元器件降额准则一览表
(整理)元器件降额使用参考
![(整理)元器件降额使用参考](https://img.taocdn.com/s3/m/86b2cdeeb9f3f90f76c61be8.png)
元器件降额使用参考一、集成电路因为集成电路的复杂性和保密性,一般我们只能根据半导体结温来推断集成电路的可靠性了。
我们通常规定:1,最大工作电压,不超过额定电压80%2,最大输出电流,不超过额定电流75%3,结温,最大85摄氏度,或不超过额定最高结温的80%二、二极管二极管种类繁多,特性不一。
故而,有通用要求,也有特别要求:通用要求:长期反向电压<70%~90%×V RRM(最大可重复反向电压)最大峰值反向电压<90%×V RRM正向平均电流<70%~90%×额定值正向峰值电流<75%~85%×I FRM正向可重复峰值电流对于工作结温,不同的二极管要求略有区别:信号二极管< 85~150℃玻璃钝化二极管< 85~150℃整流二极管和快恢复、超快恢复二极管(<1000V)<85~125℃整流二极管和快恢复、超快恢复二极管(≥1000V)<85~115℃肖特基二极管< 85~115℃稳压二极管(<0.5W)<85~125℃稳压二极管(≥0.5W)<85~100℃T case(外壳温度)≤0.8×T jmax-2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。
这是一个可供参考的经验值三、功率MOSV GS<85%×V GSmax(最大栅极驱动电压)I D_peak<80%×I D_M(最大漏极脉冲电流)V DS<80~90%×额定电压dV/dt<50%~90%×额定值结温<85℃~80%×T jmax(最大工作结温)T case(外壳温度)≤0.8×T jmax-2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。
元器件降额准则一览表
![元器件降额准则一览表](https://img.taocdn.com/s3/m/569b776f5a8102d277a22f5c.png)
元器件降额准则一览表
一、电容
二、晶体、晶振
对于大多数晶体而言,推荐的供电电源是不能进行降额的,因为这样可能会达不到其额定功率。
要参考正确的器件规格或制造商的资料。
对于工作
温度,要保证晶体在最高的温度和最低的温度限制范围之内,这样才能保证得到正确的额定频率值。
最高工作温度需小于器件最高允许工作温度10度以上。
最低工作温度需大于器件最低允许工作温度10度以上。
对于恒温晶振,只需考虑机箱内晶振周围的空气温度小于晶振运行的最高工作环境温度10度,最低工作温度高10度。
三、电阻
四、二极管
五、晶极管
六、磁性器件:变压器和电感的降额要求:
七、微电路
*商业等级微电路的主要降额因素是温度。
八、保险丝:UL/IEC保险丝降额要求
九、连接器
十、开关
十一、电源。
元器件降额标准(参考)
![元器件降额标准(参考)](https://img.taocdn.com/s3/m/305f9f487c1cfad6185fa770.png)
TAM-20
TAM-20
TAM-20
输出功率
反射功率
占空比
…
声表面波器件
输入功率(f>100MHz)
降低+10dBm
输入功率(f<100MHz=
降低+20dBm
<
纤维光学器件
光纤光源
峰值光输出功率
(适用于ILD)
电流
(适用于ILD)
结温
设法降低
光纤探测器
PIN反向压降
结温
设法降低
光纤与光缆
温度
上限额定值-20;下限额定值+20
最高结温(℃)
改进散热方式降低结温
分离半导体器件
,
晶体管
方向
电压
一般晶体管
功率MOSFET的栅源电压
|
电流
功率
~
功率管安全工作区
集电极-发射极电压
[
集电极最大允许电流
最高结温
Tjm(℃)
200
115
140
160
175
100
125
145
≤150
Tjm-65
Tjm-40
Tjm-20
微波晶体管
!
