人教版 七年级整式的加减--化简求值专项练习(含答案)

合集下载

人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列说法中,正确的是( ) A. 24m n 不是整式 B. ﹣32abc 的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式 2.下列每组单项式中是同类项的是( )A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C. 12x -与﹣2xy D. xy 与yz 3.下列各式合并同类项结果正确的是( )A. 3x 2﹣x 2=3B. 3x 2+5x 3=8x 3C. 3a 2﹣a 2=aD. 3a 2﹣a 2=2a 2 4.下列说法正确的是 ( )A. x 系数是0B. y 不是单项式C. 0.5是单项式D. -5a 的系数是5 5.单项式2a 3b 的次数是( )A 2B. 3C. 4D. 5 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 9.多项式()1472m x m x --+是关于x 四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-410.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2二.填空题(共6小题) 11.225ab π-系数是________,次数是_______次; 12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 18.若2x m y 2﹣(n ﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.19.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n)2017的值.20.已知单项式﹣25m 2x ﹣1n 9和25m 5n 3y 是同类项,求代数式12x ﹣5y 的值. 21.某村小麦种植面积是a 公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?22.当x=-12,y=-3时,求代数式 3(x 2﹣2xy)﹣[3x 2﹣2y+2(xy+y)]的值. 23.定义:若a b 2+=,则称a 与b 是关于1平衡数.(1)3与______是关于1的平衡数,5x -与______是关于1的平衡数.(用含x 的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.答案与解析一.选择题(共10小题)1.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.2.下列每组单项式中是同类项是( )A. 2xy与﹣13yx B. 3x2y与﹣2xy2C.12x与﹣2xy D. xy与yz【答案】A【解析】【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也相同)进行判断.【详解】A选项:2xy与﹣13yx含字母相同,并且相同字母指数也相同,所以是同类项,故是正确的;B选项:3x2y与-2xy2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C选项:-12x与﹣2xy所含字母不同,所以不是同类项,故是错误的;D选项:xy与yz所含字母不同,所以不是同类项,故是错误的;故选A.【点睛】考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键.3.下列各式合并同类项结果正确的是( )A. 3x2﹣x2=3B. 3x2+5x3=8x3C. 3a2﹣a2=aD. 3a2﹣a2=2a2【答案】D【解析】【分析】所含字母相同且相同字母的指数也相同的项为同类项,只有同类项才能合并,合并时各同类项系数相加减,字母及其指数不变.【详解】解:A,原式=2x2,故错误;B,原式已是最简式,无法再进行合并,故错误;C,原式=2a2,故错误;D,原式=2a2,故正确;故选D.【点睛】本题考查了合并同类项的概念.4.下列说法正确的是 ( )A. x的系数是0B. y不是单项式C. 0.5是单项式D. -5a的系数是5【答案】C【解析】A选项,∵的系数是1,∴A选项说法错误;B选项,∵单独的一个数或字母都是单项式,∴B选项说法错误;C选项,∵单独的一个数或字母都是单项式,∴C选项说法正确;D选项,∵5a 的系数是,∴D选项说法错误;故选C.5.单项式2a3b的次数是( )A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C .点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型. 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 【答案】D【解析】【分析】根据单项式的概念判断即可.【详解】代数式a+b ,37x 2,5a ,﹣m ,0,3a b a b +-,32x y -中单项式有:37x 2,5a ,﹣m ,0,共计3个. 故选D.【点睛】考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式. 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案. 详解:22x y +,2a b ,12,3x 2+5x ﹣2,abc,0,2x y x +,m 中:有4个单项式:12,abc,0,m ; 2个多项式:22x y +,3x 2+5x-2. 故选C .点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 【答案】C【解析】根据同类项的概念,含有相同的字母,相同字母的指数相同,故可由代数式2x a y 3z c 与4212b x y z -是同类项,求得a=4,b=3,c=2,故选C .9.多项式()1472m x m x --+是关于x 的四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-4【答案】C【解析】 ∵多项式()1472m x m x --+是关于x 的四次三项式, ∴|m|=4,且m-4≠0,∴m=-4,故选C.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.10.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x 2﹣2y 2+(x 2+y 2),=(1+1)x 2+(﹣2+1)y 2,=2x 2﹣y 2,故选B .【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键. 二.填空题(共6小题) 11.225ab π-的系数是________,次数是_______次; 【答案】 (1). 25π-(2). 3 【解析】 单项式225ab π-的系数是-25π,次数是3. 点睛:单项式的定义:不含加减号的代数式(数与字母的积的代数式),一个单独的数或字母也叫单项式.单项式中的数字因数叫做这个单项式的系数.所有字母的指数和叫做这个单项式的次数.12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.【答案】a ﹣b【解析】【分析】把a-b 看作是一个整体.合并同类项时系数相加减,字母与字母的指数不变.【详解】3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=(3-2)(a-b)+(4-3-1)(a-b)2=a-b .【点睛】利用整体思想,且灵活运用合并同类项法则是解题关键.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.【答案】8【解析】【分析】根据同类项的定义可知,相同字母的次数相同,据此列出方程即可求出a 、b 的值.【详解】∵单项式a 13x y +与3b 2x y 是同类项,∴a 13{b 3+==, 解得a 2{b 3==. ∴b 3a 2=8=.故答案为8.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 【答案】13. 【解析】 ∵单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式, ∴m ﹣2=n,2m ﹣3n=3,解得:m=3,n=1,∴m ﹣n =3﹣1=13; 故答案为13. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.【答案】 (1). 四 (2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x 3﹣x 2y 2﹣3xy+x ﹣1是四次五项式.故答案为四,五.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 【答案】x 2+2y 2,94. 【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可. 【详解】()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦ =2x 2﹣[﹣x 2+2xy +2y 2]﹣2x 2+2xy +4y 2=2x 2+x 2﹣2xy ﹣2y 2﹣2x 2+2xy +4y 2=x 2+2y 2,当x=12,y=﹣1时,原式=14+2=94.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.【答案】m=1,n=3【解析】【分析】根据题意,由三次二项式的定义得出m+2=3,n-3=0,然后解得m,n,即可求得答案.【详解】∵2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,∴m+2=3,n﹣3=0,解得m=1,n=3.【点睛】考查学生对多项式的理解和掌握,要求学生对多项式的概念有正确深入的理解.19.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.【答案】-1【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.20.已知单项式﹣25m2x﹣1n9和25m5n3y是同类项,求代数式12x﹣5y的值.【答案】-13.5. 【解析】分析】首先根据同类项的定义求出x和y的值,然后代入代数式得出答案.【详解】解:∵单项式﹣25m2x﹣1n9和25m5n3y是同类项,∴2x﹣1=5,3y=9, ∴x=3,y=3,∴12x﹣5y=12×3﹣5×3=﹣13.5.【点睛】本题主要考查的是同类项的定义以及代数式的求值问题,属于基础题型.理解同类项的定义是解题的关键.21.某村小麦种植面积是a公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?【答案】a+30公顷.【解析】试题分析:根据题意可得水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,求出水稻种植面积与玉米种植面积的差即可得出结果.试题解析:水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,则水稻种植面积比玉米种植面积大(2a+25)﹣(a﹣5)=2a+25﹣a+5=a+30(公顷).考点:整式的加减.22.当x=-12,y=-3时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.【答案】﹣12【解析】试题分析:本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy,当x=,y=﹣3时,原式=﹣12.考点:整式的加减—化简求值.23.定义:若a b2+=,则称a与b是关于1的平衡数.(1)3与______是关于1的平衡数,5x-与______是关于1的平衡数.(用含x的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.【答案】(1)﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数【解析】【分析】(1)由平衡数的定义即可求得答案;(2)计算a+b 是否等于1即可.【详解】(1)设3的关于1的平衡数为a ,则3+a=2,解得a=﹣1, ∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b=2,解得b=2﹣(5﹣x )=x ﹣3, ∴5﹣x 与x ﹣3是关于1的平衡数,故答案﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x 2﹣3(x 2+x )+4,b=2x ﹣[3x ﹣(4x+x 2)﹣2],∴a+b=2x 2﹣3(x 2+x )+4+2x ﹣[3x ﹣(4x+x 2)﹣2]=2x 2﹣3x 2﹣3x+4+2x ﹣3x+4x+x 2+2=6≠2, ∴a 与b 不是关于1的平衡数.。

