仲恺现代通信原理实验报告

合集下载

通信原理实验实验报告

通信原理实验实验报告

通信原理实验实验报告通信原理实验实验报告一、引言通信原理是现代通信技术的基础,而通信原理实验则是学习和理解通信原理的重要途径之一。

本次实验旨在通过实际操作和数据分析,加深对通信原理的理解,并掌握相关实验技能。

二、实验目的本次实验的主要目的是通过实验验证通信原理中的一些基本概念和理论,包括调制、解调、信道传输特性等。

同时,通过实验数据的分析,探究不同参数对通信系统性能的影响。

三、实验原理1. 调制与解调调制是将要传输的信息信号转换成适合传输的调制信号的过程,解调则是将接收到的调制信号恢复成原始信息信号的过程。

常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

2. 信道传输特性信道传输特性是指信号在传输过程中受到的各种干扰和衰减的影响。

常见的信道传输特性包括衰减、失真、噪声等。

在通信系统设计中,需要考虑信道传输特性对信号质量的影响,并采取相应的措施进行补偿或抑制。

四、实验步骤1. 实验一:调制与解调在实验一中,我们选择了幅度调制(AM)作为调制方式。

首先,通过信号发生器产生一个正弦波作为基带信号,然后将其调制到无线电频率范围。

接下来,通过解调器将接收到的信号解调,并与原始信号进行比较分析。

2. 实验二:信道传输特性在实验二中,我们通过建立一个简单的传输系统来研究信道传输特性。

首先,我们将信号源连接到信道输入端,然后通过信道模拟器模拟信道的衰减、失真和噪声等特性。

最后,我们使用示波器观察信号在传输过程中的变化,并记录相关数据。

五、实验结果与分析1. 实验一:调制与解调通过实验一的数据分析,我们可以得出调制信号与原始信号的关系,并进一步了解幅度调制的特点。

同时,我们还可以观察到解调过程中的信号失真情况,并对解调算法进行改进。

2. 实验二:信道传输特性实验二的数据分析主要包括信号衰减、失真和噪声等方面。

通过观察示波器上的波形变化,我们可以了解信号在传输过程中的衰减程度,以及失真和噪声对信号质量的影响。

通信原理实训报告

通信原理实训报告

一、实训背景随着信息技术的飞速发展,通信技术在各个领域都发挥着越来越重要的作用。

为了使学生更好地理解通信原理,提高实践能力,我们选择了通信原理实训课程。

通过本次实训,我们深入学习了通信系统的基本原理、信号传输与处理技术,以及通信设备的使用与维护。

二、实训目的1. 理解通信系统的基本原理,掌握通信系统各组成部分的功能。

2. 熟悉通信设备的使用与维护方法,提高实际操作能力。

3. 培养团队协作精神,提高解决实际问题的能力。

三、实训内容本次实训主要包括以下内容:1. 通信系统基本原理:学习通信系统的基本概念、组成、工作原理等,了解通信系统的发展历程和趋势。

2. 信号传输与处理技术:学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。

3. 通信设备的使用与维护:学习通信设备的操作方法、维护技巧以及故障排除方法。

四、实训过程1. 通信系统基本原理实训(1)通过课堂讲解和实验演示,了解通信系统的基本组成和功能。

(2)学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。

(3)通过实验验证通信系统的基本原理,如模拟通信系统的调制解调、数字通信系统的编码解码等。

2. 信号传输与处理技术实训(1)学习信号的调制、解调、编码、解码等基本技术,掌握信号的传输与处理方法。

(2)通过实验验证信号传输与处理技术的实际应用,如AM、FM、PM调制解调、数字信号编码解码等。

3. 通信设备的使用与维护实训(1)学习通信设备的操作方法、维护技巧以及故障排除方法。

(2)通过实际操作,掌握通信设备的操作方法,如调制解调器、路由器、交换机等。

(3)学习故障排除方法,提高实际解决问题的能力。

五、实训成果1. 理解通信系统的基本原理,掌握通信系统各组成部分的功能。

2. 熟悉通信设备的使用与维护方法,提高实际操作能力。

3. 培养团队协作精神,提高解决实际问题的能力。

六、实训总结通过本次通信原理实训,我们收获颇丰。

现代通信实验报告二

现代通信实验报告二

实验三PCM实验一、实验目的1、了解语音编码的工作原理,验证PCM编译码原理;2、熟悉PCM抽样时钟、编码数据和输入/输出时钟之间的关系;3、了解PCM专用大规模集成电路的工作原理和应用;4、熟悉语音数字化技术的主要指标及测量方法;二、实验仪器1、J H5001通信原理综合实验系统一台2、20MHz双踪示波器一台3、函数信号发生器一台4、音频信道传输损伤测试仪一台三、实验内容1.加电后,通过菜单选择“PCM”编码方式。

此时,系统将U502设置为PCM 模式。

开关K8接通SL1(或SL5、SL7),开关K5、K6分接置于STA-S、STB-S的方向,接通实验箱电源。

2. 用示波器观察STA、STB,调节电位器R19(对应STA)、R20(对应STB),使正弦信号STA、STB波形不失真(峰峰值小于5V)。

3. 用示波器观察PCM编码输出信号。

示波器CH1接SL0,(调整示波器扫描周期以显示至少两个SL0脉冲,从而可以观察完整的一帧信号)CH2分别接SLA、PCM-A、SLB、PCM-B以及PCM,观察编码后的数据所处时隙位置与时隙同步信号的关系以及PCM信号的帧结构(注意:本实验的帧结构中有29个时隙是空时隙,SL0、SLA及SLB的脉冲宽度等于一个时隙宽度)。

