水电站的水击及调节保证计算
水电站课程设计任务书及指导书--引水系统
水电站课程设计任务书及指导书引水式水电站引水系统设计(供水工专业用)水利工程系2019.05.01设计任务书一目的和作用课程设计是工科院校学生在校期间一个较为全面性、总结性、实践性的教学环节。
它是学生运用所学知识和技能,解决某一工程问题的一项尝试。
通过本次课程设计使学生巩固、联系、充实、加深、扩大所学基本理论和专业知识,并使之系统化;培养学生综合运用所学知识解决实际问题的能力和创新精神;培养学生初步掌握工程设计工作的流程和方法,在设计、计算、绘图、编写设计文件等方面得到一定的锻炼和提高。
二基本资料梯级开发的红旗引水式水电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。
电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。
该电站水库库容较小,不担任下游防洪任务,工程按二等Ⅱ级标准设计。
经比较分析,该电站坝型采用混凝土重力坝,厂房型式为引水式,安装4台水轮发电机组。
引水系统的布置应考虑地形、地址、水力及施工条件,考虑到常规施工技术条件,引水隧洞洞泾不宜超过12m。
因此,引水系统采用两条引水隧洞,在隧洞末端各设置一个调压室,从每个调压室又各伸出两条压力管道,分别给4台机组供水。
供水方式为单元供水,管道轴线与厂房轴线相垂直,水流平顺,水头损失小。
经水能分析,该电站有关动能指标为:水库调节性能年调节装机容量 16万kw (4台×4万kw)水轮机型号HL240 额定转速107.1r/min校核洪水位(0.1%)194.7m 设计洪水位(1%)191.7m正常蓄水位191.5m 死水位190m最大工作水头38.1 m 加权平均水头36.2 m设计水头36.2 m 最小工作水头34.6 m平均尾水位152.0 m 设计尾水位150.0 m发电机效率 96%-98%单机最大引用流量 Q max=124.91m3/s引水系统长度约800m三试根据上述资料,对该电站进行引水系统的设计,具体包括进水口、引水隧洞、调压室及压力管道等建筑物的布置设计与水电站的调节保证计算等内容。
水电站的水锤与调节保证计算
水管进口
L 压
力 管
水轮机 Hg 主阀
道
水锤前稳定工况(恒定流):
平均流速: V 0
电站静水头: H g
管内水压力: P 0
讨论阀门关闭时的水锤
第一节 水锤现象及传播速度
Hg
Hg
二、水锤及其传播过程 ❖ 0~L/a: 升压波
由阀门向水库传播,水库为异号 等值反射。(惯性) ❖ L/a~2L/a: 降压波 由水库向阀门传播,阀门为同号 等值反射。(压差) ❖ 2L/a~3L/a: 降压波 阀门→水库。 (惯性) ❖ 3L/a~4L/a: 升压波 ❖ 水库→阀门。(压差)
❖ 应满足的前提条件:水管的材料、管壁厚度、直径 沿管长不变。
❖ 水击连锁方程用相对值来表示为:
tAtD t2(vtAvtD t)
tD tA t 2(v tD v tA t)
二、水锤的连锁方程
D
Lat
❖ 若已知断面A在时刻 t 的压力为HtA,流速为VtA ,两个通 解消去 f 后,得:
H tAH gc g(V tAV 0)2F(ta x)
❖ 同理可写出时刻Δt=L/a后D点的压力和流速的关系:
H tD t H g c g (V tD t V 0 ) 2 F (t tx aL )
D0 —管 道 内 径m, E —管 道 的 材 料 弹 性 (材不料同, 取 值 不 同 ) t —管 壁 厚 度m,
四、研究水锤的目的
(一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管空蚀,水轮机运行
时产生振动;出现严重的抬机现象 (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算的目的
水锤和机组转速变化的计算,一般称为调节保证 计算。
调节保证计算
第二章 调节保证计算第一节 调节保证计算的任务和标准一、调节保证计算的目的和意义在电站的运行中,常会遇到各种事故,机组突然与系统解列,把负荷甩掉。
在甩负荷时,导叶迅速关闭,水轮机的流量急剧变化,因此在水轮机的引水系统中产生水击,特别是甩(增)全负荷时产生的最大压力上升(最大压力下降),对压力管道系统的强度影响最大。
工程实践中曾发生过因甩负荷致使压力上升太高,从而导致压力钢管爆破的灾难事故;同时因为机组负荷全部丢失,如果不及时地采取措施,可导致转速上升过高,也会影响机组的强度、寿命,并引起机组的振动。
为了避免以上事故的发生,在设计阶段应该计算出上述过渡过程中最大转速上升和最大压力上升值,以保证电站的安全可靠运行。
在电站初步选定压力引水系统的布置、尺寸和机组型号后,通过调节保证计算,正确合理地选择导叶关闭的时间,使最大压力上升和最大转速上升都在允许的范围内。
二、调节保证计算的标准机组在甩负荷过程中转速上升率为max 0n n n β-=。
一般情况下,最大转速上升率max 55%β≤。
对于大型电站max 45%β≤,对于冲击式机组max 35%β≤。