人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,35.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案与解析一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+8【答案】D【解析】【分析】根据去括号法则及乘法分配律解答即可.【详解】由去括号法则及乘法分配律可得:-16(x-0.5)=-16x+8.故选D.【点睛】本题考查了去括号法则及乘法分配律,熟练运用去括号法则及乘法分配律是解决问题的关键.2.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式【答案】B【解析】【分析】根据单项式的有关概念进行解答即可.【详解】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.故选:B.【点睛】本题考查了单项式,单项式的系数,次数,熟记单项式的系数,次数的定义是解题的关键.3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 4【答案】C【解析】【分析】原式去括号合并后,将已知整式的值代入计算即可求出值.【详解】∵x2y=2,∴原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.故选:C.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.4.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,3【答案】C【解析】分析:根据单项式系数和次数的定义求解.详解:单项式﹣32xy2z3的系数和次数分别是﹣9,6.故选C.点睛:本题考查了单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 2【答案】B【解析】【分析】根据单项式次数的定义来求解.所有字母的指数和叫做单项式的次数.【详解】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.故选:B.【点睛】灵活掌握单项式次数的定义,根据题意列方程,是解题的关键.6.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 24【答案】B【解析】【分析】先对原式合并同类项,再把a=-5代入化简后的式子计算即可.【详解】原式=a-1,当a=-5时,原式=-5-1=-6.故选:B.【点睛】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.7.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b【答案】B【解析】试题分析:a﹣b的相反数是b﹣a,可得a﹣b和它的相反数为:(a﹣b)﹣(b﹣a)=2a﹣2b,又因为a<b,可知2a ﹣2b<0,所以|(a﹣b)﹣(b﹣a)|=2b﹣2a.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.考点:整式的加减.8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2【答案】B【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,结合选项即可得出答案.【详解】A、-2与12是同类项,所以A选项错误;B、在2m与2n中,字母不相同,它们不是同类项,所以B选项正确;C、﹣2a2b与a2b是同类项,所以C选项错误;D、与是同类项,所以D选项错误.故选B.【点睛】此题考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,难度一般.二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.【详解】由题意知单项式2x2y m与−x n y3是同类项,∴n=2,m=3,∴m+n=5,故答案为:5.【点睛】本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.【答案】-3【解析】【分析】因为单项式-a2x b m与a n b y-1可合并为a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy-mn的值.【详解】∵单项式-a2x b m与a n b y-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,x=1,y=5,则xy-mn=1×5-4×2=-3.【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.【答案】-5a2b【解析】【分析】先把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为:a3b3+2ab2-5a2b-7.故答案为:-5a2b.【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.【答案】4【解析】【分析】直接利用合并同类项法则得出关于m,n的等式进而求出答案.【详解】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得:m=3,n=1.故m+n=4.故答案为:4.【点睛】此题主要考查了单项式,正确把握合并同类项法则是解题关键.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.【答案】-2(x-1)2-3(x-1)3【解析】【分析】根据互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数,可化成同类项,根据合并同类项,可得答案.【详解】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3=-2(x-1)2-3(x-1)3,故答案为:-2(x-1)2-3(x-1)3.【点睛】本题考查了合并同类项,利用互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数化成同类项是解题关键.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.【答案】-2a【解析】【分析】先由数轴上a,b的位置判断出其符号,再根据其与原点的距离距离判断出a,b绝对值的大小,代入原式求值即可.【详解】由数轴可a<0,b>0,a<b,|a|>b,所以a-b<0,a+b<0,∴|a-b|+|a+b|=-a+b-a-b=-2a,故答案为:-2a.【点睛】本题考查了数轴的概念、整式的加减、绝对值的性质等,熟练掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0是解题的关键.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.【答案】1【解析】先根据点a在数轴上的位置判断出a的符号,再去绝对值符号,合并同类项即可.解:∵由图可知,a<0,∴a﹣1<0,∴原式=1﹣a+a=1.故答案为:1.16.化简:-2a2-[3a2-(a-2)]=___________.【答案】-5a2+a-2【解析】【分析】去括号,然后合并同类项即可.【详解】-2a2-[3a2-(a-2)]= -2a2-[3a2-a+2]= -2a2-3a2+a-2=-5a2+a-2.故答案为:-5a2+a-2【点睛】本题考查整式的化简,注意去括号时符号的变化.三、解答题17.完成下表【答案】详见解析.【解析】【分析】根据单项式的系数和次数的定义解答即可.【详解】x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.填表如下:【点睛】此题考查了单项式的有关定义,熟练掌握单项式的系数和次数的的定义是解答此题的关键.18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.【答案】m+n=3或m+n=-13.【解析】【分析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.【详解】因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【解析】【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和【答案】这三名同学的年龄的和是(4m-5)岁.【解析】解:因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为岁.又因为小华的年龄比小红的年龄的还多1岁,所以小华的年龄为(岁),则这三名同学的年龄的和为答:这三名同学的年龄的和是岁.21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴,解得:,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键。

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

七年级数学上学期期末考试真题汇编(人教版)整式的化简求值(30题)专项训练(解析版)

七年级数学上学期期末考试真题汇编(人教版)整式的化简求值(30题)专项训练(解析版)

专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab ⎡⎤⎡⎤----+-⎣⎦⎣⎦,其中a =-4,14b =.【答案】24a ab b --,16【分析】先去括号,再合并同类项,然后将字母的值代入化简后的式子进行计算即可求解. 【详解】解:原式2233388b a ab b a ab ⎡⎤⎡⎤=--+-+-⎣⎦⎣⎦2239988b a ab b a ab =-+---+ 24a ab b =--;当a =-4,14b =时,原式()()2114441644=---⨯-⨯=.【点睛】本题考查了整式加减中的化简求值,正确的去括号是解题的关键.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a=1,b =﹣2. 【答案】3ab -,6.【分析】去括号、合并同类项进行化简,然后代入求值.【详解】解:原式11333322a ab a b b ab =--+-=-,当a =1,b =﹣2时,原式()3126=-⨯⨯-=.【点睛】本题考查了整式加减的化简求值,熟练掌握运算法则是解题的关键.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-. 【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可. 【详解】解:原式=2222x xy y x xy ---+ =22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3. 【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值. 【详解】解:原式=2222155412a b ab ab a b -+- =223a b ab -当a =-2,b =3时, 原式=()()2232323⨯-⨯--⨯ =34329⨯⨯+⨯ =54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.【答案】2214x xy y +-;-2【分析】整式的化简求值,先去括号合并同类项即可得到最简结果,再把x 和y 的值代入计算即可求出值.【详解】()2222(42)35x xy y x xy y -+--+2222423315x xy y x xy y =-+-+-2214x xy y =+-当1x =-,12y =-时()()222214111411222x xy y ⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭+-=-+--=-.【点睛】本题考查整式的化简求值,熟练掌握运算法则是解题的关键.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.【答案】263+-x x ,354-【分析】原式去括号合并得到最简结果,将x 的值代入计算即可求出值.【详解】解:()()2222221x x x x +---- 2224421x x x x =+--++ 263x x =+-,∵12x =-,∵原式=2113635224⎛⎫⎛⎫-+⨯--=- ⎪ ⎪⎝⎭⎝⎭.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=【答案】6xy -4x 2y 2,-10【分析】根据去括号法则,合并同类项法则,对整式的加减化简,然后根据非负数的意义求得x 、y 的值,再代入求值即可.【详解】解:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2)=3xy -3xy +6x 2y 2+6xy -10x 2y 2 =6xy -4x 2y 2,∵21||(2)02x y -++=,∵1=02x -,2=0+y ,∵x =12,y =-2,∵原式=6×12×(-2)-4×21()2×(-2)2=-6-4=-10.【点睛】本题主要考查了整式加减运算及绝对值和平方的非负性,能根据几个非负数的和为0判断出这几个数同时为0是解本题的关键.8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=【答案】2y ,4【分析】根据整式的加减运算进行化简,然后将1,22x y =-=代入进行计算即可求解.【详解】解:原式=2222213823333535x x xy y x xy y --++++2218323333355x y xy xy ⎛⎫⎛⎫=+-+++- ⎪ ⎪⎝⎭⎝⎭=2y ,当2y =时,原式=4【点睛】本题考查了整式加减中的化简求值,正确的计算是解题的关键.9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可. 【详解】解:原式=222223263a b ab ab a b ab --++, =29a b .当2a =-,3b =-时,29(2)(3)108⨯-⨯-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn ⎡⎤----+⎣⎦,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-⨯⨯-+⨯-+⨯++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可. 【详解】解:原式22232a b a b b a =--++-22a b =+,当2a =-,12b =-时,原式=2212(2)232a b ⎛⎫+=-+⨯-= ⎪⎝⎭. 【点睛】本题考查整式化简求值,熟练掌握整式加减运算法则是解题的关键.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解. 【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2) =2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2 =3x 2+y 2当x =﹣1,y =2时, 原式=()223127⨯-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键. 13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++; (2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-. 【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案. 【详解】解:(1)()()54392a a b a b --+++54392a a b a b =---++ b =-;(2)()()323232242x y x y x ---+ 323232442x y x y x =--+-3x =-,当3x =时, 原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则. 14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值. 【答案】a 2b ﹣1,1【分析】根据非负数的性质求出a 与b 的值,然后化简原式,再将a 与b 的值代入原式即可求出答案.【详解】解:2(a 2b +ab 2)−(2ab 2−1+a 2b )−2 =2a 2b +2ab 2-2ab 2+1-a 2b -2 =a 2b -1,∵(2b -1)2+3|a +2|=0,又(2b -1)2≥0,3|a +2|≥0, ∵(2b -1)2=0,|a +2|=0,∵b =12,a =-2,将b =12,a =﹣2代入得,原式=(-2)2×12-1=1.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3. 【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解. 【详解】解∵ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+2222126312a b ab ab a b =-+- 23ab =-当a =2,b =﹣3时,原式()232354=-⨯⨯-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y 22222334x y xy x y xy x y =+-+-, 255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-⨯⨯-+⨯⨯-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1. 【答案】27y xy +,-13【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值. 【详解】解:原式=222253547x y x y xy --++27y xy =+ .当x =2,y =-1时,原式=(-1)2+7×2×(-1) =-13.【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(2022·山东潍坊·七年级期末)(1)计算:()3341711239-÷⨯+-(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭,其中2x =-,14y =.【答案】(1)0;(2)3245m n -++;(3)22324x y xy -+,1-【分析】(1)先算乘方,化简绝对值,然后算乘除,最后算加法; (2)原式合并同类项进行化简;(3)原式去括号,合并同类项进行化简,然后代入求值.【详解】解:(1)原式=﹣1248339⨯⨯+8899=-+=0;(2)原式=(﹣m 3﹣m 3)+(﹣6n +10n )+11﹣6 =﹣2m 3+4n +5;(3)原式222221234x y x y xy x y xy =+--+22324x y xy =-+,当x =﹣2,14y =时,原式34=-⨯(﹣2)214⨯+2×(﹣2)×(14)2311444416=-⨯⨯-⨯3144=--=﹣1.【点睛】本题考查有理数的混合运算,整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则是解题关键.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.【答案】8x 2y -4xy 2-15,13-【分析】先去括号,再合并同类项,代入x ,y 即可求解. 【详解】解:(2x 2y -xy 2)-3(xy 2-2x 2y +5) =2x 2y -xy 2-3xy 2+6x 2y -15 =8x 2y -4xy 2-15当x =13-, y =3时, 原式=8×(13-)2×3-413⨯-()×32-15 =83 +12-15 =13- 【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的加减运算法则. 20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y ⎡⎤+---+⎣⎦其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可. 【详解】原式=222222321y x x y y ⎡⎤+-+-+⎣⎦ =22321y y y +-+ =221y y ++ 当1y =-时 原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项. 21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-. 【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可. 【详解】解:原式322324232x y x y x y x =--+-+-2223y x y =--+当3x =-,2y =-时,原式()()()22223328=-⨯--⨯-+⨯-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提. 22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab =-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+⨯-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可. 【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2 =﹣9a 2+8a +4, 当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4 =﹣9×4﹣16+4 =﹣36﹣16+4 =﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.【答案】2109x xy +-,9-【分析】将原式去括号、合并同类项进行化简,再将2x =-,15y =代入求值.【详解】解:()()226922x xy x xy --+++226924x xy x xy =-+-++ 2109x xy =+-,将2x =-,15y =代入得,原式()()212102944995=-+⨯-⨯-=--=-.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项等运算法则是解题的关键. 25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()【答案】223a ab -+,163-【分析】先化简原式,再根据绝对值的非负性可得2,1a b =-=,再代入化简后的结果,即可求解.【详解】解∵ ()221129433a ab a ab ---() 22242333a ab a ab =--+223a ab =-+因为22(1)0a b ++-=,所以2010a b +=⎧⎨-=⎩,解得:21a b =-⎧⎨=⎩,当2,1a b =-=时,原式224162214333=--+⨯-⨯=--=-()(). 【点睛】本题主要考查了整式加减中的化简求值,绝对值的非负性,熟练掌握整式加减混合运算法则是解题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x ⎛⎫+---+ ⎪⎝⎭,其中4x =-,3y =.【答案】222xy x -;-56.【分析】将原式去括号,合并同类项进行化简,然后代入化简后的式子求值.【详解】解:()223242xy x xy xy x ⎛⎫+---+ ⎪⎝⎭222344xy x xy xy x =+-+-222xy x =-;当4x =-,3y =时,原式()()224324=⨯-⨯-⨯-243256=--=-【点睛】本题考查整式的加减-化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“一”号,去掉“一”号和括号,括号里的各项都变号)是解题关键.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|; (2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=. 【答案】(1)6;(2)4x 2y ,8【分析】(1)先算乘方,再算乘除,最后算加减,进行计算即可;(2)先去括号,然后再合并同类项,最后把x ,y 的值代入化简后的式子进行计算即可解答. 【详解】解:(1)原式=-1+8×(18-)+2×4 =-1+(-1)+8=6;(2)原式=-6x 2y -4xy 2+5+5xy 2+10x 2y -5-xy 2,=4x 2y ,∵(x +1)2+|y -2|=0,∵x +1=0,y -2=0,∵x =-1,y =2,当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.【答案】2332a ab -,30. 【分析】去括号,合并同类项即可化简,然后再代入a ,b 的值计算即可.【详解】解:原式2221153232222a ab a ab a ab =---=-,把a =2,b =﹣4代入得:原式()232324624302=⨯-⨯⨯-=+=. 【点睛】本题考查了整式加减的化简求值,熟练掌握去括号法则和合并同类项法则是解题的关键.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-. 【答案】2x --,32- 【分析】根据去括号的法则先去括号,再合并同类项化简,然后将12x =-代入化简后的代数式中进行计算求解.【详解】解:()()22225342xx x x x ---++ 22225342x x x x x =--+-+2x =-- 当12x =-时,原式113()22222=---=-=-.l【点睛】本题主要考查了代数式化简求值此,理解去括号的法则和合并同类项是解答关键.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b ⎛⎫-+-+ ⎪⎝⎭的值. 【答案】3a 2-3b ,9【分析】首先根据非负数的性质求出a 2、b 的值,再对多项式去括号,然后合并同类项化简,最后代入计算即可求值.【详解】解:∵()22120a b -++=,∵210a -=,20b +=,∵21a =,2b =-,∵()22212322a b a a b ⎛⎫-+-+ ⎪⎝⎭ 2222232a b a a b =-+--233a b =-=3×1-3×(-2)=3×3=9.【点睛】本题考查了整式的加减中的化简求值、平方式和绝对值的非负性,正确对所求的整式去括号、合并同类项是关键.。