开关K8分别接通SL1、SL2、SL5、SL7,观察PCM基群帧结构的变化情况。

4. 用示波器观察PCM译码输出信号示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(有相位差)。

5. 用示波器定性观察PCM编译码器的动态范围。

开关K5置于STA-IN端,将低失真低频信号发生器输出的1KHz正弦信号从STA-IN输入到TP3057(U82)编码器。

示波器的CH1接STA(编码输入),CH2接SRA(译码输出)。

将信号幅度分别调至大于5VP-P、等于5VP-P,观察过载和满载时的译码输出波形。

再将信号幅度分别衰减10dB、20dB、30dB、40dB、45dB、50dB,观察译码输出波形(当衰减45dB以上时,译码输出信号波形上叠加有较明显的噪声)。

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

通信原理实验实验报告

通信原理实验实验报告

通信原理实验实验报告实验名称:通信原理实验实验目的:1. 理解基本的通信原理和通信系统的工作原理;2. 掌握各种调制解调技术以及通信信号的传输方式;3. 熟悉通信系统的基本参数和性能指标。

实验设备和器材:1. 信号发生器2. 采样示波器3. 调制解调器4. 麦克风和扬声器5. 示波器6. 功率分贝计7. 电缆和连接线等实验原理:通信原理主要涉及调制解调、传输媒介、信道编码和解码等方面的内容。

本次实验主要内容为调幅、调频和数字调制解调技术的验证,以及传输信号质量的评估和性能测量。

实验步骤:1. 调幅实验:将信号发生器产生的正弦波信号调幅到载波上,并使用示波器观察调幅波形,记录幅度调制度;2. 调频实验:使用信号发生器产生调制信号,将其调频到载波上,并使用示波器观察调频波形,记录调频的范围和带宽;3. 数字调制实验:使用调制解调器进行数字信号调制解调实验,并观察解调的信号质量,记录解调信号的正确性和误码率;4. 信号质量评估:使用功率分贝计测量信号传输过程中的信噪比和失真程度,并记录测量结果;5. 性能测量:采用示波器和其他测量设备对通信系统的带宽、传输速率等性能指标进行测量,记录测量结果。

实验结果:1. 对于调幅实验,观察到正弦波信号成功调幅到载波上,并记录幅度调制度为X%;2. 对于调频实验,观察到调制信号成功调频到载波上,并记录调频的范围为X Hz,带宽为X Hz;3. 对于数字调制实验,观察到解调后的信号正确性良好,误码率为X%;4. 信号质量评估测量结果显示信噪比为X dB,失真程度为X%;5. 性能测量结果显示通信系统的带宽为X Hz,传输速率为X bps。

实验总结:通过本次实验,我们深入了解了通信原理中的调制解调技术和信号传输方式,并且成功进行了调幅、调频和数字调制解调实验。

通过信号质量评估和性能测量,我们对通信系统的性能指标有了更深入的了解。

在实验过程中,我们还发现了一些问题和改进的空间,例如在数字调制实验中,我们可以进一步优化解调算法,提高解调的正确性。

通信原理实验报告答案(3篇)

通信原理实验报告答案(3篇)

第1篇一、实验目的1. 理解通信系统的基本原理和组成。

2. 掌握通信系统中的调制、解调、编码、解码等基本技术。

3. 熟悉实验仪器的使用方法,提高动手能力。

4. 通过实验,验证通信原理理论知识。

二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。

2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。

3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。

三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。

2. 信号源:提供调制、解调所需的信号。

3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。

四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。

(2)将信号源信号输入调制器,观察调制后的信号波形。

(3)调整解调器参数,如解调方式、解调频率等。

(4)将调制信号输入解调器,观察解调后的信号波形。

2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。

(2)将调制信号输入解调器,观察解调后的信号波形。

(3)调整调制器参数,如调制方式、调制频率等。

(4)将解调信号输入调制器,观察调制后的信号波形。

3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。

(2)将信息信号输入编码器,观察编码后的数字信号。

(3)设置解码器参数,如解码方式、解码长度等。

(4)将编码信号输入解码器,观察解码后的信息信号。

4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。

(2)将信号源信号输入传输线路,观察传输过程中的信号变化。

(3)调整传输线路参数,如衰减、反射等。

(4)观察传输线路参数调整对信号传输的影响。

五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。

2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。

通信原理实验实验报告

通信原理实验实验报告

1. 理解并掌握通信系统基本组成及工作原理。

2. 掌握通信系统中信号的传输与调制、解调方法。

3. 学习通信系统性能评估方法及分析方法。

二、实验器材1. 通信原理实验平台2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机及实验软件三、实验内容1. 通信系统基本组成及工作原理(1)观察通信原理实验平台,了解通信系统的基本组成,包括发送端、信道、接收端等。

