abaqus中的动态分析方法
abaqus中显示动力学分析步骤
abaqus中显示动力学分析步骤准静态分析——ABAQUS/Explicit准静态过程(guasi-static process )在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt 内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit 准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus-中显示动力学分析步骤
Abaqus-中显示动力学分析步骤准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
abaqus中显示动力学分析步骤
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt 内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
(完整)abaqus系列教程-09显式非线性动态分析
9 显式非线性动态分析在前面的章节中,已经考察了显式动态程序的基本内容;在本章中,将对这个问题进行更详细的讨论。
显式动态程序对于求解广泛的、各种各样的非线性固体和结构力学问题是一种非常有效的工具。
它常常对隐式求解器是一个补充,如ABAQUS/Standard;从用户的观点来看,显式与隐式方法的区别在于:•显式方法需要很小的时间增量步,它仅依赖于模型的最高固有频率,而与载荷的类型和持续的时间无关。
通常的模拟需要取10,000至1,000,000个增量步,每个增量步的计算成本相对较低。
•隐式方法对时间增量步的大小没有内在的限制;增量的大小通常取决于精度和收敛情况。
典型的隐式模拟所采用的增量步数目要比显式模拟小几个数量级。
然而,由于在每个增量步中必须求解一套全域的方程组,所以对于每一增量步的成本,隐式方法远高于显式方法。
了解两个程序的这些特性,能够帮助你确定哪一种方法是更适合于你的问题。
9.1 ABAQUS/Explicit适用的问题类型在讨论显式动态程序如何工作之前,有必要了解ABAQUS/Explicit适合于求解哪些类问题。
贯穿这本手册,我们已经提供了贴切的例题,它们一般是应用ABAQUS/Explicit求解的如下类型问题:高速动力学(high-speed dynamic)事件最初发展显式动力学方法是为了分析那些用隐式方法(如ABAQUS/Standard)分析起来可能极端费时的高速动力学事件。
作为此类模拟的例子,在第10章“材料”中分析了一块钢板在短时爆炸载荷下的响应。
因为迅速施加的巨大载荷,结构的响应变化的非常快。
对于捕获动力响应,精确地跟踪板内的应力波是非常重要的。
由于应力波与系统的最高阶频率相关联,因此为了得到精确解答需要许多小的时间增量。
复杂的接触(contact)问题应用显式动力学方法建立接触条件的公式要比应用隐式方法容易得多。
结论是ABAQUS/Explicit能够比较容易地分析包括许多独立物体相互作用的复杂接触问题。
Abaqus 中显示动力学分析步骤
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
abaqus中地动态分析报告方法
ABAQUS线性动态分析如果你只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)是足够的。
然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上是动态的(例如来自旋转机械的荷载),你就必须采用动态分析(dynamic analysis)。
本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。
7.1 引言动态模拟是将惯性力包含在动力学平衡方程中:其中M结构的质量。
u结构的加速度。
I在结构中的内力。
P 所施加的外力。
在上面公式中的表述是牛顿第二运动定律(F = ma)。
在静态和动态分析之间最主要的区别是在平衡方程中包含了惯性力(M u)。
在两类模拟之间的另一个区别在于内力I的定义。
在静态分析中,内力仅由结构的变形引起;而在动态分析中,内力包括源于运动(例如阻尼)和结构的变形的贡献。
7.1.1 固有频率和模态最简单的动态问题是在弹簧上的质量自由振动,如图7-1所示。
图7–1 质量-弹簧系统在弹簧中的内力给出为ku ,所以它的动态运动方程为这个质量-弹簧系统的固有频率(natral frequency )(单位是弧度/秒(rad/s ))给出为ω=如果质量块被移动后再释放,它将以这个频率振动。