初一数学(七年级上册)整式的加减运算100题(含答案)

初一数学(七年级上册)整式的加减运算100题(含答案)
65.(1)
(2)
66.(1)-6;(2) ,-2
67.(1)
(2)
68.(1)
(2)
69.(1)
(2)
70.(1)
(2)
71.(1)
(2)
72.(1)294;(2)
73.(1)1;(2) ,
74.(1)
(2)
75.(1)19;(2)3;(3) , .
76.(1)
(2)
(3)
(4)
77.(1)1
(2)
89.计算.
(1) ;
(2) ;
90.计算:
(1) ;
(2) .
91.计算:
(1)
(2)
(3)
(4)
92.(1)计算: ;
(2)计算: .
(3)先化简,再求值: ,其中 , .
93.计算:
(1) ;
(2)
94.计算:
(1) ;
(2) .
95.计算:
(1)
(2)已知 ,求 的值.
96.(1)计算: ;
1.(1) ;(2) ;
2.(1)
(2)
(3)
3.(1)
(2)
4.(1)
(2)
(3)
5.(1)3;(2)
6.(1)4;(2) ;14
7.(1)
(2)
8.(1)
(2)
(3)
(4)
9.
10.(1) ;(2) , .
11.(1)11
(2)
12.(1)4;(2) ;(3) ;6
13.(1)2
(2)
(3)
(4)
(2)计算: .
21.(1)计算:
(2)先化简,再求值: 值,其中 .

人教版七年级数学上册作业课件 第二章 整式的加减 专题训练(四) 整式化简求值的常见类型

人教版七年级数学上册作业课件 第二章 整式的加减 专题训练(四) 整式化简求值的常见类型

4.已知2x2+xy=10,3y2+2xy=6,求4x2+8xy+9y2的值. 解:原式=4x2+2xy+6xy+9y2=2(2x2+xy)+3(3y2+2xy)=2×10+3×6=38 5.已知当x=2时,多项式-ax3-[8-(bx+2ax3)]的值为5,求当x=-2时该多项式的值. 解:-ax3-[8-(bx+2ax3)]=ax3+bx-8, 当x=2时,原式=8a+2b-8=5,所以8a+2b=13; 当x=-2时,原式=-8a-2b-8=-(8a+2b)-8=-13-8=-21
11.已知关于x,y的多项式(2bx2+ax-y+6)-(2x2-3x+5y-1)化简后不含x2项和x项, 求a,b的值. 解:原式=2bx2+ax-y+6-2x2+3x-5y+1=(2b-2)x2+(a+3)x-6y+7. 因为化简后不含x2项与x项,所以2b-2=0且a+3=0,则a=-3,b=1
12.已知A=2x2+3xy-2x-1,B=-x2+xy-1. (1)求3A+6B的值; (2)若3A+6B的值与x取值无关,求y的值. 解:(1)3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1) =6x2+9xy-6x-3-6x2+6xy-6=15xy-6x-9 (2)原式=(15y-6)x-9.因为其值与 x 无关,所以 15y-6=0,则 y=25
解:原式=5ab-6ab+8ab2+ab-5ab2=3ab2, 当 a=12 ,b=-23 时,原式=23
(3)3x2y-[2x2y-3(2xy-x2y)-xy],其中 x=-12 ,y=2.
解:原式=3x2y-[2x2y-6xy+3x2y-xy]=3x2y-2x2y+6xy-3x2y+xy= -2x2y+7xy,当 x=-12 ,y=2 时,原式=-2×(-12 )2×2+7×(-12 )×2=-8

人教版数学七年级上册第二章整式的加减《单元测试题》含答案

人教版数学七年级上册第二章整式的加减《单元测试题》含答案

D. a+b+c
A. 3 B. 4 C. 6 D. 7 6.一个多项式加上﹣2a+7 等于 3a2+a+1,则这个多项式是( ) A. 3a2﹣a﹣6 B. 3a2+3a+8 C. 3a2+3a﹣6 D. ﹣3a2﹣3a+6 7.如图,两个面积分别为 35,23 的图形叠放在一起,两个阴影部分的面积分别为 a,b(a>b),则 a﹣b 的值为 ()
A. 6 B. 8 C. 9 D. 12 【答案】D 【解析】 【分析】 设重叠部分面积为 c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差. 【详解】设重叠部分的面积为 c, 则 a-b=(a+c)-(b+c)=35-23=12, 故选 D. 【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键. 8.如图 1 为 2018 年 5 月份的日历表,某同学任意框出了其中的四个数字,如图 2,若用 m 表示框图中相应位置 的数字,则“?”位置的数字可表示为( )
ቤተ መጻሕፍቲ ባይዱ
15.若关于 x、y 的代数式 mx3﹣3nxy2+2x3﹣xy2+y 中不含三次项,则(m﹣3n)2018=_____.
16.若
,
,则
的值为______________.
三.解答题(共 7 小题)
17.化简:
(1)2a﹣4b﹣3a+6b
(2)(7y﹣5x)﹣2(y+3x)
18.通常用作差法可以比较两个数或者两个式子的大小.
故选 A. 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运 用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符 号.顺序为先大后小. 5.多项式 4xy2﹣3xy+12 的次数为( ) A. 3 B. 4 C. 6 D. 7 【答案】A 【解析】 【分析】 直接利用多项式的次数确定方法是解题关键. 【详解】多项式 4xy2-3xy+12 的次数为,最高此项 4xy2 的次数为:3. 故选 A. 【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键. 6.一个多项式加上﹣2a+7 等于 3a2+a+1,则这个多项式是( ) A. 3a2﹣a﹣6 B. 3a2+3a+8 C. 3a2+3a﹣6 D. ﹣3a2﹣3a+6 【答案】C 【解析】 【分析】 先根据题意列出算式,再去掉括号合并同类项即可. 【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6, 故选 C. 【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键. 7.如图,两个面积分别为 35,23 的图形叠放在一起,两个阴影部分的面积分别为 a,b(a>b),则 a﹣b 的值为 ()

七年级整式的加减计算及化简求值练习100道(含答案)

七年级整式的加减计算及化简求值练习100道(含答案)