(2)分析实验平台中各模块的功能,如调制器、解调器、滤波器等。

(3)通过实验验证通信系统的工作原理。

2. 信号的传输与调制、解调方法(1)学习并掌握模拟信号的调制、解调方法,如AM、FM、PM等。

(2)学习并掌握数字信号的调制、解调方法,如2ASK、2FSK、2PSK等。

(3)通过实验验证调制、解调方法的有效性。

3. 通信系统性能评估方法及分析方法(1)学习并掌握通信系统性能评估方法,如误码率、信噪比、调制指数等。

(2)通过实验测量通信系统性能参数,如误码率、信噪比等。

(3)分析实验数据,总结通信系统性能。

1. 观察通信原理实验平台,了解通信系统的基本组成。

2. 设置实验参数,如调制方式、载波频率、调制指数等。

3. 观察并记录实验过程中各模块的输出信号。

4. 利用示波器、信号分析仪等仪器分析实验数据。

5. 计算通信系统性能参数,如误码率、信噪比等。

6. 分析实验结果,总结实验结论。

五、实验结果与分析1. 通过实验验证了通信系统的基本组成及工作原理。

2. 实验结果表明,调制、解调方法对通信系统性能有显著影响。

例如,在相同条件下,2PSK调制比2ASK调制具有更好的误码率性能。

3. 通过实验测量了通信系统性能参数,如误码率、信噪比等。

实验数据表明,在合适的调制方式、载波频率等参数下,通信系统可以达到较好的性能。

4. 分析实验数据,总结实验结论。

实验结果表明,在通信系统中,合理选择调制方式、载波频率等参数,可以提高通信系统性能。

六、实验总结本次实验通过观察、实验、分析等方法,对通信原理进行了深入学习。

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。

画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。

,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。

具体程序及图形见附录1(或者直接放在这里,写如下。

)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。

具体参数,图形。

4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。

第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。

仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。

例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。

fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。

通信原理实验报告

通信原理实验报告

通信原理实验报告通信原理实验报告一、引言通信原理是现代社会中不可或缺的一部分,它涉及到人与人之间的信息传递和交流。

为了更好地理解通信原理的基本概念和原理,我们进行了一系列的实验。

本报告将介绍实验的目的、实验装置和实验结果,并对实验结果进行分析和讨论。

二、实验目的本次实验的主要目的是通过实际操作,加深对通信原理中调制解调的理解,并掌握调制解调的基本原理和方法。

同时,通过实验还可以了解到信号的传输特性和信道噪声对通信质量的影响。

三、实验装置本实验使用的装置包括信号发生器、调制解调器、示波器和音频输出设备。

信号发生器用于产生不同频率和振幅的信号,调制解调器用于将信号进行调制和解调,示波器用于观察信号的波形,音频输出设备用于听到解调后的信号。

四、实验步骤1. 首先,将信号发生器连接到调制解调器的输入端口,并设置合适的频率和振幅。

2. 将调制解调器的输出端口连接到示波器的输入端口,以便观察信号的波形。

3. 打开信号发生器和调制解调器,并调节合适的参数,使得信号能够正常传输和解调。

4. 使用示波器观察信号的调制和解调过程,并记录下观察到的波形。

5. 将示波器的输出端口连接到音频输出设备,以便听到解调后的信号。

6. 调节音频输出设备的音量,并仔细听取解调后的信号,记录下听到的声音特征。

五、实验结果通过实验,我们观察到了不同频率和振幅的信号在调制和解调过程中的变化。

在调制过程中,信号的频率和振幅被调整,以便在传输过程中更好地适应信道特性。

在解调过程中,信号经过解调器后恢复成原始的频率和振幅。

六、实验分析与讨论通过实验结果的观察和分析,我们可以得出以下结论:1. 调制是将信息信号转换为适合传输的信号的过程,而解调是将传输过程中的信号恢复为原始的信息信号的过程。

2. 调制过程中,信号的频率和振幅会发生变化,这是为了适应信道的特性和噪声的影响。

3. 解调过程中,信号经过解调器后能够恢复成原始的频率和振幅,但可能会有一定的失真和噪声。

现代通信设计实验报告

现代通信设计实验报告

现代通信设计实验报告1.引言1.1 概述现代通信设计实验是一项重要的学科实践活动,旨在帮助学生加深对通信原理和技术的理解,提高其实际应用能力。

本实验报告旨在系统地总结和分析现代通信设计实验的过程和结果,探讨实验中遇到的问题和挑战,提出改进方向和展望,从而为相关领域的学习和研究提供参考和借鉴。

在本报告中,我们将首先介绍实验的背景和意义,阐述通信设计在现代社会中的重要性和应用价值。

然后我们将详细描述实验的目标和方法,包括实验设计的具体内容和步骤。

接着,我们将对实验过程和结果进行分析,探讨实验中出现的问题和取得的成果。

最后,我们将对实验结果进行总结,指出实验的局限性和改进方向,并展望现代通信设计的未来发展方向。

通过本报告的撰写,我们希望能够全面而系统地呈现现代通信设计实验的全貌,为相关领域的学习和研究提供有益的参考和启示。

1.2 文章结构文章结构部分:本文共分为引言、正文和结论三个部分。

引言部分包括了概述、文章结构和目的三个小节,主要介绍了本报告的写作背景、整体结构和研究目的,为读者提供了对整篇报告的整体把握。

正文部分包括了通信设计的背景和意义、设计实验的目标和方法以及实验过程和结果分析三个小节,详细介绍了通信设计的相关背景和意义,设计实验的具体目标和方法,以及实验过程中的关键环节和结果分析过程。

结论部分包括了实验结果总结、实验的局限性和改进方向以及对现代通信设计的思考和展望三个小节,对实验得到的结果进行总结,分析了存在的局限性和改进方向,并对现代通信设计进行了进一步的思考和展望。

1.3 目的本实验的目的是通过设计和实验现代通信系统的各种组件,包括调制解调器、编解码器和通道编码解码器,从而加深对通信原理和技术的理解。

同时,通过实际操作,学习和掌握现代通信设计中常用的工具和方法,培养学生的动手能力和创新思维。

通过本实验的学习,希望能够培养学生对通信系统的整体把握能力,为今后的通信工程实践和研究打下坚实的基础。

通信原理实验报告设想(3篇)

通信原理实验报告设想(3篇)

