模拟信号数字化传输系统的设计与仿真分析

合集下载

AM模拟调制系统的设计与仿真

AM模拟调制系统的设计与仿真

AM模拟调制系统的设计与仿真AM调制是一种将基带信号调制到载频上的调制技术,广泛应用于无线电通信、广播电视、音频传输等领域。

本文将介绍AM模拟调制系统的设计与仿真。

AM调制系统主要由三个部分组成:基带信号产生器、载波信号产生器和调制器。

基带信号产生器用于产生模拟调制信号,载波信号产生器用于产生载波信号,调制器将基带信号和载波信号进行调制。

通过仿真可以验证系统的正确性和性能。

首先,需要设计基带信号产生器。

基带信号可以是音频信号、语音信号或其他需要传输的信号。

可以使用软件工具如MATLAB来产生基带信号,也可以使用硬件电路如函数发生器来产生基带信号。

其次,设计载波信号产生器。

载波信号通常是一个高频正弦波信号,频率根据具体应用需求决定。

可以使用软件工具如MATLAB来产生载波信号,也可以使用硬件电路如震荡器来产生载波信号。

最后,设计调制器。

调制器主要是将基带信号和载波信号进行调制,实现信号的叠加。

调制器可以使用模拟电路如放大器和混频器来实现,也可以使用数字电路如FPGA来实现。

在调制过程中,可以选择不同的调制方式,如DSB-SC调制、SSB调制或VSB调制,根据需求选择适合的调制方式。

设计完整的调制系统后,可以进行系统的仿真。

仿真可以使用软件工具如MATLAB、Simulink或Multisim等来实现。

通过输入不同的基带信号,观察经过调制后的信号,检查是否满足要求。

可以使用示波器来显示信号的时域和频域特性,分析调制效果和系统性能。

在进行系统仿真时,可以对系统的不同参数进行调整和优化,如基带信号的频谱、带宽、载波信号的频率、调制指数等。

通过调整参数,可以优化系统性能,提高信号的质量和传输效果。

在设计和仿真过程中,需要考虑系统的线性度、功率效率、频率响应等指标。

根据具体应用需求,可以对系统进行优化和改进。

总之,AM模拟调制系统的设计与仿真是一个综合性的工程项目,需要综合考虑基带信号产生器、载波信号产生器和调制器的设计与实现。

基于MATLAB的模拟信号数字化系统的研究与仿真

基于MATLAB的模拟信号数字化系统的研究与仿真

基于MATLAB的模拟信号数字化系统的研究与仿真摘要本文研究的主要内容是《通信原理》仿真实验平台的设计与实现---模拟信号数字化Matlab软件仿真。

若信源输出的是模拟信号,如电话传送的话音信号,模拟摄像机输出的图像信号等,若使其在数字信道中传输,必须在发送端将模拟信号转换成数字信号,即进行A/D变换,在接收端则要进行D/A变换。

模拟信号数字化由抽样、量化、编码三部分组成。

由于数字信号的传送具有稳定性好,可靠性高,方便传送和传送等诸多优点,使得被广泛应用到各种技术中。

不仅如此,Matlab仿真软件是常用的工具之一,可用于通信系统的设计和仿真。

在科研教学方面发挥着重要的作用。

Matlab有诸多优点,编程简单、操作容易、处理数据迅速等。

本文主要阐述的是模拟信号数字化的理论基础和实现方法。

利用Matlab提供的可视化工具建立了数字化系统的仿真模型,详细讲述了抽样、量化、编码的设计,并指出了在仿真建模中要注意的问题。

在给定的仿真条件下,运行了仿真程序,得到了预期的仿真结果。

关键词:Matlab、模拟信号数字化、仿真绪论1837年,莫尔斯完成了电报系统,此系统于1844年在华盛顿和巴尔迪摩尔之间试运营,这可认为是电信或者远程通信,也就是数字通信的开始。

数字化可从脉冲编码调制开始说起。

1937年里夫提出用脉冲编码调制对语声信号编码,这种方法优点很多。

例如易于加密,不像模拟传输那样有噪声积累等。

但在当代代价太大,无法实用化;在第二次世界大战期间,美军曾开发并使用24路PCM系统,取得优良的保密效果。

但在商业上应用还要等到20世纪70年代。

才能取代当时普遍采用的载波系统。

我国70代初期决定采用30路的一次群标准,80年代初步引入商用,并开始了通信数字化的方向。

数字化的另一个动向是计算机通信的发展。

随着计算机能力的强大,并日益被利用,计算机之间的信息共享成为进一步扩大其效能的必需。

60年代对此进行了很多研究,其结果表现在1972年投入使用的阿巴网。

通信原理System_view仿真实验指导

通信原理System_view仿真实验指导

通信原理System view仿真实验指导第一部分SystemView简介System View是由美国ELANIX公司推出的基于PC的系统设计和仿真分析的软件工具,它为用户提供了一个完整的开发设计数字信号处理(DSP)系统,通信系统,控制系统以及构造通用数字系统模型的可视化软件环境。

1.1 SystemView的基本特点1.动态系统设计与仿真(1) 多速率系统和并行系统:SYSTEMVIEW允许合并多种数据速率输入系统,简化FIR FILTER的执行。

(2) 设计的组织结构图:通过使用METASYSTEM(子系统)对象的无限制分层结构,SYSTEMVIEW能很容易地建立复杂的系统。

(3) SYSTEMVIEW的功能块:SYSTEMVIEW的图标库包括几百种信号源,接收端,操作符和功能块,提供从DSP、通信信号处理与控制,直到构造通用数学模型的应用使用。

信号源和接收端图标允许在SYSTEMVIEW内部生成和分析信号以及供外部处理的各种文件格式的输入/输出数据。

(4) 广泛的滤波和线性系统设计:SYSTEMVIEW的操作符库包含一个功能强大的很容易使用图形模板设计模拟和数字以及离散和连续时间系统的环境,还包含大量的FIR/IIR滤波类型和FFT类型。