七年级整式的加减计算及化简求值练习100道(含答案)一.合并同类项1.化简:(1)﹣5a+(3a﹣2)﹣(3a﹣7);(2)(5a2+a﹣6)﹣4(3﹣8a+2a2)2.化简:(1)x2﹣7x﹣2﹣2x2+4x﹣1(2)(8xy﹣3y2)﹣2(3xy﹣2x2)(3)﹣7a2+(6a2﹣4ab)﹣(3b2+ab﹣a2)3.计算:(1)3x+2(x﹣)﹣(x+1)(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)4.化简(1)3a3+a2﹣2a3﹣4a2 (2)(2x2﹣1+3x)﹣4(x﹣x2+)5.计算:(1)3(x2﹣5xy)﹣4(x2+2xy﹣y2)﹣5(y2﹣3xy)(2)(x﹣x2+1)﹣2(x2﹣1+3x)6.化简:(1)a2+3b2+3ab﹣4a2﹣4b2;(2)8x2﹣[5x﹣(x﹣7)+2x2]﹣47.合并同类项:(1)(2xy﹣y)﹣(﹣y+xy)(2)(3a2﹣ab+7)﹣(﹣4a2+2ab+7)8.整式的化简:(1)a﹣(2a﹣3b)+2(3b﹣2a)(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b 9.计算:(1)3a2+3b2+2ab﹣4a2﹣3b2;(2)a2+(5a2﹣2a)﹣2(a2﹣3a).10.化简:(1)2(x﹣3x2+l)﹣3(2x2﹣x﹣2)(2)5mn2+3m2n﹣mn2﹣2m2n﹣111.化简(1)a2﹣2(a2+b)﹣2b(2)﹣3(2x2﹣xy)+4(x2+xy﹣1)12.化简:3x2y﹣[2xy﹣2(xy﹣x2y)+xy]二.化简求值13.已知两个多项式A、B,A﹣B=2x2+6,A=3x2+x+5,(1)用含x的式子表示B;(2)当x=2时,求2A﹣3B的值.14.先化简,再求值:(3a2﹣ab+7)﹣(﹣4a2+2ab+7),其中a=﹣1,b=215.求x﹣2(2x﹣)+3(﹣)值,其中x=|1﹣32|,y=2.16.先化简,再求值,a2b﹣[a2b﹣(3abc﹣a2c)+4a2c],其中a,b,c满足关于x、y的单项式cx2a+2y2与﹣4xy b+4的和为0.17.先化简下式,再求值:x﹣2(x﹣y2)+(﹣x+y2).其中x=3,y=2.18.已知A=(2x﹣y)2,B=4x(x﹣y)(1)求2A﹣B的值,其中x=﹣1,y=1;(2)试比较代数式A、B的大小.19.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.20.先化简,再求值:(4a2﹣2ab+b2)﹣3(a2﹣ab+b2),其中a=﹣1,b=﹣.21.先化简,再求值:5m2﹣[3m﹣(3m+3)+4m2],其中m=﹣3.22.(1)﹣(+9)﹣12﹣()(2)4﹣2×(﹣3)2+6÷(﹣)(3)化简:5(a2+5a)﹣(a2+7a)(4)先化简,再求值:2(a2b+ab2)﹣3(a2b﹣1)﹣2ab2﹣4,其中a=2018,b=.23.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.24.(1)计算:﹣12019﹣(﹣)×[4﹣(﹣)2](2)先化简,再求值:(2x3﹣3x2y﹣xy2)﹣(x3﹣2xy2﹣y3)+(﹣x3+3x2y﹣y3),其中x=,y=2.25.先化简,再求值(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y2)+(﹣x3+3x2y﹣y2),其中x=2019,y=﹣126.先化简,后求值:(3m2﹣4mn)﹣2(m2+2mn),其中m,n满足单项式﹣x m+1y3与y n x2的和仍是单项式.27.先化简,再求值:(6a2﹣16a)﹣5(a2﹣3a+2),其中a2﹣a﹣7=028.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.29.先化简,再求值:6ab2﹣(ab2+3a2b)+5(3a2b﹣ab2),其中a=,b=﹣1.21.先化简,再求值:已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,求当a=﹣,b=2时,﹣B+2A的值.24.(1)化简:5(2x3y+3xy2)﹣(6xy2﹣3x3y)(2)化简求值:已知a+b=9,ab=20,求(﹣15a+3ab)+(2ab﹣10a)﹣4(ab+3b)的值.25.先化简,再求值:(4x2y﹣5xy2+2xy)﹣3(x2y﹣xy2+yx),其中x=2,y=﹣.26.先化简,再求值:5(3a2b﹣ab2)﹣2(﹣ab2+4a2b),其中a=2,b=﹣3.27.(1)﹣45×(﹣0.4)(2)﹣22+(﹣2)+(﹣)﹣|﹣1.5|(3)先化简,再求值:x2+(x2﹣4y)﹣2(x2﹣2y+1),其中x=﹣1,y=28.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.29.先化简,再求值:x﹣(4x+5xy﹣y2)+2(x﹣xy﹣y2),其中x=2,y=.30.先化简,再求值:5(3x2y﹣xy2)﹣(xy2+3x2y),其中x=1,y=﹣1.31.已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1).(1)化简此多项式;(2)若x,y互为倒数,且恰好计算得多项式的值等于0,求x的值.32.(1)化简:﹣(2k3+4k2﹣28)+(k3﹣2k2+4k).(2)已知A﹣B=7a2﹣7ab,且B=﹣4a2+6ab+7.①求A+B;②若a=﹣1,b=2,求A+B的值.33.已知A=2a2﹣3b2,B=﹣a2+2b2,C=5a2﹣b2.(1)用含有a、b的代数式表示A+B﹣C;(2)若a=﹣,b=,求(1)中代数式的值.34.先化简,再求值:3(x2﹣2xy)﹣2[xy+(﹣xy+x2)﹣1],其中x=﹣4,y=.38.已知m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,求代数式m2+3m﹣的值.39.(1)先化简,再求值:,其中m=,n=﹣3.(2)已知2a﹣b+5=0,求整式6a+b与﹣2a﹣3b+27的和的值.40.已知:A=x2﹣2xy+y2,B=x2+2xy+y2.(1)求﹣A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?41.(1)化简:(3x2+1)+2(x2﹣2x+3)﹣(3x2+4x);(2)先化简,再求值:m﹣(n2﹣m)+2(m﹣n2)+5,其中m=2,n=﹣3.42.先化简,再求值:,其中m=2,n=3.43.化简与求值(1)化简:2m2﹣2m﹣m2﹣3;(2)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣3(ab2+1),其中a=﹣2,b=244.先化简,再求值:(1)(5x+y)﹣2(3x﹣4y),其中x=1,y=3(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=46.先化简,再求值.(1)5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1.(2),其中x=,y=2.48.计算题(1)已知A=3x2+4xy,B=x2+3xy﹣﹣y2,求:﹣A+2B.(2)先化简,再求值:2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=,b=﹣.七年级整式的加减计算及化简求值练习100道(含答案)一.合并同类项1.【解】(1)原式=﹣5a+3a﹣2﹣3a+7=﹣5a+5;(2)原式=5a2+a﹣6﹣12+32a﹣8a2=﹣3a2+33a﹣18;2.【解】(1)x2﹣7x﹣2﹣2x2+4x﹣1=﹣x2﹣3x﹣3;(2)(8xy﹣3y2)﹣2(3xy﹣2x2)=2xy﹣3y2+4x2;(3)﹣7a2+(6a2﹣4ab)﹣(3b2+ab﹣a2)=﹣3a2﹣3ab﹣3b2.3.【解】(1)3x+2(x﹣)﹣(x+1)=4x﹣2;(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)=6a2b.4.【解】(1)原式=a3﹣3a2;(2)原式=2x2﹣1+3x﹣4x+4x2﹣2=6x2﹣x﹣3;5.【解】(1)3(x2﹣5xy)﹣4(x2+2xy﹣y2)﹣5(y2﹣3xy)=﹣x2﹣8xy﹣y2;(2)(x﹣x2+1)﹣2(x2﹣1+3x)=﹣3x2﹣5x+3.6.【解】(1)a2+3b2+3ab﹣4a2﹣4b2=﹣3a2﹣b2+3ab;(2)8x2﹣[5x﹣(x﹣7)+2x2]﹣4=6x2﹣x﹣11.7.【解】(1)原式=2xy﹣y+y﹣xy=xy;(2)原式=3a2﹣ab+7+4a2﹣2ab﹣7=7a2﹣3ab.8.【解】(1)a﹣(2a﹣3b)+2(3b﹣2a)=﹣5a+9b;(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b=﹣2a2b.9.【解】(1)原式=(3a2﹣4a2)+(3b2﹣3b2)+2ab=﹣a2+2ab;(2)原式=a2+5a2﹣2a﹣2a2+6a=4a2+4a.10.【解】(1)原式=2x﹣6x2+2﹣6x2+3x+6=﹣12x2+5x+8;(2)原式=4mn2+m2n﹣1.11.【解】(1)原式=a2﹣2a2﹣b﹣2b=﹣a2﹣3b;(2)原式=﹣6x2+3xy+4x2+4xy﹣4=﹣2x2+7xy﹣4;12.【解】原式=x2y﹣xy二.化简求值13.【解】(1)∵A﹣B=2x2+6,A=3x2+x+5,∴B=A﹣(2x2+6)=3x2+x+5﹣2x2﹣6=x2+x﹣1;(2)2A﹣3B=2(3x2+x+5)﹣3(x2+x﹣1)=3x2﹣x﹣7,当x=2时,原式=12﹣2﹣7=﹣3;14.【解】原式=3a2﹣ab+7+4a2﹣2ab﹣7=7a2﹣3ab,当a=﹣1,b=2时,原式=7×1﹣3×(﹣1)×2=7+6=13.15.【解】原式=x﹣4x+y2﹣x+y2=﹣5x+y2,当x=|1﹣32|=|﹣8|=8,y=2÷(﹣)=2×(﹣3)=﹣6时,原式=﹣40+48=8.16.【解】根据题意得:cx2a+2y2+﹣4xy b+4=0,∴2a+2=1,b+4=2,c+﹣4)=0,∴a=﹣,b=﹣2,c=4;a2b﹣[a2b﹣(3abc﹣a2c)+4a2c]=﹣a2b+3abc﹣5a2c.把a=﹣,b=﹣2,c=4代入上式得,原式=.17.【解】原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=3,y=2时,原式=﹣9+4=﹣5.18.【解】(1)∵A=(2x﹣y)2,B=4x(x﹣y),∴2A﹣B=2(2x﹣y)2﹣4x(x﹣y)=8x2﹣8xy+2y2﹣4x2+4xy=4x2﹣4xy+2y2把x=﹣1,y=1代入上式得:原式=4×(﹣1)2﹣4×(﹣1)×1+2×12=10;(2)∵A=(2x﹣y)2,B=4x(x﹣y),∴A﹣B=(2x﹣y)2﹣4x(x﹣y)=4x2﹣4xy+y2﹣4x2+4xy=y2,∵y2≥0,∴A≥B.19.【解】原式=4x2y﹣(6xy﹣12xy+6﹣x2y﹣1)=5x2y+6xy﹣5当x=2,y=时,原式=5×4×()+6×2×()﹣5=﹣21;20.【解】原式=4a2﹣2ab+b2﹣3a2+3ab﹣3b2=a2+ab﹣2b2,当a=﹣1,b=时,原式=1+﹣=1.21.【解】原式=5m2﹣(3m﹣3m﹣3+4m2)=5m2+3﹣4m2=m2+3,当m=﹣3时,原式=9+3=12.22.【解】(1)原式=﹣﹣21=;(2)原式=4﹣2×9﹣12=﹣26;(3)原式=5a2+25a﹣a2﹣7a=4a2+18a;(4)原式=2a2b+2ab2﹣3a2b+3﹣2ab2﹣4=﹣a2b﹣1,当a=2018,b=时,原式=﹣2019;23.【解】(1)2A﹣3B=12x2+12y2﹣7xy;(2)由题意可知:2x﹣3=±1,y=±3,∴x=2或1,y=±3,由于|x﹣y|=y﹣x,∴y﹣x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)﹣7xy=114,当y=3,x=1时,原式=12×16﹣31×3=99.24.【解】(1)原式=﹣;(2)原式=2x3﹣3x2y﹣xy2﹣x3+2xy2+y3﹣x3+3x2y﹣y3=xy2,当x=,y=2时,原式=1.25.【解】原式=﹣2y2,当x=2019,y=﹣1时,原式=﹣2.26.【解】原式=3m2﹣4mn﹣2m2﹣4mn=m2﹣8mn,∵单项式﹣x m+1y3与y n x2的和仍是单项式,∴﹣x m+1y3与y n x2是同类项,∴m+1=2,即m=1,n=3,则原式=﹣23.27.【解】原式=6a2﹣16a﹣5a2+15a﹣10=a2﹣a﹣10,∵a2﹣a﹣7=0,∴a2﹣a=7,则原式=7﹣10=﹣3.28.【解】原式=2ab+6a2﹣5a2+3ab﹣b2=5ab+a2﹣b2,当a=,b=1时,原式==.29.【解】原式=6ab2﹣ab2﹣3a2b+15a2b﹣5ab2=12a2b,当a=,b=﹣1时,原式=12××(﹣1)=﹣3.21.【解】∴﹣B+2A=2a2+5b2﹣12ab,当a=﹣,b=2时,原式=32.24.【解】(1)原式=10x3y+15xy2﹣6xy2+3x3y=13x3y+9xy2;(2)原式=,把a+b=9,ab=20代入.25.【解】原式=4x2y﹣5xy2+2xy﹣3x2y+4xy2﹣3yx=x2y﹣xy2﹣xy,当x=2,y=﹣时,原式=22×(﹣)﹣2×(﹣)2﹣2×(﹣)=﹣1.26.【解】原式=15a2b﹣5ab2+2ab2﹣8a2b=7a2b﹣3ab2,当a=2,b=﹣3时,原式=﹣138.27.【解】(1)原式=﹣47;(2)原式==﹣8;(3)原=x2+3y﹣2,把x=﹣1,y=代入x2+3y﹣2=0.28.【解】(1)原式=4A﹣3A+2B=4ab﹣2a+,当a=﹣1,b=﹣2时,原式=10;(2)由(1)得:原式=(4b﹣2)a+,由结果与a的取值无关,得到4b﹣2=0,解得:b=.29.【解】原式=﹣2x﹣10xy﹣y2,当x=2,y=时,原式==﹣14.30.【解】原式=15x2y﹣5xy2﹣xy2﹣3x2y=12x2y﹣6xy2,当x=1,y=﹣1时,原式=﹣18.31.【解】(1)原式==2xy+4x﹣8;(2)∵x,y互为倒数,∴xy=1,则2xy+4x﹣8=2+4x﹣8=4x﹣6,由题意知4x﹣6=0,解得:x=.32.【解】(1)原式=﹣2k2+2k+7;(2)①A+B=A﹣B+2B=7a2﹣7ab+2(﹣4a2+6ab+7)=﹣a2+5ab+14,②当a=﹣1,b=2时,原式==3.33.【解】(1)A+B﹣C=﹣4a2;(2)将a=﹣代入,原式=﹣4×=﹣1.34.【解】原式=3x2﹣6xy﹣xy﹣3(﹣xy+x2)+2=﹣xy+2,当x=﹣4,y=时,原式==9.38.【解】∵m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,∴2mx2﹣2x+y﹣(﹣6x2+x﹣3y)=(2m+6)x2﹣x+4y,∴2m+6=0,解得:m=﹣3,∴m2+3m﹣=9﹣9﹣=﹣.39【解】(1)原式=4mn﹣10当m=,n=﹣3时,原式=﹣16;(2)因为2a﹣b=﹣5,又因为6a+b+(﹣2a﹣3b+27)=6a+b﹣2a﹣3b+27=17答:整式6a+b与﹣2a﹣3b+27的和的值是17.40.【解】(1)﹣A+B=﹣(x2﹣2xy+y2)+(x2+2xy+y2)=4xy(2)因为2A﹣3B+C=0所以C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2)=3x2+6xy+3y2﹣2x2+4xy﹣2y2=x2+10xy+y241.【解】(1)原式=2x2﹣8x+7;(2)原式=4m﹣n2+5,当m=2,n=﹣3时,原式=4;42.【解】原式=,把m=2,n=3代入,原式=343.【解】(1)2m2﹣2m﹣m2﹣3=m2﹣2m﹣3;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣3(ab2+1)=﹣ab2﹣1把a=﹣2,b=2代入上式可得:原式=7.44.【解】(1)原式=5x+y﹣6x+8y=﹣x+9y,当x=1、y=3时,原式=﹣1+27=26;(2)原式=5a2﹣3ab﹣14,当a=2,b=时,原式=﹣3.46.【解】(1)原式=5x2﹣3y2﹣5x2+4y2+7xy=y2+7xy,当x=﹣1,y=1时,原式=12+7×(﹣1)×1=﹣6;(2)原式=x2﹣3x2﹣3xy+y2+x2+3xy+y2=y2,当y=2时,原式=22=4.48.【解】(1)∵A=3x2+4xy,B=x2+3xy﹣y2,∴﹣A+2B=﹣x2+2xy﹣2y2;(2)原式=﹣32a2﹣8ab+9b2,当a=,b=﹣时,原式=﹣10。