最高结温
同晶体管
Note:Tj to Tcase has to be calculated for verification in any case
Diode
《
Vrm (%)
Io (%)
I fsm (%)
Tcase (°C)
Vrm (%)
Io (%)
I fsm (%)
Tcase (°C)
90
50
电路设计元器件降额标准
![电路设计元器件降额标准](https://img.taocdn.com/s3/m/3ba42dcc80c758f5f61fb7360b4c2e3f572725c6.png)
电路设计元器件降额标准1、晶体管/MOSFET:反向电压:0.7 0.8MOSFET栅源电压:0.6 0.7三极管集电极、发射机电压:0.7 0.8三极管集电极电流:0.7 0.8正反向电流:0.7 0.8温湿度0.7 0.82、二极管正向电压:10%稳定电压(稳压二极管):反向漏电流+200%恢复开关时间+20%反向电压0.7 0.8电流0.7 0.8功率0.65浪涌电压、电流0.7 0.8温湿度0.7 0.83、断路器熔断电流:0.75 0.9 阻/容性负载0.4 0.5 感性负载0.2 0.35 电机温度:Tmax-204、保险丝电流>0.5A 0.45~0.5电流<0.5A 0.2~0.4环境温度超过25度时,按0.005/oC增加降额5、可控硅,闸流管控制极正向压降10%漏电流+200%开关时间+20%其它指标同二极管6、光电器件指标同二极管7、电阻/电阻网络电压0.75功率0.6 0.7封装2512 2010 1206 0805 0603 0402 0201 功率 1 1/2 1/4,1/8 1/10 1/16 1/16 1/32最大电压200 200 200 100 50 50类型片式金属氧化膜水泥电阻功率1/4 1W/2W/5W 5W及以上8、绕线电阻电压0.75功率0.45 0.6 精密型0.6 0.7 功率型9、热敏电阻电压:电源电压80%功率:0.5 0.5温度:TMax-1510、压敏电阻电压:0.75功率:0.6 0.7不靠近发热可燃器件,离开其它器件3mm11、非绕线电位器电压0.75功率0.45 0.6 精密型0.6 0.7 功率型12、电容器固定纸、塑料薄膜电容/玻璃铀/固定云母/固定陶瓷/ 电流、电压0.6 0.7温度Tmax-10铝电解电压、电流0.6 0.7钽电解电压、电流0.5 0.7温度Tmax-20钽固体电解电压电流0.8 0.9 20V以下0.7 0.8 25V以上温度Tmax-20可变电容器电流、电压0.5浪涌电流电压0.6 0.7温度Tmax-1013、电感热点温度Tmax-10~25 Tmax-15~0工作电流0.6~0.7瞬态电压电流0.9介质耐压0.5~0.6电压0.714、磁珠工作电流0.6~0.7瞬态电压0.915、继电器<100mW不降额电阻负载:0.75~0.90电容负载(最大浪涌电流):0.75~0.90电感负载0.75 0.9 电感额定电流0.4 0.75 电阻额定电流电机负载0.75 0.9 电感额定电流0.2 0.75 电阻额定电流0.1 0.3 灯丝0.5 0.7 水印继电器(VA)线圈释放电压0.9最小~1.1最大温度额定-20振动额定60%16、开关<100mW不降额电阻负载:0.75~0.90电容负载(最大浪涌电流):0.75~0.90电感负载0.75 0.9 电感额定电流0.4 0.75 电阻额定电流电机负载0.75 0.9 电感额定电流0.2 0.75 电阻额定电流0.1 0.3 灯丝触点额定电压0.5 0.7功率0.5 0.717、电连接器电压0.7 0.8电流0.7 0.85温度Tmax-25 Tmax-2018、晶体温度:最低+10,最高-1019、光学器件光纤光源:峰值输出功率0.5峰值电流0.5结温设法降低光纤:温度:低温+20,高温-20张力:光纤20%拉力,光缆50%拉升值弯曲半径:最小允许值200%光纤连接器:温度:Tmax-25 Tmax-20。
元器件降额标准(参考)
![元器件降额标准(参考)](https://img.taocdn.com/s3/m/93d7e8469e31433238689352.png)
晶体管
方向
电压
一般晶体管
功率MOSFET的栅源电压
电流
功率
功率管安全工作区
集电极-发射极电压
