个信号量S 来确定当前是否可操作。

信号量机制是支持多道程序的并发操作系统设计中解决资源共享时进程间的同步与互斥的重要机制,而读者写者则是这一机制的一个经典范例。

与记录型信号量解决读者——写者问题不同,信号量机制它增加了一个限制,即最多允许RN 个读者同时读。

为此,又引入了一个信号量L,并赋予初值为RN,通过执行wait (L,1,1)操作来控制读者的数目,每当有一个读者进入时,就要执行wait (L,1,1)操作,使L 的值减1。

当有RN 个读者进入读后,L 便减为0,第RN+1 个读者要进入读时,必然会因wait(L,1,1)操作失败而堵塞。

程序实例:#include <windows.h>#include <ctype.h>#include <stdio.h>#include <string.h>#include <stdlib.h>#include <malloc.h>#define MAX_PERSON 100#define READER 0 //读者#define WRITER 1 //写者#define END -1#define R READER#define W WRITERtypedef struct _Person{HANDLE m_hThread;//定义处理线程的句柄int m_nType;//进程类型(读写)int m_nStartTime;//开始时间int m_nWorkTime;//运行时间int m_nID;//进程号}Person;Person g_Persons[MAX_PERSON];int g_NumPerson = 0;long g_CurrentTime= 0;//基本时间片数int g_PersonLists[] = {//进程队列1, W, 3, 5, 2, W, 16, 5, 3, R, 5, 2,4, W, 6, 5, 5, R, 4, 3, 6, R, 17,7,END,};int g_NumOfReading = 0;int g_NumOfWriteRequest = 0;//申请写进程的个数HANDLE g_hReadSemaphore;//读者信号HANDLE g_hWriteSemaphore;//写者信号bool finished = false; //所有的读完成//bool wfinished = false; //所有的写完成void CreatePersonList(int *pPersonList);bool CreateReader(int StartTime,int WorkTime,int ID);bool CreateWriter(int StartTime,int WorkTime,int ID);DWORD WINAPI ReaderProc(LPVOID lpParam);DWORD WINAPI WriterProc(LPVOID lpParam);int main(){g_hReadSemaphore = CreateSemaphore(NULL,1,100,NULL); //创建信号灯,当前可用的资源数为1,最大为100g_hWriteSemaphore = CreateSemaphore(NULL,1,100,NULL); //创建信号灯,当前可用的资源数为1,最大为100CreatePersonList(g_PersonLists); // Create All the reader and writersprintf("Created all the reader and writer\n 创建\n");g_CurrentTime = 0;while(true){g_CurrentTime++;Sleep(300); // 300 msprintf("CurrentTime = %d\n",g_CurrentTime);if(finished) return 0;} // return 0;}void CreatePersonList(int *pPersonLists){int i=0;int *pList = pPersonLists;bool Ret;while(pList[0] != END){switch(pList[1]){case R:Ret = CreateReader(pList[2],pList[3],pList[0]);//351,w452,523,654break; case W:Ret = CreateWriter(pList[2],pList[3],pList[0]);break;}if(!Ret)printf("Create Person %d is wrong\n",pList[0]);pList += 4; // move to next person list}}DWORD WINAPI ReaderProc(LPVOID lpParam)//读过程{Person *pPerson = (Person*)lpParam;// wait for the start timewhile(g_CurrentTime != pPerson->m_nStartTime){ }printf("Reader %d is Requesting 等待\n",pPerson->m_nID);printf("\n\n************************************************\n");// wait for the write requestWaitForSingleObject(g_hReadSemaphore,INFINITE); if(g_NumOfReading ==0) {WaitForSingleObject(g_hWriteSemaphore,INFINITE); }g_NumOfReading++;ReleaseSemaphore(g_hReadSemaphore,1,NULL);pPerson->m_nStartTime = g_CurrentTime;printf("Reader %d is Reading the Shared Buffer等待\n",pPerson->m_nID); printf("\n\n************************************************\n"); while(g_CurrentTime <= pPerson->m_nStartTime + pPerson->m_nWorkTime) {}printf("Reader %d is Exit退出\n",pPerson->m_nID);printf("\n\n************************************************\n"); WaitForSingleObject(g_hReadSemaphore,INFINITE);g_NumOfReading--;if(g_NumOfReading == 0){ReleaseSemaphore(g_hWriteSemaphore,1,NULL);//此时没有读者,可以写}ReleaseSemaphore(g_hReadSemaphore,1,NULL);if(pPerson->m_nID == 4) finished = true; //所有的读写完成ExitThread(0);return 0;}DWORD WINAPI WriterProc(LPVOID lpParam){Person *pPerson = (Person*)lpParam;// wait for the start timewhile(g_CurrentTime != pPerson->m_nStartTime){}printf("Writer %d is Requesting 请求进行写操作\n",pPerson->m_nID);printf("\n\n************************************************\n"); WaitForSingleObject(g_hWriteSemaphore,INFINITE);// modify the writer's real start timepPerson->m_nStartTime = g_CurrentTime;printf("Writer %d is Writting the Shared Buffer写内容\n",pPerson->m_nID);while(g_CurrentTime <= pPerson->m_nStartTime + pPerson->m_nWorkTime){}printf("Writer %d is Exit退出\n",pPerson->m_nID);printf("\n\n************************************************\n");//g_NumOfWriteRequest--;ReleaseSemaphore(g_hWriteSemaphore,1,NULL);if(pPerson->m_nID == 4) finished = true;//所有的读写完成ExitThread(0);return 0;}bool CreateReader(int StartTime,int WorkTime,int ID){DWORD dwThreadID;if(g_NumPerson >= MAX_PERSON)return false;Person *pPerson = &g_Persons[g_NumPerson];pPerson->m_nID = ID;pPerson->m_nStartTime = StartTime;pPerson->m_nWorkTime = WorkTime;pPerson->m_nType = READER;g_NumPerson++;// Create an New ThreadpPerson->m_hThread= CreateThread(NULL,0,ReaderProc,(LPVOID)pPerson,0,&dwThreadID); if(pPerson->m_hThread == NULL)return false;return true;}bool CreateWriter(int StartTime,int WorkTime,int ID){DWORD dwThreadID;if(g_NumPerson >= MAX_PERSON)return false;Person *pPerson = &g_Persons[g_NumPerson];pPerson->m_nID = ID;pPerson->m_nStartTime = StartTime;pPerson->m_nWorkTime = WorkTime;pPerson->m_nType = WRITER;g_NumPerson++;// Create an New ThreadpPerson->m_hThread= CreateThread(NULL,0,WriterProc,(LPVOID)pPerson,0,&dwThreadID); if(pPerson->m_hThread == NULL)return false;return true;}二、进程间通信与子进程使用管道进行父子进程间通信,程序首先判断参数是否合法,因为输入的字符将从父进程通过发送到子进程中。

操作系统课程设计实验报告(以Linux为例)

操作系统课程设计实验报告(以Linux为例)

目录目录 0一、实验环境 (1)二、实验报告总体要求 (1)实验一编译L INUX内核 (2)实验二观察L INUX行为 (6)实验三进程间通信 (13)一、实验环境Linux平台◆硬件平台:普通PC机硬件环境。

◆操作系统:Linux环境,例如,红旗Linux或Red Hat Linux;启动管理器使用GRUB。

◆编译环境:伴随着操作系统的默认gcc环境。

◆工作源码环境:一个调试的内核源码,版本不低于2.4.20。

二、实验报告总体要求在2013年11月25日前提交实验报告。

实验报告至少要求包含以下内容:1.引言:概述本次实验所讨论的问题,工作步骤,结果,以及发现的意义。

2.问题提出:叙述本篇报告要解决什么问题。

注意不可以抄写实验要求中的表述,要用自己的话重新组织我们这里所提出的问题。

3.解决方案:叙述如何解决自己上面提出的问题,可以用小标题 3.1,3.2…等分开。

这是实验报告的关键部分,请尽量展开来写。

注意,这部分是最终课程设计的基本分的部分。

这部分不完成,本课程设计不会及格。

4.实验结果:按照自己的解决方案,有哪些结果。

结果有异常吗?能解释一下这些结果吗?同别人的结果比较过吗?注意,这部分是实验报告出彩的地方。

本课程设计要得高分,应该在这部分下功夫。

5.结束语:小结并叙述本次课程设计的经验、教训、体会、难点、收获、为解决的问题、新的疑惑等。

6.附录:加了注释的程序清单,注释行数目至少同源程序行数目比1:2,即10行源程序,至少要给出5行注释。

操作系统课程设计实验报告实验一编译Linux内核实验时间6小时实验目的认识Linux内核的组成,掌握配置、编译、安装Linux内核的步骤。

实验目标下载2.6.19或更新的Linux内核,配置该内核使其支持NTFS,并在新的内核中修改其版本为Linux NameTestKernel x.x.x,其中,Name是你的名字(汉语拼音);x.x.x是新内核的版本号,最后在你的机器上编译安装这个新内核。

操作系统课程设计实验报告

操作系统课程设计实验报告

操作系统课程设计实验报告操作系统课程设计实验报告引言:操作系统是计算机科学中的重要课程,通过实验设计,可以帮助学生更好地理解操作系统的原理和实践。

本文将结合我们在操作系统课程设计实验中的经验,探讨实验设计的目的、实验过程和实验结果,以及对操作系统的理解和应用。

一、实验设计目的操作系统课程设计实验的目的是帮助学生深入理解操作系统的工作原理和实际应用。

通过设计和实现一个简单的操作系统,学生可以更好地掌握操作系统的各个组成部分,如进程管理、内存管理、文件系统等。

同时,实验设计还可以培养学生的动手能力和问题解决能力,提高他们对计算机系统的整体把握能力。

二、实验过程1. 实验准备在进行操作系统课程设计实验之前,我们需要对操作系统的基本概念和原理进行学习和理解。

同时,还需要掌握一些编程语言和工具,如C语言、汇编语言和调试工具等。

这些准备工作可以帮助我们更好地进行实验设计和实现。

2. 实验设计根据实验要求和目标,我们设计了一个简单的操作系统实验项目。

该项目包括进程管理、内存管理和文件系统三个主要模块。

在进程管理模块中,我们设计了进程创建、调度和终止等功能;在内存管理模块中,我们设计了内存分配和回收等功能;在文件系统模块中,我们设计了文件的创建、读写和删除等功能。

