小学六年级二元一次方程组期末常考题型教学提纲

合集下载

二元一次方程组综合练习教学提纲

二元一次方程组综合练习教学提纲

二元一次方程组综合练习二元一次方程组综合练习一.选择题(共13小题)1.方程组的解适合方程x+y=3,则k值为()A.2 B.﹣2 C.1 D.﹣2.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣33.方程组的解为,则方程组的解为()A.B.C.D.4.已知关于x,y的方程组的解是,则关于x,y的方程组的解是()A.B.C.D.5.甲乙两人同解方程时,甲正确解得,乙因为抄错c而得,则a+b+c的值是()A.7 B.8 C.9 D.106.关于x、y的方程组有正整数解,则正整数a为()A.1、2 B.2、5 C.1、5 D.1、2、57.若二元一次方程组的解x,y的和为0,则a的值为()A.1 B.2 C.3 D.﹣18.若y=kx+b中,当x=﹣1时,y=1;当x=2时,y=﹣2,则k与b为()A.B.C.D.9.利用加减消元法解方程组下列做法正确的是()A.要消去z,先将①+②,再将①×2+③B.要消去z,先将①+②,再将①×3﹣③C.要消去y,先将①﹣③×2,再将②﹣③ D.要消去y,先将①﹣②×2,再将②+③10.三元一次方程组消去一个未知数后,所得二元一次方程组是()A.B.C.D.11.有甲、乙、丙三种货物,若购甲3件、乙2件、丙1件,共需315元,若购甲1件,乙2件,丙3件共需285元,那么购甲、乙、丙各1件,共需()A.128元B.130元C.150元D.160元12.如果2x+3y﹣z=0,且x﹣2y+z=0,那么的值为()A.B.﹣C.D.﹣13.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A.4.5元B.5元C.6元D.6.5元二.解答题(共27小题)14.解方程组:(1).(2)(3).15.如果==,且x+y+z=18,求x,y,z的值.16.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?17.如图,欣欣食品加工厂与湖州、杭州两地有公路、铁路相连,该食品加工厂从湖州收购一批每吨2000元的枇杷运回工厂加工,制成每吨8000元的枇杷干运到杭州销售,已知公路运价为0.8元/(吨•千米),铁路运价为0.5元/(吨•千米),且这次运输共支出公路运输费960元,铁路运输费1900元.求:(1)该工厂从湖州购买了多少吨枇杷?制成运往杭州的枇杷干多少吨?(2)这批枇杷干的销售款比购买枇杷费用与运输费用的和多多少元?18.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?19.某农户2017年承包田地若干亩,投资64000元种草莓,今年预计产量8000千克,此种草莓在市场上每千克售a元,每天可以售出100千克,需要2人帮忙,每人每天支付工资150元,运费及其它费用每天100元;如果让游客进果园采摘,每天可以接待50人次,每人次可以采4千克,每千克售b元.为游客提供接待每天要花费2元/人次.(1)分别用a、b表示两种方式出售草莓每天的纯收入(纯收入是销售收入扣除人工工资、运费、接待费等剩下的收入)(2)若后种方式每天的纯收入是前种方式的4倍,而全部售完所获利润后种方式是前种方式的3倍,则a,b的定价分别是多少元?20.汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知以往甲、乙两种货车运货情况如表:第一次第二次甲种货车(辆) 2 5乙种货车(辆) 3 6累计运货(吨)13 28(1)甲、乙两种货车每辆可装多少吨货物?(2)若货主需要租用该公司的甲种货车8辆,乙种货车6辆,刚好运完这批货物,如按每吨付运费50元,则货主应付运费总额为多少元?(3)若货主共有20吨货,计划租用该公司的货车正好(每辆车都满载)把这批货运完,该汽车公司共有哪几种运货方案?21.云南地区地震发生后,全国人民抗旱救灾,众志成城.温州市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)400 500 600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,温州市政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?22.甲、乙两件服装的成本共500元,商店老板为获取利润,将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按定价的9折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元?23.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信:(水价计费=自来水销售费用+污水处理费用)自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下 a 0.80超过17吨不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元(1)求a、b的值;(2)6月份小王家用水32吨,应交水费多少元.24.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV汽车CS35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,购车人需要交纳车辆购置各种税费杂费路桥保险等为每台汽车价格的22%,问政策出台后的第一个月,政府对这l228台汽车用户共补贴了多少万元?客户实际需要花多少钱才能够买一辆自动型的CS35汽车?25.商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)求该商场购进甲、乙两种商品的件数;(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,本次经营活动获利为8160元,则乙种商品售价为每件多少元?26.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为多少.27.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.甲乙丙每辆汽车能装的数量(吨) 4 2 3每吨水果可获利润(千元) 5 7 4(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?28.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)400 500 600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?。

数学二元一次方程组知识点提纲

数学二元一次方程组知识点提纲

数学二元一次方程组知识点提纲(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!数学二元一次方程组知识点提纲数学思想方法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学生良好思维品质的催化剂。

小学六年级二元一次方程组期末常考题型

小学六年级二元一次方程组期末常考题型

教学目标
教学重点 教学难点 教学关键 教学过程: 、 教师讲解
二元一次方程组典型例题分析: 例 1、若方程 xa_2+y4_3b=1 是关于字母 x、y 的二元一次方程,则 a,b 的值是多少?
例 2、如果
x 1 是二元一次方程 kx-2y=0 的一组解,那么 k= y 2

例 3、二元一次方程 x+y=3 的自然数解有几对?
例 6、已知
x 3 x 2 和 都是方程 y-ax=b 的解,求 a,b 的值。 y 3 y 1
例 7、在式子 x2+px+q 中,当 x=-1 时,它的值是-5;当 x=3 时,它的值是 3,则 p、q 的值 是多少?
例 8、二元一次方程组
| x | 2 y 5 的解是 3 y | x | 6
例 12、已知 3ax+2b8-3y 和 9ay+1bx+1 是同类项,则 x+y=