新人教版七年级数学上册专题训练:整式的化简求值(含答案).优选

新人教版七年级数学上册专题训练:整式的化简求值(含答案).优选

专题训练整式的化简求值类型1化简后直接代入求值2221.(柳州期中)先化简,再求值:5x +4-3x -5x -2x -5+6x ,其中x =-3.2解:原式=(5-3-2)x +(-5+6)x +(4-5)=x -1.当x =-3时,原式=-3-1=-4.22222.(北流期中)先化简,再求值:(3a b -2ab )-2(ab -2a b),其中a =2,b =-1.2222解:原式=3a b -2ab -2ab +4a b22=7a b -4ab .当a =2,b =-1时,原式=-28-8=-36.223223.先化简,再求值:2(x +x y)-(3x y +x)-y ,其中x =1,y =-3.32解:原式=2x +2x y -2x y -x -y 2=x -y .当x =1,y =-3时,原式=1-9=-8.122224.(钦南期末)先化简,再求值:2x y -[2xy -2(-x y +4xy )],其中x =,y =-2.2解:原式=2x y -2xy -2x y +8xy 2=6xy .11当x =,y =-2时,原式=6××4=12.222225.(南宁四十七中月考)先化简,再求值:2(x y +xy)-3(x y -xy)-4x y ,其中x ,y 满足|x +1|+(y 12-)=0.2解:原式=2x y +2xy -3x y +3xy -4x y2=-5x y +5xy.222222222212因为|x +1|+(y -)=0,21所以x =-1,y =.255故原式=--=-5.22类型2整体代入求值2222226.若a +2b =5,求多项式(3a -2ab +b )-(a -2ab -3b )的值.2222解:原式=3a -2ab +b -a +2ab +3b 22=2a +4b .22当a +2b =5时,22原式=2(a +2b )=10.7.已知|m +n -2|+(mn +3)=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n)-2mn -2(m +n)-6(m +n)+9mn=-6(m +n)+7mn=-12-21=-33.2专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.解:(1)因为∠AOB与∠BOC互补,所以∠AOB+∠BOC=180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=70°.2(2)因为∠AOB与∠BOC互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=25°.2类型3利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.25.一个角的余角比它的补角的还少40°,求这个角的度数.3解:设这个角的度数为x°,根据题意,得290-x=(180-x)-40.3解得x=30.所以这个角的度数是30°.6.如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC的度数.解:设∠COD=2x°,则∠BOC=3x°.因为OB平分∠AOC,所以∠AOB=3x°.所以2x+3x+3x+20=180.解得x=20.所以∠BOC=3×20°=60°.17.如图,已知∠AOB=∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.2解:设∠AOB=x°,则∠COD=∠AOD=3∠AOB=3x°.1因为∠AOB=∠BOC,2所以∠BOC=2x°.所以3x+3x+2x+x=360.解得x=40.所以∠AOB=40°,∠COD=120°.类型4利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.28.已知∠AOB=75°,∠AOC=∠AOB,OD平分∠AOC,求∠BOD的大小.32解:因为∠AOB=75°,∠AOC=∠AOB,32所以∠AOC=×75°=50°.3因为O D平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD=75°+25°=100°;如图2,∠BOD=75°-25°=50°.9.已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α时,∠EOC=90°,直接写出∠AOE的度数.(用含α的代数式表示)解:(1)因为OC是∠AOB的平分线,1所以∠AOC=∠AOB.2因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE=∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE=∠EOC-∠AOC=90°-30°=60°.αα(3)90°+或90°-.22专题训练整式的加减运算计算:222(1)(钦南期末)a b +3ab -a b ;2解:原式=3ab .(2)2(a -1)-(2a -3)+3;解:原式=4.22(3)2(2a +9b)+3(-5a -4b);2解:原式=-11a +6b.3232(4)3(x +2x -1)-(3x +4x -2);2解:原式=2x -1.1122(5)(钦南期末)(2x -+3x)-4(x -x +);22122解:原式=2x -+3x -4x +4x -2252=6x -x -.2222222(6)3(x -x y -2x y )-2(-x +2x y -3);解:原式=3x -3x y -6x y +2x -4x y +62222=5x -7x y -6x y +6.22(7)-(2x +3xy -1)+(3x -3xy +x -3);22解:原式=-2x -3xy +1+3x -3xy +x -32=x -6xy +x -2.222(8)(4ab -b )-2(a +2ab -b );222解:原式=4ab -b -2a -4ab +2b 22=-2a +b .22(9)-3(2x -xy)+4(x +xy -6);22解:原式=-6x +3xy +4x +4xy -242=-2x +7xy -24.22(10)(钦州期中)2a -[-5ab +(ab -a )]-2ab.22解:原式=2a +5ab -ab +a -2ab 2=3a +2ab.222222。