第1篇一、实验目的本次实验旨在通过一系列的通信原理实验,使学生深入理解并掌握通信系统的基本概念、原理和关键技术。

通过实验操作,培养学生动手能力、分析问题和解决问题的能力,同时增强对通信理论知识的实际应用能力。

二、实验内容1. 信号与系统基础实验- 信号波形观察与分析- 信号的时域与频域分析- 系统的时域与频域响应2. 模拟通信原理实验- 模拟调制与解调实验(如AM、FM、PM)- 信道特性分析- 噪声对通信系统的影响3. 数字通信原理实验- 数字调制与解调实验(如2ASK、2FSK、2PSK、QAM)- 数字基带传输与复用- 数字信号处理技术4. 现代通信技术实验- TCP/IP协议栈原理与实现- 无线通信技术(如Wi-Fi、蓝牙)- 物联网通信技术(如ZigBee)5. 通信系统设计实验- 基于MATLAB的通信系统仿真- 通信系统性能分析与优化三、实验步骤1. 实验准备- 熟悉实验原理和实验设备- 编写实验报告提纲- 准备实验数据和分析工具2. 实验操作- 按照实验步骤进行操作,记录实验数据 - 分析实验现象,总结实验规律- 对实验结果进行误差分析3. 实验报告撰写- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会四、实验报告格式1. 封面- 实验报告题目- 学生姓名、学号、班级- 指导教师姓名、职称- 实验日期2. 目录- 实验报告各部分标题及页码3. 正文- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会4. 参考文献- 列出实验过程中参考的书籍、论文、网络资源等五、实验报告撰写要求1. 实验报告内容完整、结构清晰、逻辑严谨2. 实验原理阐述准确,实验步骤描述详细3. 实验数据真实可靠,分析结论具有说服力4. 实验报告格式规范,语言表达流畅六、实验报告评价标准1. 实验原理掌握程度2. 实验操作熟练程度3. 实验数据分析能力4. 实验报告撰写质量5. 实验心得体会通过本次通信原理实验,学生将能够全面了解通信系统的基本原理和关键技术,提高实际应用能力,为今后从事通信领域的工作打下坚实基础。

通信原理实验报告小结

通信原理实验报告小结

一、实验背景与目的通信原理实验是通信工程专业学生学习通信基础知识的重要环节,旨在通过实际操作加深对通信原理的理解,提高学生的实践能力。

本次实验主要针对通信系统中常用的数字基带信号、调制解调技术、信道模型等方面进行实验研究。

二、实验内容及方法1. 数字基带信号实验(1)实验内容:了解几种常用的数字基带信号的特征和作用,如AMI码、HDB3码等。

(2)实验方法:通过MATLAB软件模拟数字基带信号的生成、传输和接收过程,观察信号波形,分析信号特性。

2. 调制解调技术实验(1)实验内容:学习AM、SSB、FM调制与解调技术,掌握调制解调原理。

(2)实验方法:利用SystemView软件模拟调制解调过程,观察调制解调信号波形,分析调制解调效果。

3. 信道模型实验(1)实验内容:学习加性白高斯噪声信道模型,分析信号在信道中的传输特性。

(2)实验方法:通过MATLAB软件生成加性白高斯噪声,模拟信号在信道中的传输过程,观察信号波形和频谱,分析信号传输效果。

4. 码间串扰实验(1)实验内容:研究码间串扰对数字信号传输的影响,掌握眼图分析方法。

(2)实验方法:通过MATLAB软件生成受码间串扰和未受码间串扰影响的数字信号,绘制眼图,分析眼图特性。

5. 双机通信实验(1)实验内容:掌握单片机串行口工作方式,学习双机通信接口电路设计及程序设计。

(2)实验方法:利用单片机实验模块和数码管显示模块,实现双机通信功能,观察通信过程,分析通信效果。

三、实验结果与分析1. 数字基带信号实验通过实验,我们掌握了AMI码、HDB3码等数字基带信号的特征和作用,了解了信号在传输过程中的特性。

2. 调制解调技术实验通过实验,我们熟悉了AM、SSB、FM调制与解调技术,掌握了调制解调原理,提高了信号处理能力。

3. 信道模型实验通过实验,我们学习了加性白高斯噪声信道模型,了解了信号在信道中的传输特性,为后续通信系统设计提供了理论基础。

4. 码间串扰实验通过实验,我们掌握了眼图分析方法,了解了码间串扰对数字信号传输的影响,为通信系统性能优化提供了参考。

通信原理实验报告(8份)

通信原理实验报告(8份)

通信原理实验报告(8份)姓名:学号:通信原理实验报告姓名:姓名:学号:实验一HDB3码型变换实验一、实验目的了解几种常用的数字基带信号的特征和作用。

掌握HDB3码的编译规则。

了解滤波法位同步在的码变换过程中的作用。

二、实验器材主控&信号源、2号、8号、13号模块双踪示波器连接线三、实验原理1、HDB3编译码实验原理框图各一块一台若干姓名:学号:HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

当没有连续4个连0时与AMI编码规则相同。

当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。

若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。

实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。

同样AMI译码只需将所有的±1变为1,0变为0即可。

而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。

传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。

实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。

四、实验步骤姓名:学号:实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。

将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。

姓名:学号:3、此时系统初始状态为:编码输入信号为256K的PN序列。

4、实验操作及波形观测。

通信原理实验报告

通信原理实验报告

通信原理实验报告【通信原理实验报告】一、实验目的:本实验旨在通过实际操作,加深对通信原理相关知识的理解,掌握通信原理实验的基本步骤和方法,以及熟悉通信原理实验仪器的使用。

二、实验仪器与器件:1. 信号发生器:用于产生模拟信号。

2. 示波器:用于观测和测量信号波形。

3. 电阻、电容、电感等元件:用于构建电路。

4. 数字示波器:用于观测和测量数字信号。

5. 串口线:用于连接计算机和实验设备。

三、实验内容:1. 模拟信号的产生与观测1.1 使用信号发生器产生正弦信号,并观测信号波形。

1.2 调节信号频率和幅度,观察信号波形的变化。

1.3 通过示波器测量信号的频率和幅度。

2. 模拟信号的调制与解调2.1 使用信号发生器产生载波信号。

2.2 使用示波器观测载波信号波形。

2.3 将调制信号与载波信号进行混合,观察调制信号对载波信号的影响。

2.4 使用解调器对调制信号进行解调,观察解调后的信号波形。

3. 数字信号的产生与观测3.1 使用信号发生器产生矩形脉冲信号,并观测信号波形。

3.2 调节脉冲宽度和周期,观察信号波形的变化。

3.3 通过数字示波器测量信号的脉宽和周期。

4. 数字信号的调制与解调4.1 使用信号发生器产生调制信号。

4.2 使用数字示波器观测调制信号波形。

4.3 将调制信号与载波信号进行混合,观察调制信号对载波信号的影响。

4.4 使用解调器对调制信号进行解调,观察解调后的信号波形。

四、实验步骤与结果:1. 模拟信号的产生与观测1.1 连接信号发生器和示波器。

1.2 设置信号发生器的频率和幅度,产生正弦信号。

1.3 使用示波器观测信号波形,并记录频率和幅度。

实验结果:产生的正弦信号频率为1000Hz,幅度为5V。

2. 模拟信号的调制与解调2.1 连接信号发生器、示波器和调制解调器。

2.2 设置信号发生器产生载波信号,并使用示波器观测载波信号波形。

2.3 将调制信号与载波信号进行混合,并观察调制后的信号波形。

仲恺现代通信原理实验报告(DOC)

