2015美赛建模培训(一)
美赛集训微分方程建模问题
第二次用药后最终残余药物浓度 :
u2 Q ekT [ 1 ekT ]
第三次用药最初时刻时的药物浓度 :
u(0) u2 Q Q [1 ekT e2kT ]
第三次用药后时段 (0 , T ) 内的微分方程模型 :
u' (t) k u(t) , 0 t T
u(0) Q [1 ekT e2kT ]
cm2 , 求出装满漏斗的液体流完所需时间为多少?
练习2:牛奶装在聚乙烯软袋中,牛奶在 B 点的一个小洞
倒出,空气由 A 点剪开的小洞入,由于 A 点有洞,奶袋
限定有一个不变的最大倾角 θ= 10 o,流出孔面积 B =
0.258 cm2 ,容器收缩比为 c = 0.745 , 牛奶容量为 V =
0.568 升, 袋高 a = 12.7 cm , 袋宽 b = 15.2cm, 求牛奶流
u' (t) k u(t)
已假定给药方式为 快速静脉注射 ,即药物瞬间到
达体内:
u(0) Q
模型(1)建立:
u' (t) k u(t) , 0 t T
u(0) Q
求解: DSolve u ' t u t ,t
ku t , u 0 Q ,
u ( t ) u(0) ek t Q ek t , 0 t T
完所需的时间。
A
B
提示:开始时,牛奶可分成两部分,上部近似于一 个斜椭圆柱,其底面积近似于一个面积为 S0 的椭 圆;
下部近似于一个底面积为椭圆 S0 的斜椭圆 锥 。 参考答案 T ≈ 27.7 秒 。
人工肾工作模型 ( 微分方程组情况 )
(ref. 数学模型, 姜启源 等著 , 高教出版社 ; pp. 175 )
(最新整理)数学建模美赛试题
2015数学建模美赛试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015数学建模美赛试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015数学建模美赛试题的全部内容。
地球资源的消耗速度快,越来越多的人关注人类社会的未来.自1960年以来,已经有许多专家研究可持续发展.然而大多数人的研究对象是整个世界,一个国家或一个地区。
几乎没有人选择48个最不发达国家(LDC)在联合国为研究对象列表。
然而,LDC国家集团共享许多相同的点。
他们的发展道路也有法律的内涵。
本文选择这些国家为研究对象针对发现常规的可持续发展道路。
本文组织如下.第二部分介绍研究的背景和本研究的意义。
第三节描述了我们对可持续发展的理解细节和显示我们的评估系统的建立过程和原理,那么我们估计每一个国家的LDC和获得可持续发展的能力和等级。
第四节提供了一个最糟糕的国家毛里塔尼亚计划指数在第三节。
第五节演示了在第四节的合理性和可用性计划。
最后在第六节总结本文的主要结论和讨论的力量和潜在的弱点。
地球上的资源是有限的。
三大能源石油、天然气和煤炭可再生。
如何避免人类的发展了资源枯竭和实现可持续发展目标是现在的一个热门话题.在过去的两个世纪,发达国家已经路上,先污染,再控制和达到高水平的可持续发展。
发展中国家希望发展和丰富。
然而,因为他们的技术力量和低水平的经济基础薄弱,浪费和低效率的发展在这些国家是正常的.所以本文主要关注如何帮助发展中国家特别是48在联合国最不发达国家实现可持续发展是列表可持续发展的理解是解决问题的关键.可持续发展的定义经历了一个长期发展的过程.在这里,布伦特兰可持续发展委员会的简短定义的"能力发展可持续- — - — - -以确保它既满足现代人的需求又不损害未来的能力代来满足自己的需求"[1]无疑是最被广泛接受的一个在各种内吗定义.这个定义方面发挥了重要作用在很多国家的政策制定的过程.然而,为了证明一个国家的现状是否可持续不可持续的,更具体的定义是必要的更具体的概念,我们认为,如果一个国家的发展是可持续的,它应该有一个基本的目前的发展水平,一个平衡的国家结构和一个光明的未来。
美赛常用模型PPT
C t (I/36 ) 0 .0 S 1 0 (米 3 ) 1(D 0 /v ) I/36 S ( 00升
模型中 D,I,S为参数, v为而变量。
结论,淋雨量与速度成反比。这也验证了尽可能快跑能
减少淋雨量。
5
若取 D 1 参 0 米 ,0 数 I 0 2 厘 /小 米 , 时 h1 .5米 0 ,w 0 .5米 0 ,d0 .2米 0 ,即 S2 .2 米 2 。 你在雨中行度 走 v的 6米 /每 最秒 大, 速则计算 你在雨中 16行 秒 7 走 , 2分 了 即 47 秒。
24
例四 男生追女生模型
问题
某男生A对于某女生B非常喜欢,但是刚开始的时候该 女生对该男生并没有好感,该男生想采取一些行动来 改变二者之间的关系,但是男女之间的过多接触势必 会对学习成绩造成影响,试问该男生能否在保持学习 成绩不下降的前提下追到该女生?
这时,雨滴将淋在背上,而淋在背上的雨水量是
pw(rD sin h v)/v
淋雨总量为 C p[ d w cr o D h ( r s si v n )/v ]
11
当vrsin时, C取到最小C值 r。 sDinwdpcors
再次代如数据,得
C 6 .9 1 5 4 ( 0 0 .8 co )/s 4 (si)n
雨滴的密度为 p, p1
表示在一定的时刻
雨滴下落的反 方向
w
在单位体积的空间
内,由雨滴所占的 空间的比例数,也 称为降雨强度系数。
v
ห้องสมุดไป่ตู้
人前进的 方向
d h
所以, I rp
因为考虑了降雨的方向,淋湿的部位只有顶部和7 前面。分两部分计算淋雨量。
•顶部的淋雨量
2015美国大学生数学建模竞赛D题
1.2 Our work
We tackle four main sub problems: Factors affecting the evaluation of sustainable development of a country are analyzed based on the theory of sustainable development. Develop a model for the sustainability of a country. This model should provide a measure to distinguish more sustainable countries and policies from less sustainable ones. Choose from forty-eight poorest countries LDC country, according to the model of a task1 has been established for the selected countries to create a more sustainable development plan in the next 20 years in the development process, so that the country toward a more sustainable future. Evaluate the effect our 20-year sustainability plan has on our country’s sustainability measure created in Task 1. And predicted under the evaluation system to implement our plan will happen the change over the next 20 years. According to the selected country, we should consider the environmental factors, Climate change, development aid, foreign investment, natural disasters, and the instability of the regime, etc. We determine which project or policy for the sustainable development measures of the state will have the greatest effect. Write a report to explain the established model, including sustainable development, sustainable development plans, according to the model and the national environmental situation, analysis the effect of the plan. For the ICM provides a sustainable development of intervention strategy about investment in LDC countries.