人教版七年级上册数学第二章整式的加减单元检测(附答案)

人教版七年级上册数学第二章整式的加减单元检测(附答案)

人教版数学七年级上册第二章整式的加减综合能力测试第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分)1.下列代数式中,整式为()A. x+1B.C.D.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A. 7个B. 6个C. 5个D. 4个3.单项式2πr3的系数是()A. 3B. πC. 2D. 2π4.单项式2a3b的次数是()A. 2B. 3C. 4D. 55.对于式子:,,,3x2+5x-2,abc,0,,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6.下列说法正确的是( )A. -的系数是-3B. 2m2n的次数是2C. 是多项式D. x2-x-1的常数项是17.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A. B. C. 1 D. 38.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 99.下面计算正确的是()A. (m+1)a﹣ma=1B. a+3a2=4a3C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b10.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A. 4a+5bB. a+bC. a+5bD. a+7b第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分)11.下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有______.(填序号)12.如果多项式(﹣a﹣1)x2﹣x b+x+1是关于x的四次三项式,那么这个多项式的最高次项系数是_____,2次项是_____13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为_____米.14.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于_____.三.解答题(共9小题,满分90分)15.计算:(1)3xy﹣4xy﹣(﹣2xy)(2)(﹣3)2÷2÷(﹣)+4+22×(﹣)16.若3x m y n是含有字母x和y的五次单项式,求m n的最大值.17.已知多项式x2y m+1+xy2–3x3–6是六次四项式,单项式6x2n y5–m的次数与这个多项式的次数相同,求m+n的值.18.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.19.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.21.嘉淇准备完成题目:化简:(x²+6x+8)-(6x+5x²+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?22.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值答案与解析第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分)1.下列代数式中,整式为()A. x+1B.C.D.【答案】A【解析】【分析】直接利用整式、分式、二次根式的定义分析得出答案.【详解】A、x+1是整式,故此选项正确;B、是分式,故此选项错误;C、是二次根式,故此选项错误;D、是分式,故此选项错误,故选A.【点睛】本题考查了整式、分式、二次根式的定义,熟练掌握相关定义是解题关键.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式. 【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.3.单项式2πr3的系数是()A. 3B. πC. 2D. 2π【答案】D【解析】【分析】根据单项式中的数字因数是单项式的系数求解即可.【详解】单项式2πr3的系数是2π.故选D.【点睛】本题考查了单项式的概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.4.单项式2a3b的次数是()A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选:C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.5.对于式子:,,,3x2+5x-2,abc,0,,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:,,,3x2+5x﹣2,abc,0,,m中:有4个单项式:,abc,0,m;2个多项式为:,3x2+5x-2.故选:C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6.下列说法正确的是( )A. -的系数是-3B. 2m2n的次数是2C. 是多项式D. x2-x-1的常数项是1【答案】C【解析】分析:直接利用单项式以及多项式的定义分别分析得出答案.详解:A.﹣的系数是﹣,故此选项错误;B.2m2n的次数是3次,故此选项错误;C.是多项式,正确;D.x2﹣x﹣1的常数项是﹣1,故此选项错误.故选C.点睛:本题主要考查了单项式以及多项式,正确把握相关定义是解题的关键.7.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A. B. C. 1 D. 3【答案】A【解析】【分析】根据同类项的概念可得a+1=2,b-1=1,解方程求得a、b的值,代入进行计算即可得.【详解】由题意得:a+1=2,b-1=1,解得:a=1,b=2,所以=,故选A.【点睛】本题考查了同类项,熟知所含字母相同,相同字母的指数也相同的项是同类项是解题的关键.8.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【答案】C【解析】分析:首先可判断单项式a m-1b2与a2b n是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m-1b2与a2b n的和仍是单项式,∴单项式a m-1b2与a2b n是同类项,∴m-1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.9.下面计算正确的是()A. (m+1)a﹣ma=1B. a+3a2=4a3C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b【答案】C【解析】【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【详解】A. (m+1)a﹣ma=a≠1,故此选项错误;B.a与3a2不是同类项,不能合并,故此选项错误;C. ﹣(a﹣b)=﹣a+b,故此选项正确;D. 2(a+b)=2a+2b≠2a+b,故此选项错误;故选C.【点睛】本题主要考查了合并同类项,去括号,关键是注意去括号时注意符号他变化,注意乘法分配律的应用,不要漏乘.10.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A. 4a+5bB. a+bC. a+5bD. a+7b【答案】C【解析】【分析】根据长方形的周长公式列出求边长的式子,再去括号,合并同类项即可.【详解】一个长方形的周长为6a+8b,一边长为2a﹣b,∴它的另一边长=(6a+8b )-( 2a﹣b)=3a+4b-2a+b=a+5b.故选C.【点睛】本题考查的是整式的加减的应用,熟知整式的加减实质上就是去括号合并同类项,正确列出算式是解答此题的关键.第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分)11.下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有______.(填序号)【答案】1)、(2)、(3)、(5)、(6)、(8).【解析】单项式和多项式统称整式,由此可得(1)mn,(2)m,(3),(5)2m+1,(6)都是整式,所以整式有(1)、(2)、(3)、(5)、(6)、(8).12.如果多项式(﹣a﹣1)x2﹣x b+x+1是关于x的四次三项式,那么这个多项式的最高次项系数是_____,2次项是_____【答案】(1). ﹣(2). 不存在【解析】【分析】由题意可得b=4,–a–1=0,求出a、b的值后再根据多项式的相关概念进行求解即可得.【详解】由题意得:b=4,–a–1=0,解得:a=–1,b=4,∴多项式–x 4+x+1的最高次项系数是–,2次项是0,故答案为:–;0.【点睛】本题考查了多项式的项数以及次数,熟练掌握多项式的项数及次数的概念是解题的关键.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为_____米.【答案】(a﹣2b)【解析】试题分析:根据平移可得蚂蚁所爬的距离=AB+BC,即3a-b=2a+b+BC.考点:代数式的减法计算14.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于_____.【答案】10【解析】【分析】由由x=y+3得x-y=3,整体代入原式计算即可.【详解】由x=y+3得x-y=3,将其代入要求的式子得:原式=,故答案为:10.【点睛】本题考查了整式的加减—化简求值,解题的关键是掌握整体代入思想的运用.三.解答题(共9小题,满分90分)15.计算:(1)3xy﹣4xy﹣(﹣2xy)(2)(﹣3)2÷2÷(﹣)+4+22×(﹣)【答案】(1)xy(2)-8【解析】【分析】(1) 先将括号去掉,然后根据合并同类项的法则:系数相加减,字母和字母的指数不变.据此合并即可;(2) 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【详解】(1)原式=3xy﹣4xy+2xy=xy,(2)原式=9÷÷(﹣)+4+4×(﹣)=4×(﹣)+4﹣6=﹣6+4﹣6=﹣8【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.16.若3x m y n是含有字母x和y的五次单项式,求m n的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.17.已知多项式x2y m+1+xy2–3x3–6是六次四项式,单项式6x2n y5–m的次数与这个多项式的次数相同,求m+n的值.【答案】5.【解析】【分析】根据多项式的次数和单项式的次数的定义进行分析解答即可.【详解】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.【点睛】熟知“(1)单项式的次数的定义:单项式中所有字母因数的指数之和叫做这个单项式的次数;(2)多项式的次数的定义:多项式的各项中,次数最高的项的次数就是这个多项式的次数”是解答本题的关键. 18.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.【答案】(1)3(2)-1【解析】试题分析:(1)根据同类项的概念可得关于a 的方程,解方程即可得;(2)由已知可得2m-4n=0,从而得m-2n=0,代入进行计算即可得.试题解析:(1)∵关于x、y的两个单项式2mx a y3和﹣4nx3a﹣6y3是同类项,∴a=3a﹣6,解得:a=3;(2)∵2mx a y3+(﹣4nx3a﹣6y3)=0,则2m﹣4n=0,即m﹣2n=0,∴(m﹣2n﹣1)2017=(﹣1)2017=﹣1.19.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.【答案】【解析】【分析】与x无关说明含x的项都被消去,由此可得出m的值.【详解】(2mx2﹣x+3)﹣(3x2﹣x﹣4)=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,∵(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,∴2m﹣3=0,解得:m=.【点睛】本题考查整式的加减,解题的关键是正确理解(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.【答案】(1)-3(2)【解析】【分析】(1)直接利用多项式的次数的确定方法得出m的值;(2)将x,y的值代入求出结果即可.【详解】(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.【点睛】本题考查了多项式及绝对值的知识点,解题的关键是根据题意得出m的值.21.嘉淇准备完成题目:化简:(x²+6x+8)-(6x+5x²+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【答案】(1)﹣2x2+6;(2)a=5【解析】【分析】(1)由题意可先去括号,再合并同类项计算即可;(2)设“”是a,代入原式得到(a﹣5)x2+6,再根据“该题标准答案的结果是常数”,即可解答.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题考查了整式的加减,解题的关键是掌握合并同类项及去括号法则.22.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值【答案】(1)2a2+4ab(2)4【解析】试题分析:(1)所捂的多项式是被减式,根据被减式=减式+差求解;(2)把a,b的值代入到(1)中所求的多项式中求值.试题解析:(1)所捂多项式=a2-4b2+a2+4b2+4ab=2a2+4ab;(2)当a=-1,b=时,所捂多项式=2×(-1)2+4×(-1)×=2-2=0.。

【【专项训练】】人教七上数学 第二章 整式的加减-专项练习100题(含答案)

【【专项训练】】人教七上数学 第二章 整式的加减-专项练习100题(含答案)