若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。
实际结构具有大量的固有频率。
因此在设计结构时,非常重要的是避免使可能的载荷频率过分接近于固有频率。
通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。
则运动方程变为对于无阻尼系统,I Ku =,因此有这个方程的解具有形式为t i e u ωφ=将此式代入运动方程,得到了特征值(eigenvalue )问题其中2λω=。
该系统具有n 个特征值,其中n 是在有限元模型中的自由度数目。
记j λ是第j 个特征值;它的平方根j ω是结构的第j 阶模态的固有频率(natural frequency ),而j φ是相应的第j 阶特征向量(eigenvector )。
(完整版)Abaqus中显示动力学分析步骤
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus中显示动力学分析步骤
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
abaqus中的动态分析方法
ABAQUS线性动态分析如果您只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)就是足够的。
然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上就是动态的(例如来自旋转机械的荷载),您就必须采用动态分析(dynamic analysis)。
本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。
7、1 引言动态模拟就是将惯性力包含在动力学平衡方程中:+PuM&&I-=其中M结构的质量。
u&&结构的加速度。
I在结构中的内力。
P 所施加的外力。
在上面公式中的表述就是牛顿第二运动定律(F = ma)。
在静态与动态分析之间最主要的区别就是在平衡方程中包含了惯性力(M u&&)。
在两类模拟之间的另一个区别在于内力I的定义。
在静态分析中,内力仅由结构的变形引起;而在动态分析中,内力包括源于运动(例如阻尼)与结构的变形的贡献。
7、1、1 固有频率与模态最简单的动态问题就是在弹簧上的质量自由振动,如图7-1所示。
图7–1 质量-弹簧系统在弹簧中的内力给出为ku ,所以它的动态运动方程为mu ku P &&+-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位就是弧度/秒(rad/s))给出为 k mω= 如果质量块被移动后再释放,它将以这个频率振动。
若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。
实际结构具有大量的固有频率。
因此在设计结构时,非常重要的就是避免使可能的载荷频率过分接近于固有频率。
通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。
则运动方程变为Mu I &&+=0 对于无阻尼系统,I Ku =,因此有Mu Ku &&+=0 这个方程的解具有形式为t i e u ωφ=将此式代入运动方程,得到了特征值(eigenvalue )问题K M φλφ=其中2λω=。
Abaqus 中显现动力学分析步骤
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
abaqus中的动态分析方法
ABAQUS线性动态分析如果你只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)是足够的。
然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上是动态的(例如来自旋转机械的荷载),你就必须采用动态分析(dynamic analysis)。
本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。
7.1 引言动态模拟是将惯性力包含在动力学平衡方程中:+PuMI-=其中M结构的质量。
u 结构的加速度。
I在结构中的内力。
P 所施加的外力。
在上面公式中的表述是牛顿第二运动定律(F = ma)。
在静态和动态分析之间最主要的区别是在平衡方程中包含了惯性力(M u )。
在两类模拟之间的另一个区别在于内力I的定义。
在静态分析中,内力仅由结构的变形引起;而在动态分析中,内力包括源于运动(例如阻尼)和结构的变形的贡献。
7.1.1 固有频率和模态最简单的动态问题是在弹簧上的质量自由振动,如图7-1所示。