美国数学建模竞赛辅导演示文稿
7日和8日, 在合理安排休息时间的前提下,必须完成数学模 型及论文草稿.
9日,开始检验模型灵敏度及优化模型, 在20:00前,必须要 模型优化及灵敏度分析工作结束,并且论文初稿完成 ! 20:00后,三人开始共同检查论文,并且提出各种修改 意见。注意摘要在草稿及初稿中逐步完善, 也就是说初稿
摘要细节
摘要是评阅时给评委的第一印象,非常重要!但不 要太长。 该部分应包含如下的几部分内容概述:
•再次重述或者概括问题—用你自己的话重述你将要 解决的问题。
•对于基本原理以及证明的假设—着重陈述在解决问 题中提出的假设,清晰的列出所有在模型中应用 到的变量。
第12页,共37页。
•对于已经用过的或者应用到的模型的构建与 证明。( 算法思想—模型的求解思路; 模型特点—模型优点,建模思想和方法,算法 特点;主要结果—数值结果,综合结论,要求
• 注意数学模型、数学语言与实际问题及背景的结合,注意 竞赛的目的不是为了解决一个数学问题,而是为了解决一 个实际问题
第24页,共37页。
数学建模常用方法
• 数据处理方法
• 优化方法 • 图论方法 • 预测方法
• 决策方法 • 随机统计方法
第25页,共37页。
数据处理方法
• 数据拟合方法
给出一系列的点,要求得到反映点列变化规律的函 数,不要求曲线或曲面通过所有数据点,而是要求 它反映对象的整体变化趋势。注意在进行数据拟合 时,难点在反映数据规律的大致函数类型,拟合只 是对函数类型中含有的参数利用最小二乘法在误差 最小的条件下进行优化。在进行拟合时,如有固定 规律函数,必须使用该函数,如果没有,则以常用 函数如多项式函数、指数函数、对数函数、三角函 数等进行拟合比较,并选择误差最小的函数作为结 果
2015年美国数学建模竞赛专题讲座夏改
第一点区别当然是美赛要用英文写作,而且要阅 读很多英文文献。对于文献阅读,可以安装有道词典, 开启截屏取词功能,这样基本上阅读英文文献就没什 么障碍了。对于写作,有的组是写好中文再翻译,有 的是直接写英文,这两种方式都可行。对于翻译一定 至少要留出8小时来,摘要可能就要修改1小时。如果 想快点翻,可以直接使用有道词典,翻出来后再修改, 虽然可能不地道,但至少比较准确,这样可大量节省 翻译时间。另外word要打开纠错功能,绿线代表拼写 错误,红线代表语法错误,完成论文后整体浏览时要 多注意这两种线,很可能会发现疏漏之处。我一直认 为翻译不是美赛的重点,只要能把意思表达清楚就行 了,不必在翻译上浪费太多时间。
(三)软件与书籍准备: 软件一般三款足够:Matlab、SPSS、Lingo,学 好一个即可。 书籍方面,推荐三本,一本入门,一本进级,一本 参考,这三本足够: 《数学模型》 姜启源 谢金星 叶俊 高等教育出版社 《数学建模方法与分析》 Mark M. Meerschaert 机 械工业出版社 《数学建模算法与程序》 司守奎 国防工业出版社 入门的《数学模型》看一遍即可,对数学模型有一 个初步的认识与把握,国赛前看完这本再练习几篇文 章就差不多了。
美国大学生数学建模竞赛专题 讲座
夏建业 2015年10月19日
数学之美
1x8+1=9 12 x 8 + 2 = 98 123 x 8 + 3 = 987 1234 x 8 + 4 = 9876 12345 x 8 + 5 = 98765 123456 x 8 + 6 = 987654 1234567 x 8 + 7 = 9876543 12345678 x 8 + 8 = 98765432 123456789 x 8 + 9 = 987654321
2015年MCM美赛题目及翻译
PROBLEM A: Eradicating(根除)EbolaThe world medical association has announced that their new medication could stop Ebola and cure patients whose disease is not advanced(晚期的). Build a realistic, sensible, and useful model that considers not only the spread of the disease, the quantity of the medicine needed, possible feasible (可行的)delivery systems, locations of delivery, speed of manufacturing of the vaccine or drug, but also any other critical factors your team considers necessary as part of the model to optimize the eradication of Ebola, or at least its current strain(压力). In addition to your modeling approach for the contest, prepare a 1-2 page non-technical letter for the world medical association to use in their announcement.PROBLEM B: Searching for a lost planeRecall the lost Malaysian flight MH370. Build a generic(一般的)mathematical model that could assist "searchers" in planning a useful search for a lost plane feared to(恐怕) have crashed in open water such as the Atlantic, Pacific, Indian, Southern, or Arctic Ocean while flying from Point A to Point B. Assume that there are no signals from the downed (坠落的) plane. Your model should recognize that there are many different types of planes for which we might be searching and that there are many different types of search planes, often using different electronics or sensors. Additionally, prepare a 1-2 page non-technical paper for the airlines to use in their press conferences concerning their plan for future searches.。
2015年美国(国际)大学生数学建模竞赛
比赛时间:美国东部时间:2015年2月5日(星期四)下午8点-2月9日下午8点(共4天)北京时间:2015年2月6日(星期五)上午9点-2月10日上午9点农历:十二月十八~十二月廿二重要说明:●COMAP是所有的规则和政策的最后仲裁者,对不遵循竞赛规则和程序的任何队伍,拥有唯一的自由裁量权,取消参赛资格或拒绝登记。
●评委、竞赛组织者、以及UMAP杂志的编辑拥有最终裁定权。
●如果参赛队伍违反竞赛规则,其指导老师一年内将不能指导其他团队,其所在参赛单位将被处以一年的察看处理。
●如果同一机构第二次被抓到违反规则的队伍,该学校将至少不被允许参加下一年度的赛事。
●以下所有时间都是美国东部时间EST(北京时间比美国东部时间早13个小时)●递交参赛论文后,意味参赛者同意以下条款:⏹论文提交后,出版权归COMAP, Inc所有;⏹COMAP可以使用,编辑,引用和出版论文,用于宣传或任何其他目的,包括在线展示,出版电子版,在UMAP杂志刊登或其他方式,并且没有任何形式的补偿;⏹COMAP可以在没有进一步的通知,许可,或补偿的情形下,使用这次比赛相关材料,团队成员、指导老师的名字,以及和他们的背景资料。
●递交参赛论文后,意味参赛者作出以下承诺:⏹论文中出现的所有的图像,数据,照片,图表,图画,如果未注明,都是由参赛者创建;如果引用其它资源,都在参考文献中列出,并在引用的具体位置标注来源。
⏹不论是直接,还是转述方式的文字引用,都在参考文献中列出,并在引用的具体位置标注来源;直接的文字引用使用引号标注。
比赛之前注册报名1.报名截至时间:2015年2月5日下午2:00 EST。
截止日期后,注册系统将自动关闭,不再接受任何新的注册,没有例外。
2.每支参赛队伍都必须有一位来自参赛机构(institute)的教师担任导师(faculty advisor),不允许学生担任导师。
由指导老师负责为其指导队伍注册报名,每位指导老师可注册的队伍数目没有限制。
建模美赛培训-试题解析
秩 和 比 法 熵 权 法 相 关 系 数 法
评价合成
系 统 分 析 法
同 向 化
无 量 纲 化
专 家 法
河北金融学院
相 邻 指 标 比 较 法
层 次 分 析 法
算 术 平 均 法
几 何 平 均 法
第 14 页
常见题目分类
预测、模拟
疾病传播趋势模拟
新闻传播特征模拟
河北金融学院 第 20 页
经典题目解析 2008年A题:洗个澡
河北金融学院
第 21 页
经典题目解析 2008年A题:洗个澡
提示1:评价 寻找影响因素(或指标),分别计算每种因素对 海平面上升的影响程度(或影响因子),最终合成
总的影响。
提示2:预测
搜集并分析过去几年的各影响因素的相关数据
,以过去的变化趋势预测未来的变化趋势。
试题演进 你的团队最喜欢哪个题目? 题目1:空气净化器风扇和滤芯形状对净化效率的影响 题目2:大气污染物的防治、处理最优方案分析 题目3:给N多地区的N多数据,对每个地区的污染程 度进行排序 题目4:大气污染物的扩散规律及对周边区域的影响 题目5:对某地区大气污染的严重程度进行评价,并对 居民10年后的生命健康水平进行预测
雨量变化趋势预测
海平面上升幅度预测
全球温度上升幅度预测 动植物数量变化预测 证券市场波动趋势预测 电力需求波动预测
第 15 页
河北金融学院
常见题目分类
预测、模拟
预测和模拟的目的在于认识自然和社会发展规律, 以及在不同历史条件下各种规律的相互作用,揭示 事物发展的方向和趋势,分析事物发展的途径和条 件。 作用:预测的结果可以为当前的决策提供参考。 方法:1、对过去和现在的数据进行总结,从中找出
2015年数学建模美赛埃博拉病毒
The model of eradicating EbolaIn order to construct an effective model, the following factors need to be taken into consideration: the propagation of the disease, the demand of drugs, the transportation system and the producing speed of the drug. We first applied the SIR model to stimulate how the disease propagated and by assuming different cure rates, we got the demand of the drug when the disease propagated. Then, considering the situations of the epidemic, population and traffic of three countries in West Africa, we made suitable delivering systems for these countries.In terms of the propagation of the disease, we searched for statistics and applied the SIR model to calculate the daily contact rate. Also, considering that the producing speed of drugs would increase due to economies of scale, we started from the current situation of the epidemic and increased the cure rate gradually. According to the calculation of MATLAB, we stimulated how the disease would propagate after effective drugs came out and the result was that the disease would be under control after fifty days.With respect to the demand of the drug, because the supply of the drug would gradually increase as the production capacity strengthening, the cure rate would also increase. Combining the effect of the decrease in the number of patients and that of the increase in cure rate, the demand of the drug is supposed to go up and then go down.As for