当机组甩全负荷时,有压过水系系统允许的最大压力上升率见下表。
尾水管的真空值不大于O mH 29~8。
机组甩负荷时有压过水系统允许的最大压力上升率见表6-1:表6-1 机组甩负荷时有压过水系统允许的最大压力上升率该电站设计水头为76m ,且在系统中承担调峰调频任务,故ξ30%<。
三、本水电站基本参数电站形式:坝后式水头:m H m H r 76,95max == 水轮机型号:HLD74—LJ —450 水轮机额定出力:151300KW 机组额定转速:166.7r/min 机组转动惯量:19383.58t ·㎡ 吸出高度:H S =-3.15m发电机型号:SF151.3-36/948.42 发电机容量:172914KVA 压力波速:a=1000m /s 引水钢管长:186m 机组台数:4台第二节 调节保证主要参数计算一、计算压力引水管的Ti Ti L V ∑机组段长度的确定:确定机组段长度,是确定两台机组间的安装距离。
第九章水击
三、水击特性
(1)水锤压力实际上是由于水流速度变化而产生的惯性力。 (1)水锤压力实际上是由于水流速度变化而产生的惯性力。 水锤压力实际上是由于水流速度变化而产生的惯性力
当突然启闭阀门时,由于启闭时间短、流量变化快, 当突然启闭阀门时,由于启闭时间短、流量变化快,因而水锤压力往往 较大,而且整个变化过程是较快的。 较大,而且整个变化过程是较快的。
(9-6) (9-7)
(9-4) (9-5)
Eh ) Kf = ( 2 1 − µ c r1
100 K 0 Kr = r2
钢衬抗力系数, 式中 KS ——钢衬抗力系数,按式(9-2)计算, 钢衬抗力系数 按式( )计算, r=r1,为回填混凝土内半径,m; ,为回填混凝土内半径, ; Kh为回填混凝土抗力系数;Kf为环向钢筋抗力 为回填混凝土抗力系数; 系数; 为围岩单位抗力系数; 系数;Kr为围岩单位抗力系数;K0为岩石单位抗力 系数。 为隧洞开挖直径, 为混凝土泊松比; 系数。r2为隧洞开挖直径,m; µc为混凝土泊松比; 其他符号意义同前。 其他符号意义同前。
(9-1) ) 2 E w 1 + kr ——水的体积弹性模量。在一般压力和温度下, =2.06×106KPa 水的体积弹性模量。 水的体积弹性模量 在一般压力和温度下, w × E
a =
式中
Ew
水体密度, 水体密度 大小与温度有关,温度越高,密度越小, ρ W ——水体密度,大小与温度有关,温度越高,密度越小,一般 ρ W=1000Kg/m3 为声波在水中的传播速度, 为声波在水中的传播速度 一般为1435m/s; Ewρw ——为声波在水中的传播速度,一般为 压力管道半径, 压力管道半径 r ——压力管道半径,m; K——压力管壁抗力系数,不同材料管道,各取不同数值。 压力管壁抗力系数,不同材料管道,各取不同数值。 压力管壁抗力系数
高职水电站复习试卷论述
第三章水电站压力管道一、判断题1.选取的钢管直径越小越好。
( )2.钢管末端必须设置阀门。
( )3.快速闸阀和事故阀下游侧必须设置通气孔或通气阀。
( )4.伸缩节一般设置在镇墩的下游侧。
( )5.明钢管只在转弯处设置镇墩。
( )6.对同一电站来说,选用地下埋管的造价一般高于明钢管。
( )7.坝后式电站多采用坝内钢管,供水方式一般为单元供水。
( )8.明钢管上加劲环的刚度越小,则环旁管壁的应力就越大。
( )9.地下埋管的破坏事故多数由外压失稳造成。
( )10.镇墩的作用是防止水管发生滑移。
( )11.通气孔一般应设在工作闸门的上游侧。
( )12.明钢管强度校核中,支承环断面的允许应力与跨中相同。
( )二、填空题1.压力管道的供水方式有、、三种,其中地下埋管多采用方式。
2.对地面压力钢管,当温度变化时,由于在和处产生摩擦力而引起管壁轴向力。
3.水电站压力管道的闸门布置在管道的端,而阀门布置在管道的端,一般在钢管的设置排水管。
4.支墩的常见类型有、、三种。
5.钢管的转弯半径不易小于倍管径,明钢管底部至少高出地表面m。
6.岔管的典型布置型式有、、三种。
7.地下埋管的灌浆分为、、三种。
8.坝式压力管道有、、三种型式。
三、思考题1.压力水管的供水方式有几种?各有什么优缺点?其适用条件是什么?2.镇墩、支墩、伸缩节的作用是什么?3.作用在明钢管上的荷载有哪几类?各产生什么应力?计算应力时应选取哪几个断面?4.明钢管的抗外压稳定的概念。
失稳的原因及防止措施是什么?5.简述压力钢管的设计步骤。
6.岔管的工作特点?常见的岔管有哪几种类型?各适用于什么条件?7.镇墩和支墩的作用有何不同?二者分别设置在地面压力钢管的什么部位?8.支墩有哪几种类型?各有何特点?适用什么情况?9. 伸缩节的作用和类型?其要求是什么?10.地下埋管的施工程序各有何要求?11.地下埋管外压稳定的影响因素?如何防止其外压失稳?12.混凝土坝式压力管道有哪几种型式?各适用于什么情况?13.混凝土坝内埋管在坝剖面上有哪几种布置型式?各适用于什么情况?14.如何选择压力管道的线路?15. HD的含义是什么,其大小说明了什么?第四章水电站的水击及调节保证计算一、判断题1.导叶的关闭时间Ts愈大,水击压力愈大,机组转速升率愈。