2.信号分析和块处理SYSTEMVIEW分析窗口是一个能够提供系统波形详细检查的交互式可视环境。

分析窗口还提供一个完成系统仿真生成数据的先进的块处理操作的接收端计算器。

接收端计算器块处理功能:应用DSP窗口,余切,自动关联,平均值,复杂的FFT,常量窗口,卷积,余弦,交叉关联,习惯显示,十进制,微分,除窗口,眼模式,FUNCTION SCALE,柱状图,积分,对数基底,数量相,MAX,MIN,乘波形,乘窗口,非,覆盖图,覆盖统计,解相,谱,分布图,正弦,平滑,谱密度,平方,平方根,减窗口,和波形,和窗口,正切,层叠,窗口常数。

1.2 SystemView各专业库简介SystemView的环境包括一套可选的用于增加核心库功能以满足特殊应用的库,包括通信库、DSP库、射频/模拟库和逻辑库,以及可通过用户代码库来加载的其他一些扩展库。

PCM(脉冲编码调制)介绍及PCM编码的原理 毕业论文---PCM量化13折线

PCM(脉冲编码调制)介绍及PCM编码的原理  毕业论文---PCM量化13折线

PCM(脉冲编码调制)介绍及PCM编码的原理摘要在数字通信信道中传输的信号是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。

另外,还可以存储,时间标度变换,复杂计算处理等。

而模拟信号数字化属信源编码范围,当然信源编码还包括并/串转换、加密和数据压缩。

这里重点讨论模拟信号数字化的基本方法——脉冲编码调制,而模拟信号数字化的过程(得到数字信号)一般分三步:抽样、量化和编码。

本文讲述了PCM(脉冲编码调制)的简单介绍,以及PCM编码的原理,并分别对PCM的各个过程,如基带抽样、带通抽样、13折线量化、PCM编码以及PCM 译码进行了详细的论述,并对各过程在MATLAB7.0上进行仿真,通过仿真结果,对语音信号的均匀量化以及非均匀量化进行比较,我们得出非均匀量化教均匀量化更加有优势。

关键词:脉冲编码调制抽样非均匀量化编码译码AbstractIn the digital communication channel signal is digital signal transmission, digital transmission with the microelectronics and computer technology, its advantages become increasingly evident, the advantage of strong anti-interference, distortion, transmission characteristics of stable, long-distance relay is not the accumulation of noise Can also be effective encoding, decoding and security codes to improve the effectiveness of communications systems, reliability and confidentiality.Digitized analog signal range of source coding is, of course, also include the source code and / serial conversion, encryption and data compression. This focus on the simulation of the basic methods of digital signals - pulse code modulation, while the analog signal the digital process (to get digital signals) generally three steps: sampling, quantization and coding.This paper describes the PCM (pulse code modulation) in a brief introduction, and the PCM coding theory, and were all on the PCM process, such as baseband sampling, bandpass sampling, 13 line quantization, PCM encoding and decoding PCM a detailed Are discussed and the process is simulated on MATLAB7.0, the simulation results, the uniformity of the speech signal quantification and comparison of non-uniform quantization, we have come to teach non-uniform quantization advantage of more than uniform quantizationKeywords:Pulse Code Modulation Sampling Non-uniform quantization Coding Decoding目录1 前言 (1)2 PCM原理 (2)2.1 引言 (2)2.2 抽样(Sampling) (3)2.2.1. 低通模拟信号的抽样定理 (3)2.2.2 抽样定理 (4)2.2.3. 带通模拟信号的抽样定理 (7)2.3 量化(Quantizing) (8)2.3.1 量化原理 (8)2.3.2均匀量化 (10)2.3.3 非均匀量化 (11)2.4 编码(Coding) (18)2.5 译码 (24)2.6 PCM处理过程的其他步骤 (26)2.7 PCM系统中噪声的影响 (27)3 算例分析 (29)3.1 无噪声干扰时PCM编码 (30)3.2 噪声干扰下的PCM编码 (36)结论 (42)致谢 (43)参考文献 (44)附录 (45)1 前言数字通信系统中信道中传输的是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。

基于MATLAB的模拟信号数字化系统的研究与仿真

基于MATLAB的模拟信号数字化系统的研究与仿真
所谓脉冲编码调制:就是将模拟信号的抽样量化值转换成二进制码组的过程。下图给 出了脉冲编码调制的示意图。
脉冲编码调制(PCM)原理:
图 1-9 脉冲编码调制示意图
PCM 系统的原理方框图如下图所示,同种,输入的模拟信号 m(t)经抽样、量化、
编码后变换成数字信号,经心道传送到接收端的译码器,由译码器还原出抽样值,再经过
定理内容:抽样定理在时域上可以表述为:对于一个频带限制在(0,fH)Hz 内的时间 连续信号 f(t),如果以 Ts≤1/(2fH)秒间隔对其进行等间隔抽样,则 f(t)将被所得到的 抽样值完全确定。模拟信号的抽样过程如下图。
图 1-2 模拟信号抽样的过程示意图
下图分析可知模拟信号抽样过程中各个信号的波形与频谱。
模拟信号数字化系统的研究与仿真
5
通信原理课程设计
图 1-4 两种情况下的抽样信号频谱分析
应该注意的一点是:抽样频率并不是越高越好。只要能满足抽样频率大于奈奎斯特频 率,并留有一定的防卫带即可。
1.1.2 带通信号的抽样定理
实际中遇到的许多信号时带通型信号,模拟信号的频道限制在 fL~fH 之间,fL 为信号 最低频率,fH 为最高频率。而且当 fH>B,其中 B=fH-fL 时,该信号通常被成为带通型信号, 其中 B 为带通信号的频带。
对于带通信号,如果采用低通抽样定理的抽样速率 fs≥2fh,对频率限制在 fL 与 fH 之间 的带通型信号抽样,肯定能满足频谱不混叠的要求,如图所示。
模拟信号数字化系统的研究与仿真
6
通信原理课程设计
图 1-5 带通信号的抽样频谱
定理内容:一个带通信号 f(t),其频率限制在 fL 与 fH 之间,带宽为 B=fh-fl,如果 最小抽样速率 fs=2fh/n,n 是一个不超过 fh/B 的最大整数,那么 f(t)就可以完全由抽 样值确定。 下面两种情况说明:

(完整word版)数字通信系统的设计与仿真

(完整word版)数字通信系统的设计与仿真

数字通信系统的设计与仿真摘要:数字通信系统是数字传输的过程,模拟信号到达接收端必须先将模拟信号转换成数字信号,数字信号在信道中传输会有损耗,因此合理的采用信道的编/译码和调制、解调是十分重要的,本实验采用systemview 进行仿真.关键字:眼图、误码率、调制、解调.1数字通信系统模型与原理1.1数字通信系统模型数字通信系统是利用数字信号来传递信息的通信系统,如图1所示.图1数字通信系统模型1.1.1 信源编码与译码信源编码有两个基本功能:一是提高信息传输的有效性,即通过某种数据压缩技术设计减少码元数目和降低码元速率.二是完成模/数(A/D)转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输.信源译码是信源编码的逆过程.1.1.2 信道编码与译码信道编码的目的是增强数字信号的抗干扰能力.数字信号在信道传输时受到噪声等影响后将会引起差错.为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分,组成所谓“抗干扰编码”.接收端的信道译码器按相应的规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性.1.1.3 加密与解密在需要实现保密通信的场合,为了保证所穿信息的安全,认为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密.在接收端利用与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息.1.1.4 数字调制与解调数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号.基带的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控、相对相移键控(DPSK).在接收端可以采用相干解调或非相干解调还原数字基带信号.对高斯噪声下的信号检测,一般用相关器或匹配滤波器来实现.1.1.5 同步同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序、准确、可靠工作的前提条件.按照同步的公用不同,分为载波同步、位同步、群同步和网同步.数字通信的主要特点(1) 抗干扰能力强,尤其是数字信号通过中继再生后可消除噪声积累(2) 数字信号通过差错控制编码,可提高通信的可靠性.(3) 由于数字通信传输一般采用二进制码,所以可使用计算机对数字信号进行处理,实现复杂的远距离大规模自动控制系统和自动数据处理系统,实现以计算机为中心的通信网.(4) 在数字通信中,各种消息(模拟的和离散的)都可变成统一的数字信号进行传输.在系统对数字信号传输情况的监视信号、控制信号及业务信号都可采用数字信号.数字传输和数字交换技术结合起来组成的ISDN 对于来自不同信源的信号自动地进行变换、综合、传输、处理、存储和分离,实现各种综合业务.(5) 数字信号易于加密处理,所以数字通信保密性强.数字通信的缺点是比模拟信号占带宽,然而,由于毫米波和光纤通信的出现,带宽已不成问题.2 系统的设计过程为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配.这种用数字基带信号控制载波,把数字基带信号变换为数字带同信号的过程称为数字调制.在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调.通常把包括调制和解调过程的数字传输系统叫做数字带通传输系统.一般来说,数字调制与模拟调制技术有的方法:把数字基带信号当作模拟信号的特殊情况处理;是利用数字信号的离散取值特点通过开关键控载波,2.1 信源编码模拟信号转换成数字信号包括三个步骤:抽样,量化,编码.(1) 抽样:把模拟信号在时间上离散化,变换为模拟抽样信号.(2) 量化:将抽样信号在幅度上离散化,变换成量化信号.(3) 编码:用二进制码元来表示有限的量化电平.抽样定理指出:设一个连续模拟信号m(t)中的最高频率〈f h ,则以间隔时间T〈1/2f h的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定.由于抽样时间间隔相等,所以此定理又称均匀抽样定理.例如模拟信号的最高频率为10hz,则采样频率为30hz.2.2 信道格雷码的编/译码数字信号在传输过程中,由于受到干扰的影响,码元波形将变坏,,接收端收到后可能发生错误判决,故采用GRAY编\译码方式来进行差错控制. 格雷码的编码和译码设备都不太复杂,而且检错的能力较强.格雷码除了具有线性码的一般性质外,还具有循环性.循环性是指任一码组循环一位(即将最右端的一个码元移至左端,或反之)后,仍为该码中的一个码组.2.3 2FSK信号的调制与非相干解调2.3.1 调制原理键控法:在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率进行选通,使其在每一个码元T s 期间输出 f1或f0两个载波之一, 图2所示.键控法产生的2FSK信号,是由于电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续. 2FSK信号可以看成两个ASK的相加,图3所示.图2 键控法产生2FSK 信号的原理图图3 相位连续的2FSK 信号波形2.3.2 2FSK 信号的非相干解调2FSK 的非相干解调:其原理是将2FSK 信号分解为上下两路2ASK 信号分别进行解调,然后进行判决.这里的抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限.判决规则应与调制规则相呼应,调制时若规定“1”符号对应载波频率w 1,则接收时上支路的样值较大,应判为“1”;反之则判为“0”.2FSK 信号的非相干解调方框图如图4所示,其可视为由两路2ASK 解调电路组成.这里,两个带通滤波器(带宽相同,皆为相应的2ASk 信号带宽;中心频率不同,分别为w 1、w 2 起分路作用,用以分开两路2ASK 信号. 振荡器f 1选通开关 反相器 想加器 振荡器f 2 选通开关基带信号 2FSK 信号图4 2FSK信号非相干解调方框图2.4 模拟FIR滤波器的设计通过选择菜单上的”Filter/Analog”按扭,可以设计五种模拟滤波器.它们是:巴特沃斯,巴赛尔,切比契夫,椭圆,线性相位.这些滤波器可以是低通、高通或带通,所选滤波器的一般形状由滤波器的类型决定,需要输入的数据是滤波器的极点数、-3db带通或截止频率、相位纹波系数、增益等参数,按”finish”完成设计.低通滤波器:去掉信号中不必要的高频成分,降低采样频率,避免频率混淆,去掉高频干扰.带通滤波器:高通滤波器同低通滤波器的组合.对滤波器而言,所有频率都应是采样速率的分数,即相对的百分比系数.例如,系统的采样速率为1MHZ,所涉及的FIR低通滤波器的截止频率为50KH Z,则滤波器涉及窗口输入的截止频率为0.05(50KH Z/1MH Z),如果在滤波器前面连接的是抽样器或采样器的图符,则这些图符的频率也必须是滤波器采样速率的分数. 2.5 眼图分析眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形.观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”.从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度.另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能.眼图的“眼睛” 张开的大小反映着码间串扰的强弱.“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清.若同时存在码间串扰,“眼睛”将张开得更小.与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正.噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正.眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰.(1) 最佳抽样时刻应在“眼睛” 张开最大的时刻.(2) 对定时误差的灵敏度可由眼图斜边的斜率决定.斜率越大,对定时误差就越灵敏. 在抽样.(3) 时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变.眼图中央的横轴位置应对应判决门限电平.(4) 在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决.(5) 对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响.2.6 误码率分析对于二进制双极性信号,假设它在抽样时刻的点平取值为+A或-A(分别对应信码“1或“0”),在-A 和+A之间选择一个适当的电平V d作为判决门限,根据判决准则将会出现以下几种情况:(1) 对“1”码:当X>V d,判为“1”码(正确);当X<V d,判为“0”码(错误).(2) 对“0”码:当X<V d,判为“0”码(正确);当X>V d,判为“1”码(错误).假设信源发送“1”码的概率为P(1),发送“0”码的概率为P(0),则二进制基带传输系统的总误码率Pe= P(1) P(0/1)+ P(0) P(1/0) 其中P(0/1)= P(X<V d),P(1/0) = P(X>V d)3参数的设定(1)模拟信源:正弦函数,频率fs=10hz,幅度A=1V;。