the delivery system and the place of delivery, we took Sierra Leone as an example. Taking the population distribution, the situation of the epidemic and the traffic situation into consideration, we set the capital city Freetown as the chief trading place. After drugs were delivered to Freetown, most drugs would be distributed to those western coastal areas with a dense population and severe epidemic situations and the remaining drugs would be delivered to other places of the country. Key words:Ebola SIR Model Drug Delivery Demand of the DrugNon-technical LetterAccording to the statistics of WHO, the cumulative cases has been reaching 22460 in the three countries in west Africa (Guinea, Liberia, Sierra Leone) until February 1, 2015. And the death toll has been reaching 8968 people. The morbidity increases nearly a week. Although only a few countries and regions suffer the disease, the world medical association has developed a new medication could stop Ebola and cure patients whose disease is not advanced to response the serious disease.From March 21, 2014, Guinea, Liberia, Sierra Leone suffered from the disease one by one. Under the effective prevention interventions, the daily contact number of infected people has decreased. However the number of infected people is increasing.To optimize the eradication of Ebola, or at least its current strain, we estimate that the recovery rate every day will reach 0.2 from 0.05 considering the speed of manufacturing of the vaccine and the treatment level. The total quantity of the medicine needed is close to 35000. Under this speed of medicine supply and treatment, the disease will be controlled in 50 days.Focus on Sierra Leone for example, since the western area based on the capital Freetown is overcrowded and the disease of the western area is serious, the medicine provided by world medical association will be delivered in Freetown. Then the medicine will be allotted again based on population density and the condition of disease.In fact, the most effective way to prevent the further spread of Ebola is effective isolation of the infected people, reducing the probability that susceptible populations contact with patients. The transmission speed, the range, the strength of Ebola depend on quantities of the infected persons and susceptible persons, and effective contact between the two parts which could be affected by exposure level, pathogenic species, the quantity of excreted pathogens, resistance of the susceptible.Ebola virus is the most serious outbreak of the last 40 years, is a common challenge all the world as well. Currently, the fight situation against the epidemic is still very grim. As we all know, economic level and medical standard of the West African region is behindhand, the current state has overstepped their capabilities to fight with Ebola alone. We appeal to all countries for assisting the countries that are under the attack of Ebola, help them strengthen health systems and auxiliary infrastructure further.Contents:1. Introduction (1)1.1. Background (1)2. Model 1—Ebola Virus Propagation Model (1)2.1 Model Assumptions (1)2.2 Model Constitution (1)2.3 Numeric Calculation (2)2.4 Analysis of Phase Trajectory Figure (4)2.5 Conclusion (5)3. Model 2—Medicine Supply Model (6)3.1 The demand of medicine (6)3.2 Medicine Delivery System (7)3.2.1Drug distribution proportion (7)3.2.2Methods of the Medicine Delivery (7)4. Sensitivity Analysis and Improvements (8)4.1 Sensitivity Analysis (8)4.2 Improvements (8)5. Model Evaluation (9)5.1 strengths (9)5.2 weaknesses (9)6. Reference (9)1. Introduction1.1BackgroundWest Africa is hit by the most unprecedented outbreak of Ebola virus caused by the most lethal strain from Ebola virus family. The World Health Organization (WHO) declared it as an International Medical Emergency. As of 31st August 2014, the numbers of Ebola cases are 3685 with 1841 deaths reported from Liberia, Guinea, Senegal, Sierra Leona and Nigeria. WHO director general said that the actual numbers of cases are more than the reported cases.Guinea, Sierra Leone and Liberia are the poorest countries of the world with scruffy healthcare system. Even their hospitals lack the basic public health facilities and they are facing the terrible Ebola epidemic.2. Model 1—Ebola Virus Propagation ModelEbola virus is mainly spread through blood and excreta of patients, and we build our model according to its propagation mechanism. Once cured, Ebola virus patient has a strong immunity, so, the people who have recovered are neither healthy (susceptible) nor patient (infective), they have dropped out infected system. In this case, situation is much complicated, so the following will be a detailed analysis of the modeling progress.2.1 Model Assumptions:● The total number of population N is constant. We don ’t consider the born anddeath of people, and no migration of population, so people can be divided into three parts: the healthy, the infected and the removed recovered from Ebola disease. At time t , the proportion of three parts in the total population N were referred as s(t), i(t) and r(t).● The average number of a patient contacts per day is a constant effective λ, λ iscalled daily contact rate. When patients have effective contact with the healthy, it makes the healthy people infect and become patients.● The proportion of cured patients everyday in total number of patients is a constanteffective μ, μ is called daily cured rate. Patients cured and recovered from the disease will not infect Ebola again.