图7–1 质量-弹簧系统在弹簧中的内力给出为ku ,所以它的动态运动方程为mu ku P +-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位是弧度/秒(rad/s ))给出为ω= 如果质量块被移动后再释放,它将以这个频率振动。
若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。
实际结构具有大量的固有频率。
因此在设计结构时,非常重要的是避免使可能的载荷频率过分接近于固有频率。
通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。
则运动方程变为M u I +=0 对于无阻尼系统,I Ku =,因此有M u Ku +=0 这个方程的解具有形式为t i e u ωφ=将此式代入运动方程,得到了特征值(eigenvalue )问题K M φλφ= 其中2λω=。
Abaqus中显示动力学分析步骤
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每•瞬间,系统都接近于平衡状态,以致在任总选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由•系列极接近平衡的状态所构成,这种过程称为准静态过代。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为•个热力学概念,在这里引用主要是指模型在加载的过程中任总时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是•种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量•般地是非常小的值,所以人多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的•个优势是更加容易。
此外,当模型很人时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要•些特殊的考虑。
根据定义,由于•个静态求解是•个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要人量的小的时间增量。
因此,为了获得较经济的解答,必须采取•些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus中显示动力学分析步骤
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus中显示动力学分析步骤
Abaqus中显示动力学分析步骤准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以瞧成就是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩与无限缓慢地膨胀过程可近似瞧作为准静态过程。
准静态过程就是一种理想过程,实际上就是办不到的。
准静态原为一个热力学概念,在这里引用主要就是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地瞧作就是静态,该过程便就是准静态过程。
准静态啮合过程仿真主要考虑的就是弧齿锥齿轮副在加载时的接触状态,以及齿面与齿根的应力变化规律,其前提就是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法就是一种真正的动态求解过程,它的最初发展就是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地就是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明就是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势就是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解就是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上就是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但就是带来的问题就是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
abaqus 显式与隐式的区别
和 U 用 U ,U ,U 表示的表达式,代入运动方 根据(6)式可给出 U t t t t t t t t
程中整理得到