例 13、如果(2x-5y+8)2+|x+3y-7|=0,那么 x=
,y=
Байду номын сангаас

例 14、如果关于 x 的方程 m(x-1)=2005-n(x-2)有无数个解,求 m、n 的值?
分析:对于一元一次方程 ax=b,当 a≠0 时,方程有唯一解;当 a=0 时,若 b≠0,则方程无解; 当 a=0 时,若 b=0,则方程有无数个解。
乙看错了②中的 b 得到方程组的解为
x 5 。若按正确的 a、b 计算,则原方程组的解是多少? y 4
(了解)例 11、已知关于 x、y 的方程组
5 x 7 y 2 ax by 1 和 的解相同,求 ax+by。 5ax 7by 31 x 5 y 6

小学六年级二元一次方程组期末常考题型

小学六年级二元一次方程组期末常考题型
教学课题 二元一次方程与二元一次方程组的解法与应用
1、 知道什么是二元一次方程 2、 学会用代入法和消元法解二元一次方程组 教学目标 3、 掌握二元一次方程组相对应的变式训练 4、 掌握二元一次方程组的应用 二元一次方程组的解法 教学重点 二元一次方程组的应用 有关二元一次方程组的变式训练 教学难点 二元一次方程租的应用

例 3、二元一次方程 x+y=3 的自然数解有几对?

4、解方程组
x 2
y x
7①, y 8.

分析:解方程组的方法主要有两种:一是代入法,二是加减法。解法如下:
解法一:代入法。
解法二:加减法。

5、如果二元一次方程组
ax by 1 3ax 2by
23
的解是
x
y
5 4
,求
a-b
的值。
y y
k2 2k 5
的解
x、y
是相反数,则
k
的值是多少?

10、已知方程组
ax 4x
5y by
15 ①
2
甲由于看错了方程①中的
a,得到方程组的解为
x
y
3 ; 1

乙看错了②中的
b
得到方程组的解为
x
y
5 4
。若按?
(了解)例
11、已知关于
x、y
分析:对于一元一次方程 ax=b,当 a≠0 时,方程有唯一解;当 a=0 时,若 b≠0,则方程无 解;当 a=0 时,若 b=0,则方程有无数个解。
作业 教学效果/ 课后反思

6、已知
x y
3 3

x
y
2 1

第八章 二元一次方程组-复习提纲

第八章 二元一次方程组-复习提纲

第八章 二元一次方程组【知识要点回顾】1、二元一次方程:⑴定义:含两个未知数且未知项的最高次数是 的方程。

即同时满足以下几个条件的方程就是二元一次方程:①含 未知数;②未知项的最高次数是 ;③分母不含 。

⑵使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的 ; 2、二元一次方程组:⑴同时满足以下条件的方程组就是二元一次方程组:①共含..两个未知数;②未知项的最高次数是 ;③分母不含 。

⑵同时使 方程都成立的未知数的值叫二元一次方程组的解。

无论是二元一次方程还是二元一次方程组的解都应该写成 的形式。

⑶二元一次方程组的解法:基本思路是 。

代入消元法:将一个方程变形,用一个未知数的式子表示 的形式,再 ,把二元消去一元,再求解一元一次方程。

主要步骤:变形—— 。

代入—— 。

求解——分别求出两个未知数的值。

写解——写出方程组的解。

(2)加减消元法:适用于相同未知数的系数有 的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为 后再用这两种方法去解。

变形—— 。

加减—— 。

求解——分别求出两个未知数的值。

写解——写出方程组的解。

⑷列方程解应用题的一般步骤是: ;关键是找出题目中的两个相等关系,列出方程组。

【练习题】1、下列方程中,是二元一次方程的有________(填序号)。

① 03=-x ② 25s t -=③ 853=-xy ④211=+y x ⑤123m n+= ⑥ 223a b a b += ⑦ 236x y -= ⑧ 259x x -= 2、下列方程组中,是二元一次方程组的有________(填序号)。

①32141x y y z -=⎧⎨=+⎩②3232a b a =⎧⎨-=⎩③32x y xy +=⎧⎨=⎩ ④1121a b a b ⎧+=⎪⎨⎪-=⎩⑤358s t s t ÷=÷⎧⎨-=⎩ ⑥08x y =⎧⎨=⎩3、在方程742=+y x 中,用含x 的代数式表示y ,则y =_____,用含y 的代数式表示x ,则x =______;4、用代入法解方程组233710x y x y -=-⎧⎨-=⎩ ① ②,较简便的解法步骤是:先把方程 变成 ,再代入方程 ,可消去未知数__,求得未知数 的值。

二元一次方程解决实际问题教学提纲

二元一次方程解决实际问题教学提纲

二元一次方程解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组)6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)行程问题:(2)工程问题;(3)销售中的盈亏问题;(4)储蓄问题;(5)产品配套问题;(6)增长率问题;(7)和差倍分问题;(8)数字问题; (9)浓度问题; (10)几何问题; (11)年龄问题;(12)优化方案问题;(13)分配问题(1)行程问题三个基本量的关系:路程s=速度v×时间t时间t=路程s÷速度V速度V=路程s÷时间t(2)三大类型:①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速= 2水速;顺速+ 逆速= 2船速顺水的路程= 逆水的路程甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

【变式】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

一列快车长168米,一列慢车长184米,如果两车相向而行,那么两车错车需4秒,如果同向而行,两车错车需16秒钟,求两车的速度(2)工程问题三个基本量的关系:工作总量=工作时间×工作效率;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间甲的工作量+乙的工作量=甲乙合作的工作总量,注:当工作总量未给出具体数量时,常设总工作量为“1”。

二元一次方程组教案提纲

二元一次方程组教案提纲

教师:_______学生:______时间:______年___月____日____________段一、授课目的与考点分析:目标:1 二元一次方程组的相关概念及解法2 掌握灵活运用代入消元法和加减消元法的基本思想,将“未知”转化为“已知”,把复杂的问题转化为简单问题的化归思想。

3 能应用二元一次方程组解决实际问题。

二、授课内容:二元一次方程组专题复习目标:1 二元一次方程组的相关概念及解法2 掌握灵活运用代入消元法和加减消元法的基本思想,将“未知”转化为“已知”,把复杂的问题转化为简单问题的化归思想。