集电极最大允许电流
最高结温
Tjm(℃)
200
115
140
160
175
100
125
145
≤150
Tjm-65
Tjm-40
Tjm-20
微波晶体管
最高结温
同晶体管
二极管(基准管除外)
电压(不适用于稳压管)
输出电流
功率
最高结温(℃)
80
95
105
数字电路
双极型 电路
频率
输出电流
最高结温(℃)
85
100
115
MOS型电路
电源电压
输出电流
功率
最高结温(℃)
85
100
115
混和集成电路
厚模集成电路(W/cm2)
薄模集成电路(W/cm2)
最高结温(℃)
85
100
115
大规模集成电路
最高结温(℃)
改进散热方式降低结温
TAM-20
TAM-20
TAM-20
微调电容器
直流工作电压
~
最高额定环境温度TAM(℃)
TAM-10
TAM-10
TAM-10
电感元件
热点温度THS(℃)(简写T)
T-40~25
T-25~10
T-15~0
工作电流
~
~
~
瞬间电压/电流
介质耐压
~
~
~
扼流圈工作电压
继电器
元器件降额准则汇总表
![元器件降额准则汇总表](https://img.taocdn.com/s3/m/476f9c4d852458fb770b56bb.png)
降额等级 Ⅱ级 Ⅲ级
0.65 0.7 0.8 0.7 140 125 Tjm-40 0.65 0.7 Tjm-40 Tjm-40 0.65 0.7 Tjm-40 0.7 0.65 140 125 Tjm-40 0.65 110 100 酌情降额 Tjm-40 0.65 0.7 0.7 140 125 Tjm-40 140 125 Tjm-40 酌情降额 0.5 0.7 0.7 0.6 ±200%实测值 Tjm-20 0.8 0.8 0.8 160 145 Tjm-20 160 145 Tjm-20 0.75 0.8 0.9 0.8 160 145 Tjm-20 0.75 0.8 Tjm-20 Tjm-20 0.75 0.8 Tjm-20 0.8 0.8 160 145 Tjm-20 0.8 130 130
0.8 0.8 0.5 /℃
0.9 0.7
0.8 0.7 0.8 95 ±5% 0.9 0.9 100 0.8 0.8 0.9 100
0.8 0.7 0.8 105 见技术条件 0.95 0.9 115 0.8 0.9 0.9 110
0.7 0.7 0.7 0.7 80 7.5 6 85
0.8 0.8 0.8 0.75 95 7.5 6 100
电阻器
固定电阻器 热敏电阻器
合成/薄膜微调电位器
精密塑料电位器
电位器
线绕密封电位器 线绕非密封功率电位器 螺旋缠绕电位器 薄膜、玻璃、云母、陶瓷电 容器 铝电解电容器
电容器
固体钽电解电容器、液体钽 电解电容器 活塞式微调电容器 圆片式微调电容器
电感元件
线圈、变压器
扼流圈
触点电流
电容负载 电机负载
继电器
电压调整器
输入输出电压差 输出电流(最大绝对值) 最高结温 (℃) 厚膜功率密度(w/cm ) 薄膜功率密度(w/cm ) 最高结温 (℃)
元器件降额表
![元器件降额表](https://img.taocdn.com/s3/m/60c988fcad51f01dc281f1d0.png)
裕度(B 级)
发光侧
正向电流 IF
50%以下
光 受 光晶体管
根据光晶体管的各项指标
耦 光 光晶闸管
根据光晶闸管的各项指标
侧 光双向可控硅 根据光双向可控硅的各项指标
印加电压
与额定电压相符合
通电电流
磁芯不可以饱和
90%以下
单元仕样周围温度
允许温度上升
线圈 变压器
A 种绝缘
B 种,E 种绝缘
450C
45deg
线性 IC
集电极损失
PC
结温
Tj
安全动作区域(ASO)
漏极,源极间电压 VDSS
门极,源极间电压 VDSS
漏极电流
ID
漏极尖峰电流
ID(puls)
通道损耗
PCH
通道温度
Tj
周期反向电压
VRRM
非周期反向电压
VRSM
平均正向电流
IF(AV)
浪涌电流
IFSM
正向电流
允许损耗
PD
结温
Tj
正向电流
IF
输入电压
(I2t 的 50%以下)
AC
额定频率的 95~105%(50HZ/60HZ)
继电器工作电压 制线圈触点部
DC 控
印加电压
通电电流
额定电压的±10%以内 使用与电源电压相苻的继电器(250VAC,125VAC)