仲恺现代通信原理实验报告(DOC)

实验一PCM脉冲编码调制信息科学与技术学院学院(院、系)网络工程专业132 班现代通信系统课实验一:利用Matlab绘制带通信号x(t)=2sinc(20t)*cos[2π*100t+sinc(5t)],时间间隔为0.02s。

代码:图像:>> ts=0.02;>> t=[-3:ts:3];>> x=2*sinc(20*t).*cos(2*pi*100*t+sinc(5*t));>> plot(t,x)实验二:利用Matlab对模拟信源s=sint(0<t<2π)进行均匀量化,量化间隔为0.2s。

代码:图像:>> t=[0:0.2:2*pi];>> s=sin(t);>> partition=[-1:0.2:1];>> codebook=[-5:1:5+1];>> [index,quants]=quantiz(s,partition,codebook);>> subplot(2,1,1);plot(t,s);>> subplot(2,1,2);plot(t,quants)实验三:编制一个函数实现均匀PCM量化编码,并计算量化噪声比(SQNR)。

代码:function [sqnr,a_quan,code]=upcm(a,n) %定义一个关于输入信号序列a和量化级数n的upcm函数amax=max(abs(a)); %取变量amax等于序列a的绝对值a_quan=a/amax; %对输入信号序列归一化,使信号幅度取值范围为[-1,1]b_quan=a_quan; %令变量b_quan等于变量a_quand=2/n; %取d=2/n为量化间隔q=d.*[0:n-1]-(n-1)/2*d; %取q为每个量化区间对应的判决阈值for i=1:n %对归一化后的输入信号序列进行量化index=find((q(i)-d/2<=a_quan)&(a_quan<=q(i)+d/2));a_quan(index)=q(i)*ones(1,length(index));b_quan(find(a_quan==q(i)))=(i-1).*ones(1,length(find(a_quan==q(i))));enda_quan=a_quan*amax; %使量化后的归一化信号各点值变回原来的值nu=ceil(log2(n)); %设定给定量化级数所需比特数code=zeros(length(a),nu); %取零矩阵,使其行数为序列a的长度,列数为量化所需比特数nu的矩阵for i=1:length(a) %对输入信号序列量化后进行编码for j=nu:-1:0if(fix(b_quan(i)/(2^j))==1)code(i,nu-j)=1;b_quan(i)=b_quan(i)-2^j;endendendsqnr=20*log10(norm(a)./norm(a-a_quan)); %使公式计算量化噪声比(SQNR)实验四:利用上题编制的函数,对正弦信号s=sint(0<t<2π)进行均匀PCM量化编码,并比较当量化级数分别为8、16时的量化噪声比的大小。

通信原理实验报告

通信原理实验报告

通信原理实验报告1. 实验简介该实验旨在探究通信原理中的基础概念和技术,通过实际操作和数据收集,加深对通信原理的理解和应用。

2. 实验目的通过实验,达到以下目的:- 理解调制、解调、信道传输等基本通信原理- 学习并应用相关通信原理工具和设备- 分析实验结果,总结出相关规律和结论- 提高实验操作能力和数据处理能力3. 实验过程3.1 实验设备和器材预备准备以下设备和器材:- 调制解调器- 信号发生器- 示波器- 噪声源- 电缆和连接线3.2 实验步骤步骤1:使用信号发生器产生载波信号,并将其连接到调制解调器的输入端口。

步骤2:将待发送的消息信号连接到调制解调器的输入端口。

步骤3:通过示波器观察并记录调制解调器输出的调制信号。

步骤4:使用示波器观察并记录解调器输出的解调信号。

步骤5:将噪声源连接到调制解调器的输入端口,并观察解调器输出的抗噪性能。

步骤6:根据实验结果进行数据分析和总结。

4. 实验结果与讨论4.1 调制信号观察与记录通过示波器观察到的调制信号波形如下图所示:(可以插入图片)4.2 解调信号观察与记录通过示波器观察到的解调信号波形如下图所示:(可以插入图片)4.3 抗噪性能观察与分析连接噪声源后,示波器观察到的解调信号波形相对于无噪声的情况产生了一定程度的畸变。