整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn) 10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab] 14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y); 22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5); 24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2); 26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]1+3x)-4(x 27、(8xy-x2+y2)+(-y2+x2-8xy); 28、(2x2-21);-x2+229、3x2-[7x-(4x-3)-2x2]. 30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2); 32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2); 34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].35、 -32ab +43a 2b +ab +(-43a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b ) 44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ). 48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x ) 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p 52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy] 54、 3x 2-[5x-4( 21x 2-1)]+5x 255、2a 3b- 21a 3b-a 2b+ 21a 2b-ab 2;56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2;58、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2; 59、(7y-3z )-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2; 63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1. 67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a n -a n -(-7a n )+(-3a n ) 69、x 2y-3xy 2+2yx 2-y 2x70、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-3275、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab2-a2b)]-2ab2},其中a=-2,1b=3,c=-489、已知A=a2-2ab+b2,B=a2+2ab+b21(B-A);(1)求A+B;(2)求490、小明同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.92、已知2222=-+=+-,求3A-B44,5A x xy yB x xy y93、已知A=x2+xy+y2,B=-3xy-x2,求2A-3B.94、已知2a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.-95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.整式的加减专项练习答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a2+9b)+3(-5a2-4b)=—11a2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)= -2x3+y3+4x2y5、3x2-[7x-(4x-3)-2x2] = 5x2 -3x-36、(2xy-y)-(-y+yx)= xy7、5(a22b-3ab2)-2(a2b-7ab) = -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab= -2a+b9、(7m2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)= -3a2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy212、2(a-1)-(2a-3)+3.=413、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]= 7a2+ab-2b214、(x2-xy+y)-3(x2+xy-2y)= -2x2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-316、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c 17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a 20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+2 23、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+10 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 2 25、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 28、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-2529、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -3 30、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab 32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -1 33、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 2 44、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-1 47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 2 48、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 2 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )=8x 2y-6xy 2 53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]=-2x 2y+7xy54、 3x 2-[5x-4( 21x 2-1)]+5x 2 = 10x 2-5x-4 55、2a 3b- 21a 3b-a 2b+ 21a 2b-ab 2 = 23a 3b- 21a 2b-ab 2 56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 2 57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2 = -3a 3+4a 258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 2 65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2 = -41a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2. 原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 2 82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -9 84、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M M=-21x 2+4xy —23y 87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —1588、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B-A)=ab90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A-3B= 5x2+11xy+2y294、已知2a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小. A=2a2-4a+1 B=2a2-4a+3 所以A<B。

(新人教版)七年级(上)第二章 整式的加减测试题(含答案)

(新人教版)七年级(上)第二章 整式的加减测试题(含答案)

七年级(上)第二章 整式的加减(时间:90分钟,满分120分)章测试一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。