额定通电电流的 50%以下
浪涌电流
浪涌耐量值的 70%以下
开关
印加电压 通电电流
使用与电源电压相苻的继电器(250VAC,125VAC) 额定通电电流的 80%以下
70%以下 80%以下
90%以下 80%以下 50%以下 90%以下 70%以下 80%以下 90%以下 90%以下 70%以下 90%以下 60%以下 60%以下 80%以下 50%以下 80%以下 70%以下 80%以下 80%以下 80%以下
元器件降额规范
![元器件降额规范](https://img.taocdn.com/s3/m/f773a5d933d4b14e84246803.png)
Max-20℃
Max-20℃
Max-20℃
注:Max为器件最高工作温度
5.4电位器
表4电位器降额表
元器件种类
降额参数
降额度
Ⅰ
Ⅱ
A
B
A,B
非线绕电位器
电压
0.85
0.85
0.85
功率
合成、薄膜微调
0.5
0.7
0.8
精密塑料型
0.5
0.7
0.8
温度
Max-10℃
Max-10℃
Max-10℃
5.5电容器表
图目录
图1电源工作状态示意图.....................................................................2
1目的
为规范产品设计、验证过程中的对器件降额的要求,特制定本文件。
2适用范围
本规范适用于本公司产品设计中元器件的降额设计及作为元器件应力分析的判定依据。
纹波电流
0.85
0.85
0.85
1目的....................................................................................2
2适用范围................................................................................2
(d)对环境条件而言,温度和湿度将在额定最大值以内。
状态Ⅱ:
如图中阴影之外的部分均表示电源工作在状态II,例如输入欠压、OCP过流保护、OVP过压
保护等情况,由于电源工作在II状态的时间一般来说很短,因此在此状态下器件的降额百分
元器件降额标准(参考)
![元器件降额标准(参考)](https://img.taocdn.com/s3/m/473d4abbf12d2af90342e67c.png)
(适用于ILD)
电流
(适用于ILD)
结温
设法降低
光纤探测器
PIN反向压降
结温
设法降低
光纤 与光 缆
温度
上限额定值—20;下限额定值+20
张力
光纤
耐拉试验的
光缆
拉伸额定值的
弯曲半径
最小允许值的
核辐射
按产品详细规范降额或加固
导线 与电 缆
最大应用电压
最大绝缘电压规定值的
最大应用电流(A)
线规Avg
线绕 电位 器
电压
功率
普通型
非密封功率型
—
—
微调线绕型
环境温度
按元件负荷特性曲线降额
热敏电阻器
功率
最高环境温度(C)
Tam-15
Tam-15
Tam-15
电容
器
固定玻璃釉型
直流工作电压
最高额定环境温度Tam(C)
Tam-10
Tam-10
Tam-10
直流工作电压
固定云母型
最高额定环境温度Tam(C)
Tam-10
输出电流
功率
最高结温(C)
80
95
105
数字电路
双极型电 路
频率
输出电流
最高结温(C)
85
100
115
MOS型电路
电源电压
输出电流
功率
最高结温(C)
85
100
115
混和集成电路
厚模集成电路(W/cm2)
薄模集成电路(W/cm2)
最高结温(C)
85
100
115
大规模集成电路
元器件降额标准(参考)
![元器件降额标准(参考)](https://img.taocdn.com/s3/m/ed5ca0a7f111f18582d05a73.png)
0.90
0.90
功率
0.80
0.80
0.90
最高结温(℃)
85
100
115
混和集成电路
厚模集成电路(W/cm2)
7.5
薄模集成电路(W/cm2)
6.5
最高结温(℃)
85
100
115
大规模集成电路
最高结温(℃)
改进散热方式降低结温
分离半导体器件
晶体管
方向
电压
一般晶体管
0.60
0.70
0.80
功率MOSFET的栅源电压
电压
0.60