通过分析解调信号的信噪比和误码率等指标,可以进一步评估抗噪性能,并提出改进建议。

5. 结论通过本次实验,我们深入探讨了通信原理相关的调制、解调和信道传输等基本概念。

通过观察实验结果和数据分析,得出以下结论:- 调制技术可以将消息信号转换为适合传输的载波信号,进而实现有效的数据传输。

- 解调技术可以将接收到的调制信号还原为原始的消息信号。

- 通信系统在存在噪声的情况下,解调信号的质量和抗噪能力会受到一定影响。

6. 改进建议根据实验结果和结论,我们提出以下改进建议:- 进一步优化调制和解调算法,提高传输效率和抗噪性能。

- 使用更先进的设备和器材,提升实验数据的准确性和稳定性。

现代通信技术实验报告

现代通信技术实验报告

一、实验目的1. 了解现代通信技术的基本原理和主要设备。

2. 掌握模拟通信和数字通信的基本概念及区别。

3. 通过实验,熟悉通信系统的基本组成和功能。

4. 培养实验操作能力和分析问题的能力。

二、实验原理现代通信技术主要包括模拟通信和数字通信两种。

模拟通信是指将信息以模拟信号的形式进行传输,而数字通信则是将信息以数字信号的形式进行传输。

本实验将重点探讨数字通信技术。

数字通信系统主要由信源、信道、信宿和编码解码器组成。

信源产生原始信息,编码解码器将信息进行数字编码和解码,信道用于传输信息,信宿接收并处理信息。

三、实验内容1. 模拟通信实验- 实验目的:了解模拟通信系统的基本组成和原理。

- 实验内容:观察模拟调制解调过程,分析调制解调器的工作原理。

2. 数字通信实验- 实验目的:了解数字通信系统的基本组成和原理,掌握数字调制解调技术。

- 实验内容:- 观察数字调制解调过程,分析调制解调器的工作原理。

- 对比模拟通信和数字通信系统的性能差异。

3. 误码率测试实验- 实验目的:了解误码率的概念,掌握误码率测试方法。

- 实验内容:- 通过实验,测试数字通信系统的误码率。

- 分析误码率产生的原因及解决办法。

四、实验步骤1. 模拟通信实验- 搭建模拟通信系统,包括信源、信道、信宿和调制解调器。

- 观察调制解调器的工作过程,分析其工作原理。

- 对比模拟通信和数字通信系统的性能差异。

2. 数字通信实验- 搭建数字通信系统,包括信源、信道、信宿和编码解码器。

- 观察编码解码器的工作过程,分析其工作原理。

- 对比模拟通信和数字通信系统的性能差异。

3. 误码率测试实验- 搭建数字通信系统,并设置不同的误码率。

- 通过实验,测试不同误码率下的通信效果。

- 分析误码率产生的原因及解决办法。

五、实验结果与分析1. 模拟通信实验- 观察到模拟调制解调过程,分析出调制解调器的工作原理。

- 发现模拟通信系统的抗干扰能力较差,容易受到信道噪声的影响。

现代通信原理实验

现代通信原理实验

现代通信原理实验报告班级学号:姓名:指导教师:实验一测试各种模拟信号并观察一、实验目的:1、熟悉各种模拟信号的产生方法及其用途。

2、观察分析各种模拟信号波形的特点。

二、实验内容及要求:1、测量并分析各测量点波形及数据。

2、熟悉几种模拟信号的产生方法,了解信号的来源、变换过程和使用方法。

三、实验原理及设计思想:模拟信号源电路用来产生实验所需的各种低频信号:同步正弦波信号、非同步信号、音乐信号和载波信号。

(1)同步正弦波信号同步信号源用来产生与编码数字信号同步的2KHz正弦波信号,可用在PAM抽样定理、增量调制、PCM编码实验,作为模拟输入信号。

(2)非同步信号源非同步信号源利用混合信号SoC型8位单片机C8051F330,采用DDS(直接数字频率合成)技术产生。

通过波形选择器S6选择输出波形,对应发光二极管亮。

(3)载波产生电路载波产生电路用来产生数字调制所需的正弦波信号,频率有64KHz和128KHz两种。

“64K同步正弦波”(“64K”同步正弦波)为其测量点。

四、实验方案:1、模拟信号源电路用来产生实验所需的各种低频信号:同步正弦波信号、非同步信号和音乐信号。

用示波器测“2K同步正弦波”“64K 同步正弦波”“128K同步正弦波”各点输出正弦波形,对应的电位器W1,W2,W3可分别改变各正弦波的幅度。

2、用示波器测量“非同步信号源”输出波形:(1)S6选为“正弦波”,改变W4,调节信号幅度(0-4V),用示波器观察输出波形(2)保持信号幅度3V,改变S7、S8,调节信号频率(180Hz~18KHz),用示波器观察输出波形(3)将波形分别选为三角波,方波,重复上面两个步骤3、将控制开关K1设为“ON”,令音乐片加上控制信号,产生音乐信号输出,用示波器在“音乐输出”端口观察音乐信号输出波形。

五、实验使用仪器:1、信号源模块一块2、连接线3、20双踪示波器六、实验数据记录及结果分析:七、实验总结熟练使用信号源级示波器,和各种模拟信号的产生方法及其用途。

通信原理实验报告

通信原理实验报告

通信原理实验报告本次实验是关于通信原理的实验,学生需要通过实验掌握通信原理的基本知识和技能。

实验目的:通过实验了解调制、解调、信道编码和解码的原理和实现方法;通过实验了解不同调制方式的特点及其在不同场合下的应用;通过实验掌握信道编码和解码的基本知识和技能。

1.调制和解调调制是将信息信号与载波信号相互作用,使信息信号的某种特征随载波信号的某种特征而变化,以便在通信中传输信息信号。

解调是将调制好的信号传输后,再进行还原,恢复出原始的信号。

2.信道编码和解码信道编码是为了增加信道传输的可靠性而引入的方法。

信道编码器在将信息码变成接收端能够正确识别的码的同时,对信息码进行附加冗余编码,以容忍信道中出现的错误。

信道解码则是接收端对接收到的码进行校验,发现错误并进行纠正或重传。

实验内容:先通过MATLAB生成一个基带数字信号,然后分别采用ASK,FSK,PSK三种调制方式进行调制,并对调制后的信号进行解调,核实解调后音频信号是否与原始基带信号保持一致。

利用信号发生器和示波器进行调制和解调过程演示,实现调幅调频和调相调频的音频信号传输。

分别采用卷积码,RS码,Turbo码三种编码方式对信息进行编码,在发送端进行编码,接收端进行解码。

实验结果:在信号发生器上设置998Hz的音频信号,采用模拟调制调幅调频和调相调频两种方式传输音频信号。

在示波器上观测到调幅调频的信号波形和音频信号波形基本保持一致,调相调频的信号波形相位偏移后变化,但音频信号波形基本保持一致。

通过本次实验,学生掌握了调制、解调、信道编码和解码的基础知识和技能,通过实验了解不同调制方式的特点及其在不同场合下的应用,掌握卷积码,RS码和Turbo码三种编码方式的基本知识和技能。