ˆU R ˆ (7 ) K t t t t
其中
ˆ K
1 M C K (8 ) 2 t t
( 1 1)U ] C[ U ( 1)U ( 1)tU ] (9) ˆ t t Rt t M [ 1 U t 1 U R t t t t t 2 t t 2 t 2
ABAQUS 显式与隐式的区别
ABAQUS 中动态分析包括两大类基本方法:
振型叠加法:用于求解线性动态问题; 直接积分法:主要用于求解非线性动态问题。 ABAQUS 显式(explicit)和隐式(standard)算法分别对应着直接积分法 中的中心差分法(显式)和 Newmark(隐式)法等。 比较两种算法,显式中心差分法非常适合研究波的传播问题,如碰撞、高速 冲击、爆炸等。显式中心差分法的 M 与 C 矩阵是对角阵,如给定某些有限元节 点以初始扰动,在经过一个时间步长后,和它相关的节点进入运动,即 U 中这 些节点对应的分量成为非零量,此特点正好和波的传播特点相一致。另一方面, 研究波传播的过程需要微小的时间步长,这也正是中心差分法的特点。 而 Newmark 法更加适合于计算低频占主导的动力问题,从计算精度考虑, 允许采用较大的时间步长以节省计算时间, 同时较大的时间步长还可以过滤掉高 阶不精确特征值对系统响应的影响。隐式方法要转置刚度矩阵,增量迭代,通过 一系列线性逼近(Newton-Raphson)来求解。正因为隐式算法要对刚度矩阵 求逆,所以计算时要求整体刚度矩阵不能奇异,对于一些接触高度非线性问题, 有时无法保证收敛。 下面分别介绍这两种算法。 1 显式算法(中心差分法)
(完整)abaqus系列教程-09显式非线性动态分析
9 显式非线性动态分析在前面的章节中,已经考察了显式动态程序的基本内容;在本章中,将对这个问题进行更详细的讨论。
显式动态程序对于求解广泛的、各种各样的非线性固体和结构力学问题是一种非常有效的工具。
它常常对隐式求解器是一个补充,如ABAQUS/Standard;从用户的观点来看,显式与隐式方法的区别在于:•显式方法需要很小的时间增量步,它仅依赖于模型的最高固有频率,而与载荷的类型和持续的时间无关。
通常的模拟需要取10,000至1,000,000个增量步,每个增量步的计算成本相对较低。
•隐式方法对时间增量步的大小没有内在的限制;增量的大小通常取决于精度和收敛情况。
典型的隐式模拟所采用的增量步数目要比显式模拟小几个数量级。
然而,由于在每个增量步中必须求解一套全域的方程组,所以对于每一增量步的成本,隐式方法远高于显式方法。
了解两个程序的这些特性,能够帮助你确定哪一种方法是更适合于你的问题。
9.1 ABAQUS/Explicit适用的问题类型在讨论显式动态程序如何工作之前,有必要了解ABAQUS/Explicit适合于求解哪些类问题。
贯穿这本手册,我们已经提供了贴切的例题,它们一般是应用ABAQUS/Explicit求解的如下类型问题:高速动力学(high-speed dynamic)事件最初发展显式动力学方法是为了分析那些用隐式方法(如ABAQUS/Standard)分析起来可能极端费时的高速动力学事件。
作为此类模拟的例子,在第10章“材料”中分析了一块钢板在短时爆炸载荷下的响应。
因为迅速施加的巨大载荷,结构的响应变化的非常快。
对于捕获动力响应,精确地跟踪板内的应力波是非常重要的。
由于应力波与系统的最高阶频率相关联,因此为了得到精确解答需要许多小的时间增量。
复杂的接触(contact)问题应用显式动力学方法建立接触条件的公式要比应用隐式方法容易得多。
结论是ABAQUS/Explicit能够比较容易地分析包括许多独立物体相互作用的复杂接触问题。
(完整版)Abaqus中显示动力学分析步骤
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABAQUS线性动态分析如果你只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)是足够的。
然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上是动态的(例如来自旋转机械的荷载),你就必须采用动态分析(dynamic analysis)。
本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。
7.1 引言动态模拟是将惯性力包含在动力学平衡方程中:+PuM&&I-=其中M结构的质量。
u&&结构的加速度。
I在结构中的力。
P 所施加的外力。
在上面公式中的表述是牛顿第二运动定律(F = ma)。
在静态和动态分析之间最主要的区别是在平衡方程中包含了惯性力(M u&&)。
在两类模拟之间的另一个区别在于力I的定义。