第九章-水电站的水锤及调节保证计算
第九章水电站的水锤及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。
第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。
(2) 在有压引水管道中发生“水锤”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。
导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
二、调节保证计算的任务(一) 水锤的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。
(二) 调节保证计算水锤和机组转速变化的计算,一般称为调节保证计算。
1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。
(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。
(4) 研究减小水锤压强及机组转速变化的措施。
2.调节保证计算的目的正确合理地解决导叶启闭时间、水锤压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水锤压力和转速上升值均在经济合理的允许范围内。
第二节 水锤现象及其传播速度一、 水锤现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水锤。
水电站调节保证计算
水电站调节保证计算水电站是利用水能将水能转换成电能的发电设施,其主要特点是具备调节能力。
水电站的主要调节措施是通过水位、发电量、出水量等方式对电力系统的负荷需求进行调节。
水电站的调节保证措施不仅涉及到电力调度计划的合理性,还需要充分考虑潮汐、降雨等自然因素。
对于水电站调节保证计算方案,需要从以下几个方面进行考虑:调节保证能力计算水电站的调节保证能力是指水电站在一定的时段内,保证根据调度计划,满足各种突发情况和电力系统的电力负荷需求的能力。
水电站调节保证能力计算的主要任务是确定水位调节能力,发电量调节能力以及出水量调节能力等。
按照国家水电站调度管理规定,应定期对水电站的调节保证能力进行检验和评定,以确保其满足电力系统对其的需要。
调节保证方案审核调节保证方案是指,在确定水电站调节保证能力后,编制的针对具体水文条件及电力负荷的调节保证方案。
在编制调节保证方案时,需要充分考虑自然条件变化及电力负荷变化等影响因素,制定出全面、可操作性强的调节保证方案。
该方案需经过审核、调度验收后才可执行。
调节保证管理调节保证管理是指对水电站日常运行的调节保证计划的监督和管理。
在水电站日常运行中,管理人员需要密切关注河流水文变化以及电力负荷变化等信息,及时调整调节保证计划,保证水电站运行正常、稳定。
管理人员还需要对水电站的调度计划进行跟踪和分析,及时对调度计划进行调整和改型,确保在保证调节方案准确性的前提下,最大限度地提高水电站发电效率。
调节保证监测调节保证监测是指对水电站进行常态化的水文、气象、水位、发电量、出水量等运行指标的监测。
该监测能够及时发现水电站发电过程中出现的问题,以及独立检验水电站调节保证能力计算结果的准确性。
对于监测结果不良的问题,管理人员需要及时进行恰当的调整。
水电站是一个拥有调节能力的重要发电设施,是电力系统的重要组成部分。
水电站为了保证系统运行稳定和可靠,需要对其进行健全完善的调节保证管理。
在管理中,涉及到调节保证能力计算、调节保证方案审核、调节保证管理、调节保证监测等多个环节的组合,需要实现各环节的协调、衔接和协作,保证水电站的稳定运行。
论水电站引水系统中调节保证计算
论水电站中引水系统的调节保证计算对于水电站引水系统,利用美国垦务局等经验公式对引水管道经济直径进行分析使相应调保计算成果满足要求,为电站安全运行提供可靠的依据。
关键词:水电站引水系统设计调节保证计算5.水锤及调节保证计算5.1调节保证计算的任务和标准水锤及调节保证计算,是水电站设计的重要内容之一。
它不仅影响压力管道、机组、蜗壳等过流部件的强度,而且关系到电站运行的安全和机组运行的稳定性。
调节保证计算是机组负荷在较大范围内突然变化的情况下,考虑到调速器的影响以进行限制水锤压力和机组装机变化值的计算,解决水力惯性、机组惯性和调整性能三者之间的矛盾,以期达到电能质量最佳、机组运行经济合理、安全可靠的目的。
5.1.1水锤及调节保证计算的目的和任务1、水锤计算的目的决定管道内的最大内水压力,作为设计或校核压力管道、蜗壳和水轮机强度的依据;决定管道内最小内水压力,作为管线布置,防止压力管道中产生负压和校核尾水管内真空度的依据;研究水锤与机组运行的关系。
2、调节保证计算的目的通过调节保证计算和分析,正确合理地解决导叶启闭时间、水锤压力和机组转速上伸值三者之间的关系,最后选择适当的导叶启闭时间和方式,水锤压力和转速上伸值均在经济合理的允许范围内。