模拟信号数字化传输系统的建模与分析

模拟信号数字化传输系统的建模与分析

模拟信号数字化传输系统的建模与分析现代通信技术的核心在现代通信领域,模拟信号数字化传输技术是至关重要的。

它涉及到将模拟信号通过采样、量化和编码等过程转化为数字信号,以便在数字传输系统中进行高效、可靠的传输。

本文将以“模拟信号数字化传输系统的建模与分析”为主题,深入探讨这一技术的核心原理和应用。

一、模拟信号数字化传输的基本原理1. 试题:什么是模拟信号数字化传输?答案:模拟信号数字化传输是将模拟信号通过采样、量化和编码等过程转化为数字信号,以便在数字传输系统中进行传输的过程。

2. 试题:模拟信号数字化传输的主要步骤有哪些?答案:模拟信号数字化传输的主要步骤包括采样、量化和编码。

采样是将模拟信号在时间上离散化,量化是将连续的模拟信号值映射到有限的数字级别,编码是将量化后的数字信号转换为二进制代码。

二、模拟信号数字化传输系统的建模1. 试题:如何建立模拟信号数字化传输系统的模型?答案:建立模拟信号数字化传输系统的模型需要考虑信号特性、传输通道特性、噪声特性等因素。

通常,可以采用数学模型和仿真软件来建立模型,通过模型可以分析和预测系统的性能。

2. 试题:模拟信号数字化传输系统模型中需要考虑哪些关键参数?答案:模拟信号数字化传输系统模型中需要考虑的关键参数包括采样频率、量化位数、编码方式、传输通道的特性、噪声水平等。

这些参数将直接影响传输系统的性能和信号质量。

三、模拟信号数字化传输系统的分析1. 试题:如何分析模拟信号数字化传输系统的性能?答案:分析模拟信号数字化传输系统的性能可以通过以下方法:-信号失真分析:评估信号在传输过程中的失真程度,包括量化噪声、传输通道引起的失真等。

-信号信噪比分析:计算信号的信噪比,评估信号的质量和可靠性。

-传输效率分析:评估系统的传输效率,包括数据传输速率和带宽利用率等。

2. 试题:模拟信号数字化传输系统分析中可能遇到哪些挑战?答案:模拟信号数字化传输系统分析中可能遇到的挑战包括:-信号复杂性的处理:模拟信号可能具有复杂的波形和频率成分,需要有效的建模和分析方法来处理。

模拟信号数字化传输系统的建模与分析

模拟信号数字化传输系统的建模与分析

模拟信号数字化传输系统的建模和分析涉及到将连续的模拟信号转换为离散的数字信号,并进行传输和恢复的过程。

以下是一个常见的模拟信号数字化传输系统的建模和分析步骤:
1. 采样:使用采样器以一定的时间间隔对模拟信号进行采样,将连续的模拟信号转换为离散的样本值。

采样频率需要满足奈奎斯特采样定理,即采样频率要大于信号最高频率的两倍。

2. 量化:采样后,使用量化器将每个采样值映射为离散的数字数值。

量化器将连续的采样值近似为有限个离散的数值级别,这个过程引入了量化误差,决定了数字信号的精度。

3. 编码:对量化后的数字信号进行编码,将其转换为二进制形式,便于传输和存储。

常见的编码方式有二进制编码、格雷码等。

4. 信道传输:将编码后的数字信号通过信道进行传输。

在传输过程中,信号可能会受到噪声、失真和干扰等影响,导致信号质量下降。

5. 解码:在接收端,对传输过程中的数字信号进行解码,恢复为经过量化和编码前的数字信号。

6. 重构:解码后的数字信号经过一个重构滤波器进行重构,以去除
量化误差,并还原为连续的模拟信号。

7. 分析与评估:对传输系统的性能进行分析和评估,包括信号失真度、信噪比、位错误率等指标的计算和评估。

可以通过信道容量、传输延迟等指标来评估系统的效率和可靠性。

在模拟信号数字化传输系统的建模和分析过程中,需要考虑信号的采样率、量化精度、编码方式、信道特性、解码算法等参数的选择和优化,以及信号处理算法的设计和实现。

这些步骤和参数的选择会影响到数字信号的质量和传输系统的性能。

通信原理实验二 ZSTU

通信原理实验二 ZSTU

通信原理实验二:模拟信号数字化传输系统的建模与分析信息电子学院一.实验目的1. 进一步掌握 Simulink 软件使用的基本方法;2. 熟悉信号的压缩扩张;3. 熟悉信号的量化;4. 熟悉PCM 编码与解码。