0.70
0.80
电流
0.50
0.65
0.80
最高结温
Tjm(℃)
200
115
140
160
175
100
125
145
≤150
Tjm-65
Tjm-40
Tjm-20
固定电阻器
合成型电阻器
电压
0.75
0.75
0.75
功率
0.50
0.60
0.70
环境温度
按元件负荷特性曲线降额
薄膜型电阻器
电压
0.75
0.75
0.90
电感负载
电感额定电流的
0.50
0.75
0.90
电阻额定电流的
0.35
0.40
0.75
电机负载
电机额定电流的
0.50
0.75
0.90
电阻额定电流的
0.15
0.20
0.35
灯丝负载
灯泡额定电流的
0.50
元器件降额规范
![元器件降额规范](https://img.taocdn.com/s3/m/43ff3ccd04a1b0717fd5dd42.png)
页码第1/9页目录1 目的 (2)2 适用范围 (2)3 引用标准 (2)4 质量等级及工作状态定义 (2)4.1 质量等级 (2)4.2 工作状态 (2)5 各类器件降额度要求 (3)5.1 集成电路 (2)5.2 分立半导体器件 (4)5.3 固定电阻器、保险丝、热敏电阻 (5)5.4 电位器 (5)5.5 电容器 (6)5.6 磁性器件 (7)5.7 机电元件 (8)5.8 连接器、电缆 (8)5.9 风扇、PCB (9)6 应用说明 (9)6.1 半导体器件结温Tj 确定 (9)表目录表1 集成电路降额表 (3)表2 分立半导体降额表 (4)表3 固定电阻降额表 (5)表4 电位器降额表 (5)表5 电容器降额表 (6)表6 磁性器件降额表 (7)表7 机电元件降额表 (8)表8 连接器及电缆降额表 (8)图目录图1 电源工作状态示意图 (2)修订次修订内容修订日期制定审核核准A/0 初次发布2010-5-13陈超A/1 更新优化2011-5-17页码第2/9页1 目的为规范产品设计、验证过程中的对器件降额的要求,特制定本文件。
2 适用范围本规范适用于本公司产品设计中元器件的降额设计及作为元器件应力分析的判定依据。
3 引用标准GJB/Z35-93 元器件降额准则4 质量等级及工作状态定义4.1 质量等级A:免费维护期(保修期)为大于3 年。
B:免费维护期(保修期)为小于等于3 年。
注:默认情况下,本公司的LED电源质量等级为A级,消费类电源质量等级为B级,特别地,当客户有要求时,按客户的要求执行。
4.2 工作状态图1 电源工作状态示意图状态I:如图中的阴影部分,为电源的正常工作区,绝大部分时间电源工作在此区域,因此在此状态下,器件的降额使用更加严格。
工作在状态 I 的电源满足如下条件:(a)按操作手册或目录使用或安装。
(b)在输出额定电压变化范围内,输出功率在额定最小值到最大值间。
(c)输入在规定的电压和频率范围内。
元器件降额规范
![元器件降额规范](https://img.taocdn.com/s3/m/f773a5d933d4b14e84246803.png)
表1集成电路降额表.......................................................................3
表2分立半导体降额表......................................................................4
温度
Max-20℃
Max-20℃
Max-20℃
线绕电阻
电压
0.85
0.85
0.95
功率
精密型
0.8
0.8
0.9
功率型
0.8
0.8
0.9
温度
Max-20℃
Max-20℃
Max-20℃
保险丝
电压
0.85
0.85
0.95
电流
0.55
0.55
0.55
热敏电阻
电压
0.85
0.85
0.95
电流
0.85
0.85
0.95
电压
0.85
0.95
0.95
电流
0.85
0.95
0.95
最高结温,Tj
0.8
0.8
0.9
光电器件
电压
0.85
0.95
0.95
电流
光耦
0.85
0.95
0.95
发光二极管
0.65
0.85
0.85
最高结温Tj
0.8
0.9
0.9
注:Tj为器件最高允许结温
5.3固定电阻器、保险丝、热敏电阻
表3固定电阻降额表
元器件种类
100%(Ref.)