3、水锤及调节保证计算的任务根据水电站压力引水系统和水轮发电机组的特性,合理选择调速器的调节时间调节规律,进行水锤压力和机组转速变化值的计算,使二者均在允许内,并尽可能地降低水锤压力。
5.1.2 调节保证计算的标准调节保证计算标准,是指水锤压力和转速变化在技术经济上合理的允许值。
标准在规范中有所规定,但这是在一定时期和一定技术水平和经济条件下制定的,用时应结合具体情况加以确定。
1、水锤压力的计算标准甩全负荷时,允许的相对压力升高max ξ一般可按以下不同情况考虑:表5-1: max ξ取值表当设置减压阀或折流板时,max ξ=20%对于增加负荷时的负水锤,以压力水管顶部任何一点不出现负压并保持有2m 以上的余压为限。
调节保证计算
第二章调节保证计算第一节调节保证计算的任务和标准一、调节保证计算的目的和意义在电站的运行中,常会遇到各种事故,机组突然与系统解列,把负荷甩掉。
在甩负荷时,导叶迅速关闭,水轮机的流量急剧变化,因此在水轮机的引水系统中产生水击,特别是甩(增)全负荷时产生的最大压力上升(最大压力下降),对压力管道系统的强度影响最大。
工程实践中曾发生过因甩负荷致使压力上升太高,从而导致压力钢管爆破的灾难事故;同时因为机组负荷全部丢失,如果不及时地采取措施,可导致转速上升过高,也会影响机组的强度、寿命,并引起机组的振动。
为了避免以上事故的发生,在设计阶段应该计算出上述过渡过程中最大转速上升和最大压力上升值,以保证电站的安全可靠运行。
在电站初步选定压力引水系统的布置、尺寸和机组型号后,通过调节保证计算,正确合理地选择导叶关闭的时间,使最大压力上升和最大转速上升都在允许的范围内。
二、调节保证计算的标准□ max n 0机组在甩负荷过程中转速上升率为 4 0。
一般情况下,最大转速上升率nmax 55%。
对于大型电站max 45%,对于冲击式机组max 35%。
当机组甩全负荷时,有压过水系系统允许的最大压力上升率见下表。
尾水管的真空值不大于8〜9mH 2O。
机组甩负荷时有压过水系统允许的最大压力上升率见表6-1 :表6-1 机组甩负荷时有压过水系统允许的最大压力上升率该电站设计水头为76m,且在系统中承担调峰调频任务,故30%。
三、本水电站基本参数电站形式:坝后式水头:H max 95m, H r 76m水轮机型号:HLD7— LJ —450水轮机额定出力:151300KW机组额定转速:166.7r/mi n机组转动惯量:19383.58t •怦吸出咼度:H=-3.15m发电机型号:SF151.3-36/948.42发电机容量:172914KVA压力波速:a =1000m/ s引水钢管长:186m机组台数:4台第二节调节保证主要参数计算一、计算压力引水管的L T M机组段长度的确定:确定机组段长度,是确定两台机组间的安装距离。
第九章 水锤及调节保证计算的解析方法
(2)有效关闭时间 s:为简化计算,常取阀门的 有效关闭时间T 为简化计算, 有效关闭时间 关闭过程的直线段加以适当延长,即得到T 关闭过程的直线段加以适当延长,即得到 s。 Ts/Tz一般为 一般为0.6-0.95,缺乏资料时可取 。 ,缺乏资料时可取0.7。 Ts可用函数 i =f(t)表示。在直线规律关闭的情 可用函数τ 表示。 表示 况下,一个相t 况下,一个相 r=2L/a的开度变化为: 的开度变化为
aV0 管道特 ρ= 2gH 0 性系数
H0、V0为初始恒定流时水头 和流速; 为水锤波速 为水锤波速ห้องสมุดไป่ตู้ 和流速;a为水锤波速。 管道中相 对流速
∆H H − H 0 水锤压力 v = V ξt = = V0 H0 H0 相对值
(二)水锤压力计算公式 二 水锤压力计算公式 1、水轮机喷嘴孔口的相对开度,即阀门的相 、水轮机喷嘴孔口的相对开度, 对开度τ 对开度 i :
9.2简单管的水锤计算 9.2简单管的水锤计算
一、计算水锤压力的一般公式 水锤压力产生于阀门处, 水锤压力产生于阀门处,从上游反射回来的降 压波也是最后才达到阀门,因此最大水锤压力 压波也是最后才达到阀门,
总是发生在紧邻阀门的断面上。 总是发生在紧邻阀门的断面上。
(一)水锤连锁方程的相对值表达式 一 水锤连锁方程的相对值表达式 用相对值表示: 相对值表示: 表示 逆向波时 (9-5): A : B A B ξ t − ξ t + ∆t = 2 ρ (vt − vt + ∆t ) (向水库方向 向水库方向) 向水库方向 顺向波时 (9-6): B : A B A ξ t − ξ t + ∆t = −2 ρ (vt − vt + ∆t ) (向阀门方向 向阀门方向) 向阀门方向
第九节 水电站有压引水系统非恒定流电算法简介
第九节水电站有压引水系统非恒定流电算法简介水电站有压引水系统的非恒定流计算包括水锤计算和调压室涌波计算。
这两种计算各有特点而又相互联系。
在负荷变化时,机组的转速变化与水锤和调压室涌波也有联系。
把这三种过渡过程联系起来研究的理论虽然早已基本具备,但由于计算过于繁琐,在电子计算机应用于工程实际之前,很少有把它们联系求解的实例,一般都是用孤立的、简化的方法计算。