● The contact number in the infectious period σ=λ/μ.2.2 Model ConstitutionAccording to assumption one, it is apparent that:s(t)+i(t)+r(t)=1 (1)According to assumption two and three, a patient can make λs(t) healthy people into patients per day, because the number of patients is Ni(t), so the number of infected healthy people is λN s(t)i(t), and λNsi is the increasing rate of patients, hence we have:Ni Nsi dtdi N μλ-= (2) As to the recovered and immune people, we haveNi dtdr Nμ= (3) We assume that at the beginning, proportion of the healthy and patients are s 0(s 0>0) and i 0(i 0>0) (we might as well define r 0=0), and according to equations (1), (2) and (3), we get the equation of SIR model: ()()⎪⎪⎩⎪⎪⎨⎧=-==-=000,0s s si dtds i i i si dt di λμλ, (4) The analytical solution of equation (4) can ’t be obtained, so we first make numerical calculation.2.3 Numeric CalculationIn order to work out the analytical solution of equation (4), we have to figure out precise value of each parameter. Firstly, we need to figure out the value of daily contact rate λ. We find some necessary data in WHO official website, which include the population of Ebola severest three countries: Guinea, Sierra Leone and Liberia is 21.6 million and the number of infected people every once in a while. So we can get the proportion of the healthy and the infected, the number of new infected per day and the daily contact rate in the table below:Table 1timeintervalproportion of health/% proportion of infection/% new infection per day Contact number/λ 00.9999963 0.0000037 0.0 — 130.99999338 0.00000662 4.8 0.0339 190.9999888 0.0000112 5.2 0.0215 620.99997227 0.00002773 5.8 0.0096 320.99993875 0.00006125 22.6 0.0171 110.99992079 0.00007921 35.3 0.0206 90.99990153 0.00009847 46.2 0.0217 70.99981741 0.00018259 127.4 0.0323 100.99972949 0.00027027 147.7 0.0253 90.99966866 0.00033134 146.0 0.0204 120.99954116 0.00045884 127.9 0.0129 90.99937315 0.00062685 436.6 0.0323 120.9993487 0.0006513 44.0 0.0031 70.99926384 0.00073616 150.9 0.0095 50.99920782 0.00079218 188.4 0.0110 60.99917093 0.00082907 132.8 0.0074 70.99904111 0.00095889 78.4 0.0038 70.99899588 0.00100412 61.1 0.0028 70.99897884 0.00102116 52.6 0.0024 7 0.99896019 0.00103981 57.6 0.0026According to the actual data, we can getλat different time periods. As it clearly shown in the table, when the Ebola just out-broke, we figure out thatλ=0.0339, and it obtained its maximum value. With time pasted, the value of λis becoming smaller and smaller, which indicates the patient contacted less people every day and less people were infected. This might because governments took some effective action to control and prevent the spread of the disease, the patients were separated from the healthy people. To simplify our model, we don’t take separation of patients into our consideration, and we ignore the condition that patients died of the virus. So, we determineλ=0.0339, because at the beginning of the virus out-broke, no external constrains obstruct the spread of the disease, it is an ideal environment for the virus, we takingλ=0.0339 will make our model more accurate.Then we have to determine values of other parameters. Ebola is a very dangerous virus and it has caused devastating destruction. So we assume that at the beginning, Ebola disease can’t be cured, no effective measures can be taken to control the virus. In this conditionμ=0, Ebola virus will spread at a high speed.Figure 2Combined with the actual situation, we assume that at different time, the value of λis changing. We make every five days as an interval, and redefine the value of λevery five days. In the first five days, the disease was just out-broken, people had less conscience of the seriousness, and they lacked necessary action to protect themselves. What’s more, at the beginning, no effective drugs to treat patient, and the supply of medicine was not sufficient, so we define the daily cured rate μ=0.05. The next five days, people gradually realized that in their country has broken out a dangerous disease, they improved the awareness to protect themselves, and avoided contacting with the patient, so at this timeμ=0.1. In the third five days, government put a lot of effort to control and prevent the disease, patients were separated from the public, a lot of effort was put to research the virus and produce effective drugs, soμ=0.15. In the twentieth day and after, the whole world paid much attention to this disease and gave a lot of assistance to Africa countries, the disease was under control, the supply ofmedicine was sufficient, so more patients were cured, so we define the value of daily cured rate is constantμ=0.2.We can get i0and s0 from Table 1: i0=0.00104, s0=0.99896. Then we use MATLAB to draw curves of i(t) and s(t).Table 3t 0 1 2 3 4 5 6i(t) 0.0010398 0.0010232 0.0010068 0.0009907 0.0009748 0.0009592 0.0008978 s(t) 0.9989602 0.9989253 0.9988909 0.9988571 0.9988238 0.9987911 0.9987596 t 7 8 9 10 11 12 13i(t) 0.0008403 0.0007866 0.0007362 0.0006891 0.0006135 0.0005463 0.0004864 s(t) 0.9987302 0.9987027 0.9986769 0.9986528 0.9986308 0.9986112 0.9985937 t 14 15 16 17 18 19 20i(t) 0.0004330 0.0003855 0.0003265 0.0002765 0.0002342 0.0001984 0.0001680 s(t) 0.9985782 0.9985643 0.9985523 0.9985421 0.9985335 0.9985262 0.9985200Figure 4s(t) i(t)From Figure 4 we can see that values of s(t) and i(t) change a little, s(t) changes from 0.99896 to 0.99849, and finally tends to a constant value. This means at last nobody was infected Ebola any more. This is conformed to real situation. After finding several people were died of Ebola virus, western Africa countries and WHO had paid highly attention to this problem. They took effective and instant action to control the spread of the disease. They separated the patient from the public and used the most advanced methods to treat the patient. In addition to this, these countries conducted a large investigation among suspicious people, making sure that the disease wouldn’t be infected in a large scale. Under these powerful action, Ebola virus didn’t spread, the number of infected people was increasing slowly, so the change of daily infected rateλis very small, Analogously, the change of i(t) is small because of the same reason. Finally, the value of i(t) equals to zero, which indicates that Ebola virus was wiped out. But this is the result of our model, it is an ideal situation, and now this situation has not happened.2.4 Analysis of Phase Trajectory FigureIn order to analyze the general variation of s(t) and i(t), we need to draw i~s relationship figure. This i~s figure is called phase trajectory figure.Based on the numeric calculation and observation of the figure, we can use phase trajectory line to analyze the character of s(t) and i(t).The s~i plane is called phase plane, the domain of definition of phase trajectory line in the phase plane (s, i) ∈D is:(){}1,0,0,≤+≥≥=i s i s i s DWe erasure dt in the equation (4), and noticing that σ=λ/μ, we can get00,11i i sds di s s =-==σ (5) We can easily figure out that the answer of equation (5) is:()000ln 1s s s i s i σ+-+= (6) In the domain of definition D, the line that equation (6) displays is phase trajectory line, we can get the changes of s(t), i(t) and r(t).