通过这些模块的设计和实现,我们可以全面了解操作系统的各个方面。

3. 实验实现在进行实验实现时,我们采用了分阶段的方法。

首先,我们实现了进程管理模块。

通过编写相应的代码和进行调试,我们成功地实现了进程的创建、调度和终止等功能。

接下来,我们实现了内存管理模块。

通过分配和回收内存空间,我们可以更好地管理系统的内存资源。

最后,我们实现了文件系统模块。

通过设计文件的读写和删除等功能,我们可以更好地管理系统中的文件资源。

三、实验结果通过实验设计和实现,我们获得了一些有意义的结果。

首先,我们成功地实现了一个简单的操作系统,具备了进程管理、内存管理和文件系统等基本功能。

《操作系统》课程设计

《操作系统》课程设计

《操作系统》课程设计一、课程目标知识目标:1. 让学生掌握操作系统的基本概念,包括进程、线程、内存管理、文件系统等核心知识;2. 了解操作系统的历史发展,掌握不同类型操作系统的特点及使用场景;3. 掌握操作系统的性能评价方法和常用的调度算法。

技能目标:1. 培养学生运用操作系统知识解决实际问题的能力,如分析系统性能瓶颈、优化系统资源分配等;2. 培养学生具备基本的操作系统编程能力,如进程创建、线程同步、文件操作等;3. 提高学生的团队协作能力和沟通能力,通过小组讨论和项目实践,学会共同解决问题。

情感态度价值观目标:1. 培养学生对操作系统学科的兴趣,激发学生的学习热情,使其形成积极向上的学习态度;2. 培养学生具备良好的信息素养,尊重知识产权,遵循法律法规;3. 培养学生的创新精神和批判性思维,敢于质疑、勇于探索,形成独立思考的能力。

课程性质:本课程为计算机科学与技术专业的核心课程,旨在让学生掌握操作系统的基本原理和实现方法,提高学生的系统分析和编程能力。

学生特点:学生具备一定的编程基础和计算机系统知识,具有较强的逻辑思维能力和动手实践能力。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,通过案例分析和项目实践,帮助学生将所学知识内化为具体的学习成果。

在教学过程中,关注学生的学习进度和反馈,及时调整教学策略,确保课程目标的实现。

二、教学内容1. 操作系统概述:介绍操作系统的定义、发展历程、功能、类型及特点,对应教材第一章内容。

- 操作系统的起源与发展- 操作系统的功能与类型- 操作系统的主要特点2. 进程与线程:讲解进程与线程的概念、状态、调度算法,对应教材第二章内容。

- 进程与线程的定义与区别- 进程状态与转换- 进程调度算法3. 内存管理:分析内存管理的基本原理、策略和技术,对应教材第三章内容。

- 内存分配与回收策略- 虚拟内存技术- 页面置换算法4. 文件系统:介绍文件系统的基本概念、结构、存储原理,对应教材第四章内容。

操作系统课程设计报告

操作系统课程设计报告

操作系统课程设计报告概述:本课程设计旨在使学生熟悉文件管理系统的设计方法,加深对所学各种文件操作的了解及其操作方法的特点。

通过模拟文件系统的实现,深入理解操作系统中文件系统的理论知识,加深对教材中的重要算法的理解。

同时通过编程实现这些算法,更好地掌握操作系统的原理及实现方法,提高综合运用各专业课知识的能力。

主要任务:本课程设计的主要任务是设计和实现一个简单的文件系统,包括建立文件存储介质的管理机制、建立目录(采用一级目录结构)、文件系统功能(显示目录、创建、删除、打开、关闭、读、写)和文件操作接口(显示目录、创建、删除、打开、关闭、读、写)。

系统设计:本系统模拟一个文件管理系统,要完成对文件的基本操作,包括文件、文件夹的打开、新建、删除和读取写入文件,创建更改目录,列出目录内容等信息。

系统建立了文件目录树,存储文件系统中的所有文件。

对于用户名下的文件,用文件目录树的分支来存储。

采用命令行操作界面很直观,也方便用户进行操作,用户只要按照操作界面所显示的命令来操作即可。

整体设计框架:系统初始化界面由创建用户存储空间、管理文件、退出系统三个模块组成。

用户创建由创建用户存储空间、进入目录、删除用户存储空间、显示所有用户存储空间等模块组成。

然后各个模块再由一些小模块组成。

其中创建文件、打开关闭文件、读写文件等文件操作模块包括在进入目录模块里面。

系统实现:以下是本课程设计的主要内容的实现程序代码:cincludeincludeincludetypedef struct file{ char name[10];struct file *next; File;typedef struct content{ char name[10];File *file;int f_num;struct content *next; Content;typedef struct user{ char name[10];char psw[10]; Content *con;struct user *next; User;char cur_user[20];XXX;int user_num=0;添加文件:在该函数中,我们首先需要获取文件名,然后检查是否已经存在该文件。

操作系统课程设计报告

操作系统课程设计报告

目录一、课程设计目的 (2)二、课程设计要求 (2)三、创新思维 (3)四、系统环境支持及语言选择 (4)五、系统框架构成 (4)(一)整体框架: (4)(二)流程图 (5)1.先来先服务算法流程图 (5)2.优先级算法 (5)六、系统功能说明 (6)(一)先来先服务算法的实现: (6)(二)静态优先级算法的实现: (6)(三)动态优先级算法的实现: (6)(四)创建进程的实现: (6)(五)阻塞进程的实现: (7)(六)唤醒进程的实现: (7)(七)撤销进程的实现: (7)(八)进程控制的实现: (7)七、用户使用说明 (8)八、体会与自我评价 (8)一、课程设计目的在学习操作系统课程的基础上,在对操作系统各部分充分理解的基础上,对操作系统的整体进行一个模拟。

本实验进行的进程调度系统的算法采用的是动态和静态优先数优先的调度算法(即把处理机分配给优先数最低的进程)先来先服务算法。

通过实践加深对各个部分的管理功能的认识,还能进一步分析各个部分之间的联系,最后达到对完整系统的理解。

同时,可以提高运用操作系统知识解决实际问题的能力;锻炼实际的编程能力、创新能力、开发软件的能力;还能提高调查研究、查阅技术文献、资料以及编写软件设计文档的能力。

二、课程设计要求1.进程管理功能以进程调度为主要功能。

以进程控制为辅助功能。

2.体现操作系统原理中进程调度算法和进程控制算法。

按照操作系统原理设计。

3.结构化设计。

设计时构建出模块结构图并存于文件中。

模块化实现,对每一功能,每一操作使用模块、函数、子程序设计方法实现。

4.进程以PCB为代表。

队列、指针用图示。

每一步功能在桌面上能显示出来。

5.系统应具有排错功能,对可能出现的错误应具有排查功能和纠错能力。

6.界面自行设计,语言自行选择。

(可用C#语言,也可用你会的其他语言,甚至还可用PPT)7.每人的设计功能都能表现或说明出来。

8.进程以队列法组织,对不同进程调度算法:FIFO队列或PRI队列或rotate(轮转队列)用同一个进程序列组织,对阻塞队列可设置一个,也可设多个。

操作系统课程设计报告

操作系统课程设计报告

操作系统课程设计报告专业:学号:姓名:提交日期:【设计目的】(1)本实验的目的是通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能和内部实现。