即使对于分岔管的水锤,为了避免繁琐的计算,也往往采用很粗略的简化方法。
电子计算机的应用给较精确、合理地计算上述问题开避了新途径,现简要介绍如下。
一、简单管水锤计算简单管水锤计算一般不必利用电子计算机。
但如欲在计算中考虑水头损失或机组特性的影响,用电子计算机能较好地处理这类问题,用一般的方法则难以解决。
对于图14-12的简单管,若水锤波通过管段AP和PB的时间均为,则求解A、P、B三点压强和流量的方程为A点:式中h=H/Ho=1+ζ;q=Q/Qo=v;α=/Ho,扩为对应于Qo的AP段水管的水头损失。
式(a)可写成式中,。
将式(b)代人式(c),并令S=一A,得解式(d),舍去增根,得故式(a)、式(b)可写成P点:式(e)和式(f)可写成解式(g)和式(h),得B点:上式可写成根据式(14-76)、式(14-77)和式(14-78)所列的顺序,不难编出简单的程序迭代地求出A, P, B 三点压强和流量的变化过程,计算可以从t=2,开始,到所要求的时刻为止。
根据开度变化曲线确定。
二、分岔管的水锤计算图14-25 分岔管示意图对于图14-25所示的分岔管,若P点有n个分支,水锤波通过各分支的时间均为,通过主管PB的时间为m,,参照式(14-76),水轮机端,,……、An点的水锤压强和流量可用以下式组求出式中i=1,2,…,n,故以上式组共n个。
P点的压强和流量有n+2个未知量,用下列n十2个方程求解特征方程即式中,,i=1,2,……,n,故上式有n个。
水电站调节保证计算
第五章 水电站调节保证计算5.1调节保证计算的目的、任务(1)调保计算目的、任务在水电站运行中,负荷与机组出力达到平衡使机组转速稳定。
但由于各种突发事故,造成机组突然与系统解列,机组甩掉部分,或者全部负荷。
在甩负荷时,由于导叶迅速的关闭,水轮机的流量急剧变化,因此在水轮机过水系统内产生水击。
调保计算就是在电站初步设计阶段计算出上述过程中的最大转速上升及最大压力上升值。
另外,调保计算的目的是使压力升高和转速升高不超过允许值,确保电站水机系统安全稳定运行。
调节保证计算一般应对两个工况进行,即计算设计水头和最大水头甩全负荷的压力上升和速率上升,并取其较大者。
一般在前者发生最大速率升高,在后者发生最大压力升高。
(2)灯泡贯流式机组过渡过程的特点灯泡水轮发电机组的调节过渡过程与常规机组相比有一些不同,一般轴流机组惯性力矩主要取决于发电机的飞轮力矩,对于灯泡机组来说,由于受灯泡比的限制,发电机直径约为立式机组的3/5,其惯性力矩仅相当于立式机组的1/10左右,因而,水轮机惯性和水体附加惯性力矩所占的比重应大大增加,而水体附加惯性力矩则随叶片安放角的增加而增加,所以对灯泡机组的过渡过程分析必须考虑其影响。
(3)调保计算标准根据/51862004DL T -《水力发电厂机电设计规范》,水轮机在机组甩负荷时的最大转速升高率max β宜小于60%;导水叶前最大压力上升率宜为70%100%~。
根据有关已建电站试验证明,采用导叶分段关闭规律,8m 尾水管的真空度不大于水柱。
(4)已知计算参数 装机容量:418.5⨯MW水头参数:max 6.8H =m , 5.82Hav =m , 5.3r H =m ,5.1min =H m 水轮机参数:水轮机型号:()1102730GZ WP --,68.2/min r n r =,3398.6/r Q m s =,尾水管参数:尾水管进口直径3==7.1D d (m)尾水管直锥段长度:211=2.0=2.07.3=14.6L D ⨯(m)尾水管直锥段直径:41=1.428=1.4287.3=10.42D D ⨯(m)尾水管混合过渡段长度:221=2.7=2.77.3=19.71L D ⨯(m)尾水管混合过渡段高度:1h=1.453=1.4537.3=10.61D ⨯(m) 尾水管混合过渡段宽度:1B=2.04=2.047.3=14.892D ⨯(m)机组转动部分飞轮力矩()3t m ⋅:查《灯泡贯流式水电站》155P :2222GD GD D D G G =++水体附加发电机水轮机发电机飞轮力矩23i t KD l GD =发电机式中:K -经验系数, 查《灯泡贯流式水电站》126P ,表6-10:68.2/min r n r =,=4.7~5.1K ,取=5K 。
调保计算
1摘要通过水轮机调节课程的学习,明确调保计算的任务,就是电站在运行过程中,常会由于各种事故,机组突然与系统解列,从而造成甩负荷。
在甩负荷时,由于导叶迅速关闭,水轮机的流量会急剧变化,因此在水轮机过水系统内会产生水击,调节保证计算就是在初步选定设计阶段计算出上述过程中最大的转速上升max及最大的压力上升值ζmaxc。
调节保证计算一般应对两个工况进行,即计算额定水头和最大水头下甩全负荷的压力上升和转速上升,并取其大者。
最终选定一个T,作为该电站的导叶关闭时间。