二.实验仪器带有MATLAB 和SIMULINK 开发平台的微机三.实验原理3.1 信号的压缩和扩张非均匀量化等价为对输入信号进行动态范围压缩后再进行均匀量化。

中国和欧洲的PCM 数字电话系统采用A 律压扩方式,美国和日本则采用μ律方式。

设归一化的话音输入信号为[1,1]x ∈-,则A 律压缩器的输出信号y 是:()11ln sgn 1(1ln )11ln Ax x A A y x A x x A A ⎧≤⎪+⎪=⎨⎪+<≤⎪⎩+其中,sgn(x) 为符号函数。

A 律PCM 数字电话系统国际标准中,参数A=87.6。

Simulink 通信库中提供了“A-Law Compressor ”、“A-Law Expander ”以及“Mu-Law Compressor ”和“Mu-Law Expander ”来实现A 律和Ö 律压缩扩张计算。

压缩系数为87.6的A 律压缩扩张曲线可以用折线来近似。

16段折线点坐标是111111*********,,,,,,,,0,,,,,,,,1248163264128128643216842765432112345671,,,,,,,,0,,,,,,,,188888888888888x y ⎡⎤=--------⎢⎥⎣⎦⎡⎤=--------⎢⎥⎣⎦其中靠近原点的4段折线的斜率相等,可视为一段,因此总折线数为13段,故称13段折线近似。

用Simulink 中的“Look-Up Table ”查表模块可以实现对13段折线近似的压缩扩张计算的建模,其中,压缩模块的输入值向量设置为[-1,-1/2,-1/4,-1/8,-1/16,-1/32,-1/64,-1/128,0,1/128,1/64,1/32,1/16,1/8,1/4,1/2,1]输出值向量设置为[-1:1/8:1]扩张模块的设置与压缩模块相反。

面向5G通信系统的无线信道建模与仿真性能分析

面向5G通信系统的无线信道建模与仿真性能分析

面向5G通信系统的无线信道建模与仿真性能分析随着技术的不断发展,5G通信系统已经成为了当前的热门话题。

然而,在5G通信系统中,无线信道的建模与仿真性能分析是一个至关重要的领域。

本文将探讨面向5G通信系统的无线信道建模与仿真性能分析的相关内容。

首先,我们来介绍一下无线信道建模的概念。

无线信道是指无线通信中传输信号的媒介,其质量直接影响到通信系统的性能。

因此,准确地对无线信道进行建模是非常重要的。

在5G通信系统中,由于采用了更高频率的毫米波通信,信道传输特性变得更加复杂。

因此,建模工作必须考虑到这些特殊情况,以更好地反映实际通信环境。

无线信道建模方法主要分为统计方法和物理方法两种。

统计方法是通过采集实际信道数据并进行统计分析,从而得到信道模型。

物理方法则是基于无线传播理论,通过数学建模和仿真,对信道进行建模。

这两种方法各有优劣,可以根据具体需求选择合适的方法。

在5G通信系统中,传统的统计方法可能不再适用。

由于毫米波通信的特殊性,传统的统计方法很难获得足够的数据进行分析。

因此,物理方法在5G通信系统中的应用显得更加重要。

物理方法可以通过数学模型和仿真工具,准确地预测无线信道的传输特性。

接下来,我们来讨论无线信道建模与仿真性能分析的相关工作。

首先是无线信道建模方面。

在进行无线信道建模时,我们需要考虑到多径衰落、阴影衰落、干扰等因素。

通过合适的数学模型和仿真工具,可以模拟出不同通信环境下的无线信道,从而提供给系统设计者和研究人员参考。

例如,可以使用莱斯衰落模型、戴利衰落模型等来模拟不同类型的信道环境。

在仿真性能分析方面,我们可以通过无线信道建模得到的模型,结合合适的仿真工具,对5G通信系统进行性能评估。

例如,可以通过计算误码率、传输速率、信号质量等指标,来评估5G通信系统在不同信道环境下的性能表现。

这些性能分析结果可以帮助系统设计者进行优化和改进,从而提高系统的性能。

在进行无线信道建模与仿真性能分析时,我们还需考虑到通信系统所具备的特定要求。

(完整版)通信原理课程设计题目

(完整版)通信原理课程设计题目

北京邮电大学课程设计任务书课程名称 matlab通信仿真设计院(系) 机电工程学院专业班级指导教师1.课程设计应达到的目的(1)掌握使用Matlab语言及其工具箱进行基本信号分析与处理的方法。

(2)用matlab和simulink设计一个通信系统,加深对通信原理基本原理和matlab应用技术的理解;(3)提高和挖掘学生将所学知识与实际应用相结合的能力;(4)培养学生的合作精神和独立分析问题和解决问题的能力;(5)提高学生科技论文的写作水平。

2.课程设计题目及要求课程设计题目1:调幅广播系统的仿真设计设计任务:1.采用接收滤波器Analog Filter Design模块,在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。

采用另外两个相同的接收滤波器模块,分别对纯信号和纯噪声滤波,利用统计模块计算输出信号功率和噪声功率,继而计算输出信噪比,用Disply显示结果。

模型文件保存为ex1_1.mdl。

对中波调幅广播传输系统进行仿真,其技术指标为:1)载波信号:幅度为1的正弦波,设初相为0,频率在550~1605Hz内可调;2)基带信号:调制度(信号最大幅度与载波幅度之比) m a=0.3,频率在100~600Hz 内可调;3)接收机选频滤波器带宽为12KHz,中心频率为1000KHz;4)在信道中加入加性高斯噪声,需要先计算出信道中应该加入噪声的方差。

设计接收机选频滤波器输出信噪比为20dB。

2.构建包络解调和相干解调电路,用示波器显示解调波形。

构建一个信噪比测试子系统,该系统能使输入的两路解调信号中的信号和噪声近似分离,以分别计算信号和噪声分量的功率,进而计算信噪比,并用Display显示,同时将信噪比数据送入Workspace。

模型文件保存为ex1_2.mdl。

3.编写脚本程序ex1.m,通过选择不同信噪比,计算加性噪声的方差送入仿真模型,调用模型文件执行仿真,并通过matlab绘图得到包络解调和相干解调后的输出信噪比与输入信噪比的关系曲线。