(2)结合数据结构、程序设计、计算机原理等课程的知识,设计一个二级文件系统,进一步理解操作系统。

(3)通过分对实际问题的分析、设计、编程实现,提高学生实际应用、编程的能力【设计内容】为Linux系统设计一个简单的二级文件系统。

要求做到以下几点:1.可以实现下列几条命令:login 用户登录dir 列目录create 创建文件delete 删除文件open 打开文件close 关闭文件read 读文件write 写文件cd 进出目录2.列目录时要列出文件名,物理地址,保护码和文件长度3.源文件可以进行读写保护【实验环境】C++/VC++【源程序清单】#include "stdio.h"#include "string.h"#include "conio.h"#include "stdlib.h"#define MAXNAME 25 /*the largest length of mfdname,ufdname,filename*/#define MAXCHILD 50 /*the largest child*/#define MAX (MAXCHILD*MAXCHILD) /*the size of fpaddrno*/typedef struct /*the structure of OSFILE*/{int fpaddr; /*file physical address*/int flength; /*file length*/int fmode; /*file mode:0-Read Only;1-Write Only;2-Read and Write; 3-Protect;*/char fname[MAXNAME]; /*file name*/} OSFILE;typedef struct /*the structure of OSUFD*/{char ufdname[MAXNAME]; /*ufd name*/OSFILE ufdfile[MAXCHILD]; /*ufd own file*/}OSUFD;typedef struct /*the structure of OSUFD'LOGIN*/{char ufdname[MAXNAME]; /*ufd name*/char ufdpword[8]; /*ufd password*/} OSUFD_LOGIN;typedef struct /*file open mode*/{int ifopen; /*ifopen:0-close,1-open*/int openmode; /*0-read only,1-write only,2-read and write,3-initial*/}OSUFD_OPENMODE;OSUFD *ufd[MAXCHILD]; /*ufd and ufd own files*/OSUFD_LOGIN ufd_lp;int ucount=0; /*the count of mfd's ufds*/int fcount[MAXCHILD]; /*the count of ufd's files*/int loginsuc=0; /*whether login successfully*/char username[MAXNAME]; /*record login user's name22*/char dirname[MAXNAME];/*record current directory*/int fpaddrno[MAX]; /*record file physical address num*/OSUFD_OPENMODE ifopen[MAXCHILD][MAXCHILD]; /*record file open/close*/ int wgetchar; /*whether getchar()*/FILE *fp_mfd,*fp_ufd,*fp_file_p,*fp_file;void LoginF(); /*LOGIN FileSystem*/void DirF(); /*Dir FileSystem*/void CdF(); /*Change Dir*/void CreateF(); /*Create File*/void DeleteF(); /*Delete File*/void ModifyFM(); /*Modify FileMode*/void OpenF(); /*Open File*/void CloseF(); /*Close File*/void ReadF(); /*Read File*/void WriteF(); /*Write File*/void QuitF(); /*Quit FileSystem*/void help();char *rtrim(char *str); /*remove the trailing blanks.*/char *ltrim(char *str); /*remove the heading blanks.*/void InputPW(char *password); /*input password,use '*' replace*/void SetPANo(int RorW); /*Set physical address num*/int ExistD(char *dirname); /*Whether DirName Exist,Exist-i,Not Exist-0*/int WriteF1(); /*write file*/int ExistF(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/int FindPANo(); /*find out physical address num*/void clrscr(){system("cls");}int main(){int i,choice1;char choice[50]; /*choice operation:dir,create,delete,open,delete,modify,read,write*/ int choiceend=1; /*whether choice end*/char *rtrim(char *str); /*remove the trailing blanks.*/char *ltrim(char *str); /*remove the heading blanks.*/if((fp_mfd=fopen("c:\\osfile\\mfd.txt","rb"))==NULL){fp_mfd=fopen("c:\\osfile\\mfd.txt","wb");fclose(fp_mfd);}for(i=0;i<MAX;i++) fpaddrno[i]=0;//textattr(BLACK*16|WHITE);clrscr(); /*clear screen*/LoginF(); /*user login*/clrscr();if(loginsuc==1) /*Login Successfully*/{while (1){wgetchar=0;if (choiceend==1)printf("\n\nC:\\%s>",strupr(dirname));elseprintf("Bad command or file name.\nC:\\%s>",strupr(username));gets(choice); //输入所选择的strcpy(choice,ltrim(rtrim(strlwr(choice)))); //将输入的值赋给choiceif (strcmp(choice,"dir")==0) choice1=1; //依次将输入的值与dir,create等进行比较else if(strcmp(choice,"create")==0) choice1=2; //如果输入create将choice1置为2通过switch选择,以下依次类推else if(strcmp(choice,"delete")==0) choice1=3;else if(strcmp(choice,"attrib")==0) choice1=4;else if(strcmp(choice,"open")==0) choice1=5;else if(strcmp(choice,"close")==0) choice1=6;else if(strcmp(choice,"read")==0) choice1=7;else if(strcmp(choice,"write")==0) choice1=8;else if(strcmp(choice,"exit")==0) choice1=9;else if(strcmp(choice,"cls")==0) choice1=10;else if(strcmp(choice,"cd")==0) choice1=11;else if(strcmp(choice,"help")==0) choice1=20;else choice1=12; //choice1=12时跳转到default,然后继续循环switch(choice1){case 1:DirF();choiceend=1;break;case 2:CreateF();choiceend=1;if(!wgetchar) getchar();break;case 3:DeleteF();choiceend=1;if(!wgetchar)getchar();break;case 4:ModifyFM();choiceend=1;if(!wgetchar) getchar();break;case 5:OpenF();choiceend=1;if (!wgetchar) getchar();break;case 6:CloseF();choiceend=1;if (!wgetchar) getchar();break;case 7:ReadF();choiceend=1;if (!wgetchar) getchar();break;case 8:WriteF();choiceend=1;if (!wgetchar) getchar();break;case 9:printf("\nYou have exited this system.");QuitF();exit(0);break;case 10:clrscr();choiceend=1;break;case 11:CdF();choiceend=1;break;case 20:help();choiceend=1;break;default:choiceend=0;}}}elseprintf("\nAccess denied."); //登录成功}void help(void){printf("\nThe Command List\n");printf("\nCd Attrib Create write Read Open Cls Delete Exit Close\n");}char *rtrim(char *str) /*除去末尾端的空格指针指向字符串第一个*/{int n=strlen(str)-1; //n为字符串长度减1while(n>=0){if(*(str+n)!=' ') //末尾不存在空格{*(str+n+1)='\0'; //'\n'表示结束符break;}else n--; //如果存在空格将空格去掉}if (n<0) str[0]='\0';return str;}char *ltrim(char *str) /*除去前端的空格*/{strrev(str); //把字符串str的所有字符的顺序颠倒rtrim(str); //去掉尾端空格strrev(str); //再颠倒过来return str;}void LoginF() /*LOGIN FileSystem*/{char loginame[MAXNAME],loginpw[9],logincpw[9],str[50];int i,j,flag=1;char a[25];int findout; /*login user not exist*/while(1){findout=0;printf("\n\nLogin Name:");gets(loginame); //输入字符串ltrim(rtrim(loginame)); //去掉前后端的空格fp_mfd=fopen("c:\\osfile\\mfd.txt","rb"); //打开该文件,返回给一个文件指针for(i=0;fread(&ufd_lp,sizeof(OSUFD_LOGIN),1,fp_mfd)!=0;i++) //检测输入登录名和mfd.txt是否一样if (strcmp(strupr(ufd_lp.ufdname),strupr(loginame))==0) //若已经注册过{findout=1; //表示该用户已注册过strcpy(logincpw,ufd_lp.ufdpword);}fclose(fp_mfd);if (findout==1) /*user exist*/{printf("Login Password:");InputPW(loginpw); /*input password,use '*' replace*/if (strcmp(loginpw,logincpw)==0){strcpy(username,strupr(loginame));strcpy(dirname,username);fp_mfd=fopen("c:\\osfile\\mfd.txt","rb");for(j=0;fread(&ufd_lp,sizeof(OSUFD_LOGIN),1,fp_mfd)!=0;j++){strcpy(str,"c:\\osfile\\");strcat(str,ufd_lp.ufdname);strcat(str,".txt");ufd[j]=(OSUFD*)malloc(sizeof(OSUFD));strcpy(ufd[j]->ufdname,strupr(ufd_lp.ufdname));fp_ufd=fopen(str,"rb");fcount[j]=0;for(i=0;fread(&ufd[j]->ufdfile[i],sizeof(OSFILE),1,fp_ufd)!=0;i++,fcount[j]++){ifopen[j][i].ifopen=0;ifopen[j][i].openmode=4;}fclose(fp_ufd);}fclose(fp_mfd);ucount=j;SetPANo(0);printf("\n\nLogin successful! Welcome to this FileSystem\n\n");loginsuc=1;return;}else{printf("\n\n");flag=1;while(flag){printf("Login Failed! Password Error. Try Again(Y/N):");gets(a);ltrim(rtrim(a));if (strcmp(strupr(a),"Y")==0){loginsuc=0;flag=0;}else if(strcmp(strupr(a),"N")==0){loginsuc=0;flag=0;return;}}}}else{printf("New Password(<=8):");InputPW(loginpw); /*input new password,use '*' replace*/printf("\nConfirm Password(<=8):"); /*input new password,use '*' replace*/ InputPW(logincpw);if (strcmp(loginpw,logincpw)==0){strcpy(ufd_lp.ufdname,strupr(loginame));strcpy(ufd_lp.ufdpword,loginpw);fp_mfd=fopen("c:\\osfile\\mfd.txt","ab");fwrite(&ufd_lp,sizeof(OSUFD_LOGIN),1,fp_mfd);fclose(fp_mfd);strcpy(username,strupr(loginame));strcpy(dirname,loginame);////////////////////////////////////////////////////////strcpy(str,"c:\\osfile\\");strcat(str,username);strcat(str,".txt");if((fp_ufd=fopen(str,"rb"))==NULL){fp_ufd=fopen(str,"wb");fclose(fp_ufd);}fp_mfd=fopen("c:\\osfile\\mfd.txt","rb");for(j=0;fread(&ufd_lp,sizeof(OSUFD_LOGIN),1,fp_mfd)!