● At any case, the patient will disappear at last, that is i ∞=0● The final proportion of the uninfected healthy people is s ∞, we define i=0 in theequation (6), so s ∞is the answer of equation0ln 100=+-+∞∞s s s i s σ ● If s 0<1/σ, i(t) is monotone decrease and finally drops to 0, s(t) is monotonedecrease to its minimum s ∞ .2.5 ConclusionAccording to our analysis and calculation, the number of patients is constantly decrease, and in the fiftieth day after the virus broke out, we figure out that the patients will drop to 24 people, compared with the beginning of the disease, the number of patients is more than 20000, so we can draw the conclusion that we havealready successfully controlled the disease, the virus didn’t spread in a large range. If we continue conducting some effective action, such as separating the patient, propagating the information about avoid the virus, Ebola disease will be completely wiped out in the next few weeks.3. Model 2—Medicine Supply Model3.1 The demand of medicineThe world medicine association has announced that their new medication could stop Ebola and cure patients whose disease is not advanced. That is to say, as long as the supply of medicine is sufficient, all the patients could be cured. Next step our goal is to figure out the demand of medicine every day.To solve this question, we assume that one unit medicine could cure one patient, and according to model one, we have calculated the number of patients and daily cured rate, so the quantity of daily demand medicine can be calculated. We define that daily needed quantity of medicine is Q.Q=N*s(t)*μThe result is shown in the Table 5 below.Figure 5The changes of medicine demand are shown in the figure 5.We can see that in the first four days, demands of medicine slightly declined. Because at the beginning, the effective medicine has been developed, and the daily cured rate was relatively low, the virus wasn’t wide spread, the number of infected people was small, so the demand wasn’t very high. However, in the next few days, the demand was abruptly increased, almost doubled the demand in the fourth day. With more people were infected the Ebola virus, they needed more medicine to treat their diseases. Another reason is that the daily cured rate increased, which means more medicine was used to mitigate patients’ symptom and pains. The next six days, the demand of medicine was showing a wavy change, because of the intervention of governments. They put more effort to control the virus in case it was spread in a large range, and more medicine was manufactured, hospitals tried their best to treat the Ebola patient. After the fifteenth day, the demand of medicine was constantly dropping, and finally dropped to nearzero, which indicates the virus was under control, more and more people were cured, and very few people were infected Ebola virus, and at last Ebola virus was wiped out, medicine was scarcely needed.3.2 Medicine Delivery System3.2.1Drug distribution proportionGood delivery system is based on the distribution of population, the condition of disease, the condition of traffic. There we take Sierra Leone for example. We find the data about the population of every province and the number of infected people. According to the initial data, we calculate the rate of infections, rate of population density. Combined with this two rates, we get the final drug distribution proportion. This table is the result about drug distribution proportion.Table 6district rate of infections rate of population density rate of medicine Northern Province 37.57% 13.27% 25.42% Eastern Province 16.30% 20.91% 18.61% Southern Province 6.89% 14.82% 10.85% Western Area 39.24% 51.01% 45.12% Rate of infections means the rate of infected people in every district to the total infected people in the country. Rate of population density means the population density in every district compared to the sum of population density. Rate of medicine equals to the average of rate of infections and rate of population density. That is the proportion of drug distribution.As we can see from the table, the western area where the capital is needs 45.12% of the drug. However, western area covers the area of less than 10% compare to the total land area. And the condition of disease is as follow:Figure 73.2.2Methods of the Medicine DeliveryBecause the railway and road system of Sierra Leone are defective and out-dated, the medicine was firstly delivered to the capital city Freetown, then by the air transportation delivering to other airports. Afterwards, the medicine was delivered tothe medical center in the Ebola serious area. The situation of airports in Sierra Leone is shown in the table below:4. Sensitivity Analysis and Improvements4.1 Sensitivity AnalysisModel one we use SIR model to simulate the development of Ebola virus, and through two variables λ(daily infected rate) and μ(daily cured rate) to describe the situation of the disease. We can figure out the number of healthy people and infected people every day, there are many factors affecting the changes of healthy and infected number. For the convenience of calculation, we ignore the death of patients, and assume the total population is constant, and the daily cured rate is defined by ourselves, and the disparity between real value and the calculated one may be obvious. What’s more, we