基于systemview的模拟通信通信系统的仿真毕业设计

基于systemview的模拟通信通信系统的仿真毕业设计
模拟调制和解调是实现是实现模拟通信系统的重要组成部分。调制是将原始电信号变换成其频带适合信道传输的信号;解调是在接收端将信道中传输的信号还原成原始的电信号;经过调制后的信号成为已调信号;发送端调制前和接收端解调后的信号成为基带信号。因此,原始电信号又称为基带信号,而已调信号又称为频带信号。
模拟信号的调制与解调是通信原理课程的经典内容,也是模拟通信时代的核心技术。虽然当代技术已发展为数字通信新时代,但模拟信号的调制与解调理论仍然是通信技术中的基础内容之一。
图1-1模拟通信系统模型图
模拟通信在信道中传输的信号频谱比较窄,因此可通过多路复用使信道的利用率提高,但它的缺点是:
1)传输的信号是连续的,叠加噪声干扰后不易消除,即抗干扰能力较差;
2)不易保密通信;
3)设备不易大规模集成;
4)不适应飞速发展的计算机通信的要求
1.2模拟信号调制解调
模拟通信系统中,调制与解调是通信系统中的重要环节,它使信号发生本质性的变化。本文主要对线性调制(AM,DSB,SSB)与非线性调制(FM,NBFM)的信号产生(调制)与接受(解调)的基本原理,方法技术加以讨论,并通过System View仿真验证常规双边带调幅(AM),双边带调幅(DSB),单边带调幅(SSB),频率调制(FM),窄带频率调制(NBFM)。通过此软件观察信号的调制与解调过程,并对输出波形进行分析。
systemview是一个用于电路与通信系统设计仿真的动态分析工具它实现了功能的软件化避开了复杂的硬件搭建在不具备先进仪器的条件下同样也能完成复杂的通信系统设计与仿真本文利用systemview软件设计模拟调制和解调电路通过分析其输入输出波形验证所设计电路的正确性
毕业实践报告
题目:基于System View的模拟通信系统的仿真

谈通信系统中的模拟信号的数字传输

谈通信系统中的模拟信号的数字传输

”i:
图 2 P M通信 系统方框 图 C
的量化误差 , 同时 A律十三折线和 律十五折 曲线对打信 号的处理方式相似 , 两者 的差 别在 于对 小信号的量化编码方 式上 。 图5 S o ( 是 c p 示波器) e 的运行结果 , 中黄 其
科技创新导报 Sce c a d in e n Te h oo y n o a in er l c n lg In v to H ad
S mpe Qu n ie En o e和 S mpe a ld a tz r cd a ld
{ 1

鞍 皇 髋 竣 事

{ ●
≤ 盼


Qu nie n o e ( 样量化编码器)按照 A a t r E c d l抽 z , 律 十三折 曲线 和 律 十五折 曲线 产生量 化输 出信号 , 然后把 这两 个量化其计算 得到 量化误 差均方值通过一个 Mu ( 用器) x复 输入到 S o e cp ( 示波器 )这时候 从示波器上 就可 以观 察到这 , 两 种量 化编码 器产生 的量化 误差 。为 了 比较 量 化之前和量化之 后的正弦信号 , 正弦信号产 生 器和两 个抽 样量化 编码 器第二 个输 出端 口 的 输 出 信 号 通 过 另 外 一 个 复 用 器 联 结 到 S o e( 波器) c p l示 运行结 果及分析 。 图中黄颜 色线 条表示 抽样之 前的 正弦信 号, 蓝颜 色的线 条表示通过S mpe a t e a ld Qu ni r z 换。 E cd ( n o e第一个抽样 量化编码器 ) 后的信号 。 之 粉 颜 色线 则表 示通 过 S mp e Qua tz r a ld n ie 3仿真 系统设计 noe( 之后 的信 仿 真模 型设计 的 目的。如 果在 发送端 的 E c d l第二 个抽 样量 化 编码 器 ) 信息源 中包括一个模 /数转 换装置 , 而在接收 号 。 从图3 和图 4 的上 图可 以看到 , 样量化 抽 端 包含一 个数 /模转换装 置 , 则可以在数字 系

MatlabSimulink通信系统设计与仿真

MatlabSimulink通信系统设计与仿真

课程设计报告目录一、课程设计内容及要求....................................... 错误!未定义书签。

(一)设计内容............................................. 错误!未定义书签。

(二)设计要求............................................. 错误!未定义书签。

二、系统原理介绍................................................... 错误!未定义书签。

(一)系统组成结构框图............................. 错误!未定义书签。

(二)各模块原理......................................... 错误!未定义书签。

1.信源模块............................................. 错误!未定义书签。

2.信源编码模块..................................... 错误!未定义书签。

3.QPSK调制模块 ................................. 错误!未定义书签。

4.信道模块............................................. 错误!未定义书签。

5.QPSK解调模块 ................................. 错误!未定义书签。

6.误码率模块......................................... 错误!未定义书签。

三、系统方案设计................................................... 错误!未定义书签。

(一)方案论证............................................. 错误!未定义书签。

2PSK数字频带通信系统设计概述

2PSK数字频带通信系统设计概述

2PSK数字频带通信系统的设计与实现摘要:数字通信系统分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。

本次课程设计主要是利用matlab中的simulink模块对频带传输系统进行仿真。

在设计频带传输系统时,通过对原理的分析和实现过程中的实际操作问题的解决方便,采用的方案是用2PSK 的调制方式,首先对信号进行PSK调制,并把运行仿真结果输入到示波器,根据示波器结果分析设计的系统性能。