元器件降额标准(参考)
![元器件降额标准(参考)](https://img.taocdn.com/s3/m/334c75c8aa00b52acfc7ca96.png)
灯泡额定电流的
0.50
0.75
0.90
电阻额定电流的
0.07~0.08
0.10
0.15
触点电压
0.40
0.50
0.70
触点功率
0.40
0.50
0.70
连接器
工作电压
0.50
0.70
0.80
工作电流
0.50
0.70
0.80
最高接触对额定温度TM(℃)
TM-40
TM-20
TM-15
电机
最高工作温度(℃)
-
-
TAM-20
钽电解
直流工作电压
0.50
0.60
0.70
最高额定环境温度TAM(℃)
TAM-20
TAM-20
TAM-20
微调电容器
直流工作电压
0.30~0.40
0.50
0.50
最高额定环境温度TAM(℃)
TAM-10
TAM-10
TAM-10
电感元件
热点温度THS(℃)(简写T)
T-40~25
T-25~10
T-15~0
工作电流
0.60~0.70
0.60~0.70
0.60~0.70
瞬间电压/电流
0.9
0.9
0.9
介质耐压
0.5~0.6
0.5~0.6
0.5~0.6
扼流圈工作电压
0.7
0.7
0.7
继电器
连续触点电流
小功率负荷(<100mW)
不降额
电阻负载
0.50
0.75
0.90
电容负载(最大浪涌电流)
电子元件的降额(精)
![电子元件的降额(精)](https://img.taocdn.com/s3/m/1dcce0f1846a561252d380eb6294dd88d1d23d52.png)
电子元件的降额降额这种技术通常用于电力及电子设备中,它使这些设备在低于额定最大值的功耗下运行,它同时考虑到外壳/机体温度、环境温度,以及所采用的冷却机制类型。
在本文中,我们将简要阐述降额的理论背景,以及它的应用方法。
降额可增加零件设计极限与外加应力间的安全裕度,从而为零件提供额外的保护。
通过对电气或电子元件应用降额,可以降低它的退化速率。
结果可提高可靠性及寿命期望。
在直觉上,如果一个元件或系统在其设计极限下运行,则相比于运行应力等于或高于设计极限的情形,其将更为可靠。
从理论上讲,降额的益处可运用负载-强度干涉理论来阐述。
负载-强度干涉通常,失效发生于外加负载超过强度时。
负载与强度应通过一般方式来考虑。
对电子零件而言,“负载”可以指电压、功率,或是内部应力如结温。
“强度”可以指任何抵抗性的物理特性。
某一给定类型的电子元件并不相同。
它们具有强度可变性。
这种可变性源于原材料间及制造过程间的差异。
即使对于材料相同及制造过程相同的元件,仍然会因噪声因素而存在差异,这些因素有如微观材料缺陷,或是单一制造过程内的变动。
因此,元件的强度被视为随机变量。
施加于电子零件的负载如功率、温度或湿度,同样也是随机变量。
因此,人们通常运用统计分布来描述负载与强度。
可以运用两个因子,来分析负载与强度分布的干涉。
这两个因子为“安全裕度”(Safety Margin,SM)与“载荷粗糙度”(Loading Roughness,LR)。
[1]安全裕度的定义如下:其中L 与S 为负载与强度分布的平均值,σL 与σS 为负载与强度分布的标准差。
SM 是负载与强度平均值的相对间距。
载荷粗糙度可通过负载的标准差定义如下:图1-3 给出了三个示例,它们显示了安全裕度与载荷粗糙度间的不同关系。
图1 中的负载与强度分布是不重叠的,这显示的是高可靠性情境,其具有窄的分布、低的载荷粗糙度与高的安全裕度。
图1:具有大SM 与低LR 的不重叠负载与强度分布图2 显示了低的载荷粗糙度与低的安全裕度。
元器件降额准则
![元器件降额准则](https://img.taocdn.com/s3/m/66fb081ca300a6c30c229f96.png)
元器件降额准则一览表