在静态分析中,力仅由结构的变形引起;而在动态分析中,力包括源于运动(例如阻尼)和结构的变形的贡献。
7.1.1 固有频率和模态最简单的动态问题是在弹簧上的质量自由振动,如图7-1所示。
图7–1 质量-弹簧系统在弹簧中的力给出为ku ,所以它的动态运动方程为mu ku P &&+-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位是弧度/秒(rad/s ))给出为k mω= 如果质量块被移动后再释放,它将以这个频率振动。
若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。
实际结构具有大量的固有频率。
因此在设计结构时,非常重要的是避免使可能的载荷频率过分接近于固有频率。
通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。
则运动方程变为Mu I &&+=0 对于无阻尼系统,I Ku =,因此有Mu Ku &&+=0 这个方程的解具有形式为t i e u ωφ=将此式代入运动方程,得到了特征值(eigenvalue )问题K M φλφ=其中2λω=。
该系统具有n 个特征值,其中n 是在有限元模型中的自由度数目。
记j λ是第j 个特征值;它的平方根j ω是结构的第j 阶模态的固有频率(natural frequency ),而j φ是相应的第j 阶特征向量(eigenvector )。
特征向量也就是所谓的模态(mode shape )(也称为振型),因为它是结构以第j 阶模态振动的变形形状。
在ABAQUS/Standard 中,应用频率的提取过程确定结构的振型和频率。
这个过程应用起来十分容易,你只要指出所需要的振型数目或所关心的最高频率即可。
7.1.2 振型叠加在线性问题中,可以应用结构的固有频率和振型来定性它在载荷作用下的动态响应。
采用振型叠加(modal superposition )技术,通过结构的振型组合可以计算结构的变形,每一阶模态乘以一个标量因子。
在模型中的位移矢量u 定义为∑∞==1i ii u φα其中i α是振型i φ的标量因子。
这一技术仅在模拟小变形、线弹性材料和无接触条件的情况下是有效的,换句话说,即线性问题。
在结构的动力学问题中,结构的响应往往被相对较少的几阶振型控制,在计算这类系统的响应时,应用振型叠加成为特别有效的方法。
考虑一个含有10,000个自由度的模型,对动态运动方程的直接积分将在每个时间点上同时需要联立求解10,000个方程。
如果通过100个振型来描述结构的响应,则在每个时间增量步上只需求解100个方程。
更重要的是,振型方程是解耦的,而原来的运动方程是耦合的。
在计算振型和频率的过程中,开始时需要一点成本,但是,在计算响应时将会节省大量的计算花费。
如果在模拟中存在非线性,在分析中固有频率会发生明显的变化,因此振型叠加法将不再适用。
在这种情况下,只能要求对动力平衡方程直接积分,它所花费的时间比振型分析昂贵得多。
必须具备下列特点的问题才适合于进行线性瞬态动力分析:•系统应该是线性的:线性材料行为,无接触条件,以及没有非线性几何效应。
•响应应该只受相对少数的频率支配。
当在响应中频率的成分增加时,诸如是打击和碰撞的问题,振型叠加技术的效率将会降低。
• 载荷的主要频率应该在所提取的频率围之,以确保对载荷的描述足够精确。
•应用特征模态,应该精确地描述由于任何突然加载所产生的初始加速度。
• 系统的阻尼不能过大。
7.2 阻尼如果允许一个无阻尼结构做自由振动,则它的振幅会是一个常数。
然而在实际中,能量被结构的运动耗散,振动的幅度减小直至振动停止。
这种能量耗散被称为阻尼(damping )。
通常假定阻尼为粘滞的,或者正比于速度。
包含阻尼的动力平衡方程可以重新写为Mu I P I Ku Cu&&&+-==+0 其中 C是结构的阻尼矩阵 &u 是结构的速度。
能量耗散来自于诸多因素,其中包括结构连接处的摩擦和局部材料的迟滞效应。
阻尼是一种很方便的方法,它包含了重要的能量吸收而又无需模拟具体的效果。
在ABAQUS/Standard 中,特征模态的计算是关于无阻尼系统的。
然而,大多数工程问题都包含某种阻尼,尽管阻尼可能很小。
对于每个模态,在有阻尼和无阻尼的固有频率之间的关系是ωωξd =-12其中 d ω是阻尼特征值, 0c c =ξ 是临界阻尼比, c是该振型的阻尼, 0c 是临界阻尼。
对于ξ的较小值(1.0<ξ),有阻尼系统的特征频率非常接近于无阻尼系统的相应值;当ξ增大时,无阻尼系统的特征频率成为不太准确的;而当ξ接近于1时,采用无阻尼系统的特征频率就成为无效的。
如果结构是处于临界阻尼(1=ξ),在任何扰动后,结构不会有摆动而是尽可能迅速地恢复到它的初始静止构形。