合理的fThrough turbine regulating course of study, clear the computing task, is the power station in the process of running, often due to accidents, suddenly and system solution, resulting in load rejection. During load rejection, because the guide vane quickly closed, turbine flow will change sharply, so the turbine will generate water hammer for water system, adjusting guarantee calculation is in preliminary design phase to calculate the above selected maximum speed rises and the maximum stress in the process of appreciation. Regulation guarantee calculation generally deal with the two conditions, namely the full load shedding is calculated under rated head and the maximum water head of pressure riseT, as the and speed up, and take its head. Finally selected a reasonablefguide vane closing time of the hydropower station.关键词:水轮机调节调节保证计算甩负荷转速上升压力上升2引言由于很多水电站的导叶关闭时间和关闭方式存在一些不合理,导致压力钢管爆破的灾难性事故。
水击及调保计算
变WER ENGINEERING
水击波在管道中传播一个来回的时间tr=2L/a称为
“相”,两个相为一个周期T。
若阀门突然开启,则发生的情况与上述过程相反。 实际上水力摩阻损失总是存在的,水体与管壁也非完全
二、水击现象
水击现象
流速(流量)的突然变化,导致水流动量发生变
化,根据冲量定理将产生对水流的冲量,导致内 水压强急剧升高或降低。把该非恒定流现象称为 水击(水锤)。
水击所产生的压强升高(正水击)或降低(负水
击),都会对水电站运行带来不利影响。若发生 正水击,可能导致压力水管的爆裂;尾水管中压 降过大,会造成水轮机和尾水管的严重汽蚀,使 水轮机运转时产生巨大振动。压强的上下波动, 会影响机组的稳定运行。
水击波在水库处发生反射,入射波与反射波数 值相同,符号相反,升压波反射为降压波,水 流从阀门流向水库。
水电站
HYDROPOWER ENGINEERING
第三过程(
2L/a~3L/a):t=2L/a时刻水击
波传至阀门处,阀门关闭,流速由-v0变为0,
压强下降,由H0 降至H0-ΔH,水体密度减小,
机组实际运行时,电力系统负荷常发生较大范围的变
化,水轮机出力与负荷失去平衡,转速发生变化,而 电网频率要求基本保持恒定,则可通过调速器改变水 轮机流量,使水轮机出力适应负荷变化,来满足电网 频率恒定要求。
水 电 站
HYDROPOWER ENGINEERING
在历时很短的调节过程
中,机组转速与有压输 水系统中的内水压强会 引起急剧变化。减小或 增加负荷时,转速增大 或减小;调节使得流量 减小或增大,引起有压 输水系统中的内水压强 上升或下降,产生水击。
五 水锤及调保计算
五水锤及调节保证计算一、填空题1.水击压强沿管线的分布规律是:末相水击无论是正水击或负水击均为分布。
第一相水击:正水击为上曲线,负水击为下曲线。
2.水击波从至完成两个往返传播过程后压力管道内水流恢复到初始状态,称为水击波的周期;水击波在管道中传播一个往返的时间称为“相”,相为一个周期。
3.水击可分为和。
4.水击计算常选用比较符合实际的合理的边界条件有、、和管径变化点。
5.水库端与完全关闭的阀门端对水击波的反射特性分别为和。
二、判断并改错1.在阀门连续关闭(或开启)过程中,水击波连续不断地产生,水击压强不断升高(或降低)。
2.水轮机引用流量在某种特殊情况下,发生突然改变,随着压力管道末端阀门或导水叶的突然关闭(或突然开启),伴随着压力管道内水流流速的突然改变而产生压强升高(或降低)的现象称为水击现象。
3.反击式水轮机在导叶突然启闭时,其蜗壳和尾水管也将发生水击现象,而且水击现象与压力管道中的水击现象相同4.水电站水击产生的根本原因是水体的惯性以及管壁的弹性作用。
三、简答题1.当调节保证计算不能满足时,通常是采取措施减小水击压强。
那么减小水击压强有哪些措施呢?2.机组调节保证计算的任务?3.简述水击一个周期的传播过程?4.什么是直接水击和间接水击?四、计算题1.某引水式水电站,压力水管末端阀门处静水头H g=120m,压力水管长L=500m,管径D=3m,设计引用流量=30m3/s,管壁厚度=25mm,导叶有效调节时间T s=3s。
(1)已知管壁钢材的弹性模量E s=206×106 kPa,水的体积弹性模量E w=2.06×106 kPa,求压力水管中水击波速a 值。