![元器件降额准则一览表](https://img.taocdn.com/s3/m/0d11288ea45177232e60a224.png)
元器件降额准则一览表(总4页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
元器件降额准则一览表
二、晶体、晶振
对于大多数晶体而言,推荐的供电电源是不能进行降额的,因为这样可能会达不到其额定功率。
要参考正确的器件规格或制造商的资料。
对于工作温度,要保证晶体在最高的温度和最低的温度限制范围之内,这样才能保证得到正确的额定频率值。
最高工作温度需小于器件最高允许工作温度10度以上。
最低工作温度需大于器件最低允许工作温度10度以上。
对于恒温晶振,只需考虑机箱内晶振周围的空气温度小于晶振运行的最高工作环境温度10度,最低工作温度高10度。
*商业等级微电路的主要降额因素是温度。
元器件降额判定标准 (1)
![元器件降额判定标准 (1)](https://img.taocdn.com/s3/m/090a0f0ae87101f69e319558.png)
Forward Current 90% 90% 90% 90% 80%
备注
I2t 小于额定值的 80% 额定功率的 80%
温度应力: 类型
功率整流管 肖特基
快恢复二极管 整流桥 稳压管
3)电容: 电压应力:
类型 电解电容 钽电容 陶瓷电容 薄膜电容
A. 元器件降额判定标准
参见MET0001-2003 Component Derating Guidelines for High Reliability Power Assemblies
1)开关管: 电压应力:
类型
功率 MOS 管 功率双极型晶体管
IGBT Triac/SCR
V max. 带雪崩吸收
8)电源线和线材: 电流:低于额定值的 80% 电压:低于额定值的 70%
9)接插件: 电流:每 pin 低于额定值的 70% 对于并联的要分别测量每 pin 的电流
10)保险: 电流:I2t 应小于额定值的 50%(在最严酷的条件下)
6)磁性材料: 温度:Class F:不超过 130℃; Class B:不超过 110℃; Class A:不超过 90℃;
非晶态磁芯(Amorphous Choke):不超过 100℃; 铁粉磁芯(Iron powder core):不超过 90℃。
7)继电器和开关: 电流:低于额定电流的 80% 温度:低于额定工作温度 10℃
备注
备注 相应温度下的最大允许电流的 90%
备注
4)数字、线性 IC: Vcc 低于 85%的额定值 Tj 低于 80%的额定值
5)功率电阻: 类型
物理量 温度 功耗 电压
元器件降额准则一览表
![元器件降额准则一览表](https://img.taocdn.com/s3/m/462f23c90c22590102029d3f.png)
元器件降额准则一览表
二、晶体、晶振
对于大多数晶体而言,推荐的供电电源是不能进行降额的,因为这样可能会达不到其额定功率。
要参考正确的器件规格或制造商的资料。
对于工作温度,要保证晶体在最高的温度和最低的温度限制范围之内,这样才能保证得到正确的额定频率值。
最高工作温度需小于器件最高允许工作温度10度以上。
最低工作温度需大于器件最低允许工作温度10度以上。
对于恒温晶振,只需考虑机箱内晶振周围的空气温度小于晶振运行的最高工作环境温度10度,最低工作温度高10度。
*商业等级微电路的主要降额因素是温度。
元器件降额准则
![元器件降额准则](https://img.taocdn.com/s3/m/ed213e34580216fc700afdaa.png)
140
160
175
125
145
≤150
Tjm-40
Tjm-20
4.3
器件类型
降额参数
降额要求
II
III
可控硅
电压
0.70
0.80
电流
0.65
0.80
最高结温Tjm
(℃)
200
140
160
175
125
145
≤150
Tjm-40
Tjm-20
4.