3 能应用二元一次方程组解决实际问题。

重点:1 能根据题目灵活选择消元法来求解二元一次方程组。

2 探索用二元一次方程组解决有关的应用题。

难点:分析题目中蕴含的数量关系。

过程:一 知识结构图运用方程组解决实际问题的一般过程二元一次方程组的解法二元一次方程组二元一次方程丰富的问题情境二 具体知识点复习1.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.理解二元一次方程时特别强调注意:①二元一次方程左右两边的代数式必须是整式,②二元一次方程必须含有两个未知数。

2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解。

在任何一个二元一次方程中,如果把其中的一个未知数任取一个数,都可以通过方程求得与之对应的另一个未知数的值。

因此,任何一个二元一次方程都有无数解。

3. 二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.4.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 龙文教育个性化辅导教案提纲代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.5.解决实际问题的过程:(1)审:审题,分析题中已知什么,求什么,理顺各数量之间的关系;(2)设:设未知数(一般求什么,就设什么为x、y,设未知数要带好单位名称);(3)找:找出能够表示应用题全部意义的两个相等关系;(4)列:根据这两个相等关系列出需要的代数式,进而列出两个方程,组成方程组;(5)解:解所列方程组,得未知数的值;(6)答:检验所求未知数的值是否符合题意,写出答案(包括单位名称)。

完整版)二元一次方程组常考题型分类总结(超全面)

完整版)二元一次方程组常考题型分类总结(超全面)

完整版)二元一次方程组常考题型分类总结(超全面)二元一次方程组常见题型二元一次方程组是初中数学中的重要内容,常见的题型包括分配调运问题、行程问题、百分数问题、分配问题、浓度分配问题和金融分配问题等。

其中,分配调运问题是指在不同的地方分配人员或物品,需要根据条件求出各个地方的人数或物品数量。

例如,某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,需要求出到两个工厂的人数各是多少。

行程问题是指两个人或物体在不同的路程上移动,需要根据条件求出它们的速度或路程。

例如,甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

需要求出甲、乙的平均速度各是多少。

百分数问题是指在数量变化中涉及到百分数的计算,需要根据条件求出各个数量的值。

例如,某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,需要求出这个市现在的城镇人口与农村人口。

分配问题是指在已知总量和每份数量的情况下,需要求出总量或份数。

例如,某幼儿园分萍果,若每人3个,则剩2个;若每人4个,则有一个少1个,需要求出幼儿园有几个小朋友。

浓度分配问题是指在不同浓度的物质中混合,需要根据条件求出各个物质的数量或浓度。

例如,要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少。

金融分配问题是指在不同价格的商品中混合,需要根据条件求出各个商品的数量或价格。

例如,需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克。

几何分配问题)用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米。

可以列出以下两个方程:1、8x = 482、4y = 48解方程得到x = 6,y = 12,因此每块小长方形的长是6厘米,宽是12厘米。

六年级第二学期二元一次方程组解法与应用教案及课后练习

六年级第二学期二元一次方程组解法与应用教案及课后练习

致易教育个性化辅导教案、含有两个未知数的一次方程叫做二元一次方程。

、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

、二元一次方程的解有无数个,二元一次的解的全体叫做这个二元一次方程的解集。

、由几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

、在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解。

23、通过“代入”消去一个未知数,将方程式转化为一元一次方程,这种解法叫做代入消元法,简称代入法。

24、通过将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程,这种解法叫做加减消元法。

25、如果方程组中有三个未知数,且含有未知数的项的次数都是一次,这样的方程组叫做三元一次方程组。

26、列方程解应用题时要灵活选择未知数的个数。

对于含有两个未知数的应用题一般采用列二元一次方程组求解;对于含有三个未知数的应用题一般采用列三元一次方程组求解。

二、经典例题示范【学习本节应注意的问题】在复习解一元一次方程时,明确一元一次方程化简变形的原理,类比学习二元一次方程组、三元一次方程组的解法,同时在学习二元一次方程组、三元一次方程组的解法时,要认真体会消元转化的思想原理,在学习用方程组解决突际问题时,要积极探究,多多思考,正确设未知数,列出恰当的方程组,从而解决实际问题.例1. 用代人法解下列方程组例2. 用加减消元法解下列方程组.例6. 已知:方程组326x yax y+=⎧⎨-=⎩与31x by ax y-=⎧⎨-=⎩同解,求:ab的值。

例7. 已知方程组32121x y mx y m+=+⎧⎨+=-⎩,m为何值时,x y>?例8. 班委会花100元购买了笔记本和钢笔22件作为班级的奖品,如果每本笔记本的价格是2.5元,每支钢笔的价格是7元,那么班委会购买了多少本笔记本、多少支铅笔?例9.某船顺流下行36千米用3小时,逆流上行24千米3小时,求水流速度和船在静水中的速度。

二元一次方程(组)

二元一次方程(组)

课题二元一次方程(组)教学目标理解二元一次方程(组)的概念,掌握二元一次方程组、三元一次方程组的解法教学重难点重点:灵活运用加减消元法、代入消元法解二元一次方程组难点:学会运用二元一次方程组解决实际问题教学内容一、知识回顾1.概念(1)二元一次方程:含有两个未知数的一次(含未知数项的次数是1)方程叫做二元一次方程(2)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解(3)二元一次方程的解集:二元一次方程有无数个解,二元一次方程的解的全体,叫做这个二元一次方程的解集(4)方程组:由几个方程组成的一组方程叫做方程组(5)二元一次方程组:如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组(6)二元一次方程组的解:在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解2.二元一次方程组的解法:代入消元法加减消元法(1)核心思想:消元把二元一次方程转化为我们学过的一元一次方程,把未知转化为已知.(就是把我们不会的问题转化为已经学会的问题)(2)代入消元法:通过“代入”消去一个未知数,将方程组转化为一元一次方程,从而求出方程组的解。