再通过加入高斯白噪声传输信道,接着在接收端对信号进行PSK解调,采用相干解调法,最后把输出的信号和输入的信号进行比较。

通过最后仿真结果可知,在仿真过程中存在着一定的误码,该信号频带传输通信系统已初步实现了设计指标并可用于解决一些实际性的问题。

关键词:数字频带;2PSK调制;高斯白噪声;Simulink;目录第1章绪论 (1)1.1 背景 (1)1.2 选题的目的和意义 (1)1.3 本课程设计的主要内容 (2)第2章2PSK信号调制与解调的基本原理 (3)2.1 总体思想 (3)2.2 2PSK信号的产生 (3)2.3 2PSK信号的解调原理及抗噪声性能 (5)2.3.1 2PSK信号的解调原理 (5)2.3.2 2PSK信号相干解调误码率的计算 (6)第3章 simulink的介绍 (9)3.1 Simulink相关内容 (9)3.2 Simulink仿真原理 (9)3.3 Simulink仿真过程 (9)第4章 2PSK数字调制与解调系统的设计 (11)4.1整体电路设计 (11)4.2 2PSK信号调制模块设计 (11)4.3 2PSK信号解调模块设计 (13)4.4 误码率计算模块设计 (15)第5章仿真实现 (18)5.1 matlab仿真结果分析 (18)5.2误码率分析 (20)5.3仿真过程出现的问题 (20)第6章总结 (21)参考文献 (22)第1章绪论1、1 背景数字基带信号是低通型信号,其功率谱集中在零频附近,它可以直接在低通型信道中传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐山学院通信原理课程设计题目模拟信号数字化传输系统的设计与仿真分析系 (部) 班级姓名学号指导教师2017 年 6 月 26 日至2017 年7月 8 日共 2 周通信原理课程设计任务书课程设计成绩评定表目录前言 (1)1模拟信号抽样过程原理 (2)1.1抽样原理 (2)1.1.1低通型连续信号的抽样 (2)1.1.2带通信号的抽样定理 (3)1.2量化原理 (4)1.2.1均匀量化 (4)1.2.2非均匀量化 (5)1.2.3 A律压缩律 (5)1.2.4 13折线 (5)1.3脉冲编码调制(PCM) (6)1.4差分脉冲编码调制(DPCM) (7)2Matlab/Simulink的简介 (9)3基于Simulink的模拟信号数字化传输的设计与仿真分析 (11)3.1抽样过程的设计与仿真分析 (11)3.2量化过程的设计与仿真分析 (12)3.3 PCM编译码系统设计与仿真分析 (14)3.3.1 PCM编码器设计 (14)3.3.2 PCM解码器设计 (17)3.3.3有干扰信号的PCM编码与解码 (17)3.4 DPCM编译码系统的设计与仿真分析 (21)4总结 (24)5参考文献 (25)前言通信系统中的信息传输已经基本数字化。

在广播系统中,当前还是以模拟方式为主,但数字化的趋向也已经明显,为了改进质量,数字声频广播和数字电视广播已经提到日程上来,21世纪数字系统已经逐步取代模拟系统。

尤为甚者,设备的数字化,更是日新月异。

近年来提出的软件无线电技术,试图在射频进行模数转换,把调制解调和锁相等模拟运算全部数字化,这使设备超小型化并具有多种功能,所以数字化进程还在发展。

Simulink工具是MATLAB软件提供的可以实现动态系统建模和仿真的软件包,它让用户把精力从语言编程转向仿真模型的构造,为用户省去了很多重复的代码编写工作。

Simulink中的每个模块对我们来说都是透明的,我们只须知道模块的输入、输出和每个模块的功能,而不需要关心模块内部是如何实现的,留给我们的事情就是如何利用这些模块来建立仿真模型以完成自己的任务。

至于Simulink中的各个模块在运行时是如何执行,时间是如何采样的,事件是如何驱动的等问题,我们可以不去关心。

正是由于Simulink具有这些特点,所以它被广泛应用在通信仿真中。

1模拟信号抽样过程原理1.1抽样原理抽样是按照等时间等间隔进行的,模拟信号被抽样后成为抽样信号,把该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。

抽样的抽样速率下限是由抽样定理确定的。

抽样定理告诉我们,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输抽样定理得到的抽样值。

因此该定理就为模拟信号的数字化传输提供了理论基础。

1.1.1低通型连续信号的抽样定理内容:抽样定理在时域上可以表述为:对于一个频带限制在(0,f H)Hz内的时间连续信号f(t),如果以Ts≤1/(2f H)秒间隔对其进行等间隔抽样,则f(t)将被所得到的抽样值完全确定。

模拟信号抽样过程中各个信号的波形与频谱。

(a)模拟信号的波形及频谱(b)冲激函数的波形及频谱(c)抽样信号的波形及频谱图1-1抽样过程中的信号波形与频谱以下为两种情况下的频谱分析结果。

但抽样频率小于奈奎斯特频率时,即如果ωs<2ωH,则抽样后信号的频谱在相邻的周期内发生混叠,如图1-2所示,当抽样频率大于或等于奈奎斯特频率时,接收端回复出来的信号才与原信号基本一致。

(a)信号的频谱(b)f s>2f m时抽样信号的频谱(c)f s<2f m时抽样信号的频谱图1-2两种情况下的抽样信号频谱分析应该注意的一点是:抽样频率并不是越高越好。

只要能满足抽样频率大于奈奎斯特频率,并留有一定的防卫带即可。

1.1.2带通信号的抽样定理实际中遇到的许多信号是带通型信号,模拟信号的频率限制在f L~f H之间,f L为信号最低频率,f H为最高频率。

而且当f H>B,其中B=f H-f L时,该信号通常被成为带通型信号,其中B为带通信号的频带。

对于带通信号,如果采用低通抽样定理的抽样速率f s≥2f h,对频率限制在f L 与f H之间的带通型信号抽样,肯定能满足频谱不混叠的要求,如图1-3所示:图1-3带通信号的抽样频谱定理内容:一个带通信号f(t),其频率限制在f L与f H之间,带宽为B=f h-f l,如果最小抽样速率f s=2f h/n,n是一个不超过f h/B的最大整数,那么f(t)就可以完全由抽样值确定。

下面两种情况说明:(1)若最高频率f h为带宽的整数倍,即f h=nB。

此时f h/B=n是整数,m=n,所以臭氧速率f s=2f h/m=2B。

(2)若最高频率f h不为带宽的整数倍,即f h=nB+kB,0<k<1此时,f h/B=n+k,由定理知,m是一个不超过n+k的最大整数,显然,m=n,所以能恢复出原信号f(t)的最小抽样速率为:f s=2(f L+f H)/(2n+1)式中n是一个不超过f H/B的最大整数,0<k<1通常k取1。