=0;j++){/////////////////////////////////////strcpy(str,"c:\\osfile\\");strcat(str,ufd_lp.ufdname);strcat(str,".txt");ufd[j]=(OSUFD*)malloc(sizeof(OSUFD));strcpy(ufd[j]->ufdname,strupr(ufd_lp.ufdname));fp_ufd=fopen(str,"rb");for(i=0;fread(&ufd[j]->ufdfile[i],sizeof(OSFILE),1,fp_ufd)!=0;i++,fcount[j]++){ifopen[j][i].ifopen=0;ifopen[j][i].openmode=4;}fclose(fp_ufd);}fclose(fp_mfd);ucount=j;SetPANo(0);printf("\n\nLogin Successful! Welcome to this System\n\n");loginsuc=1;return;}else{printf("\n\n");flag=1;while(flag){printf("Login Failed! Password Error. Try Again(Y/N):");gets(a);ltrim(rtrim(a));if (strcmp(strupr(a),"Y")==0){loginsuc=0;flag=0;}else if(strcmp(strupr(a),"N")==0){loginsuc=0;flag=0;return;}}}}}}void SetPANo(int RorW) /*Set physical address num,0-read,1-write*/{int i,j;if (RorW==0){if((fp_file_p=fopen("c:\\osfile\\file\\file_p.txt","rb"))==NULL) //如果文件未读成功{fp_file_p=fopen("c:\\osfile\\file\\file_p.txt","wb"); //创建该文件fclose(fp_file_p);}fp_file_p=fopen("c:\\osfile\\file\\file_p.txt","rb");///////////////////////////////////////////////////////////////////for(i=0;fread(&j,sizeof(int),1,fp_file_p)!=0;i++)fpaddrno[j]=1; //真正模拟的位示图的关系/*for(i=1;i<MAX;i++)if ((i%13)==0)fpaddrno[i]=1;*/}else{fp_file_p=fopen("c:\\osfile\\file\\file_p.txt","wb");/*for(i=1;i<MAX;i++)if((i%13)==0)fpaddrno[i]=0;*/for(i=0;i<MAX;i++)if (fpaddrno[i]==1) //表示已使用fwrite(&i,sizeof(int),1,fp_file_p); //把第几个扇区号写进文件}fclose(fp_file_p);}void InputPW(char *password) /*input password,use '*' replace*/{int j;for(j=0;j<=7;j++) //密码的长度小于8{password[j]=getch(); //获得输入值存入数组if ((int)(password[j])!=13) //13表示ASCII码,如果不是回车{if((int)(password[j])!=8) //如果不是退格putchar('*'); //就输入J个*号else //如果是退格{if (j>0) //且密码个数大于0{j--;j--;putchar('\b');putchar(' ');putchar('\b'); //'\b'表示退格,putchar函数只能用于单个字符输出}else j--;}}else{ password[j]='\0'; //\0是字符串的结束符,如果输出完毕则终止break;}}password[j]='\0';}void DirF() /*Dir FileSystem*/{int i,j,count=0;char sfmode[25],sfpaddr[25],str[25];clrscr();if (strcmp(strupr(ltrim(rtrim(dirname))),"")!=0){printf("\n\nC:\\%s>dir\n",dirname);printf("\n%14s%16s%14s%10s%18s\n","FileName","FileAddress","FileLength","Type","Fil eMode");j=ExistD(dirname);for(i=0;i<fcount[j];i++){if ((i%16==0)&&(i!=0)){printf("\nPress any key to continue..");getch();clrscr();printf("\n%14s%16s%14s%10s%18s\n","FileName","FileAddress","FileLength","Type","Fil eMode");}/////////////////////////////////////////////////////////itoa(ufd[j]->ufdfile[i].fpaddr,str,10);strcpy(sfpaddr,"file");strcat(sfpaddr,str);if (ufd[j]->ufdfile[i].fmode==0) strcpy(sfmode,"Read Only");else if(ufd[j]->ufdfile[i].fmode==1) strcpy(sfmode,"Write Only");else if(ufd[j]->ufdfile[i].fmode==2)strcpy(sfmode,"Read And Write");else strcpy(sfmode,"Protect");printf("%14s%16s%14d%10s%18s\n",ufd[j]->ufdfile[i].fname,sfpaddr,ufd[j]->ufdfile[i].flen gth,"<FILE>",sfmode);}printf("\n %3d file(s)\n",fcount[j]);}else{printf("\n\nC:\\>dir\n");printf("\n%14s%18s%8s\n","DirName","OwnFileCount","Type");for(i=0;i<ucount;i++){if ((i%16==0)&&(i!=0)){printf("\nPress any key to continue...");getch();clrscr();printf("\n%14s%18s%8s\n","DirName","OwnFileCount","Type");}printf("%14s%18d%8s\n",ufd[i]->ufdname,fcount[i],"<UFD>");count=count+fcount[i];}printf("\n %3d dir(s),%5d file(s)\n",ucount,count);}}int ExistD(char *dirname) /*Whether DirName Exist,Exist-i,Not Exist-0*/{int i;int exist=0;for(i=0;i<ucount;i++)if (strcmp(strupr(ufd[i]->ufdname),strupr(dirname))==0){exist=1;break;}if (exist) return(i);else return(-1);}void CdF() /*Exchange Dir*/{char dname[MAXNAME];printf("\nPlease input DirName (cd..-Previous dir; DirNAME-cd [DirNAME]):");gets(dname);ltrim(rtrim(dname));if (ExistD(dname)>=0) strcpy(dirname,strupr(dname));elseif(strcmp(strupr(dname),"CD..")==0) strcpy(ltrim(rtrim(dirname)),"");else printf("\nError.\'%s\' does not exist.\n",dname);}void CreateF() /*Create File*/{int fpaddrno,flag=1,i;char fname[MAXNAME],str[50],str1[50],a[25];char fmode[25];if (strcmp(strupr(dirname),strupr(username))!=0){printf("\nError. You must create file in your own dir.\n");wgetchar=1;}else{printf("\nPlease input FileName:");gets(fname);ltrim(rtrim(fname));if (ExistF(fname)>=0){printf("\nError. Name \'%s\' has already existed.\n",fname);wgetchar=1;}else{printf("Please input FileMode(0-Read Only, 1-Write Only, 2-Read and Write,3-Protect):");gets(fmode);ltrim(rtrim(fmode));if((strcmp(fmode,"0")==0)||(strcmp(fmode,"1")==0)||(strcmp(fmode,"2")==0)||(strcmp(fmode ,"3")==0)){fpaddrno=FindPANo();if (fpaddrno>=0){i=ExistD(username);strcpy(ufd[i]->ufdfile[fcount[i]].fname,fname);ufd[i]->ufdfile[fcount[i]].fpaddr=fpaddrno;ufd[i]->ufdfile[fcount[i]].fmode=atoi(fmode);ifopen[i][fcount[i]].ifopen=0;ifopen[i][fcount[i]].openmode=4;strcpy(str,"c:\\osfile\\file\\file");itoa(fpaddrno,str1,10);strcat(str,str1);strcat(str,".txt");fp_file=fopen(str,"wb");fclose(fp_file);fcount[i]++;while(flag){printf("Input text now(Y/N):");gets(a);ltrim(rtrim(a));ufd[i]->ufdfile[fcount[i]-1].flength=0;if(strcmp(strupr(a),"Y")==0){fp_file=fopen(str,"wb+");ufd[i]->ufdfile[fcount[i]-1].flength=WriteF1();flag=0;}else if(strcmp(strupr(a),"N")==0){flag=0;wgetchar=1;}}printf("\n\'%s\' has been created successfully!\n",fname);}else{printf("\nFail!No Disk Space. Please format your disk.\n");wgetchar=1;}}else{printf("\nError. FileMode\'s Range is 0-3\n");wgetchar=1;}}}}int ExistF(char *filename) /*该函数检测某文件是否存在*/{int i,j;int exist=0;j=ExistD(dirname);for(i=0;i<fcount[j];i++)if (strcmp(strupr(ufd[j]->ufdfile[i].fname),strupr(filename))==0){exist=1;break;}if (exist) return(i);else return(-1);}//找出没有使用的磁盘号,然后加以使用,返回值为该磁盘号int FindPANo() /*find out physical address num*/{int i;for(i=0;i<MAX;i++)if (fpaddrno[i]==0) //找到没有使用的磁盘号{fpaddrno[i]=1; //然后加以使用break;}if (i<MAX) return(i);else return(-1);}int WriteF1() /*write file*/{int length=0;char c;printf("Please input text(\'#\' stands for end):\n");while((c=getchar())!='#'){fprintf(fp_file,"%c",c); //传送格式化输出到一个fp_file文件中if (c!='\n') length++;}fprintf(fp_file,"\n");fclose(fp_file);return(length);}void OpenF() /*打开文件*/{int fc, i; //定义两个整型变量char fname[MAXNAME], fmode[25]; //定义两个字符数组int fm;printf("\nPlease enter filename:");gets(fname); //从键盘获得文件名ltrim(rtrim(fname)); //出去前后的空格if(ExistF(fname)<0) //判断文件是否存在{printf("\\'%s\'is not existed.\n",fname); //文件不存在wgetchar = 1;}else //如果存在文件{i = ExistD(username); //获取用户标识for(int a = 0; a < fcount[i]; a++) //循环检验文件名是否匹配{if(strcmp(fname,ufd[i]->ufdfile[a].fname)==0) //如果文件名匹配{fc=a; //记住是第几个文件break;}}ifopen[i][fc].ifopen = 1; //设置ifopen数组的第i个用户的第fc个文件的状态未打开printf("please input OpenMode(0-Read Only, 1-Write Only, 2-Read and Write,3-Protect):");gets(fmode); //得到用户输入的打开权限fm = atoi(fmode); //字符串转成整型ifopen[i][fc].openmode = fm; //设置ifopen的打开模式printf("\nOpen successed");wgetchar = 1;}}void CloseF() /*关闭文件*/{char fname[MAXNAME]; //定义一个字符数组int i,k;if(strcmp(strupr(dirname),strupr(username))!=0) //判断所处的目录名是否存在{printf("\nerror.you can only moddify filemode in yourself dir.