解题步骤:1)将一个方程的一个未知数用另一个未知数的代数式来表示;2)将这个代数式代入另一个方程,从而转化为一元一次方程,达到消元的目的。

(3)加减消元法:将两个方程相加(或相减)消去一个未知数,将方程转化为一元一次方程,从而求出方程的解。

解题步骤:观察两个方程的两个未知数的系数:如1)如果有未知数的系数相等或相反数,那么两方程就相减或相加。

2)如果未知数的系数不相等,那么就先乘一个适当的数,使未知数的系数相等或相反,然后再相减或相加。

(4)检验:与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验很重要,花费时间很少,而且可以保证得分,何乐而不为呢?(5)注意:1)二元一次方程与二元一次方程组的解为二个未知数的值,不要漏掉任何一个哦2)二元一次方程组的解的个数可能为一个、可能没有、也可能有无限个二、习题巩固 11.判断下列哪些方程是二元一次方程:1)210xy y x 22)331x x 3)45xy 44)212yx25)1553y x 6)32x z-7)35x 8)2123a b9)2xy10)0.80.311xy2.判定下列说法是否正确:1)二元一次方程2x y 的解只有一个.( )2)11x y 是二元一次方程2xy的解. ()3)二元一次方程组22x y x y 有无数组解. ( )4)二元一次方程组22x y xy的解为2x . ()5)52x y是二元一次方程2axby的解,则4522a b . ()6)二元一次方程组32624x y x y有一个解. ( )3.选择与填空1) 下列方程组中,是二元一次方程组的是()A.228423119...23754624x y x y a b x B C D x y b c y x xy2) 下列各式,属于二元一次方程的个数有()①xy+2x -y=7;②4x+1=x -y ;③1x+y=5;④x=y ;⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1⑧y (y -1)=2y 2-y 2+xA .1B .2C .3D .43)方程y=1-x 与3x+2y=5的公共解是()A .3333...2422x x x x B C D yyyy4) 若二元一次方程123y x有正整数解,则x 的取值应为( ) A.正奇数B.正偶数C.正奇数或正偶数D.05) 若方程组ayx a y x 13313的解满足y x >0,则a 的取值范围是( )A.a <-1B.a <1C.a >-1D.a >16) 若33125m n xy是二元一次方程,则m=_________,n=___________.7)二元一次方程x+y=5的正整数解有______________.8)二元一次方程x+y=5的非负整数解有______________.9)已知2316x mxyy x ny是方程组的解,则m=_________,n=_________.10)如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足_______________.11) 当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)有相同的解,则a=__________.12)二元一次方程组437(1)3x ykx k y的解x ,y 的值相等,则k=__________.13)用加减消元法解方程组31421x y xy ,由①×2—②得 .14)定义运算“※”,规定x ※y =a 2x +by ,其中a 、b 为常数,且1※2=5,2※1=6,则2※3=_________.15)已知关于x ,y 的方程组ayxa y x 34321323其中1≤a ≤3,给出下列结论:①5152yx是方程组的解;②当a =2时,35xy;③当a =1时,方程组的解也是方程x –y =a 的解;④若x ≤1 , 则y 的取值范围是25y ≥.其中正确的是___________.(填序号)3.解二元一次方程211)3211x y x y37422)4x y xy13)230.20.3 1.4x yx y 7244)442x y y x5)方程组42235x y k x y的解x 与y 的值相等,求k 的值.6)在代数式21ax bx 中,当2x 和x =6时,代数式的值分别为5和7,求a 、b 的值.7)二元一次方程组213321x y x my的解也是二元一次方程417x y 的解,求m 的值.8)若方程组27x y a xy与3278x y cx y有相同的解,求a 、b 的值.9)已知22(325)(538)0x y x y ,求2x y 的值.10)已知2320x y z 且3531x y z,求x y z 的值.11)小明、小杰两人解关于x 、y 的方程组278ax by cx y,小明正确的解出32x y,小杰把c 抄错,解得22x y,求a 、b 、c 的值,并求出小杰抄错的c 的值.12)已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少?13)已知关于x 、y 的二元一次方程组myxm y x 22362的解满足二元一次方程453y x ,求m 的值.3、二元一次方程组的实际应用步骤:列二元一次方程组解应用题的一般步骤可概括为“审、找、设、列、解、验、答”7步,即:1) 审:通过审题,把实际问题抽象成数学问题,分析已知量和未知量;2) 找:找出能够表示题意两个相等关系;3) 设:根据等量关系设出未知数;4) 列:根据这两个相等关系列出必需的代数式,从而列出方程组;5) 解:解这个方程组,求出两个未知数的值;6) 检验:一是检验解的结果对不对,二是检验解的结果是否符合实际意义.7) 答:写出答案.这7步是列方程解应用题的万能步骤,包括以后学习到的运用分式方程、无理方程解应用题都是这7个步骤常考题型:1)、数字问题一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y yx x y 得14x y,因此所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.2)、利润问题一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y xy,解得200150x y,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.3)配套问题某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x 人生产螺栓,y 人生产螺母,则十位上的数个位上的数对应的两位数相等关系原两位数x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27每天可生产螺栓25x 个,螺母20y 个,依题意,得120502201x y x y ,解之,得20100x y.故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即ab甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:abc甲产品数乙产品数丙产品数.4)、行程问题在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则3120120x y xy,整理,得40120x y xy,解得8040x y,因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.5)、货运问题某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y,整理,得3003600x y xy,解得150150x y ,因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.6)、工程问题某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得41505200125y xy x ,解得337518x y.点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.习题巩固2.1) 小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意所列方程组正确的是() A.22056,2328x y xyB.20256,2328x y xyC.20228,2356x y x y D.2228,20356x y x y2) 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)3) 某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?4) 20.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润.5) 某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B 种奖品3件,共需95元. 求A、B两种奖品单价各是多少元?6) 某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满....这50间宿舍.(1)求大、小宿舍各有多少间?(2)如果大间每天每人50元,小间每天每人80元,那么该校要住3天共需多少元.7) 如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒的长度之和为220cm,则此时木桶中水的深度是多少?两根铁棒长度分别为多少?8) 某加工厂投资兴建2条全自动生产线和1条半自动生产线共需资金26万元,而投资兴建1条全自动生产线和3条半自动生产线共需资金28万元.(I)求每条全自动生产线和半自动生产线的成本各为多少万元?(II)据预测,2016年每条全自动生产线的毛利润为26万元,每条半自动生产线的毛利润为16万元.这一年,该加工厂共投资兴建10条生产线,若想获得不少于120万元的纯利润...,则2016年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润-成本)9) 某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳的单价的2倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.⑴两种跳绳的单价各是多少元?⑵若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问:学校有几种购买方案?。

