中国低阶煤热解分级分质利用技术及现状

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国低阶煤热解分级分质利用技术及现状

在世界一次能源消费结构中,石油、天然气、煤炭仍占据主要地位,总量达到了世界能源消费总量的86.3%,其中石油为32.57%,天然气为23.71%,煤炭为30.03%。中国的一次能源消费结构中,石油、天然气、煤炭三者总占比为89.1%,高于世界平均水平,其中石油占比为17.51%,天然气为5.62%,煤炭为66.03%。因此,中国作为一个“富煤贫油少气”国家的基本面貌没有改变,煤炭在国家能源结构中依然居于主导地位。来源于2015《BP世界能源统计年鉴》中国的煤炭资源探明储量为1145亿吨,占世界煤炭总储量的12.8%,其中无烟煤和烟煤622亿吨,占中国煤炭总储量的54.32%,次烟煤和褐煤(统称低阶煤)523亿吨,占中国煤炭总储量的45.68%。低阶煤在我国煤炭构成中占有很高的比例。来源于2015《BP世界能源统计年鉴》

低阶煤是指煤化程度比较低的煤(一般干燥无灰基挥发分>20%),主要为褐煤和低煤化程度的烟煤。

褐煤包括褐煤一号(年轻褐煤)和褐煤二号(年老褐煤)2类,约占我国煤炭探明保有资源量的13%,主要分布于内蒙古东部和云南,少量分布于黑龙江辽宁山东吉林和广西等地区,近年发现新疆等区域亦赋存褐煤。

低煤化程度的烟煤包括长焰煤、不黏煤和弱黏煤,约占我国煤炭探明保有资源量的33%,主要分布于陕西、内蒙古西部和新疆,其次为山西、宁夏、甘肃、辽宁、黑龙江等地区,吉林、山东和广西等地区少量赋存。

褐煤全水分高达20%~60%,收到基低位发热量一般为11.71~16.73MJ/kg。由于高水分,高含氧量,低发热量,化学反应性好、孔隙多、热稳定性差,在空气中易风化和破碎,不适合远距离输送,应用受到很大限制。

低煤化程度的烟煤原煤灰分一般低于15%,含硫量低于1%,鄂尔多斯盆地不黏煤和弱黏煤为为此类煤。

低阶煤的化学结构中侧链较多,氢、氧含量较高,结果导致其挥发分含量高、含水高、含氧多、易自燃、热值低。直接燃烧会产生大量的污染物,不仅破坏环境,而且造成了能源的浪费。目前最常用的直接利用方法是燃烧发电,且主要用于坑口电站,少量被部分干燥、热解或制成型煤后运往外地供各种工业锅炉燃烧或化工利用。但使用低变质煤发电在产生单位电量时需要更多的燃料和更大的设备资金投入,同时有较高的CO2排放,如褐煤锅炉燃料量是烟煤的2~4

倍,产生的炉气量是其2~3倍。这使得发展更加高效、清洁、经济的低阶煤利用工艺显得十分必要。根据低阶煤中挥发分及氢含量高的特点,通过分级转化利用,可先获得高附加值的油、气和化学品,再将剩余半焦进行燃烧或气化,实现煤炭资源的梯级利用,从而,一方面提高了煤炭利用的能效,另一方面使难以利用的褐煤得到了有效利用,同时大大减少环境的污染。

一、低阶煤的热解

低阶煤的结构特点决定了其挥发分高、活性强。由于水分和氧含量高而热值低,直接利用(燃烧或气化)效率低,经济价值远不如高阶煤,大规模开发利用必须先对其进行加工提质。最为常用的方法之一是热解,即“干馏”或“热分

城市煤气、工业燃气制 氢(可用于煤焦油加氢)燃料油(汽油、柴油)

烧结焦粉IGCC )

解”。热解是指煤在隔绝空气或在惰性气体条件下持续加热至较高温度时,所发生的一系列物理变化和化学反应。在此过程中煤会发生交联键断裂、产物重组和二次反应,最终得到气体(煤气)、液体(焦油)、及固体(半焦)等产物。焦油中含有苯、萘、蒽、菲以及目前尚无法人工合成的多种稠环芳香烃类化合物及杂环化合物。与直接燃烧相比,热解实现了煤中不同成分的梯级转化,是一种资源高效综合利用方法,具有减少燃煤造成的环境污染,提高低阶煤资源综合利用价值的优势,可创造显著的经济社会效益。按煤热解温度可分为低温热解(500℃-600℃)、中温热解(650℃-800℃)、高温热解(900℃-1000℃)和超高温热解(>1200℃)。为得到高产率的焦油和煤气,低阶煤多采用低温热解路线。除低温热解外,还可以利用加氢热解来提高热解产率,即通过外加氢气来饱和热解产生的自由基,拟制二次反应。

煤的化学结构极其复杂,同时矿物质对热解又有催化作用,导致热解过程中发生许多化学反应,如煤中有机质的裂解、缩聚和重组;裂解产物中轻质部分和裂解残留物的挥发、分解或聚合。从煤的分子结构看,基本结构单元周围的侧链、桥键和官能团等在加热条件下不稳定,是煤结构中的活性组分。在加热过程中,这些单元逐渐裂解,形成气体化合物挥发出去,而缩合芳香核部分则互相缩聚形成固体产品(半焦或焦炭)。煤热解过程前期以裂解反应为主,后期以缩聚反应为主。

二、热解技术的发展历史及现状

煤热解技术历史久远,早在19世纪就已出现,当时主要用于制取照明用的灯油和蜡,随后由于电灯的发明,煤热

解研究趋于停滞状态。但在第二次世界大战期间,德国由于石油禁运,建立了大型煤热解厂,以煤为原料生产煤焦油,再通过高压加氢制取汽油和柴油。在当时的战争背景下,热解成本并不是考虑的主要因素,但是,随着战后石油开采量大幅增加,煤热解研究受到市场因素的影响再次陷于停滞状态。

20世纪70年代初期,世界范围的石油危机再度引起了世界各国对煤热解工艺的重视。70年代以后,煤化学基础理论得到了迅速发展,相继出现了各种类型的面向高效率、低成本、适应性强的煤热解工艺,典型的有回转炉、移动床、流化床和气流床热解技术。

我国煤热解技术的自主研究和开发始于20世纪50年代,北京石油学院(现为中国石油大学)、上海电业局研究人员开发了流化床快速热解工艺并进行10t/d规模的中试;大连工

学院(现为大连理工大学)聂恒锐等人研究开发了辐射炉快速热解工艺并于1979年建立了15t/d规模的工业示范厂; 大连理工大学郭树才等人研究开发了煤固体热载体快速热解

技术,并于1990年在平庄建设了5.5万t/a工业性试验装置,1992年8月初投煤产气成功;煤炭科学研究总院北京煤化学研究所(现为煤炭科学研究总院北京煤化工研究分院)研究开发了多段回转炉温和气化工艺,并于上世纪90年代建立了60t/d工业示范装置,完成了工业性试验;后续国内又

相关文档
最新文档