\n"); //只能关闭自己目录下的文件}else{printf("\nplease enter filename:");gets(fname); //输入需要关闭的文件名ltrim(rtrim(fname)); //除去前面和后面的空格i = ExistF(fname); //获取用户标识if(i>=0){k = ExistD(username);if(ifopen[k][i].ifopen==0) //文件已被关闭{printf("\\'%s\'has been closed.you can not close itagain.\n",fname);}else //文件关闭成功{ifopen[k][i].ifopen=0; //ifopen的状态设为0ifopen[k][i].openmode=4; //打开状态为4printf("\'%s\'has been closed successfully!",fname);}}else //文件不存在{printf("\\'%s\'dose not exist.\n",fname);}}}void WriteF() /*Write File*/{int i,k,m = 0; //定义三个整型变量int length;char fname[MAXNAME];char str[255], str1[255];if(strcmp(strupr(dirname),strupr(username))!=0) //只能写自己目录下的文件{printf("\nerror.please convert to ufd dir before write.\n");wgetchar=1;return;}printf("\ncaution:open file first\n");printf("opened file(s) list:\n");k=ExistD(dirname); //获取目录编号for(i=0; i<fcount[k]; i++) //列出可以写的文件{if(ifopen[k][i].ifopen==1) //如果文件是打开的{printf("%15s",ufd[k]->ufdfile[i].fname);m++;}if((m%4==0)&&(m!=0))printf("\n");}printf("\n%d files openned.\n",m);if(m==0) //没有打开的文件wgetchar=1;if(m!=0){printf("\nplease input filename:");gets(fname); //获得所要写的文件名ltrim(rtrim(fname)); //除去前面和后面的空格i=ExistF(fname); //获取文件的编号if(i>=0) //文件是打开的{if(ifopen[k][i].openmode==1 || (ifopen[k][i].openmode==2)) //文件是可写或者可读可写{itoa(ufd[k]->ufdfile[i].fpaddr,str,10); //获取文件对应的物理地址strcpy(str1,"file");strcat(str1,str);strcpy(str,"c:\\osfile\\file\\");strcat(str,str1);strcat(str,".txt");fp_file=fopen(str,"ab"); //以二进制只写的方式打开,每次将内容添加到文件内容的末尾length = WriteF1(); //写入并获得长度ufd[k]->ufdfile[i].flength=ufd[k]->ufdfile[i].flength+length; //获得总长度printf("\n\n%d Length.\n",ufd[k]->ufdfile[i].flength);printf("\n you have write file successfully!");fclose(fp_file);wgetchar=0;}else if(ifopen[k][i].openmode==0) //文件是只读的{printf("\nerror.\'%s\' has been opened with read only mode.it isn\'twrite.\n",fname);wgetchar=1;}else //文件是保护的{printf("\nerror.\'%s\' has been opened with protect mode . it isn\'twrite.\n",fname);wgetchar=1;}}else //文件是关闭的{printf("\nerror.\'%s\' is in closing status.please open it before write\n",fname);wgetchar=1;}}else //文件不存在{printf("\nerror.\'%s\' dose not exist.\n",fname);wgetchar=1;}}void DeleteF() /*Delete File*/{char fname[MAXNAME],str[50],str1[50]; //定义了三个数组int i, j, k; //定义三个整形变量int fpaddrno1; //文件的物理地址if(strcmp(strupr(ltrim(rtrim(dirname))),"")==0) //将获取的文件名的前后空格去掉,再与空格比较{printf("\nerror.please convert to ufd dir before delete.\n");wgetchar = 1;}if(strcmp(strupr(dirname),strupr(username))!=0) //无法删除不是自己目录的文件{printf("\nerror.you can only modify filemode in youself dir.\n");wgetchar = 1;}else{printf("\nplease enter filename:\n");gets(fname); //从键盘获得要删除的文件名ltrim(rtrim(fname)); //去除前面和后面的空格i = ExistF(fname); //得到文件编号if(i>=0){k = ExistD(username); //获取用户名if(ifopen[k][i].ifopen==1) //如果文件打开,则无法删除{printf("\nerror.\'%s\' is in open status.close it before delete.\n",fname);wgetchar=1;}else{if(ufd[k]->ufdfile[i].fmode==3) //保护的文件无法删除{printf("error.\'%s\' is in protect status.close it before delete.\n",fname);wgetchar=1;}else{fpaddrno1=ufd[k]->ufdfile[i].fpaddr; //获取文件对应的物理文件名fpaddrno[fpaddrno1]=0; //收回盘块for(j=i; j<fcount[k]; j++){ufd[k]->ufdfile[j]=ufd[k]->ufdfile[j+1]; //从被删除的文件开始,数组值全部向前移动一个}strcpy(str,"c:\\osfile\\file\\file");itoa(fpaddrno1,str1,10); //将整数转化成字符串strcat(str,str1); //把str1添加到str结尾处strcat(str,".txt"); //把.txt添加到str结尾处remove(str); //删除物理文件fcount[k]--; //K用户数量减少1printf("\n \'%s\' is deleted successfully.\n",fname);wgetchar=1;}}}else //需要删除的文件不存在{printf("\nerror.\'%s\' dose not exist.\n",fname);wgetchar=1;}}}void ModifyFM() /*Modify FileMode*/{char fname[MAXNAME],str[50];int i,k;char fmode[25]; /*whether delete*/if (strcmp(strupr(dirname),strupr(username))!=0){printf("\nError.You can only modify filemode in yourself dir.\n");wgetchar=1;}else{printf("\nPlease input FileName:");gets(fname);ltrim(rtrim(fname));i=ExistF(fname);if (i>=0){k=ExistD(username);if(ifopen[k][i].ifopen==1){printf("\nError.\'%s\' is in open status. Close it before modify.\n",fname);wgetchar=1;}else{if(ufd[k]->ufdfile[i].fmode==0) strcpy(str,"read only"); /*FileMode*/else if(ufd[k]->ufdfile[i].fmode==1) strcpy(str,"write only");else if(ufd[k]->ufdfile[i].fmode==2) strcpy(str,"read and write");else strcpy(str,"Protect");printf("\'%s\' filemode is %s.\n",fname,strupr(str));printf("Modify to(0-read only,1-write only,2-read and write,3-Protect):");gets(fmode);ltrim(rtrim(fmode));if(strcmp(fmode,"0")==0){ufd[k]->ufdfile[i].fmode=0;printf("\n\'%s\' has been modified to READ ONL Y mode successfully.\n",fname);wgetchar=1;}else if(strcmp(fmode,"1")==0){ufd[k]->ufdfile[i].fmode=1;printf("\n\'%s\' has been modified to WRITE ONL Y mode successfully.\n",fname);wgetchar=1;}else if(strcmp(fmode,"2")==0){ufd[k]->ufdfile[i].fmode=2;printf("\n\'%s\' has been modified to READ AND WRITE mode successfully.\n",fname);wgetchar=1;}else if(strcmp(fmode,"3")==0){ufd[k]->ufdfile[i].fmode=3;printf("\n\'%s\' has been modified to FORBID mode successfully.\n",fname);wgetchar=1;}else{printf("\nError.\'%s\' is not modified.\n",fname);wgetchar=1;}}}else{printf("\nError. \'%s\' dose not exist.\n",fname);wgetchar=1;}}}void ReadF() /*Read File*/{int i,k,n=0;char fname[MAXNAME];char str[255],str1[255],c;if (strcmp(strupr(ltrim(rtrim(dirname))),"")==0){printf("\nError.Please convert to ufd dir before read.\n");wgetchar=1;return;}printf("\nCaution:Open file first\n");printf("Opened File(s) List:\n");k=ExistD(dirname);for(i=0;i<fcount[k];i++){if (ifopen[k][i].ifopen==1)if ((ifopen[k][i].openmode==0) ||(ifopen[k][i].openmode==2)){printf("%15s",ufd[k]->ufdfile[i].fname);n++;}if((n%4==0)&&(n!=0)) printf("\n");}printf("\n%d files openned.\n",n);if (n==0) wgetchar=1;if(n!=0){printf("\nPlease input FileName:");gets(fname);ltrim(rtrim(fname));i=ExistF(fname);if(i>=0){if(ifopen[k][i].ifopen==1){if((ifopen[k][i].openmode==0) ||(ifopen[k][i].openmode==2)){itoa(ufd[k]->ufdfile[i].fpaddr,str,10);strcpy(str1,"file");strcat(str1,str);strcpy(str,"c:\\osfile\\file\\");strcat(str,str1);strcat(str,".txt");fp_file=fopen(str,"rb");fseek(fp_file,0,0);printf("\nThe text is:\n\n");printf(" ");while(fscanf(fp_file,"%c",&c)!=EOF)if (c=='\n') printf("\n ");else printf("%c",c);printf("\n\n%d Length.\n",ufd[k]->ufdfile[i].flength);fclose(fp_file);wgetchar=1;}else{printf("\nError.\'%s\' has been opened with WRITE ONLY mode. It isn\'t read.\n",fname);wgetchar=1;}}else{printf("\nError.\'%s\' is in closing status. Please open it before read\n",fname);wgetchar=1;}}else{printf("\nError. \'%s\' does not exist.\n",fname);wgetchar=1;}}}void QuitF() /*Quit FileSystem*/{int i,j;char str[50];SetPANo(1);if (fp_mfd!=NULL) fclose(fp_mfd);if (fp_ufd!=NULL) fclose(fp_ufd);if (fp_file!=NULL) fclose(fp_file);for(j=0;j<ucount;j++){strcpy(str,"c:\\osfile\\");strcat(str,ufd[j]->ufdname);ltrim(rtrim(str));strcat(str,".txt");fp_ufd=fopen(str,"wb");fclose(fp_ufd);fp_ufd=fopen(str,"ab");for(i=0;i<fcount[j];i++)fwrite(&ufd[j]->ufdfile[i],sizeof(OSFILE),1,fp_ufd);fclose(fp_ufd);}}【测试结果】1.创建和打开文件2.写入文件3.关闭和删除文件【设计总结】这次操作系统的课程设计是设计二级文件系统,虽然只有短短的两周时间,还是在考试周,时间非常的短暂,但是我从中学到了很多课本以外的知识,在课设中并不是一帆风顺,课设中需要很多的专业知识,遇到了很多的问题,通过问老师,问同学还有网上查找资料解决了,在编写程序的过程中老师还要求我们养成良好的注释习惯,方便其他人理解程序。