(2)水轮机由满负荷工作丢弃全部负荷,设导叶依直线规律关闭,求压力水管末端阀门处A点及距阀门上游200m处C点的水击压强。
2.某水电站采用单独供水,压力水管的材料、管径和壁厚沿管长不变,单机设计流量为10 m3/s,压力水管断面积为2.5 m2,水管全长L=300m,最大静水头H g=60m,水击波速取α=1000 m/s,导叶启闭时间T S=3s,求导叶由全开到全关时导叶处的最大水击压强升高值△H 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章水电站的水击及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。
第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。
(2) 在有压引水管道中发生“水击”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。
导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
二、调节保证计算的任务(一) 水击的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。
(二) 调节保证计算水击和机组转速变化的计算,一般称为调节保证计算。
1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。
(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。
(4) 研究减小水击压强及机组转速变化的措施。
2.调节保证计算的目的正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。
第二节水击现象及其传播速度1、一、水击现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。
2.水击特性(1) 水击压力实际上是由于水流速度变化而产生的惯性力。
当突然启闭阀门时,由于启闭时间短、流量变化快,因而水击压力往往较大,而且整个变化过程是较快的。
(2) 由于管壁具有弹性和水体的压缩性,水击压力将以弹性波的形式沿管道传播。
注:水击波在管中传播一个来回的时间t r=2L/a,称之为“相”,两个相为一个周期2t r=T(3) 水击波同其它弹性波一样,在波的传播过程中,在外部条件发生变化处(即边界处)均要发生波的反射。
其反射特性(指反射波的数值及方向)决定于边界处的物理特性。
二、水击波的传播速度水击波速与管壁材料、厚度、管径、管道的支承方式以及水的弹性模量等有关,其计算公式为:Image式中K——水的体积弹性模量,一般为2.06×103MPa;E——管壁材料的纵向弹性模数(钢村E=2.06×105MPa,铸铁E=0.98×105MPa,混凝土E=2.06×104MPa);Image为声波在水中的传播速度,随温度和压力的升高而加大,一般取1435m/s。
一般情况下,露天钢管的水击波速可近似地取为1000m/s,埋藏式钢管可近似地取为1200m/s。
钢筋混凝土管可取900m/s~1200m/s。
第三节水击基本方程及边界条件基本方程+相应的边界条件——用解析方法和数值计算方法求解水击值及其变化过程。
一、水击基本方程(1) (一)基本方程对有压管道而言,不论在何种情况下都应满足水流的运动方程及连续方程。
当水管材料、厚度及直径沿管度不变,且不计及水力摩阻损失时,其简化方程为(取阀门端为原点,x向上游为正)上述方程为一组双曲线型偏微分方程,其通解为:注:F和f为两个波函数,其量纲与水头H量纲相同,故可视为压力波。
任何断面任何时刻的水击压力值等于两个方向相反的压力波之和;而流速值为两个压力波之差再乘以-g/a。
为逆水流方向移动的压力波,称为逆流波;为顺水流方向移动的压力波,称为顺流波。
(二) 水击计算的连锁方程水击连锁方程给出了水击波在一段时间内通过两个断面的压力和流速的关系。
前提应满足水管的材料、管壁厚度、直径沿管长不变:用相对值来表示为式中为管道特性系数;为水击压力相对值;为管道相对流速。
二、水击的边界条件应用水击基本方程计算水电站压力管道中水击时,首先要确定其起始条件和边界条件。
(一) 起始条件当管道中水流由恒定流变为非恒定流时,把恒定流的终了时刻看作为非恒定流的开始时刻。
即当t=0时,管道中任何断面的流速V=V0;如不计水头损失,水头H=H0。
(二) 边界条件1.管道进口管道进口处一般指水库或压力前池。
水库和压力前池水位变化比较慢,在水击计算中不计风浪的影响,一般认为水库和前池水位为不变的常数是足够精确的。
即进口边界边界条件为:H p=H02.分岔管分岔管的水头应该相同,H p1=H p2=H p3=…=H p分岔处的流量应符合连续条件,ΣQ=03.分岔管的封闭端在不稳定流的过程中,当某一机组的导叶全部关闭,或某一机组尚未装机,而岔管端部用闷头封死,其边界条件为:Q p=0 4.调压室把调压室作为断面较大的分岔管,其边界条件为: 调压室内有自由水面,而隧洞、调压室与压力管道的交点和分岔管相同。