1.2量化原理量化就是把经过抽样的得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。

量化的结果使抽样信号变成量化信号,其值是离散的。

故量化信号已经是数字信号了,可以看成是多进制脉冲信号。

量化在连续抽样值和量化值之间产生误差,称为量化误差。

1.2.1均匀量化如果用相等的量化间隔对抽样得到的信号做量化,那么这种量化方法称为均匀量化。

工作原理:在均匀量化中,每个量化区间的量化电平取在各区间的中点。

其量化间隔△i取决于输入信号的变化范围和量化电平数。

若设输入信号的最小值和最大值分别为a和b表示,量化电平数为M,则均匀量化时的量化间隔为△i=(b-a)/M量化器输出为x=x l。

图1-4均匀量化特性与量化误差曲线量化器的输入与输出关系可用量化特性来表示,语言编码常采用上图所示输入-输出特性的均匀量化器,当输入m在量化区间m i-1≤m≤m i变化时,量化电平q i是该区间的中点值。

而相应的量化误差e q=m-m q与输入信号幅度m之间的关系曲线如上图所示。

过载区的误差特性是线性增长的,因而过载误差比量化误差大,对重建信号有很坏的影响。

在设计量化器时,应考虑输入信号的幅度范围,是信号幅度不进入过载区,或者只能以极小的概率进去过载区。

上述的量化误差e q=m-m q通常称为绝对量化误差,它在每一个量化间隔内的最大值均为△/2。

均匀量化广泛应用于现行A/D变换接口,例如在计算机中,M为A/D变化的位数,常用的有8位、12位、16位等不同精度。

1.2.2非均匀量化非均匀量化的方法通常是将抽样值通过压缩再进行均匀量化。

通常使用的压缩器中,大多数采用对数式压缩。

广泛采用的两种对数式压缩率是u压缩率和A 压缩率。

1.2.3A律压缩律A压缩律的压缩特性为Ax/(1+lnA) 0< x≤1/AY=(1+lnAx)/(1+lnA) 1/A<x≤1其中,A是压缩系数,y是归一化的压缩器输出电压,x为归一化的压缩器输入电压。

图1-5 A律对数压缩特性1.2.4 13折线实际中,A压缩律通常采用13折线来近似,十三折线如图1-6所示,图中先把x轴的[0,1]区间分为8个不均匀段。

图1-6 13折线示意图其具体分法如下:将区间[0,1]一分为二,其中点为1/2,取区间[0,1/2]作为第八段;将剩下的区间[0,1/2]再一分为二,其中点为1/4,取区间[1/4,1/2]作为第七段;将剩下的区间[0,1/4]再一分为二,其中点为1/8,取区间[1/8,1/4]作为第六段;将剩下的区间[0,1/8]再一分为二,其中点为1/16,取区间[1/16,1/8]作为第五段;将剩下的区间[0,1/16]再一分为二,其中点为1/32,取区间[1/32,1/16]作为第四段;将剩下的区间[0,1/32]再一分为二,其中点为1/64,取区间[1/64,1/32]作为第三段;将剩下的区间[0,1/64]再一分为二,其中点为1/128,取区间[1/128,1/64]作为第二段;最后剩下的区间[0,1/128]作为第一段。

然后将y轴的[0,1]区间均匀的分成八段,从第一段到第八段分别为[0,1/8]、[1/8,2/8]、[2/8,3/8]、[3/8,4/8]、[4/8,5/8]、[5/8,6/8]、[6/8,7/8]、[7/8,1]分别与x轴的八段一一对应。

1.3脉冲编码调制(PCM)若信源输出的是模拟信号,如电话机传送的语音信号等,要使其在数字信道中传输,必须在发送端将模拟信号转换成数字信号即进行A/D变换,在接收端要进行D/A变换。

对语音信号最典型的数字编码就是脉冲编码调制(PCM)。

脉冲编码调制,就是将模拟信号的抽样量化值转换成二进制码组的过程。

图1-7给出了脉冲编码调制的示意图。

(a)抽样脉冲(b)PCM抽样(c)PCM量化(d)PCM编码图1-7脉冲编码调制示意图PCM系统的原理方框图如图1-8所示,输入的模拟信号m(t)经抽样、量化、编码后变换成数字信号,经信道传送到接收端的译码器,由译码器还原出抽样值,再经过低通滤波器滤出模拟信号。

其中,量化与编码的组合成为A/D变换器;而译码与低通滤波的组合成为D/A变换。

图1-8 PCM通信系统方框图1.4 差分脉冲编码调制(DPCM)PCM体制需要用64kb/s的速率传输1路数字电话信号,而传输1路模拟信号仅占用3kHz带宽。

相比之下,传输PCM信号占用更大的带宽。

为了降低数字电话信号的比特率,改进的方法之一是采用预测编码方法。

DPCM是广泛应用的一种预测方法。

DPCM与预测编码类似,只是它有一个量化步骤。

量化步骤和PCM中的量化步骤类似,可以是均匀量化,也可以是非均匀量化。

在预测编码中每个抽样值不是独立地编码,而是先根据前几个抽样值计算出一个预测值,再取当前抽样值和预测值之差。

将此差值编码并传输。

此差值称为预测误差。

话音信号等连续变化的信号,其相邻抽样值之间有一定的相关性,这个相关性使信号中含有冗余信息。

由于抽样值及其预测值之间有较强的相关性,即抽样值和其预测值非常接近,使此预测误差的可能取值范围比抽样值的变化范围小。

对于有些信号(例如图像信号),由于信号的瞬时斜率比较大,很容易引起过载。

因此,不能用简单增量调制进行编码。

除此之外,这类信号也没有像话音信号那种音节特性,因而也不能采用像音节压扩那样的方法,只能采用瞬时压扩的方法。

但瞬时压扩实现起来比较困难,因此,对于这类瞬时斜率比较大的信号,通常采用一种综合了增量调制和脉冲编码调制两者特点的调制方法进行编码,这种编码方式被简称为脉码增量调制,或称差值脉码调制,用DPCM表示。

相关文档
最新文档