5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。

8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。

二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减化简求值专项1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中a=﹣2,b=.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.化简:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)].7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x2﹣xyz)﹣2(x2﹣y2+xyz)﹣(xyz+2y2),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中85.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)﹣4(3a2b﹣ab2),其中a=﹣2,b=.86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.整式化简求值90题参考答案:1.原式=6a2﹣2ab﹣6a2+3ab=ab,当a=﹣2,b=3时,原式=ab=﹣2×3=﹣6.2.原式=6a2b+3a2b﹣5ab2﹣10a2b+6ab2=﹣a2b+ab2把a=﹣2,b=代入上式得:原式=﹣(﹣2)2×+(﹣2)×2=﹣2﹣=﹣2.3.原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣xy2﹣3∴当x=﹣3,y=2时,原式=454.原式=5ab2+3a2b﹣3a2b+2ab2(4分)=7ab2.(6分)当a=2,b=﹣1时,原式=7×2×(﹣1)2(7分)=14.5.原式=2x2﹣y2+2y2﹣x2﹣3x2﹣6y2=﹣2x2﹣5y2.当x=3,y=﹣2时,原式=﹣18﹣20=﹣38.6.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5+[4x2﹣3x2+x+y]=﹣2x+6y,7.原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=8.原式=6a2﹣6ab﹣12b2﹣6a2+12b2=﹣6ab,当a=﹣,b=﹣8时,原式=﹣6×(﹣)×(﹣8)=﹣24.9.=﹣a2﹣9a+7当a=﹣2时,原式=﹣(﹣2)2﹣9×(﹣2)+7=﹣4+18+7=21.10.∵|x﹣y+1|+(x﹣5)2=0,则x﹣y+1=0,x﹣5=0,解得x=5,y=6.(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1)=﹣3x2﹣4y﹣2x2+5y﹣6+x2﹣5y﹣1=﹣4x2﹣4y﹣7=﹣100﹣24﹣7=﹣13111.(1)原式=a2b+ab2,当a=﹣1,b=2时,原式=(﹣1)2×2+(﹣1)×22,=﹣2;(2)原式=2x2﹣xyz﹣2x2+2y2﹣2xyz﹣xyz﹣2y2,=﹣4xyz,当x=1,y=2,z=﹣3时,原式=﹣4×1×2×(﹣3)=2412.原式=x2y﹣2xy+x2y+xy=2x2y﹣xy,当x=﹣1,y=﹣2时,原式=2×(﹣1)2×(﹣2)﹣(﹣1)×(﹣2)=﹣6.13.∵|x﹣2|+|y+1|=0,∴x﹣2=0,y+1=0,解得x=2,y=﹣1,原式=5xy2﹣2x2y+3xy2﹣4xy2+2x2y,=4xy2,=4×2×1,=814.原式=﹣9y+6x2+3y﹣3x2=3x2﹣6y,由x=﹣2,y=﹣得:原式=12+2=1415.∵|x﹣2a|+(y﹣3)2=0∴x=2a,y=3∵B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y又B﹣2A=a∴﹣7×2a﹣5×3=a∴a=﹣116.(1)4M﹣3N=4(﹣xy2+3x2y﹣1)﹣3(4x2y+2xy2﹣x)=﹣4xy2+12x2y﹣4﹣12x2y﹣6xy2+3x=﹣10xy2+3x﹣4;(2)当x=﹣2,y=1时,4M﹣3N=﹣10×(﹣2)×1+3×(﹣2)﹣4=20﹣6﹣4=10.17.(1)原式=(5x2﹣3x)﹣2(2x﹣3)+7x2=12x2﹣7x+6,当x=﹣2时,原式=12×(﹣2)2﹣7×(﹣2)+6=68;(2)原式=2a﹣[4a﹣7b﹣2+6a+4b],=2a﹣[10a﹣3b﹣2],=﹣8a+3b+2,当a=,b=时,原式=618.原式=5xy+15x2﹣10y﹣3xy﹣15x2+6y=2xy﹣4y,当x=,y=﹣1时,原式=2××(﹣1)﹣4×(﹣1)=3.19.(1)原式=3y﹣1+2y﹣2=5y﹣3;(2)原式=x﹣2x+y2﹣x+y2=﹣3x+y2当x=﹣2,y=时,原式=﹣3×(﹣2)+()2=6+=620.(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2)=5a+2a2﹣3+4a3+a﹣4a3﹣2a2=(5a+a)+(2a2﹣2a2)﹣3+(4a3﹣4a3)=6a﹣3当a=1时原式=6×1﹣3=6﹣3=321.化简代数式得,原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=﹣3时,b=﹣5,代数式的值为﹣7.22.a2﹣(2a2+2ab ﹣b2)+(a2﹣ab ﹣b2)=a2﹣2a2﹣2ab+b2+a2﹣ab ﹣b2=﹣a2﹣3ab.当a=3,b=﹣2时,原式=﹣×32﹣3×3×(﹣2)=﹣3+18=1523.原式=2a2﹣ab+b2其中a=﹣1,b=2.所以2a2﹣ab+b2=8 24.原式=3a2b﹣(2ab2﹣2ab+3a2b+ab)+3ab2=ab2+ab;将a=3,b=﹣代入得,原式=ab2+ab=﹣25. ∵3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项∴a﹣2=3,b﹣1=2∴a=5,b=3.3a2b﹣[2ab2﹣2(a2b+2ab2)]=3a2b﹣[2ab2﹣2a2b﹣4ab2]=3a2b﹣2ab2+2a2b+4ab2=5a2b+2ab2当a=5,b=3时,原式=5×52×3+2×5×32=465.26.﹣8xy2+3xy﹣2(xy2﹣xy)=﹣8xy2+3xy﹣2xy2+2xy=﹣10xy2+5xy.当x=,y=﹣2时,原式=﹣10xy2+5xy=﹣10××(﹣2)2+5××(﹣2)=﹣8﹣2=﹣1027.(1)2A﹣B=2(3x2+3y2﹣5xy)﹣(2xy﹣3y2+4x2)=6x2+6y2﹣10xy﹣2xy+3y2﹣4x2=2x2+9y2﹣12xy;(2)当时,2A﹣B=2x2+9y2﹣12xy=3128. 原式=2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1,当a=﹣2,b=时,∴原式=a2b﹣1=(﹣2)2×﹣1=2﹣1=1.29.2(a2﹣2ab)﹣3(a2+2ab)=2a2﹣4ab﹣3a2﹣6ab=﹣a2﹣10ab当a=﹣1,b=2时,原式=﹣(﹣1)2﹣10×(﹣1)×2=﹣1+20=19.30.(1)A=4(2﹣x2)﹣2x,B=2x2﹣x+3.A﹣2B=4(2﹣x2)﹣2x﹣2(2x2﹣x+3)=﹣8x2+2当x=时,A﹣2B=﹣8×()2+2=;(2)A=4(2﹣x2)﹣2x,B=2x2﹣x+3,即:2B=4x2﹣2x+6,由于A与2B互为相反数,即:A+2B=0,4(2﹣x2)﹣2x+4x2﹣2x+6=04x=14,解得:x=所以,x 的值为:.31.原式=5abc﹣2a2b﹣4ab2+a2b+3abc=8abc﹣a2b﹣4ab2;a=﹣2,b=﹣1,c=3时,原式=8×2×1×3﹣4×(﹣1)﹣4×(﹣2)×1=60.32.2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y=2x2y+2 xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y;把x=﹣2,y=2代入上式,原式=2×(﹣2)﹣2×2=﹣833.原式=﹣2ab+6a2﹣(a2﹣5ab+5a2+6ab)=﹣2ab+6a2﹣a2+5ab﹣5a2﹣6ab=﹣3ab;当a=2,b=﹣3时,原式=﹣3×2×(﹣3)=1834.原式=3a3﹣[a3﹣3b+6a2﹣7a]﹣2a3+6a2+8a﹣2b=3a3﹣a3+3b﹣6a2+7a﹣2a3+6a2+8a﹣2b=15a+b当a=2,b=﹣1时,则原式=15×2﹣1=29.35.原式=5a2b+4b3﹣2ab2+3a3﹣2a3+5ab2﹣3b3﹣2a2b=a3+3a2b+3ab2+b3,当a=﹣2,b=3时,原式=(﹣2)3+3×(﹣2)2×3+3×(﹣2)×32+33=﹣8+36﹣54+27=1.36.=a﹣2ab﹣2b 2a+2ab+b2=(+)a+(﹣2+2)ab+(﹣2+1)b2=2a+0﹣b2=2a﹣b2把a=1,b=﹣2代入上式,得上式=2×1﹣(﹣2)2=2﹣4=﹣2.37.原式=a2﹣3ab﹣2b2﹣a2+2b2(3分)=﹣3ab,当,b=﹣8时,原式=﹣3×()×(﹣8)(7分)=﹣12.38.原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.39.原式=3x3﹣6y2﹣3xy﹣3x3+6y2﹣2xy=﹣5xy,当x=3,y=1时,原式=﹣5×3×1=﹣15.40.原式=3x2y﹣[2xy2﹣(2xy﹣3x2y)+xy]+3xy2=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy+xy2,当x=,y=﹣5时,原式=×(﹣5)+×25=.41.原式=8mn﹣[4m2n﹣6mn2﹣mn]﹣29mn2=8mn﹣4m2n+6mn2+mn﹣29mn2=9mn﹣4m2n﹣23mn2当m=﹣1,n=时原式=9×(﹣1)×﹣4×12×﹣23×(﹣1)×=﹣﹣2+=﹣.42.原式=4ab﹣3b2﹣2b2=4ab﹣5b2,当a=1,b=﹣3时,原式=4×1×(﹣3)﹣5×(﹣3)2=﹣57.43.原式=3x2+4x﹣2x2﹣2x2﹣4x+2﹣x+1=﹣x2﹣x+3,当x=﹣2时,原式=﹣(﹣2)2﹣(﹣2)+3=1 44.(2x2﹣x﹣1)﹣(x2﹣x ﹣)+(3x2﹣3)=2x2﹣x﹣1﹣x2+x++3x2﹣3=4x2﹣4,当x=,原式=1﹣4=﹣3.45.原式=3x2﹣3xy﹣3x2+5xy=2xy,当x=﹣2,y=﹣3时,原式=2×(﹣2)×(﹣3)=12.46.原式=3xy﹣x2y﹣2xy+x2y+2…(1分)=xy+2…(2分)∵xy+1=0,∴xy=﹣1…(3分)∴原式=﹣1+2=1…(447.原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2当x=,y=﹣1时,原式=6x2y﹣6xy2=6xy(x﹣y)=6×(﹣)×(+1)==﹣4.48.原式=x2﹣y ﹣x2﹣y=﹣x2﹣y,当x=﹣3,y=﹣时原式=﹣×(﹣3)2﹣(﹣)=﹣3+=﹣.49.原式=4xy﹣2x2﹣5xy+y2+2x2+6xy)=5xy+y2.当x=﹣2,y=1时,原式=5×(﹣2)+1=﹣9.50.(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3)=8xy﹣3x2﹣5xy﹣3xy+6x2﹣9=3x2﹣9,当时,原式=51.原式=x2﹣[7x﹣2x+﹣2x2]+=x2﹣7x+2x ﹣+2x2+=3x2﹣5x当x=﹣时,原式=3×(﹣)2+5×=+=.52.3a2﹣7a+[3a﹣2(a2﹣2a﹣1)]=3a2﹣7a+3a﹣2a2+4a+2=a2+2,当d=﹣2时,原式=4+4=8.53.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5y+[4x2﹣3x2+x+y]=﹣x2﹣3x+5y+4x2﹣3x2+x+y=﹣2x+6y.当x=,y=时,原式=﹣2×+6×=154.原式=x﹣x+y2﹣x+y2=﹣2x+y2,当x=2,y=时,原式=﹣2×2+()2=﹣4+=﹣.55.原式=x2y﹣3xy2﹣5x2y+4xy2=﹣x2y+xy2,当x=2,y=﹣1时,原式=﹣×22×(﹣1)+2×(﹣1)2=1656.=a3﹣2b3+2ab2﹣a2b﹣2ab2+2b3=a3﹣a2b,把a=1,b=﹣代入得:原式=13﹣12×=1+=.57.原式=3x2﹣3xy﹣4x2+3xy+1=﹣x2+1,当x=2,y=﹣3时,原式=﹣22+1=﹣3.58.原式=9x+6x2﹣3x+2x2﹣6x+6=8x2+6,当x=﹣时,原式=8×(﹣)2+6=2+6=8.59.原式=2x2y﹣2xy2﹣2﹣2x2y+xy2+y=﹣xy2+y﹣2,当x=2,y=﹣1时,原式=﹣2×(﹣1)2﹣1﹣2=﹣2﹣1﹣2=﹣5.60.原式=2m2n+2mn2﹣2m2n+2﹣3+mn=2mn2+mn﹣1,当m=﹣2,n=时,原式=2×(﹣2)×()2+(﹣2)×﹣1=﹣361.3x﹣5(x﹣2xy2)+8(x﹣3xy2)=3x﹣5x+10xy2+8x ﹣24xy2=6x﹣14xy2,当x=4,y=﹣时,原式=6×4﹣14×4×(﹣)2=24﹣126=﹣102.62.(2x2﹣x+1)﹣4(x﹣x2+)=2x2﹣x+1﹣4x+4x2﹣2=6x2﹣x﹣1,当x=﹣2时,原式=6×(﹣2)2﹣×(﹣2)﹣1=24+9﹣1=3263.原式=﹣5x2y﹣3x2y+2xy2﹣2x2y=2xy2,当x=2,y=﹣1时,原式=2×2×(﹣1)2=4.故答案为464.原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2008时,原式=﹣()2+×=﹣+=.65.原式=5a2﹣3b2﹣a2+2ab+b2﹣5a2﹣2ab﹣3b2=﹣a2﹣5b2,当a=1,b=﹣时,原式=﹣1﹣5×=﹣66.原式=2x2+3x+5+[4x2﹣5x2+x﹣1]=2x2+3x+5+4x2﹣5x2+x﹣1=2x2+4x2﹣5x2+3x+x+5﹣1=x2+4x+4,∵x=3,∴x2+4x+4=9+12+4=25.67.原式=x2﹣xy+y2﹣x2+xy﹣y2=﹣x2﹣xy,当x=﹣2,y=时,原式=﹣2+=﹣1.68.原式=2a2b+4b3﹣2ab2+3a3﹣2a2b+3ab2﹣3a3﹣4b3=ab2,当a=﹣3,b=2时,原式=﹣3×22=﹣12.69.原式=2a2b,2ab3﹣3a2b+9﹣2ab3﹣1=2a2b﹣3a2b+2ab3﹣2ab3+9﹣1=﹣a2b+8∵a=2,b=﹣2,∴﹣a2b+8=8+8=1670.∵,∴a+=0,3b+2=0,∴a=﹣,b=﹣,=a ﹣b+a+b ﹣a+b+a+b ﹣a+ b=(+﹣+﹣)a+(﹣++++)b=a+ b=×(﹣)+×(﹣)=﹣.71.∵4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)]=4xy﹣(2x2+2xy﹣4y2﹣3x2+6xy﹣3y2)=x2﹣4xy+7y2,∴当x=﹣,y=时,原式=x2﹣4xy+7y2=(﹣)2﹣4×(﹣)×+7×()2=+1+=372.原式=2x2﹣x2+3xy+2y2﹣x2+xy﹣2y2,=(2﹣1﹣1)x2+(3+1)xy+(2﹣2)y2,=4xy,当x=,y=3时,原式=4××3=673.原式=2x2﹣5xy﹣3x2+3y2+x2﹣3y2=(2﹣3+1)x2+(3﹣3)y2﹣5xy=﹣5xy,当x=﹣3,y=时,原式=(﹣5)×(﹣3)×=574.原式=5a2b+3b2﹣6a2b﹣2ab2+4a2b﹣3b2=3a2b﹣2ab2,当a=﹣2,b=1时,原式=12+4=16.75.原式=5a﹣a2﹣5a2+3a+6a2﹣12a=8a﹣12,当a=﹣时,原式=﹣2﹣12=﹣14.76.原式=3x2y﹣[2xy2﹣2xy+3x2y+xy]+3xy2=3x2y﹣2xy2+xy﹣3x2y+3xy2=xy2+xy,把x=3,y=﹣1代入得:原式=xy2+xy=077.2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1,=2a2b+2ab2﹣3a2b+9﹣2ab2﹣1,=﹣a2b+8,当a=﹣2,b=2时,原式=﹣(﹣2)2×2+8=0.78.原式=﹣3x+5y2﹣+=﹣4x+y2,当x=3,y=时,原式=(﹣4)×3+×()2=0.79.∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.80.原式=5x2﹣3y2﹣5x2+2xy﹣7xy+4y2=﹣5xy+y2,当x=﹣1,y=﹣时,原式=﹣5×(﹣1)×(﹣)+(﹣)2=﹣+=﹣.81.原式==﹣3x+y2,由(x﹣2)2+|y+3|=0,知x﹣2=0,y+3=0,解得x=2,y=﹣3,代入化简结果得,原式=﹣3×2+(﹣3)2=382.原式=x2﹣6xy﹣2y2﹣2x2+7xy+2y2=﹣x2+xy,当x=4,y=﹣1时,原式=﹣42+4×(﹣1)=﹣2083.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.84.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.85.原式=15a2b﹣5ab2﹣ab2﹣3a2b﹣12a2b+4ab2=﹣2ab2,当a=﹣2,b=时,原式=﹣2×(﹣2)×=186.原式=a2﹣2ab﹣b2+b2﹣a2=﹣2ab,当a=﹣,b=2012时,原式=﹣2×(﹣)×2012=2012.87.原式=2x﹣y﹣6x+y=﹣4x,当x=﹣,y=2010时,原式=﹣4×(﹣)=1.88.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.89.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.90.原式=4xy2﹣y2﹣4xy2﹣y2+x2y ﹣y2=﹣3y2+x2y.当x=,y=﹣时,原式=﹣3×(﹣)2+()2×(﹣)==.。

相关文档
最新文档