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。

有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。

二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:代入消元法例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7 ∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elim ination by substitution),简称代入法。

加减消元法例:解方程组x+y=9①x-y=5②解:①+②2x=14 即x=7 把x=7带入①得7+y=9 解得y=-2∴x=7 y=-2 为方程组的解像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。

二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。

2022年上海六年级数学下学期同步教材满分攻略第09讲二元一次方程(组)及解法(练习版)

2022年上海六年级数学下学期同步教材满分攻略第09讲二元一次方程(组)及解法(练习版)

第09讲二元一次方程(组)及解法(核心考点讲与练)一.二元一次方程的定义(1)二元一次方程的定义含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.(2)二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.二.二元一次方程的解(1)定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(2)在二元一次方程中,任意给出一个未知数的值,总能求出另一个未知数的一个唯一确定的值,所以二元一次方程有无数解.(3)在求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.三.解二元一次方程二元一次方程有无数解.求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.四.二元一次方程组的定义(1)二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.(2)二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.五.二元一次方程组的解(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.六.解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.一.二元一次方程的定义(共2小题)1.(2021春•浦东新区期末)在下列方程中,属于二元一次方程的是()A.x2+y=3B.2x=y C.xy=2D.2x+y=z﹣1 2.(2021春•奉贤区期末)观察下列方程其中是二元一次方程是()A.5x﹣y=35B.xy=16C.2x2﹣1=0D.3z﹣2(z+1)=6二.二元一次方程的解(共2小题)3.(2021春•萧山区校级期中)下列四组数值是二元一次方程2x﹣y=6的解的是()A.B.C.D.4.(2021春•浦东新区校级期末)已知是方程2x﹣ky=5的解,那么k=.三.解二元一次方程(共2小题)5.(2021春•闵行区期末)将方程4x﹣3y=5变形为用含y的式子表示x,那么x=.6.(2021春•普陀区期末)将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是()A.y=B.y=C.x=2y﹣11D.x=11﹣2y四.二元一次方程组的定义(共2小题)7.(2021春•浦东新区期末)下列方程组中,属于二元一次方程组的是()A.B.C.D.8.(2021春•松江区期末)下列方程组中,属于二元一次方程组的是()A.B.C.D.五.二元一次方程组的解(共3小题)9.(2020春•恩平市期末)以为解的二元一次方程组是()A.B.C.D.10.(2021春•杨浦区期末)方程组的解的情况是()A.B.C.无解D.无数组解11.(2018春•宝山区期末)若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.六.解二元一次方程组(共7小题)12.(2021秋•普陀区校级月考)对于两个一元多项式(含字母x)来说,当未知数x任取同一个数值时,如果它们所得的值都是相等的,那么就称这两个一元多项式(含字母x)恒等.如:如果两个一元多项式x+2与ax+b(a、b是常数)是恒等的,那么a=1,b=2.请完成下列练习:(1)多项式ax4﹣1与bx2+cx+1具备什么条件时,这两个多项式恒等?(2)如果多项式(a+b)x3+3x2+1与1+x2+10x3恒等,试求a、b的值.13.(2021春•浦东新区校级期末)解方程组:.14.(2021春•浦东新区期末)定义一种新运算“⊕”,规定:x⊕y=ax+by,其中a,b为常数,已知1⊕2=7,2⊕(﹣1)=4,则a⊕b=.15.(2021春•闵行区期末)解方程组:.16.(2021春•闵行区期中)(1)解方程组:;(2)解方程组:.17.(2016春•浦东新区期末)已知m、n满足==2,求m、n的值.18.(2014春•闵行区期中)解方程组:.七.二元一次方程组的应用(共1小题)19.(2021秋•福田区校级期末)目前节能灯在城市已基本普及,某商场计划购进甲、乙两种型号的节能灯共600只,这两种型号的节能灯的进价、售价如表:进价(元/只)售价(元/只)甲型2530乙型4560(1)要使进货款恰好为23000元,甲、乙两种节能灯应各进多少只?(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?题组A 基础过关练一.选择题(共3小题)1.(2020春•普陀区期末)下列方程中,二元一次方程是( ) A .2x +1=0B .x 2+y =2C .2x ﹣y =1D .x ﹣y +z =12.(2020春•营山县期末)二元一次方程3x +2y =12的解可以是( ) A .B .C .D .3.(2021春•金山区期末)下列方程组中,是二元一次方程组的是( ) A .B .C .D .二.填空题(共10小题)4.(2021春•杨浦区期末)二元一次方程3x +y =8的正整数解是 .5.(2021春•上海期中)将方程2x +5y =7变形为用含y 的式子表示x ,那么x = . 6.(2020•奉贤区二模)二元一次方程x +2y =3的正整数解是 . 7.(2021•闵行区二模)二元一次方程组的解是 .8.(2021春•浦东新区期末)将x +2y =4变形成用含x 的式子表示y ,那么y = .9.(2021春•普陀区期末)使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果一个二元一次方程的解中两个未知数的绝对值相等,那么我们把这个解称做这个二元一次方程的等模解.二元一次方程2x ﹣5y =7的等模解是 .10.(2021春•松江区期末)在二元一次方程3x +y =12的解中,x 和y 是相反数的解是 . 11.(2021春•松江区期末)已知是方程2x +ay =7的一个解,那么a = .12.(2018春•杨浦区校级月考)已知关于x 、y 的二元一次方程(m +1)x +(m +2)y +3﹣2m =0,当m 每取一个值时就有一个方程,而这些方程有一个公共解,则这个公共解为 .分层提分13.(2021春•黄浦区校级月考)方程组的解是.三.解答题(共5小题)14.(2020春•普陀区期末)解方程组:.15.(2020春•浦东新区期末)解方程组:.16.(2018春•杨浦区校级月考)试求方程组的解.17.(2021春•浦东新区期末)解方程组:.18.(2021春•嘉定区期末)解方程组:.题组B 能力提升练一.选择题(共2小题)1.(2021春•萧山区期中)已知关于x,y的方程组,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为()A.B.C.D.2.(2015•下城区一模)已知方程组的解x为正数,y为非负数,给出下列结论:①﹣3<a≤1;②当时,x=y;③当a=﹣2时,方程组的解也是方程x+y=5+a的解;④若x≤1,则y≥2.其中正确的是()A.①②B.②③C.③④D.②③④二.填空题(共7小题)3.(2020春•普陀区期末)方程2x+y=3的正整数解是.4.(2019春•奉贤区期末)已知是方程2x+ky=1的一个解,那么k的值是.5.(2018春•普陀区期末)把方程x2+4xy﹣5y2=0化为两个二元一次方程,它们是和.6.(2017春•浦东新区期中)如果将方程4x﹣5y=15变形为用含有x的式子表示y,那么y =.7.(2017春•浦东新区校级月考)已知关于x、y的方程2x2m+y n﹣1=1是二元一次方程,那么mn =.8.(2016•浦东新区二模)定义运算“*”:规定x*y=ax+by(其中a、b为常数),若1*1=3,1*(﹣1)=1,则1*2=.9.(2021春•海淀区校级期末)已知方程组的解是,则方程组的解是.三.解答题(共5小题)10.(2019春•浦东新区期末)解方程组:.11.(2018春•浦东新区期末)解方程组:12.(2021春•金乡县期末)阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,6)哪个点为“爱心点”,并说明理由;(2)若点C(a,﹣8)也是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.13.(2021春•姑苏区期末)阅读以下内容:已知实数m,n满足m+n=5,且求k的值,三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值、乙同学:将原方程组中的两个方程相加,再求k的值丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题(2)试说明在关于x、y的方程组中,不论a取什么实数,x+y的值始终不变.14.(2018春•石阡县期中)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组,求x2+4y2与xy的值.。