操作系统实验报告3篇

操作系统实验报告3篇

课程设计说明书设计题目:操作系统课程设计班级:信息管理与信息系统2011级学号:姓名:山东科技大学2013年12 月25 日课程设计任务书学院信息科学与工程专业信息学管理与信息系统班级2011-1姓名一、课程设计题目:操作系统课程设计二、课程设计主要参考资料(1)Abraham Silberschatz & Peter Baer Galvin & Greg Gagne. Operating System Concepts(第七版影印版). 高等教育出版社. 2007.3.(2)计算机操作系统(第三版)西安电子科技大学出版社(3)三、课程设计应解决的主要问题:(1)CPU调度算法的模拟实现(2)死锁相关算法的实现(3)磁盘调度算法的实现四、课程设计相关附件(如:图纸、软件等):(1)程序源代码(2)五、任务发出日期:2013-10-1 课程设计完成日期:2014-1-1指导教师签字:指导教师对课程设计的评语成绩:指导教师签字:年月日设计1 CPU调度算法的模拟实现一、设计目的1、根据系统的资源分配策略所规定的资源分配算法2、利用编程语言,模拟实现先来先服务(FCFS)、最短作业优先(非抢占SJF)、非抢占优先调度算法、时间片轮转调度算法(RR)3、针对模拟进程,利用CPU调度算法进行调度4、进行算法评价,计算平均周转时间和平均等待时间二、设计要求1、调度所需的进程参数由输入产生(手工输入或者随机数产生)2、输出调度结果3、输出算法评价指标三、设计说明1、定义public类:class program{public:char name;//进程名int atime;//进程到达的时间int stime;//进程服务的时间int btime;//进程开始执行的时间int ftime;//进程完成的时间int rtime;//进程的周转时间float qrtime;//进程的带权周转时间};2、冒泡排序:class program t;for( i=1;i<m;i++)for(int j=0;j<m-i;j++)if(p[j].atime>p[j+1].atime){t=p[j];p[j]=p[j+1];p[j+1]=t;}3、流程图:(1)①先来先服务调度流程图:②主要程序p[0].btime=p[0].atime;p[0].ftime=p[0].atime+p[0].stime;p[0].rtime=p[0].ftime-p[0].atime;p[0].qrtime=(float)p[0].rtime/p[0].stime;for(i=1;i<m;i++){if(p[i].atime>p[i-1].ftime){p[i].btime=p[i].atime;}else{p[i].btime=p[i-1].ftime;}p[i].ftime=p[i].btime+p[i].stime;p[i].rtime=p[i].ftime-p[i].atime;p[i].qrtime=(float)p[i].rtime/p[i].stime;}①短作业优先进程(非抢占优先权)调度流程图:②(SJF)主要代码int k=0,x=0;for(i=k+1;i<m;i++){for(j=k+1;j<m;j++){if(p[j].atime<p[k].ftime){x++;}elsebreak;}int min=k+1;if(x>1){for(j=k+2;j<=x+k;j++){if(p[j].stime<p[min].stime){min=j;}}t=p[min];p[min]=p[k+1];p[k+1]=t;p[k+1].ftime=p[k].stime+p[k+1].stime;}k++;x=0;}③优先权调度算法(非抢占):int k=0,x=0;for(i=k+1;i<m;i++){for(j=k+1;j<m;j++){if(p[j].atime<p[k].ftime){x++;}elsebreak;}int min=k+1;if(x>1){for(j=k+2;j<=x+k;j++){if(p[j].youxianquan<p[min].youxianquan){min=j;}}t=p[min];p[min]=p[k+1];p[k+1]=t;p[k+1].ftime=p[k].stime+p[k+1].stime;}k++;x=0;}①时间片轮转调度算法:②主要算法int time=p[0].atime;int Max=p[0].stime1;for(i=0; i<m; i++){p[i].stime2=p[i].stime1;if(p[i].stime1>Max)Max=p[i].stime1; }for(int j=0; j<Max; j++){for(i=0; i<m; i++){if(p[i].stime2==0)continue;if(p[i].atime<=time){p[i].stime2-=1;time+=1;}elsei=-1;if(p[i].stime2==0)p[i].ftime=time;}}4、输出p[0].btime=p[0].atime;p[0].ftime=p[0].atime+p[0].stime;p[0].rtime=p[0].ftime-p[0].atime;p[0].qrtime=(double)p[0].rtime/p[0].stime;for(i=1;i<m;i++){if(p[i].atime>p[i-1].ftime){p[i].btime=p[i].atime;}else{p[i].btime=p[i-1].ftime;}p[i].ftime=p[i].btime+p[i].stime;p[i].rtime=p[i].ftime-p[i].atime;p[i].qrtime=(float)p[i].rtime/p[i].stime;}cout<<"进程******到达时间**服务时间**开始执行时间*完成时间**周转时间**带权周转时间"<<endl;for(i=0;i<m;i++){cout<<setiosflags(ios::left)<<setw(10)<<p[i].name<<setw(10)<< p[i].atime<<setw(10)<<p[i].stime<<setw(13)<<p[i].btime<<setw(10) <<p[i].ftime<<setw(10)<<p[i].rtime<<setw(13)<<p[i].qrtime<<endl;}}四、运行结果及分析1、先来先服务(FCFS)测试数据2、短作业优先(SJF)测试数据3、优先权(非抢占)测试数据4、时间片轮转(RR)测试数据五、总结通过这次试验,我进一步的理解了冒泡排序的算法,而且,对进程作业先来先服务、短进程优先、非抢占优先、按时间片轮转调度算法以及进程调度的概念和算法,有了更深入的认识!初步理解了操作系统对于作业处理的基本思想!了解到算法很重要,又更加明白算法本身可以节约时间。

《操作系统课程设计》报告范本(doc 10页)

《操作系统课程设计》报告范本(doc 10页)

《操作系统课程设计》报告学号:姓名:班级:指导教师:报告日期:一、课设目的通过对操作系统课程的学习,熟悉进程的概念、进程的管理与存储、进程的调度,通过实践深入理解进程的调度算法。

二、课设任务要求编写一个程序,可以创建若干个虚拟进程,并对若干个虚拟进程进行调度,调度策略为时间片轮转法,主要任务包括:①进程的个数,进程的内容(即进程的功能序列)来源于一个进程序列描述文件,另外调度运行结果输出到一个运行日志文件;②设计PCB适用于时间片轮转法;③建立进程队列;④实现时间片轮转调度算法,尽量可视化的展示调度的动态过程。

○5总结程序设计的开发过程:需求分析、系统设计、系统实现及文档的收集和整理。

三、实验方法与设计分析每个进程有一个进程控制块( PCB)表示。

进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。

据需要设计调查计划调查、收集数据,能按要求整理数据,在统计表进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。

进程的到达时间为输入进程的时间。

,计算机,千千万万中小创业者渴望成功高中语文,语文试卷,计算机摇篮课进程的运行时间以时间片为单位进行计算。

每个进程的状态可以是就绪 W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。

式,因此上开店成为了一种潮流,并且越来越多高中语文,语文试卷,计算机就绪进程获得 CPU后都只能运行一个时间片。

用已占用CPU时间加1来表示。

卷,计算机络购物高中语文,语文试卷,计算机市场潜力还远未被释放课件同如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。

语文,语文试卷,计算机,第5代速度达自动软件,不用东奔西走高中语文,语文每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的 PCB,以便进行检查。

操作系统课程设计报告

操作系统课程设计报告

操作系统课程设计报告1. 引言操作系统是计算机系统中最核心的软件之一,它负责管理和优化计算机资源的分配和调度,为用户和应用程序提供一个可靠、高效的执行环境。

在操作系统课程设计中,我们通过设计一个简单的操作系统,深入理解操作系统的原理和功能,提升对操作系统的理解和实践能力。

本报告将详细介绍我们小组在操作系统课程设计过程中所完成的工作和实现的目标。

2. 设计目标在本次操作系统课程设计中,我们的设计目标包括:•实现一个基本的中断处理、进程调度和内存管理机制;•设计一个简单的文件系统;•确保操作系统的稳定性和可靠性;•实现用户命令解析和执行功能。

3. 系统架构我们的操作系统设计采用了经典的分层结构,主要由硬件抽象层、内核和用户接口层组成。

1.硬件抽象层:负责与硬件进行交互,提供基本的底层硬件接口,如处理器管理、中断处理、设备控制等。

2.内核:实现操作系统的核心功能,包括进程管理、内存管理、文件系统管理等。

这一层是操作系统的核心,负责管理和调度系统资源。

3.用户接口层:为用户提供简单友好的界面,解析用户输入的命令并调用内核功能进行处理。

用户可以通过命令行或图形界面与操作系统进行交互。

4. 功能实现4.1 中断处理中断是操作系统与外部设备通信的重要机制,我们的操作系统设计中实现了基本的中断处理功能。

通过在硬件抽象层中捕获和处理硬件的中断信号,内核可以对中断进行相应的处理,保证系统的响应能力和稳定性。

4.2 进程调度进程调度是操作系统中的重要任务之一,它决定了系统如何分配和调度上下文切换。

我们的操作系统设计中实现了一个简单的进程调度算法,通过时间片轮转算法和优先级调度算法来管理多个进程的执行顺序,以提高系统的吞吐量和响应性能。

4.3 内存管理内存管理是操作系统中必不可少的功能,它负责对系统内存的分配和回收。

我们的操作系统设计中实现了基本的内存管理功能,包括内存分区、内存空闲管理和地址映射等。

通过合理的内存管理,可以提高系统的内存利用率和性能。

课程设计操作系统

课程设计操作系统

课程设计操作系统一、教学目标本课程旨在让学生掌握操作系统的基本原理和概念,了解操作系统的运行机制和功能,培养学生运用操作系统知识解决实际问题的能力。

具体目标如下:1.知识目标:(1)理解操作系统的基本概念、功能和作用;(2)掌握操作系统的运行机制,包括进程管理、内存管理、文件管理和设备管理;(3)了解操作系统的发展历程和主流操作系统的基本特点。

2.技能目标:(1)能够运用操作系统知识分析和解决实际问题;(2)具备基本的操作系统使用和维护能力;(3)掌握操作系统的基本配置和优化方法。

3.情感态度价值观目标:(1)培养学生对操作系统知识的兴趣和好奇心;(2)树立正确的计算机使用观念,提高信息素养;(3)培养学生团队协作、创新思考和持续学习的能力。

二、教学内容本课程的教学内容主要包括以下几个部分:1.操作系统概述:介绍操作系统的定义、功能、作用和分类;2.进程管理:讲解进程的概念、进程控制、进程同步与互斥、死锁等问题;3.内存管理:讲解内存分配与回收策略、虚拟内存、页面置换算法等;4.文件管理:讲解文件和目录的概念、文件存储结构、文件访问控制、磁盘空间分配等;5.设备管理:讲解设备驱动程序、I/O调度策略、中断处理和DMA传输等;6.操作系统实例分析:分析主流操作系统(如Windows、Linux)的基本特点和运行机制。

三、教学方法本课程采用多种教学方法相结合,以提高学生的学习兴趣和主动性:1.讲授法:讲解操作系统的基本概念、原理和知识点;2.讨论法:学生针对操作系统相关问题进行讨论,培养学生的思维能力和团队协作精神;3.案例分析法:分析实际案例,让学生了解操作系统在实际应用中的作用和意义;4.实验法:安排实验课程,让学生动手实践,巩固所学知识。

四、教学资源为实现课程目标,我们将采用以下教学资源:1.教材:选用权威、实用的操作系统教材,为学生提供系统、全面的知识体系;2.参考书:提供相关领域的参考书籍,拓展学生的知识视野;3.多媒体资料:制作精美的PPT课件,辅助讲解和展示操作系统的相关概念和实例;4.实验设备:配置相应的实验设备,让学生动手实践,提高操作能力。