assume the medicine is very effective, all of the patients take the medicine will be cured, and we don’t consider the time of treatment, these problems could make our model have some drawbacks and less accuracy.4.2 ImprovementsFor model one, according to analysis before, two measures can be taken to restrain the spread of the disease, one is improving health and medical level, in the other words is dropping the daily contact rate λand improving daily cured rate μ; the other method is herd immunity, that is improving the original rate of the removed r0. We can see that in the SIR model, σ=λ/μis a very important parameter. In reality, the value of λand μis difficult to estimate, but when an infectious disease is over,we can get the value of s 0 and s ∞, and we neglect the parameter i 0because of its small value, so we can have the result of σ:∞∞--=s s s s 00ln ln σ (7)We can use the change of σ to analyze the development of the disease instead of λ and μ.5. Model Evaluation5.1 Strengths● Model is simple and easy to understand, and we innovatively define the suspicious degree, making us to carry out a quantitative analysis of suspects.●Processes the data and make a variety of charts, simple and intuitive shortcuts●Model established in this paper and the actual closely, give full consideration to the different stages of the reality of the situation, so that the model is more realistic 5.2 Weaknesses● In order to make the calculation is simple in the model, so that the results obtained are more ideal, ignoring the minor factors.●For some data, we carried out a number of necessary treatment, which will bring some errors.6. Reference:[1]. Xuan Zhou, Junquan Song, Xuejun Wu. Introduction and Improvement of Mathematical Contest in Modeling [M]. Zhejiang:ZHEJIANG UNIVERSITY PRESS.2012.Page 201 to 205.[2]. Qiyuan Jiang, Jinxing Xie, Jun Ye. Mathematical Model [M].Beijing:HIGHER EDUCATION PRESS.2011.Page 136 to 145.[3]. Ebola Situation Report[DB/OL],http://apps.who.int/ebola/ [4]. Sierra Leone —Provinces anddistricts[EB/OL]./wp/s/Sierra Leone.htm[5].HongqingZhou,ZhuanXu. A Mathematical Model of Ebola Virus Infection Numbers [A].[6].Themap of Sierra Leone[Z/OL]./maps/HTML/49248.htmlAppendix: BasicMatlabprogram:>>function y=ill(t,x)a=0.0339;b=0.2;y=[a*x(1)*x(2)-b*x(1),-a*x(1)*x(2)]'; ts=0:100x0=[0.00103981,0.99896019];[t,x]=ode45('ill',ts,x0); [t,x]plot(t,x(:,1)),grid on;plot(t,x(:,2)),grid on;plot(x(:,1),(:,2)),grid on;Data recording:。
美国大学生数学建模竞赛赛前培训心得体会
美国大学生数学建模竞赛赛前培训心得体会数学建模(Mathematical Modeding)是对现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到一个数学结构的过程[1].美国大学生数学建模竞赛(MCM/ICM),是一项国际级的竞赛项目,为现今各类数学建模竞赛之鼻祖。
MCM/ICM 是Mathematical Contest in Modeling 和InterdisciplinaryContest in Modeling 的缩写,即数学建模竞赛和交叉学科建模竞赛[2].MCM始于1985年,ICM始于2000年,由美国自然基金协会和美国数学应用协会共同主办,美国运筹学学会、工业与应用数学学会、数学学会等多家机构协办,比赛每年举办一次。
MCM/ICM着重强调研究问题、解决方案的原创性团队合作、交流以及结果的合理性。
竞赛形式为三名学生组成一队在四天内任选一题,完成该实际问题的数学建模的全过程,并就问题的重述、简化和假设及其合理性的论述、数学模型的建立和求解(及软件)、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出英文论文。
沈阳工业大学从2007年开始参加美国大学生数学建模竞赛,截至到2015年共参加了9届。
2015年共有16组美赛队伍,是我校参加美赛队伍最多一届。
前八届竞赛中,共获得一等奖 6 次,二等奖12 次,三等奖22 次。
2015 年获得一等奖2 组,二等奖3 组,三等奖6 组。
总结我校9 年来参加美国大学生数学建模竞赛的经验,笔者从美国大学生数学建模竞赛的赛前培训工作出发,总结几点心得体会,供同行们参考与讨论。
1 选拔优秀学生组队培训是美国大学生数学建模竞赛赛前培训的前提数学建模竞赛的主角是参赛队员,选拔参赛队员的成功与否直接影响到参赛成绩。
我们首先在参加全国大学生数学建模竞赛并获奖的同学中进行动员报名,经过一个阶段的培训后选拔出参加寒假集训队员,暑期集训结束后通过模拟最终确定参赛队员。
2015年美赛数学建模题目
2015 Contest ProblemsMCM PROBLEMSPROBLEM A: Eradicating EbolaThe world medical association has announced that their new medication could stop Ebola and cure patients whose disease is not advanced. Build a realistic, sensible, and useful model that considers not only the spread of the disease, the quantity of the medicine needed, possible feasible delivery systems, locations of delivery, speed of manufacturing of the vaccine or drug, but also any other critical factors your team considers necessary as part of the model to optimize the eradication of Ebola, or at least its current strain. In addition to your modeling approach for the contest, prepare a 1-2 page non-technical letter for the world medical association to use in their announcement.PROBLEM B: Searching for a lost planeRecall the lost Malaysian flight MH370. Build a generic mathematical model that could assist "searchers" in planning a useful search for a lost plane feared to have crashed in open water such as the Atlantic, Pacific, Indian, Southern, or Arctic Ocean while flying from Point A to Point B. Assume that there are no signals from the downed plane. Your model should recognize that there are many different types of planes for which we might be searching and that there are many different types of search planes, often using different electronics or sensors. Additionally, prepare a 1-2 page non-technical paper for the airlines to use in their press conferences concerning their plan for future searches.ICM PROBLEMSPROBLEM C: Managing Human Capital in OrganizationsClick the title below to download a PDF of the 2015 ICM Problem C.Your ICM submission should consist of a 1 page Summary Sheet and your solution cannot exceed 20 pages for a maximum of 21 pages.Managing Human Capital in OrganizationsPROBLEM D: Is it sustainable?Click the title below to download a PDF of the 2015 ICM Problem D.Your ICM submission should consist of a 1 page Summary Sheet and your solution cannot exceed 20 pages for a maximum of 21 pages.Is it sustainable?。
2015美赛培训时间安排
2015年美国大学生数学建模竞赛校内培训时间安排
培训及模拟赛地点:HE103(数理学院机房)
注:(1) 2015年美国大学生数学建模竞赛(MCM)将于北京时间2015年2月6日到2015年2月10日举行;
(2)美赛模拟赛定于1月29日上午9点至2月1日上午9点;请各位认真对待模拟赛,特别是中间的过程;
(3)寒假住宿问题尽量和学校协商,若协调不好,须自行解决,故竞赛期间各位同学要考虑到这个问题,注意安全;
(4)学校共有18个公费名额,其余的自费,自费每人350元(630元报名费平摊到每人210元,加上4天的餐饮)。
自费名额的产生按照培训质量和模拟赛质量由教师组确定。
没有参加14年全国赛的同学和缺勤培训次数大于等于2次者原则上必须自费。
(5)一旦组队确认参赛,请各位同学必须遵守游戏规则,无故的中途离开带来的后果须自行承担。
数理学院建模竞赛工作小组
2014.11.12。
Petrel2015建模培训1
2.Select Add new object and select Index track. 3.Specify the depth scale measurement.
3
Note: To edit the current Depth scale panel, go to the Style tab of the Well section template settings and specify here.