二元一次方程组考点总结及练习附复习资料

二元一次方程组考点总结及练习附复习资料

二元一次方程组考点解析考点一二元一次方程(组)的解的概念【例1】已知2,1xy==⎧⎨⎩是二元一次方程组8,1mx nynx my+=-=⎧⎨⎩的解,则2m-n的算术平方根为( )A.4B.2D.±2【解析】把2,1xy==⎧⎨⎩代入方程组8,1mx nynx my+=-=⎧⎨⎩得28,2 1.m nn m+=-=⎧⎨⎩解得3,2.mn==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.变式练习1.若方程组,ax y bx by a+=-=⎧⎨⎩的解是1,1.xy==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】解方程组:1 28. x yx y=++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2. xy==⎧⎨⎩方法二:1, 28. x yx y=++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2. 所以原方程组的解为3,2. xy==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.变式练习2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________. 3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.变式练习4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.变式练习5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x yy z+=-+=⎧⎨⎩B.53323x yy x-==+⎧⎨⎩C.512x yxy-==⎧⎨⎩D.2371x yx y-=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x yx y-=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h可追上乙;若相向而行,1 h相遇,A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.(2014·抚州)已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( )A.8B.4C.-4D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222x y z ===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a 、b12.已知2,1x y ==⎧⎨⎩是二元一次方程组7,1mx ny nx my +=-=⎧⎨⎩的解,则m+3n 的立方根为__________.13.孔明同学在解方程组,2y kx b y x =+=-⎧⎨⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,x y =-=⎧⎨⎩又已知3k+b=1,则b 的正确值应该是__________. 14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x y x y +=-⎧=⎨⎩,①;② (2)1151.x y z y z x z x y +-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩ 整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.214 34 15.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得15x y +=⎧⎨,解得5x =⎧⎨,答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

二元一次方程提纲

二元一次方程提纲

二元一次方程知识点一:二元一次方程的条件(1)两个未知数;(2)整式方程;(3)未知项的次数为“1”;(4)化为一般式:(其中a ≠0,且b ≠0.)(5)判定一个方程是否是二元一次方程,先要对方程进行整理,再依据定义进行判断知识点二:二元一次方程的解(1)二元一次方程的解是一对数值;(2)已知二元一次方程的解,就能代入二元一次方程中求出另一个未知数的值。

(3)每一个二元一次方程都有无数个解.但整数解的有限的。

⑷ 每个二元一次方程通过变形能转化成一次函数,要求学生会用含一个未知数的整式来表示另一个未知数. 知识点三:二元一次方程组(1)它的一般形式为 (其中a 1与b 1,a 2与b 2不同时为零). (2)已知二元一次方程组的解就能代入方程组. (3)二元一次方程组的解是唯一的。

知识点四:二元一次方程组的解法 1.用代入消元法解题时,要注意强调: (1)首先从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的式子表示出来;(2)然后将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;(4)将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值; (5)把求得的x ,y 的值用“大括号”联立起来,就是方程组的解. 2.用加减消元法解二元一次方程组时应注意以下几点:(1)如果两个方程的系数相同用减法;如果系数互为相反数用加法,可以消去一个未知数. (2)如果两个方程的系数不同,可用最小公倍数转化成相同或相反,然后再将两个方程两边分别相加或相减,就可消去这个未知数。