(见图7-2)图7–2 阻尼7.2.1 在ABAQUS/Standard 中阻尼的定义对于瞬时模态分析,在ABAQUS/Standard 中可以定义一些不同类型的阻尼:直接模态阻尼(direct modal damping ),瑞利阻尼(Rayleigh damping )和复合模态阻尼(composite modal damping )。
阻尼是针对模态动力学过程定义的,阻尼是分析步定义的一部分,每阶模态可以定义不同量值的阻尼。
直接模态阻尼应用直接模态阻尼可以定义与每阶模态相关的临界阻尼比ξ,其典型的取值围是在临界阻尼的1%到10%之间。
直接模态阻尼允许用户精确地定义系统的每阶模态的阻尼。
Rayleigh 阻尼在Rayleigh 阻尼中,假设阻尼矩阵是质量和刚度矩阵的线性组合,K M C βα+=,其中α和β是由用户定义的常数。
尽管阻尼是正比于质量和刚度矩阵的假设没有严格的物理基础,实际上我们对于阻尼的分布知之甚少,也就不能保证其它更为复杂的模型是正确的。
一般的,这个模型对于大阻尼系统不可靠;即超过临界阻尼的大约10%。
相对于其它形式的阻尼,你可以精确地定义系统的每阶模态的Rayleigh 阻尼。
对于一个给定模态i ,临界阻尼值为i ξ,而Rayleigh 阻尼值α和β的关系为i ii βωωαξ22+=复合阻尼 在复合阻尼中,对于每种材料定义一个临界阻尼比,这样就得到了对应于整体结构的复合阻尼值。
当结构中有多种不同的材料时,这一选项是有用的。
在本指南中将不对复合阻尼做进一步的讨论。
7.2.2 选择阻尼值在大多数线性动力学问题中,恰当地定义阻尼对于获得精确的结果是十分重要的。
但是,在某种意义上阻尼只是近似地模拟了结构吸收能量的特性,并非试图去模拟引起这种效果的物理机制。
因此,在模拟中确定所需要的阻尼数据是很困难的。
偶尔,你可以从动态试验中获得这些数据,但是,你不得不通过查阅参考资料或者经验获得这些数据。
在这些情况下,你必须十分谨慎地解释模拟结果,并通过参数分析研究来评估模拟对于阻尼值的敏感性。
7.3 单元选择事实上,ABAQUS 的所有单元均可用于动态分析,选取单元的一般原则与静力分析相同。
但是,在模拟冲击和爆炸载荷时,应该选用一阶单元,因为它们具有集中质量公式,这种公式模拟应力波的效果优于二阶单元采用的一致质量公式。
7.4 动态问题的网格剖分当你正在设计应用于动态模拟的网格时,你需要考虑在响应中将被激发的振型,并且使所采用的网格能够充分地反映出这些振型。
这意味着能够满足静态模拟的网格,不一定能够计算由于加载激发的高频振型的动态响应。
例如,考虑图7-3所示的板。
一阶壳单元的网格对于板受均布载荷的静力分析是适合的,并也适合于一阶振型的预测。
但是,该网格是明显地过于粗糙以至于不能够精确地模拟第六阶振型。
图7–3 板的粗网格图7-4显示了同样的板采用了一阶单元的精细网格的模拟。
现在,第六阶振型的位移形状看起来明显变好,对于该阶振型所预测的频率更加准确。
如果作用在板上的动态载荷会显著地激发该阶振型,则必须采用精细的网格;采用粗网格将得不到准确的结果。
图7–4 板的精细网格7.5 例题:货物吊车—动态载荷这个例子采用在第6.4节“例题:货物吊车”中已分析过的同样的货物吊车,现在要求研究的问题是当10 kN的载荷在0.2秒的时间中落到吊车挂钩上所引起的响应。
在A, B, C和D点(见图7-5)处的连接仅能够承受的最大拉力为100 kN。
你必须决定这些连接的任何一个是否会断裂。
图7–5 货物吊车加载的持续时间很短意味着惯性效应可能是很重要的,基本上要进行动态分析。
这里没有提供关于结构的阻尼的任何信息。
由于在桁架和交叉支撑之间采用的是螺栓连接,因此由摩擦效应引起的能量吸收可能是比较显著的。
因此,基于经验可以对每一阶振型选择5%的临界阻尼。
施加载荷的值与时间的关系,如图7-6所示。
图7–6 载荷-时间特性在本手册的在线文档第A.5节“Cargo crane – dynamic loading”提供了输入文件。
当通过ABAQUS/CAE运行这个输入文件时,将创建关于该问题的完整的分析模型。
根据下面给出的指导如果你遇到困难,或者如果你希望检查你的工作,则可以运行这个输入文件。
在附录A“Example Files”中,给出了如何提取和运行输入文件的指导。
如果你没有进入ABAQUS/CAE或者其它的前处理器,可以人工创建关于这个问题的输入文件,关于这方面的讨论,见Getting Started with ABAQUS/Standard:Keywords Version,第9.5节“Example:Cargo crane – dynamic loading”。
7.5.1 修改模型打开模型数据库文件Crane.cae,将Static模型复制成一个名为Dynamic的模型。