2. Use from an existing template
1. 数据显示及模板
1.1 井显示----添加井方式之二
Go to the Window drop-down menu and insert a New well section window. You can choose from::
1
2
1. 数据显示及模板
1.2 测井曲线显示
1. 数据显示及模板
1.3 地质分层显示
1. 数据显示及模板
1.4 连井剖面显示设置
1. Define the well position synchronization: • No synchronization • Scroll relative- synchronizing all wells • Flatten on different reference points
2. 相解释
2.1 沉积相交互解释 2.2 岩相交互解释 2.3 岩相计算(截止值方法)
2.4 岩相计算(神经网络方法)
1. 数据显示及模板
1.1 井显示----添加井方式之一
StratigraphyX-section editing
2015美赛建模
Pa ge of 18
Team Control Number For office use only T1 ________________ T2 ________________ T3 ________________ T4 ________________
32647
Problem Chosen
Contents
1. Introduction------------------------------------------------------------------------------------ 3 2. Problem analysis----------------------------------------------------------------------------- 4 3. Ensure a model which can differentiate sustainable degree---------------------- 4 3.1 Symbols----------------------------------------------------------------------------------- 4 3.2 Find out the main reason------------------------------------------------------------- 4 4. Help a least developed country---------------------------------------------------------- 7 4.1 Obtain comprehensive level--------------------------------------------------------- 7 4.2 Obtain the main factor level---------------------------------------------------------- 7 4.3 Making a plan---------------------------------------------------------------------------- 11 5. Forecast---------------------------------------------------------------------------------------- 12 5.1 Obtain extra factors’ effect----------------------------------------------------------- 14 6. The merits and demerits of the improvement---------------------------------------- 17
2015年美国数学建模竞赛培训及参赛安排
时间
教师
备 注
组队,注册、报名
2014年11月10日-12月31日
完成组队工作
2015年1月2日-2015年1月23日
指导教师与参赛队同学见面,交报名费,完成网上注册、报名工作。
培训、模拟训练
2015年1月24日
上午8:30开始
张清华
介绍MCM与ICM,以及注意问题
2015年1月25日
注:参赛队指导教师名单随后公布
重庆邮电大学教务处
重庆邮电大学数理学院
2014年11月21日
上午8:30开始
鲜思东
研读MCM与ICM的outstanding论文、
布置集训模型1
2015年1月26日-1月29日
参赛学生做集训模型1
2015年1月30日(下午)
参赛学生与指导教师讨论交流集训模型1
参赛安排
2015年2月5日-2月9日
参加美国数学建模竞赛,完成参赛论文。
2015年2月9日上午
各参赛队奖参赛论文(打印稿)、电子文档交数模组老师,刻盘,邮寄论文。
2015年美国大学生数学建模竞赛培训及参赛安排
2015年美国大学生数学建模竞赛(以下简称美国赛,包括数学建模竞赛MCM——The Mathematical Contest in Modeling,和交叉学科建模竞赛ICM——The Interdisciplinary Contest in Modeling)将于美国东部时间2015年2月5号(周四)晚上8:00分开始,于2015年2月9号(周一)晚上8:00结束(共4天)(北京时间:2015年2月5日上午9时至2月9日上午8时举行)。
美赛常用模型一 - 副本
例二 森林救火
问题
森林失火后,要确定派出消防队员的数量. 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小. 综合考虑损失费和救援费,确定队员数量.
问题 记队员人数x, 失火时刻t=0, 开始救火时刻 分析 t1, 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定. • 救援费f2(x)是x的增函数, 由队员人数和救火时间决定.
结论,淋雨量与速度成反比。这也验证了尽可能快跑能
减少淋雨量。
5
精选版课件ppt
若取 D 1 参 0米 0 ,数 I 0 2 厘 /小 米 , 时 h1 .5米 0,w 0 .5米 0 ,d0 .2米 0 ,即 S2 .2 米 2 。 你在雨中行度 走 v的 6米 /最 每大 秒速 ,则计算 你在雨中 16行 秒 7 走 , 2分 了 即 47秒。
投资风险(总收益的方差)为
Z2 D(x1S1x2S2 x3S3)D(x1S1)D(x2S2)D(x3S3)
2cov(x1S1,x2S2)2cov(x1S1,x3S3)2cov(x2S2,x3S3)
x12DS1x22DS2 x32DS32x1x2cov(S1,S2)
2x1x3cov(S1,S3)2x2x3cov(S2,S3)
决策向量 x1 、x2和 x3 分别表示投资A、B、C的数量 (国内股票通常以“一手”(100股)为最小单位出售, 这里以100股为单位,期望收益以百元为单位)
总收益 S=x1S1+x2S2+x3S3 :是一个随机变量
精选版课件ppt
22
投资组合问题
总期望收益为
Z1=ES= x1ES1+x2ES2+x3ES3=5x1+8x2+10x3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合理安排时间
• 第一天(2月6日) 8:30 到比赛场地,并打开题目发布网页; 9:00 开始下载试题,一个小时内每个人阅读题 目一遍并且独立翻译工作; 10:00 左右, 开始汇总整理三人翻译(也搜集建 模群和网上的翻译),半小时内确定最佳翻译; 10:30将最佳翻译复印三份。每人拿一份去尽 可能多的遍数去研读题目,然后拿个笔标记每道 题目的关键词,并在纸上列出关键词、线索、可 能的模型算法;
Matlab安装
(1)XP系统,建议下载【Matlab2009(7.8) 免安装绿 色版(只支持XP).zip】,解压即可使用。 (2)Win7/8 32位系统,下载【Matlab.R2010b.iso】 【虚拟光驱(win7).exe】【matlab2010b图文安装教 程.doc】 按照教程安装。 (3)Win7/8 64位 系统,先下载并安装【64位win7安 装Matlab.2010b插件(vcredist2010_x64).exe】,然后同 (2)
美赛特点(区别于国赛)
• 1. 美赛侧重于思维,美赛题目往往很新颖、发 散性很强,一时间想不出用什么模型来解,需 要查找大量文献来确定题目的真正意图; • 2. 美赛更为注重思想,对结果的要求却不是很 严格,如果你能做出一个很优秀的模型,也许 结果并不理想也可能获得高奖; • 3. 美赛还难在它的实现,很多东西想到了,但 实现起来非常困难,这需要较高的编程水平;
评审过程
• 第1轮:淘汰轮(5~10分钟) (摘要信息、论文整体结构;淘汰45%;通过该 轮的大概有80%获奖几率) 想通过该轮的评委建议: (1)摘要至关重要,必须清晰且信息量充分。 评委关心的是你对问题的理解是否准确,你建立 的模型及使用的方法是否恰当,以及根据你所建 模型得到的主要结果和主要结论是否合理。过于 冗长的技术性描述将阻碍评委对你的结果的关注。
2015美国大学生数学建模竞赛 培训(一)
——美赛建模介绍、赛前准备
基础学院 张敬信 zhjx_19@
美赛介绍与经验篇
简史
• 美国数学及应用联合会(the Consortium for Mathematics and its Applications,COMAP)主 办; • 美国运筹学学会、工业与应用数学学会、 数学学会等多家机构协办。
• MCM(The Mathematical Contest in Modeling,数学建模竞赛,A/B两题) • ICM(The Interdisciplinary Contest in Modeling,交叉学科建模竞赛,C题) • 通常每年2月举行。
• • • •
1985年,第一届,158队,只来自美国; 1989年,中国第一次参赛; 2000年开始,MCM / ICM; 2013年,6593队,来自全世界;
SPSS 20 安装
• XP或Win7/8 32位: 下载 【IBM_SPSS20.0_32bit简体中文版.exe】 【SPSS20序列号.txt】,安装完成之前按提 示输入序列号注册。
• 第二、三天(2月7日、8 日) 在合理安排休息时间的前提下,必须完成数学 模型及论文草稿。 • 第四天(2月9日) 开始检验模型灵敏度及优化模型, 在20:00 前, 必须要模型优化及灵敏度分析工作结束,并且论 文初稿完成! 20:00 后,三人开始共同翻译并检查论文,提 出各种修改意见。注意摘要在草稿及初稿中逐步 完善, 也就是说初稿含有摘要部分!