(3)当方程组中两个未知数的系数为分数时,要每项都乘其分母的最小公倍数,转化成系数为整数的二元一次方程组,然后再用上述加减消元求解. ⑷整体代入法、换元法3.解二元一次方程组常见的错误(1)求解不完整,只求出一个未知数的值就以为解完了; (2)将两个方程相减时容易弄错符号;(3)方程两边同乘以一个不等于零的数时,容易出现漏乘的项 知识点五;三元一次方程组的解法解三元一次方程组可类比解二元一次方程组的代入法和加减法,关键是“消元”,把“三元”变为“二元”再变为“一元”以求解. 知识点六:二元一次方程应用题 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是找等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数值要相等. 2.列二元一次方程组解应用题的一般步骤:111222a x b y c a x b y c +=⎧⎨+=⎩设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组)解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.3.二元一次方程组应用题种类:⑴. 和差倍分问题甲乙丙三个工厂共同筹办一所厂校,所出经费不同,其中甲厂出总数的2/7,乙厂出甲丙两厂和的1/2,已知丙厂出了16000元,问这所厂校总经费是多少?甲乙两厂各出多少?⑵.产品配套问题某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(一张方桌有一个桌面,4条桌腿)⑶.盈不足问题某校为七年级学生安排宿舍,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住4人,且空两间宿舍,求该年级寄宿生人数及宿舍间数.⑷. 行程问题已知一铁路桥长1000m,现有一列火车从桥上通过,测得从火车开始上桥到车身过完共用1min,整列火车完全在桥上的时间为40s,求火车的速度及火车的长度.⑸. 工程问题一项工程,甲队独做要12天完成,乙队独做要15天完成,丙队独做要20天完成.按原定计划,这项要求在7天内完成,现在甲乙两队先合作若干天,以后为加快速度,丙队也同时加入了这项工作,这样比原定时间提前一天完成任务.问甲乙两队合作了多少天?丙队加入后又做了多少天?⑹. 年龄问题甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将是61岁”.问甲乙现在各多少岁?⑺. 数字问题已知一个两位数,它的十位上的数字与各位上的数字和是 3. 若颠倒个位与十位数字的位置,得到的新数比原数小9,求这个两位数⑻. 几何问题有两个长方形,第一个长方形的长与宽之比为5:4,第二个长方形的长与宽之比为3:2,第一个长方形的周长比第二个长方形的周长大112,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.⑼. 劳力调配问题甲组有37人,已组有23人,现在要从甲乙两组调出相同数量的人去做其他工作,使甲组剩下人数为乙组剩下人数的2倍,问需要从甲乙两组各调出多少人?⑽.增长率问题甲乙两厂计划在上月共生产机床360台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产了机床400台.问:上月两个厂个超额生产了机床多少台?⑾.利率问题李宏用甲乙两种形式分别储蓄2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元.已知这两种储蓄的年利率的和为3.24. 问:这两种储蓄的年利率各是百分之几?⑿.利润问题王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%, 乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗? ⒀. 方案选择已知某电脑公司有A 型B 型C 型三种型号的电脑,其价格分别为A 型每台6000元,B 型每台4000元,C 型每台2500元.我市东坡中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.⒁. 实际生活中的不定方程组学校用一笔钱买奖品,若以1枝钢笔和2个笔记本为一份奖品,则可买60份奖品;若以1枝钢笔和3个笔记本为一份奖品,则可买50份奖品,问这笔钱用来全部买钢笔或笔记本,可各买多少?某糖果店新进60kg 散装奶糖,为了获得更多利润,商店决定将其包装后再出售.现有3kg 装和2kg 装两种包装盒,每只包装盒成本分别为0.8元和0.6元.(1)若全部用3kg 装,共需包装盒成本___元;若全部用2kg 装,共需包装盒成本___元;(2)若考虑到顾客要求,商店要求2kg 的奶糖数量不少于20kg ,则怎样设计包装方案,才能使包装盒成本最省?最省的成本是多少元? 1.(杭州07)三个同学对问题“若方程组 的解是x = 3 y = 4,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 2.(常州07)学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖: 1盒福娃和1枚徽章二等奖: 1盒福娃 三等奖: 1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?111222a xb yc a x b y c +=⎧⎨+=⎩111222a x b y c a x b y c +=⎧⎨+=⎩(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?星期天,七年级1、2两班部分同学相约去某公园玩碰碰车或划船.已知玩碰碰车的同学每人租用一辆车,划船的同学每4人合租一条船,两班各花了115元.活动人数如下表:试求碰碰车每辆车租金多少元;游船每条船租金多少元.某中学准备改造面积为的旧操场,现有甲、乙两个工程队都想承建这项工程.经协商后得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队每天比甲工程队多改造;甲工程队每天所需费用160元,乙工程队每天所需费用200元.(1)求甲乙两个工程队每天各改造操场多少平方米?(2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校负担他每天25元的生活补助费,现有以下三种方案供选择.第一种方案:由甲单独改造;第二种方案:由乙单独改造;第三种方案:由甲、乙一起同时进行改造;你认为哪一种方案既省时又省钱?试比较说明.二元一次方程组单元测验一、填空题1.在24y x =-中,如果 1.5x =,那么y = ;如果y =2,那么x = .2.在434-=x y 中,若3-=x ,则______=y ,若0=y ,则______=x 3.已知x=1,y=-3是方程3x-my=1的解,则m= 4.方程22137m n xy ---=是关于x 、y 的二元一次方程,则m = ,n = 。

二元一次方程组复习提纲

二元一次方程组复习提纲

二元一次方程组复习提纲一、二元一次方程组解法强调内容:1、加减法、代入法两种方法必须完全掌握。

2、会将带括号及分母化为最简后再解题。

相关类型题:书P103.2(3)(4)3(3)(4)5(1)(2)P108.1 (1)(2)P118.2 (3) (4)3(1)(2)市质检:P83 A 6(3)(4)P93 13 (2)(3)P95 11 (1)(2)二、利用二元一次方程组解应用题1、分配问题:相关公式:甲总量+乙总量=全部总量单位产量×数量=总产量相关习题:书P97 例2 P102 3P105 探究1 P103 4 6P94 练习 P95 4P99 3 P104 8P108 4 5 7 9 P118 5P119 7 82、复杂分配问题:相关习题:书P101 例43、行程问题:相关公式:时间×速度=路程逆流公式:船速-水速=逆流速度顺流公式:船速+水速=顺流速度相遇问题:速度和×时间=总路程追击问题:速度差×时间=相距路程相关习题:书P99 4 P102 2P103 7 P108 2 3 6P118 64、图形问题:相关公式:1、各种面积公式2、单位面积内产量×面积=总产量相关习题:书 P106 探究2P104 95、经济问题:相关公式:1、单价×重量=总价2、进价×(1+利润率)=售价3、进价×(1-亏损率)=售价4、进价+利润=售价5、利润÷进价×100%=利润率相关习题:书 P108 8十一周周检测卷子 66、其它问题书 P119 97、综合问题:书 P106 探究3三、利用二元一次方程组及一元一次方程解法解其它问题:相关习题:市质检:P80 B 3P81 A 2 4 5P83 A 5 B 4P94-P95 8 12。