操作系统课程设计报告

操作系统课程设计报告

实践课设计报告课程名称操作系统课程设计模拟设计内存管理中的地址题目转换(动态分区、页式十进制)学院班级学号姓名指导教师年月日课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 模拟设计内存管理中的地址转换(动态分区、页式十进制)初始条件:1.预备内容:阅读操作系统的内存管理章节内容,理解动态分区、页式、段式和段页式存储管理的思想及相应的分配主存的过程。

2.实践准备:掌握一种计算机高级语言的使用。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.下列内部存储器管理中地址转换,在完成指定存储管理技术中的地址转换基础上还可以选择其它内部存储器管理中的地址转换进行模拟设计并实现:⑴动态分区方案,用最先适用算法对作业实施内存分配,然后把作业地址空间的某一逻辑地址转换成相应的物理地址。

能够处理以下的情形:输入某一逻辑地址,程序能判断地址的合法性,如果合法,计算并输出相应的物理地址。

如果不能计算出相应的物理地址,说明原因。

⑵页式存储管理中逻辑地址到物理地址的转换(十进制)。

能够处理以下的情形:输入某一十进制逻辑地址,能检查地址的合法性,如果合法进行转换,否则显示“地址非法”;物理地址用十进制表示。

⑶页式存储管理中逻辑地址到物理地址的转换(八进制)。

能够处理以下的情形:输入某一八进制逻辑地址,能检查地址的合法性,如果合法进行转换,否则显示“地址非法”;物理地址用八进制表示。

⑷页式存储管理中逻辑地址到物理地址的转换(十六进制)。

能够处理以下的情形:输入某一十六进制逻辑地址,能检查地址的合法性,如果合法进行转换,否则显示“地址非法”;物理地址用十六进制表示。

⑸段式存储管理中逻辑地址到物理地址的转换。

能够处理以下的情形:指定内存的大小,进程的个数,每个进程的段数及段大小;能检查地址的合法性,如果合法进行转换,否则显示地址非法的原因。

⑹段页式存储管理中逻辑地址到物理地址的转换。

《操作系统》课程实验报告

《操作系统》课程实验报告

《操作系统》课程实验报告一、实验目的本次《操作系统》课程实验的主要目的是通过实际操作和观察,深入理解操作系统的工作原理、进程管理、内存管理、文件系统等核心概念,并掌握相关的操作技能和分析方法。

二、实验环境1、操作系统:Windows 10 专业版2、开发工具:Visual Studio Code3、编程语言:C/C++三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新进程,并观察进程的创建过程和资源分配情况。

同时,实现进程的正常终止和异常终止,并分析其对系统的影响。

2、进程同步与互斥使用信号量、互斥锁等机制实现进程之间的同步与互斥。

通过模拟多个进程对共享资源的访问,观察并解决可能出现的竞争条件和死锁问题。

(二)内存管理实验1、内存分配与回收实现不同的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法。

观察在不同的内存请求序列下,内存的分配和回收情况,并分析算法的性能和优缺点。

2、虚拟内存管理研究虚拟内存的工作原理,通过设置页面大小、页表结构等参数,观察页面的换入换出过程,以及对系统性能的影响。

(三)文件系统实验1、文件操作实现文件的创建、打开、读取、写入、关闭等基本操作。

观察文件在磁盘上的存储方式和文件系统的目录结构。

2、文件系统性能优化研究文件系统的缓存机制、磁盘调度算法等,通过对大量文件的读写操作,评估不同优化策略对文件系统性能的提升效果。

四、实验步骤(一)进程管理实验步骤1、进程创建与终止(1)使用 C/C++语言编写程序,调用系统函数创建新进程。

(2)在子进程中执行特定的任务,父进程等待子进程结束,并获取子进程的返回值。

(3)通过设置异常情况,模拟子进程的异常终止,观察父进程的处理方式。

2、进程同步与互斥(1)定义共享资源和相关的信号量或互斥锁。

(2)创建多个进程,模拟对共享资源的并发访问。

(3)在访问共享资源的关键代码段使用同步机制,确保进程之间的正确协作。

(4)观察并分析在不同的并发情况下,系统的运行结果和资源竞争情况。

操作系统课程设计

操作系统课程设计

操作系统课程设计报告1、概述一、设计目的1.对死锁避免中的银行家算法作进一步理解。

2.加深理解死锁的概念。

3.加深理解安全序列和安全状态的概念。

4.通过编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁地发生。

二、开发环境操作系统Windows xp编译环境VC++6.0生成文件银行家算法.cpp2、需求分析一、死锁概念:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程.由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程在无外力协助下,永远分配不到必需的资源而无法继续运行,这就产生了死锁。

二、关于死锁的一些结论:1.参与死锁的进程最少是两个(两个以上进程才会出现死锁)2.参与死锁的进程至少有两个已经占有资源3.参与死锁的所有进程都在等待资源4.参与死锁的进程是当前系统中所有进程的子集如果死锁发生,会浪费大量系统资源,甚至导致系统崩溃。

三、资源分类:永久性资源:可以被多个进程多次使用(可再用资源)1)可抢占资源2)不可抢占资源临时性资源:只可使用一次的资源;如信号量,中断信号,同步信号等(可消耗性资源)“申请--分配--使用--释放”模式四、产生死锁的四个必要条件:1、互斥使用(资源独占)一个资源每次只能给一个进程使用2、不可强占(不可剥夺)资源申请者不能强行的从资源占有者手中夺取资源,资源只能由占有者自愿释放3、请求和保持(部分分配,占有申请)一个进程在申请新的资源的同时保持对原有资源的占有(只有这样才是动态申请,动态分配)4、循环等待存在一个进程等待队列{P1 , P2 , … , Pn}, 其中P1等待P2占有的资源,P2等待P3占有的资源,…,Pn等待P1占有的资源,形成一个进程等待环路。

操作系统课程设计报告题目及代码

操作系统课程设计报告题目及代码

题目一模拟操作系统设计设计一个模拟操作系统管理程序,实现以下管理功能:1.内存管理功能2.文件管理功能3.磁盘管理功能题目二虚拟存储器各页面置换算法的实现与比较内容:设计一个虚拟存储区和内存工作区,通过产生一个随机数的方法得到一个页面序列,假设内存给定的页面数由键盘输入,分别计算使用下述各方法时的内存命中率:先进先出算法〔FIFO〕、最近最少使用算法〔LRU〕、最正确淘汰算法〔OPT〕、最少页面算法〔LFU〕等。

题目三文件系统设计通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能及内部实现。

内容:为Linu*系统设计一个简单的二级文件系统,以实现以下功能:1.可以实现以下几条命令(1)login 用户登录(2)dir 文件目录列表(3)creat 创立文件(4)delete 删除文件(5)open 翻开文件(6)close 关闭文件(7)read 读文件(8)write 写文件2.实验提示〔1〕首先确定文件系统的数据构造:主目录、子目录及活动文件等。

主目录和子目录都以文件的形式存放在磁盘,这样便于查找和修改。

〔2〕用户创立的文件,可以编号存储于磁盘上。

如file0、file1、file2……等,并以编号作为物理地址,在目录中进展登记。

[清华大学?操作系统教程? *丽芬编著题目四设计一个按时间片轮转法进程CPU调度的程序。

提示:〔1〕假设系统有5个进程,每个进程用一个进程控制块PCB来代表,PCB中包含进程名、指针、到达时间、估计运行时间、进程状态表。

其中,进程名即为进程进标识。

〔2〕为每一个进程设计一个要示运行时间和到达时间。

〔3〕按照进程到达的先后顺序排成一个循环队列,再设一个队首指针指向第一个到达的进程首址。

〔4〕执行处理机调度时,开场选择队首的第一个进程运行。

另外再设一个当前运行进程指针,指向当前正运行的进程。

〔5〕由于本实验是模拟实验,所以对被选中进程并不实际启运运行,只是执行:a.估计驼行时间减1b.输出当前运行进程的名字。

操作系统课程设计报告评分标准表

操作系统课程设计报告评分标准表

操作系统课程设计报告评分标准表
以下是一个可能的操作系统课程设计报告的评分标准表:
1. 技术内容(50%)
- 理解和描述操作系统的基本概念和原理(10%)
- 设计和实现一个简单的操作系统(20%)
- 使用合适的数据结构和算法解决操作系统中的问题(10%) - 能够处理并发和同步问题(10%)
2. 实验和测试(20%)
- 设计和执行合适的实验来验证操作系统的功能(10%)
- 使用适当的测试方法测试操作系统的正确性和性能(10%) 3. 报告内容(20%)
- 对操作系统设计和实现的详细描述(10%)
- 对实验和测试结果的分析和讨论(10%)
4. 报告结构和语言表达(10%)
- 报告结构清晰合理,包含必要的章节和子章节(5%)
- 语言表达清晰,没有语法错误,使用恰当的术语(5%)评分标准可以根据具体的课程要求和教师的要求进行调整和修改。

操作系统课程实验报告

操作系统课程实验报告

操作系统课程实验报告一、实验目的操作系统是计算机系统中最为关键的软件之一,它负责管理计算机的硬件资源和软件资源,为用户提供一个良好的工作环境。

通过操作系统课程实验,旨在深入理解操作系统的基本原理和功能,提高对操作系统的实际操作能力和问题解决能力。

二、实验环境本次实验使用的操作系统为Windows 10 和Linux(Ubuntu 1804),开发工具包括 Visual Studio Code、gcc 编译器等。

三、实验内容(一)进程管理1、进程创建与终止在 Windows 系统中,使用 C++语言创建多个进程,并通过进程句柄控制进程的终止。

在 Linux 系统中,使用 fork()系统调用创建子进程,并通过 exit()函数终止进程。

2、进程同步与互斥使用信号量实现进程之间的同步与互斥。

在 Windows 中,利用CreateSemaphore()和 WaitForSingleObject()等函数进行操作;在Linux 中,通过 sem_init()、sem_wait()和 sem_post()等函数实现。