• 4. 自主寻找数据 考验数据搜集、处理能力; 掌握数据处理软件:Excel,Matlab,Spss 学一些基本的数据处理方法(原理)
• 5.美赛要用英文写作,而且要阅读很多英文 文献; (1)文献阅读:建议安装有道词典,开启截 屏取词功能,这样基本上阅读英文文献就没 什么障碍了; (2)写作(意思表达清楚,多借用惯用数学 论文句式,尽量避免语法错误) 建议写好中文再翻译,开启word的纠错功能, 绿线代表拼写错误,红线代表语法错误,完 成论文后整体浏览时要多注意这两种线,能 快速发现疏漏之处;
评审标准
• (1)是否给出了令人满意的赛题解读,以 及对赛题中可能出现的模糊概念是否给予 了必要的澄清; • (2)是否明确列出了建模需要用的所有前 提条件及假设,对其合理性是否给出了满 意的解释或论证; • (3)是否通过对赛题的分析给出了建模的 动机或论证了建模的合理性;
• (4)是否设计出了能有效解答赛题的模型; • (5)是否对模型给出了稳定性测试; • (6)是否讨论了模型的优缺点,并给出了清 晰的结论; • (7)是否给出了符合要求的摘要 • 注意:没有全部完成解答的论文是可以被接受 的,而且如果在某些方面有创意,仍有可能获 得较好的评审结果。
• • • • •
/ / 全球免费数据库: DOAJ: / Open J-Gate: /Search/QuickSearch.aspx • Oaister: /oaister/ • arXiv:
• (2)你的论文应当有良好的组织架构,以 使得评委能够在5~8分钟内了解你的论 文是否包含了评委所关心的关键信息。一 份清晰的论文目录有助于实现这一点。
• 第2轮:评奖轮(15~30分钟)
(2-3名评委评阅,5或10分制计分,总分排序按既定 比例确定一、二等奖)
本轮评阅中,评委最关心的问题是:
• 注:国赛一等奖(1.5%),二等奖(6.5%)
引用网上说法
• “美赛获奖覆盖率相当之大,只要你摘要 清晰明了,思路创新有依据,就能拿二等 奖,其实拿一等奖最大的困扰就是英语, 要拿一等奖必须要把最简单的道理全都说 出来,力求用外国人欣赏的英语风格,尽 量多的而有效率的叙述说明;当然把以后 几点都做到,再配上点创新及参考文献标 注地严格规范,你就是O奖得主。”
• 4. 包括获取数据(常用数据网站) 华中科技大学外文数据库 http://202.114.9.3/dzzy/dzzy2005.nsf/waiwen?OpenPage 香港中文大学的数学中英对照 http://www.cmi.hku.hk/Ref/Glossary/Mat/i.htm 美国普查局 /2010census/language/chinesesimplified.php 美国交通统计局 / 美国劳工统计局 / 美国国家农业统计署 /wps/portal/usda/usdahome 美国国家统计局/
赛前准备篇
(一)软件准备
1. 论文写作:Word,Mathtype(数学公式编 辑器) 建模软件:Matlab,Excel,Spss 71298663 依次进入:【软件】【建模软件】
6~8位评委,最终获得特等奖的论文必须 经过所有评委的评审。
• 此轮中,评委会仔细考量论文的模型、方法与结果,对 一篇特等奖论文的期望是: (1)一篇信息量充分的摘要; (2)对问题本质的洞察能力;
(3)文章思路清晰且有很好的一致性;
(4)一个完整而且高质量的模型,包括假设、建模过程 以及技术含量; (5)关于模型的有说服力的检验以及精到的优缺点分析; (6))由模型得到的关于问题的有实际意义的结论;
• 第5天(2月10日) 早上6:30 前, 必须保证论文被修改三遍以上, 摘要被润色、精炼、推敲若干遍,然后用半 个小时检查标点和公式等细节部分; 打印论文及发送电子稿, 强烈建议发送电子 稿时间不要晚于8:30,否则由于网络阻塞有不 能按时交卷的危险,如果确定论文不再修改,越 早越好。 注意:电子稿最好转成老外喜欢的pdf格式!
搜集资料
• (1)阅读文献的数量很大程度上决定了你 论文的质量; • (2)建议多查阅英文文献 一是,英文论文更新方法更先进; 二是,方便最后形成英文论文
如何搜集资料?
• Google搜索引擎+外文期刊数据库 上Google 的办法: (1)使用Google搜索,直接使用Google IP服务器即 可:http://209.116.186.231 (2)更全面的使用Google Scholar: Windows 系统修改 hosts 文件的方法,打开 C:\Windows\System32\drivers\etc
• 6. 美赛大量的用到了启发式算法,如神经 网络、遗传算法、模拟退火、粒子群等等。 (1)Matlab提供了这些算法的接口,也有 现成的常用算法代码,但参赛队员还是必须 掌握这些算法的原理,并且能自己实现,因 为通用方法不一定能满足特定要求的,所以 一般需要修改原有算法。 (2)负责编程实现的队员至少要弄懂一种 启发式算法,用来解决优化问题(多数为NP 问题)。
奖项设置及获奖比例
• • • • • 特等奖(Outstanding Winner)(0.46%) 特等奖提名( Finalist )(1%) 一等奖(Meritorious Winner)(14.7%) 二等奖(Honorable Winner)(28%) 成功参赛奖( Successful Participant)(50%)
从2013年起,全国大学生数学建模竞赛组 委会联合中国工业与应用数学学会数学模型 专业委员会,将与COMAP(美赛组织者)合 作,共同评阅美赛论文。同时, COMAP也将 派专家参加国赛的全国评阅工作。
竞赛时间
• 北京时间: 2月6日早上9点——2月10日早上9点。 (与美国东部时间时差13小时)
用记事本txt文件打开hosts文件。在hosts文件中把鼠 标光标移到最下面那行代码末尾,回车换行,再添加 进附件code文本文件中的代码(代码前面不加 # )。
搜索技巧
• 1. 点击高级搜索,然后输入需要的key words,在格式中选pdf 格式; • 2. 查找已查找到的文献的参考文献是很有 效的一种手段; • 3. 搜索关键词及其相关词,它们的翻译必 须准确,建议用知网翻译来自(7)某个方面的突出亮点。
• 美赛评审特点(区别于国赛评审之处) (1)对结果的宽容度较大(能自圆其说即可); (2)强调考察参赛论文的“两个理解”,即对问题的理