2012年K六(下)数学第六章二元一次方程组复习课教案

2012年K六(下)数学第六章二元一次方程组复习课教案

10.6 年前,A 的年龄是 B 的年龄的 3 倍,现在 A 的年龄是 B 的年龄的 2 倍,则 A 现在的年龄是 ( ) A.12 岁 B.18 岁 C.24 岁 D.30 岁 二、填空题 11.在 3x-2y=5 中,若 y=-2,则 x=_______. 12.由 4x-3y+6=0,可以得到用 y 表示 x 的式子为_______. 13.若 14.已知 x=1, y=2 是方程 3mx-2y-1=0 的解,则 m=________. x=2, 是二元一次方程组 y=1
同解法 1 可求得原方程组的解为 解法 3:由②+③-①,得 3y=6,所以 y=2. 把 y=2 分别代入①和③,得 x=1, y=2, z=3. 3x+z=6, 2x-z=-1, 解得
所以原方程组的解为
【解题策略】消元是解方程组的基本思想,是将复杂问题简单化的一种化归思想,其目的 消元 是将多元的方程组逐步转化为一元的方程,即三元 转化 二元 转化 消元 一元.
一、知识性专题 专题 1 运用某些概念列方程求解 【专题解读】在学习过程中,我们常常会遇到二元一次方程的未知数的指数是一个字母或关于字母 的代数式,让我们求字母的值,这时巧用定义,可简便地解决这类问题
例 1 若3x
2 a b 1
5y
a 2 b 1
=0,是关于 x,y 的二元一次方程,则 a=_______,b=_______.
安博教育网址: / -5/8上海安博京翰教育研究院
安博京翰教育
3
成就孩子未来
Ambow guides kids to own a brilliant future
A.B. C.
4 3 4 4 3 4 3
D.-

著名机构数学教案讲义六年级春季班第7课时 二元一次方程组(教师版)

著名机构数学教案讲义六年级春季班第7课时 二元一次方程组(教师版)

二元一次方程(组)知识精要一、二元一次方程的概念1、二元一次方程:含有两个未知数,并且未知数的次数是一次的方程叫做二元一次方程。

2、二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值叫做二元一次方程的解。

3、二元一次方程的解集:二元一次方程的解有无数个,二元一次方程的解的全体叫做二元一次方程的解集。

4、二元一次方程组:如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

5、二元一次方程组的解:在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解。

二、方程组的解法1、代入消元法:(1)求表示式:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用另一个未知数的式子表示出来(2)代入消元:将所得的式子代入另一个方程中,消去一个未知数,得到一个一元一次方程。

(3)求解方程:解得到的一元一次方程(4)回代得解:把求得的一个未知数的值代入先前的表示式,得到另一个未知数的值,从而得到方程组的解。

2、加减消元法:(1)变换系数:方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等(即绝对值不相等),就用适当的数去乘某一个或两个方程的两边,使这个未知数的系数互为相反数或相等(即绝对值相等)(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个以另一个未知数为未知数的一元一次方程。

(3)求解方程:(4)回代得解:热身练习1、下列各式:21(1)233;(2)0;(3)4;3x y x y x y -=-=-= 1(4);2xy = 1(5)32;(6)1;(7)6;(8)523x y y x y z x y x y x++=++=-=- 属于二元一次方程的是______(1)(3)(8)_________2、若4x-5y=0,x≠0,且y≠0,求125125x y x y-+的值。

解:由4x-5y=0得4x=5y ,12x=15y125125x y x y -+=212010515515==+-y y y y y y3、已知2(321)20x y x y -++--=,求x ,y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结合一元一次方程的解法,掌握吧二元一次方程转化成一元一次方程进行解答
教学过程:、
教师讲解
二元一次方程组典型例题分析:
例1、若方程xa_2+y4_3b=1是关于字母x、y的二元一次方程,则a,b的值是多少?
例2、如果 是二元一次方程kx-2y=0的一组解,那么k=。
例3、二元一次方程x+y=3的自然数解有几对?
例8、二元一次方程组 的解是。
例9、方程组 的解x、y是相反数,则k的值是多少?


例10、已知方程组 甲由于看错了方程①中的a,得到方程组的解为 ;乙看错了②中的b得到方程组的解为 。若按正确的a、b计算,则原方程组的解是多少?
(了解)例11、已知关于x、y的方程组 和 的解相同,求ax+by。
分析:因为x、y的两个方程组同解。因此可得这四个方程同解。将不含字母的方程联立得: ,解这个方程组得 。将其余两个方程联立得: 。再将 代入得 ,解这个方程组得 。因此ax+by=2+3=5。


例4、解方程组
分析:解方程组的方法主要有两种:一是代入法,二是加减法。解法如下:
解法一:代入法。
解法二:加减法。
例5、如果二元一次方程组 的解是 ,求a-b的值。
例6、已知 和 都是方程y-ax=b的解,求a,b的值。
例7、在式子x2+px+q中,当x=-1时,它的值是-5;当x=3时,它的值是3,则p、q的值是多少?
例12、已知3ax+2b8-3y和9ay+1bx+1是同类项,则x+y=。
例13、如果(2x-5y+8)2+|x+3y-7|=0,那么x=,y=。
例14、如果关于x的方程m(x-1)=2005-n(x-2)有无数个解,求m、n的值?
分析:对于一元一次方程ax=b,当a≠0时,方程有唯一解;当a=0时,若b≠0,则方程无解;当a=0时,若b=0,则方程有无数个解。
作业
教学效果/
课后反思
教学课题
二元一次方程与二元一次方程组的解法与应用
教学目标
1、知道什么是二元一次方程
2、学会用代入法和消元法解二元一次方程组
3、掌握二元一次方程组相对应的变式训练
4、掌握二元一次方程组的应用
教学重点
二元一次方程组的解法
二元一次方程组的应用教学难点Leabharlann 有关二元一次方程组的变式训练
二元一次方程租的应用
教学关键
相关文档
最新文档