5.水轮机水电站压力管道出口边界为水轮机,水轮机分冲击式和反击式,两种型式的水轮机对水击的影响不同。
(1) (1)冲击式水轮机冲击式水轮机的喷嘴是一个带针阀的孔口,符合孔口出流规律,水轮机转速变化对孔口出流没有影响。
阀门处A点的边界条件:——喷嘴全开时断面积式中:——称为相对开度;ω——为任意时刻水击压力相对值。
——为任意时刻相对流速及相对流量。
(2) (2)反击式水轮机反击式水轮机的过水能力与水头H、导叶开度a和转速n有关。
即Q=Q(H,a,n)反击式水轮机与冲击式水轮机的不同之处是要考虑水轮机转速变化的影响,因此增加了问题的复杂性。
为了简化计算,常假定压力管道出口边界条件为冲击式水轮机,然后再加以修正。
第四节简单管水击的解析计算简单管是指压力管道的管径、管壁材料和厚度沿管长不变。
解析法的要点是采用数学解析的方法,引入一些符合实际的假定,直接建立最大水击压力的计算公式。
简单易行,物理概念清楚,可直接得出结果。
一、直接水击和间接水击水击有两种类型:直接水击和间接水击。
(一) 直接水击当水轮机开度的调节时间T S≤2L/a时,由水库处异号反射回来的水击波尚未到达阀门之前,阀门开度变化已经终止,水管末端的水击压力只受开度变化直接引起的水击波的影响,这种水击称为直接水击。
注:水击波在管道中传播一个来回的时间为2L/a,称为“相”。
(1) 当阀门关闭时,管内流速减小,V-V0<0为负值,△H为正,产生正水击;反之当开启阀门时,即V-V0>0,△H为负,产生负水击。
(2) 直接水击压力值的大小只与流速变化(V-V0)的绝对值和水管的水击波速a有关,而与开度变化的速度、变化规律和水管长度无关。
当管道中起始流速V0=4m/s,a=1000m/s,终了流速V=0时,压力升高值为:m,因此在水电站中应当避免发生直接水击。
(二) 间接水击若水轮机开度的调节时间T S>2L/a时,当阀门关闭过程结束前,水库异号反射回来的降压波已经到达阀门处,因此水管末端的水击压力是由向上游传播的水击波F和反射回来的水击波f叠加的结果,这种水击称为间接水击。
降压波对阀门处产生的升压波起着抵消作用,使此处的水击值小于直接水击值。
间接水击是水电站中经常发生的水击现象,也是要研究的主要对象。
2、二、计算水管末端各相水击压力的公式工程中最关心的是最大水击压力。
由于水击压力产生于阀门处,从上游反射回来的降压波也是最后才达到阀门,因此最大水击压力总是发生在紧邻阀门的断面上。
应用前面的水击连锁方程及管道边界条件,推求阀门处各相水击压力计算公式。
(1) (一)计算公式阀门关闭情况: 第一相末的水击压力第二相末的水击压力………………………….. 第n相末的水击压力阀门或导叶开启:管道中压力降低,产生负水击,其相对值用y表示。
…… 利用上述公式,可以依次解出各相末的阀门处的水击压力,得出水击压力随时间的变化关系。
(二)计算公式的条件(1) 没有考虑管道摩阻的影响,因此只适用于不计摩阻的情况;(2) 采用了孔口出流的过流特性,只适用于冲击式水轮机,对反击式水轮机必须另作修改;(3) 这些公式在任意开关规律下都是正确的,可以用来分析非直线开关规律对水击压力的影响。
三、开度依直线变化的水击 进行水击计算,最重要的是求出最大值。
在开度依直线规律变化情况下,不必用连锁方程求出各相末水击,再从中找出最大值,可用简化方法直接求出。
(一) 开度依直线变化的水击类型当阀门开度依直线规律变化时,根据最大压强出现的时间可归纳为两种类型:第一类:当<1时,最大水击压力出现在第一相末,,称第一相水击。
第二类:当>1时,最大水击压力出现在第一相以后的某一相,其特点是最大水击压力接近极限值,即>,称为极限水击。
注:第一相水击是高水头电站的特征;极限水击常发生在低水头水电站上。
(1) (二)开度依直线变化的水击简化计算1.第一相水击计算的简化公式关闭阀门时开启阀门时发生第一相水击的条件是<1,对于丢弃负荷情况,=1,有,若a=1000m/s,V max=5m/s,则H0>250m,故在丢弃负荷的情况下,只有高水头电站才有可能出现第一相水击。
2.极限水击计算简化公式当水击压强≤0.5时,可得到更为简化的近似公式:3.间接水击类型的判别条件仅用大于还是小于1作为判别水击类型的条件是近似的。
水击的类型除与有关,还与有关。
水击类型判别图中,曲线表示极限水击和第一相水击的分界线,直线表示第一相水击和直接水击的分界线。
QU_1I区为极限正水击;II区为第一相正水击;III区为直接水击;IV区为极限负水击;V区为第一相负水击;简单判别方法:<1.0时,常发生第一相水击;>1.5时,常发生极限水击;1.0<<1.5时,则随值的不同而发生第一相或极限水击,个别情况下发生直接水击。
此时按图判别。
四、起始开度对水击的影响水电站可能在各种不同的负荷情况下运行,当机组满负荷运行时,起始开度=1;当机组只担任部分负荷运行时,<l。
因此机组由于事故丢弃负荷时的起始开度可能有各种数值。