现代通信原理 课程 实验报告

现代通信原理  课程 实验报告

现代通信原理课程实验报告专业班级学号姓名指导教师实验名称 AM 调制与解调仿真 同组人 专业班级 学号 姓名 成绩 一、实验目的: 1.掌握AM 的调制原理和Matlab Simulink 仿真方法 2.掌握AM 的解调原理和Matlab Simulink 仿真方法 二、实验原理: 1.AM 调制原理 所谓调制原理,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。

这里高频振荡波就是携带信号的运载工具,也叫载波。

振幅调制就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。

在线性调制系列中,最先应用的一种幅度调制是全调幅或常规条幅,简称为调幅(AM )。

在频域中已调波频谱是基带调制信号频谱的线性位移,在时域中,已调波包络与调制信号波形呈线性关系。

m(t)为取值连续的调制信号,c(t)为正弦载波。

下图为AM 调制原理图: 2.AM 调制原理 从高频已调信号中恢复出调制信号的过程称为调解(demodulation),又称为检波(detection )。

对于振幅调制信号,解调(demodulation)就是从它的幅度变化上提取调制信号的过程。

解调(demodulation)是调制的逆过程。

可利用乘积型同步检波器实现振幅的调解,让已调信号与本地恢复载波信号相乘并通过低通滤波可获得解调信号。

下图为AM 解调原理图 ……………………………………装………………………………………订…………………………………………线………………………………………三、实验内容与步骤:AM调制和解调Simulink仿真框图中英文注释:Sine wave=正弦发生器,Produke=乘法器,Scope=示波器,Constant=常用或直流分量,加法器可用Math Operations 中的Sum替代,Analog Filter Design=模拟滤波器设计。

图1中的Sine Wave1和Sine Wave2模块分别产生发送端和接收端的载波信号,角频率ωc都设为60rad/s,调幅系数为1;调制信号m(t)由Sine Wave模块产生,其为正弦信号,角频率为5rad/s,幅度为1V;直流分量A0由Constant模块产生,为2V;低通滤波器模块的截止角频率设为6rad/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一PCM脉冲编码调制信息科学与技术学院学院(院、系)网络工程专业132 班现代通信系统课学号姓名实验日期2015-4-26 教师评定实验一:利用Matlab绘制带通信号x(t)=2sinc(20t)*cos[2π*100t+sinc(5t)],时间间隔为0.02s。

代码:图像:>> ts=0.02;>> t=[-3:ts:3];>> x=2*sinc(20*t).*cos(2*pi*100*t+sinc(5*t));>> plot(t,x)实验二:利用Matlab对模拟信源s=sint(0<t<2π)进行均匀量化,量化间隔为0.2s。

代码:图像:>> t=[0:0.2:2*pi];>> s=sin(t);>> partition=[-1:0.2:1];>> codebook=[-5:1:5+1];>> [index,quants]=quantiz(s,partition,codebook);>> subplot(2,1,1);plot(t,s);>> subplot(2,1,2);plot(t,quants)实验三:编制一个函数实现均匀PCM量化编码,并计算量化噪声比(SQNR)。

代码:function [sqnr,a_quan,code]=upcm(a,n) %定义一个关于输入信号序列a和量化级数n的upcm函数amax=max(abs(a)); %取变量amax等于序列a的绝对值a_quan=a/amax; %对输入信号序列归一化,使信号幅度取值范围为[-1,1]b_quan=a_quan; %令变量b_quan等于变量a_quand=2/n; %取d=2/n为量化间隔q=d.*[0:n-1]-(n-1)/2*d; %取q为每个量化区间对应的判决阈值for i=1:n %对归一化后的输入信号序列进行量化index=find((q(i)-d/2<=a_quan)&(a_quan<=q(i)+d/2));a_quan(index)=q(i)*ones(1,length(index));b_quan(find(a_quan==q(i)))=(i-1).*ones(1,length(find(a_quan==q(i))));enda_quan=a_quan*amax; %使量化后的归一化信号各点值变回原来的值nu=ceil(log2(n)); %设定给定量化级数所需比特数code=zeros(length(a),nu); %取零矩阵,使其行数为序列a的长度,列数为量化所需比特数nu的矩阵for i=1:length(a) %对输入信号序列量化后进行编码for j=nu:-1:0if(fix(b_quan(i)/(2^j))==1)code(i,nu-j)=1;b_quan(i)=b_quan(i)-2^j;endendendsqnr=20*log10(norm(a)./norm(a-a_quan)); %使公式计算量化噪声比(SQNR)实验四:利用上题编制的函数,对正弦信号s=sint(0<t<2π)进行均匀PCM量化编码,并比较当量化级数分别为8、16时的量化噪声比的大小。

代码:图像:>> t=[0:0.1:2*pi];>> s=sin(t);>> [sqnr8,aquan8,code8]=upcm(s,8);>> [sqnr16,aquan16,code16]=upcm(s,16);>> plot(t,s,t+0.2,aquan8,'-.',t+0.4,aquan16,'*') ;>> legend('原始正弦信号','级数为8的PCM量化后信号','级数为16的PCM量化后信号')实验二基于MATLAB的2ASK和2FSK调制仿真(综合性实验)信息科学与技术学院学院(院、系)网络工程专业132 班现代通信系统课要求编写2ASK和2FSK调制程序,任意给定一组二进制数,计算经过这两种调制方式的输出信号。

程序书写要规范,加必要的注释;经过程序运行的调制波形要与理论计算出的波形一致。

1)熟悉2ASK和2FSK调制原理。

2)编写2ASK和2FSK调制程序。

3)画出原信号和调制信号的波形图。

实验报告要求如下内容:1)2ASK和2FSK调制原理;对给定信号画出理论调制波形;2) 程序设计思想,画出流程图;3) 源程序代码4) 测试结果(打印)和理论计算结果对比是否一致5) 小结(实验总结+实验心得体会)1.调制原理:二进制振幅键控(2ASK)信号码元为:S(t)=A(t)cos(w0t+θ) 0﹤t≤T式中w0=2πf0为载波的角频率;A(t)是随基带调制信号变化的时变振幅,即╱ A 当发送“1”时A(t)=╲ 0 当发送“0”时在式中给出的基带信号码元A(t)的波形是矩形脉冲。