器件类型
降额参数
降额要求
II
III
光电器件
电压
0.70
降额要求
II
III
保险丝
电流额定值
>0.5A
0.45~0.50
0.45~0.50
≤0.5A
0.20~0.40
0.20~0.40
T>25℃时,每增1℃增加的降额因子
0.005
0.005
九、继电器
器件类型
降额参数
降额要求
II
III
继电器
连
接
00mW)
不降额
不降额
电阻负载
0.75
0.90
0.90
最小线圈电压
1.10
1.10
线圈释放电压
最大允许值
1.10
1.10
最小允许值
0.90
0.90
最高额定环境温度(TAM)℃
TAM-20
TAM-20
振动限值
0.60
0.60
十、开关
器件类型
降额参数
降额要求
II
III
开关
连
GBZ35-93电子元器件降额的基本准则(doc 47页)
![GBZ35-93电子元器件降额的基本准则(doc 47页)](https://img.taocdn.com/s3/m/91d94ad5cc7931b764ce1561.png)
5.1.2应用指南
5.1.2.1所有为维持最低结温的措施都应考虑。可采取以下措施:
a.器件应在尽可能小的实用功率下工作;
b.为减少瞬态电流冲击应采用去耦电路;
c.当工作频率接近器件的额定频率时,功耗将会迅速增加,因此器件的实际工作频率应低于器件的额定频率;
应按设备可靠性要求、设计的成熟性、维修费用和难易程度、安全性要求,以及对设备重量和尺寸的限制因素,综合权衡确定其降额等级。在最佳降额范围内推荐采用三个降额等级。
a.Ⅰ级降额
Ⅰ级降额是最大的降额,对元器件使用可靠性的改善最大。超过它的更大降额,通常对元器件可靠性的提高有限,且可能使设备设计难以实现。
Ⅰ级降额适用于下述情况:设备的失效将导致人员伤亡或装备与保障设施的严重破坏;对设备有高可靠性要求,且采用新技术、新工艺的设计;由于费用和技术原因,设备失效后无法或不宜维修;系统对设备的尺寸、重量有苛刻的限制。
4.6元器件的质量水平
必须根据产品可靠性要求选用适合质量等级的元器件。不能用降额补偿的方法解决低质量元器件的使用问题。
5详细要求
5.1集成电路降额准则
5.1.1概述
集成电路分模拟电路和数字电路两类。根据其制造工艺的不同,可按双极型和MOS(CMOS)型,以及混合集成电路分类。
集成电路芯片的电路单元很小,在导体断面上的电流密度很大,因此在有源结点上可能有很高的温度。高结温是对集成电路破坏性最大的应力。集成电路降额的主要目的在于降低高温集中部分的温度,降低由于器件的缺陷而可能诱发失效的工作应力。延长器件的工作寿命。
Ⅰ
Ⅱ
战术导弹系统
Ⅰ
Ⅲ
飞机与舰船系统