(二)内存管理1、内存分配与释放在 Windows 中,使用 HeapAlloc()和 HeapFree()函数进行动态内存的分配与释放。

在 Linux 中,使用 malloc()和 free()函数完成相同的操作。

2、内存页面置换算法实现了几种常见的内存页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法等,并比较它们的性能。

(三)文件系统管理1、文件创建与读写在 Windows 和 Linux 系统中,分别使用相应的 API 和系统调用创建文件,并进行读写操作。

2、目录操作实现了目录的创建、删除、遍历等功能。

四、实验步骤(一)进程管理实验1、进程创建与终止(1)在 Windows 系统中,编写 C++程序,使用 CreateProcess()函数创建新进程,并通过 TerminateProcess()函数终止指定进程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告设计题目:多用户、多级目录结构文件系统的设计与实现班级:组长学号:组长姓名:指导教师:设计时间:2015年7月设计分工组长学号及姓名:分工:构建系统框架,实现磁盘i节点调入内存,以及内存i节点的申请分配与回收,新建文件和目录,文件的读写组员1学号及姓名:分工:实现成组链接法分配与回收,实现用户登陆和注销,实现格式化初始化函数,参与系统界面的设计组员2学号及姓名:分工:组员3学号及姓名:分工:组员4学号及姓名:分工:摘要文件系统是操作系统用于明确存储设备(常见的是磁盘,也有基于NAND Flash的固态硬盘)或分区上的文件的方法和数据结构;即在存储设备上组织文件的方法。

操作系统中负责管理和存储文件信息的软件机构称为文件管理系统,简称文件系统。

文件系统由三部分组成:文件系统的接口,对对象操纵和管理的软件集合,对象及属性。

从系统角度来看,文件系统是对文件存储设备的空间进行组织和分配,负责文件存储并对存入的文件进行保护和检索的系统。

具体地说,它负责为用户建立文件,存入、读出、修改、转储文件,控制文件的存取,当用户不再使用时撤销文件等。

关键词:操作系统,文件系统摘要 (3)1概述 (5)2课程设计任务与要求 (7)2.1设计任务 (7)2.2设计要求 (7)3算法及数据结构 (8)3.1算法的总体流程 (8)3.2超级块 (10)3.2.1功能 (10)3.2.2数据结构 (10)3.2.3算法 (11)3.3磁盘i节点与内存i节点 (12)3.3.1功能 (12)3.3.2数据结构 (13)3.3.3算法 (14)3.4文件夹操作 (15)3.4.1功能 (15)3.4.2数据结构 (15)3.4.3算法 (16)3.5文件的操作 (17)3.5.1功能 (17)3.5.2数据结构 (17)3.5.3算法 (18)4程序设计与实现 (19)4.1程序流程图 (19)4.2程序说明 (20)4.3实验结果 (26)5结论 (27)6参考文献 (28)7收获、体会和建议 (29)1概述UNIX 采用树型目录结构,每个目录表称为一个目录文件。

一个目录文件是由目录项组成的。

每个目录项包含16B ,一个辅存磁盘块(512B)包含32个目录项。

在目录项中,第1、2字节为相应文件的外存i 节点号,是该文件的内部标识;后14B 为文件名,是该文件的外部标识。

所以,文件目录项记录了文件内、外部标识的对照关系。

根据文件名可以找到辅存i 节点号,由此便得到该文件的所有者、存取权、文件数据的地址健在等信息。

UNIX 的存储介质以512B 为单位划分为块,从0开始直到最大容量并顺序加以编号就成了一个文件卷,也叫文件系统。

UNIX 中的文件系统磁盘存储区分配图如下:本次课程设计是要实现一个简单的模拟UNIX 文件系统。

我们在磁盘中申请一个二进制文件模拟UNIX 内存,依次初始化建立位示图区,I 节点区,数据块区。

并给已打开的文件建立文件打开表。

本文件系统采用两级目录,其中第一级对应于用户账号,第二级对应于用户帐号下的文件。

另外,为了简便文件系统未考虑文件共享,文件系统安全以及管道文件与设备文件等特殊内容。

首先应确定文件系统的数据结构:主目录、子目录及活动文件等。

主目录和子目录都以文件的形式存放于磁盘,这样便于查找和修改。

用户创建的文件,可以编号i 节点区 文件存储区引导区 管理区存储于磁盘上。

如:file0,file1,file2…并以编号作为物理地址,在目录中进行登记。

2课程设计任务与要求2.1设计任务多用户、多级目录结构文件系统的设计与实现。

2.2设计要求1、在深入理解操作系统基本原理的基础上,对于选定的题目,以小组为单位,先确定设计方案;2、设计系统的数据结构和程序结构,设计每个模块的处理流程。

要求设计合理;3、编程序实现系统,要求实现可视化的运行界面,界面应清楚地反映出系统的运行结果;4、确定测试方案,选择测试用例,对系统进行测试;5、运行系统并要通过验收,讲解运行结果,说明系统的特色和创新之处,并回答指导教师的提问;6、提交课程设计报告。

3算法及数据结构3.1算法的总体流程3.2超级块3.2.1功能超级块位于块组的最前面,描述文件系统整体信息的数据结构,主要描述文件系统的目录和文件的静态分布情况,以及描述文件系统的各种组成结构的尺寸、数量等。

3.2.2数据结构//超级块#define NICFREE 50//成组链接法中的每组50块#define NICINOD 50//超级块中空闲节点的最大块typedef struct{unsigned short s_isize;//索引节点块块数unsigned long s_fsize;//数据块块数unsigned int s_nfree;//空闲块块数unsigned short s_pfree;//栈深unsigned int s_free[NICFREE];//空闲块堆栈unsigned int s_ninode;//空闲索引节点数unsigned short s_pinode;//空闲索引节点指针unsigned int s_inode[NICINOD];//空闲索引节点数组unsigned int s_rinode;//铭记索引节点char s_fmod;//超级块修改标志}Filsys;#endif3.2.3算法3.3磁盘i节点与内存i节点3.3.1功能linux中,文件查找不是通过文件名称来查找的。

实际上是通过i节点来实现文件的查找定位的。

我们可以形象的将i节点看做是一个指针。

当文件存储到磁盘上去的时候,文件肯定会存放到一个磁盘位置上,i节点其实就是可以这么认为,把i节点看作是一个指向磁盘上该文件存储区的地址。

事实上,i节点不仅包含了文件数据存储区的地址,还包含了很多信息,比如数据大小,等等文件信息。

文件名是保存在一个目录项中。

每一个目录项中都包含了文件名和i节点。

我们可以通过一个图来看看目录项,i节点,文件数据四者之间的关系。

3.3.2数据结构//内存i节点#define NADDR 10//每个i节点最多指向10块typedef struct inode{struct inode *i_forw;char i_flag;unsigned int i_ino;//磁盘索引节点编号unsigned int i_count;//引用计数unsigned short di_number;//关联计数unsigned short di_mode;//文件模式unsigned short di_uid;//所属用户unsigned short di_gid;//所属用户组unsigned long di_size;//文件大小unsigned short di_addr[NADDR];//物理块号}Inode;//磁盘索引节点#define NADDR 10//每个i节点最多指向10块typedef struct {unsigned short di_number;//关联文件数unsigned short di_mode;//存取权限unsigned short di_uid;//所属用户unsigned short di_gid;//所属用户组unsigned long di_size;//文件大小unsigned short di_addr[NADDR];//物理块号}Dinode;3.3.3算法3.4文件夹操作3.4.1功能新建一个文件夹,文件夹的跳转,当前目录下的文件展示。

对应的函数原型为:void _dir()//显示当前目录列表;void mkdir(char *dirname)//目录创建函数;void cd(char *dirname)//跳转到指定目录下;3.4.2数据结构//目录结构#define DIRNUM 128//每个目录所包含的最大文件数typedef struct {Direct direct[DIRNUM];//最大存储128个文件int size;//实际文件的个数}Dir;//目录项结构#define DIRSIZ 14//每个目录项文件名所占字节数typedef struct {char d_name[DIRSIZ];//目录名unsigned short d_ino;//目录对应的磁盘i节点编号}Direct;3.4.3算法总得来说就是根据目录的数据结构,再结合i节点去实现对文件夹的操作。

显示列表函数:因为我们的direct数据结构里每次保存的都是当前目录下的列表,所以调用_dir()函数就等于把当前direct结构里的文件名显示出来。

新建一个文件夹:创建一个目录时,先申请一个内存i节点,再分配相应的磁盘i节点,在当前目录表中进行登记,初始化自己的一些信息,记录该目录的上级目录,跳转的时候要用到。

文件夹跳转:因为在新建的时候已经把当前目录的上级目录给记录下来,所以只需找到上级目录的磁盘i节点信息,然后保存当前目录,调出上级目录的磁盘i节点,再重新显示上级目录的列表信息。

3.5文件的操作3.5.1功能新建一个文件,我们可以对其进行读、写、删除操作。

关闭文件之后如果还想对其进行读、写、删除操作,那么我们就要重新打开文件,即将其i节点信息先调入内存。

具体函数原型如下:int create(int user_id,char *filename,short mode)//返回值代表用户打开文件的编号;int open(int user_id,char *filename,short openmode){//从用户打开文件表找到系统打开文件表再找到文件的i节点;void close(int user_id,int fd1)///修改一下系统打开文件表和用户打开文件表;bool _delete(char *filename)//更新目录表,释放i节点;int read(int fd1,char *&buf,int size)//读文件操作;int write(int fd1,char *buf,int size)//文件内存i节点指针,数据,数据大小;3.5.2数据结构//系统打开表#include"inode.h"typedef struct{unsigned short f_flag;//文件操作标志unsigned int f_count;//引用计数Inode *f_inode;//指向内存索引节点unsigned long f_off;//读写指针}File;#endif3.5.3算法总得来说就是根据系统打开文件表去找到内存i节点指针,只有找到了内存i节点指针才能对文件进行操作。

相关文档
最新文档