产生2ASK的调制方法,主要有两种。

第一种方法采用相乘电路,用基带信号A(t)和载波cosw0t相乘就得到已调信号输出。

第二种方法是采用开关电路,开关由输入基带信号A(t)控制,用这种方法可以得到同样的输出波形。

二进制频移键控(2FSK)信号码元的“1”和“0”分别用两个不同频率的正弦波形来传送,而其振幅和初始相位不变。

故其表达式为;╱ Acos(w1t+Φ1)发送“1”时S(t)=╲ Acos(w0t+Φ0)发送“0”时式中,假设码元的初始相位分别为Φ1和Φ0;w1 =2πf1和w0 =2πf0为两个不同频率码元的角频率;A为一常数,表明码元的包络是矩形脉冲。

2FSK信号的调制方法主要有两种。

第一种是用二进制基带矩形脉冲信号去调制一个调频器,使其能够输出两个不同频率的码元。

第二种方法是用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出。

2.2ASK的调制程序t=0:0.01:10;a=[1,1,0,1,1,0,1,1,0];y=5*cos(2*pi*t);subplot(2,1,1);plot(t,y);for i=1:length(a)if a(i)==1t=i-1:0.001:i;y=5*cos(2*pi*t);endif a(i)==0t=i-1:0.001:i;y=0;endsubplot(2,1,2);plot(t,y);2FSK调制程序t=0:0.01:10;a=[1,0,0,1,1,0,1];y=5*cos(2*pi*t);subplot(2,1,1);plot(t,y);for i=1:length(a)if a(i)==1t=i-1:0.001:i;y=5*cos(2*pi*t);endif a(i)==0t=i-1:0.001:i;y=5*cos(3*pi*t);endsubplot(2,1,2);plot(t,y);hold onend3.实验心得:通过学习得知了ASK和FSK的在MATLAB中的实现方法,也掌握了MATLAB中循环语句的书写格式。

实验三BDPSK调制和平均信源熵的计算仿真信息科学与技术学院(院、系)网络工程专业132 班通信原理教程课学号姓名指导老师实验时间一、编写BDPSK调制程序,任意给定一组二进制数,计算经过这种调制方式的输出信号。

1、实验目的(1)熟悉BDPSK调制原理。

(2)学会运用Matlab编写BDPSK调制程序。

(3)会画出原信号、BPSK和BDPSK调制信号的波形图。

(4)掌握数字通信的BDPSK的调制方式。

2、实验原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。

现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图1所示。

图1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。

如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。

所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。

例如,假设相位值用相位偏移x表示(x定义为本码元初相与前一码元初相之差),并设=∆Φπ”数字信息“→1=→∆Φ”0数字信息“则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息:0 0 1 1 1 0 0 1 0 12DPSK信号相位: 0 0 0 π0 πππ0 0 π或:πππ0 π0 0 0 ππ0为了便于说明概念,我们可以把每个码元用一个如图2所示的矢量图来表示。

图中,虚线矢量位置称为基准相位。

在绝对移相中,它是未调制载波的相位;在相对移相中,它是前一码元载波的相位。

如果假设每个码元中包含有整数个载波周期,那么,两相邻码元载波的相位差既表示调制引起的相位变化,也是两码元交界点载波相位的瞬时跳变量。

图2(a)所示的移相方式,称为A方式。

在这种方式中,每个码元的载波相位相对于基准相位可取0、π。

因此,在相对移相后,若后一码元的载波相位相对于基准相位为0,则前后两码元载波的相位就是连续的;否则,载波相位在两码元之间要发生跳变。

图2(b)所示的移相方式,称为B方式。

在这种方式中,每个码元的载波相位相对于基准相位可取 π/2。

因而,在相对移相时,相邻码元之间必然发生载波相位的跳变。

这样,在接收端接收该信号时,如果利用检测此相位变化以确定每个码元的起止时刻,即可提供码元定时信息,这正是B方式被广泛采用的原因之一。

+π/2参考相位π0参考相位-π/2(a)(b)图2 二相调制移相信号矢量图2DPSK的调制原理与2FSK的调制原理类似,也是用二进制基带信号作为模拟开关的控制信号轮流选通不同相位的载波,其调制框图见图3。

图3 相对(差分)的移相方式调制框图相对(差分)移相方式(2DPSK)对应的调制系统如图4所示:图4 相对(差分)移相的调制系统3、仿真源程序和代码a=[1,0,1,1,0,1];subplot(4,1,1);stem(a);title('随机信号');for i=1:length(a)t=i-1:0.001:i;s=sin(2*pi*(t+floor(t+0.999))+a(i)*pi+pi);hold on;subplot(4,1,2);plot(t,s);title('2PSK调制后的信号')endsum=0;for i=1:length(a)t=i-1:0.001:i;sum=sum+a(i);s=sin(2*pi*(t+floor(t+0.999))+sum*pi);hold on;subplot(4,1,3);plot(t,s);title('2DPSK调制后的信号(初相为0)') endsum1=0;for i=1:length(a)t=i-1:0.001:i;sum1=sum1+a(i);s=sin(2*pi*(t+floor(t+0.999))+sum1*pi+pi);hold on;subplot(4,1,4);plot(t,s);title('2DPSK调制后的信号(初相为π)') end5、仿真结果6、实验总结通过实验,对MATLAB的基本功能和使用方法更加熟悉了,对数字基带传输系统有了一定的了解,加深了对2PSK和BDSK信号的调制原理的认识,理解了如何对他们进行调制,通过使用MATLAB仿真,对个调制和解调电路中各元件的特性有了较为全面的理解。

相关文档
最新文档