2019-2020学年重庆实验外国语学校七年级(上)期中数学试卷(含解析)

合集下载

重庆实验学校七年级(上)期中考试数学试卷(解析版)

重庆实验学校七年级(上)期中考试数学试卷(解析版)

重庆实验学校七年级(上)期中考试数学试卷一、选择题(每小题4分,共48分)1.相反数是( )A.﹣B.2C.﹣2D.2.下面不是同类项的是( )A.﹣2与12B.2m与2nC.﹣2a2b与a2b D.﹣x2y2与12x2y23.x2y3﹣3xy2﹣2次数和项数分别是( )A.5,3B.5,2C.2,3D.3,34.重庆直辖十年以来,全市投入环保资金约3 730 000万元,那么3 730 000万元用科学记数法表示为( )A.37.3×105万元B.3.73×106万元C.0.373×107万元D.373×104万元5.下列各式中,运算正确的是( )A.6m﹣5m=1B.n2+n2=n4C.3a2+2a3=5a5D.3x2y﹣4yx2=﹣x2y6.已知a与b互为相反数,c和d互为倒数,|m|=3,则=( )A.4B.﹣2C.4或2D.4或﹣27.若多项式(k+1)x2﹣3x+1中不含x2项,则k的值为( )A.0B.1C.﹣1D.不确定8.下列图形都是由同样大小的圆按照一定规律摆放而成,其中第①个图形有5个小圆,第②个图形有9个小圆,第③个图形有13个小圆,…,按此规律排列,则第10个图形中小圆的个数为( )A.37B.40C.41D.429.若a=﹣2×32,b=(﹣2×3)2,c=﹣(2×3)2,则下列大小关系中正确的是( )A.a>b>c B.b>c>a C.b>a>c D.c>a>b10.已知|x|=3,|y|=7且xy<0,则x+y=( )A.4B.10C.±4D.±1011.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是( )A.4B.5C.7D.不能确定12.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是( )A.a+c B.c﹣a C.﹣a﹣c D.a+2b﹣c二、填空题(每小题4分,共24分)13.﹣的倒数是 .14.甲数x的与乙数y的的差可以表示为 .15.比较大小: .16.若﹣4x m y3与2y n x2是同类项,则m﹣n= .17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+= (直接写出答案).18.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:①x5=1;②x4=x10;③x103<x104;④x2007<x2008,⑤x2009=401,其中正确的结论有 .三、计算(每题8分,共16分)19.(1)﹣14÷(﹣5)2×(﹣)(2)|﹣2|÷(﹣)2+(﹣+)×(﹣48).20.合并同类项(1)x3﹣2x2﹣x3﹣5+5x2+4;(2)2(a2b﹣3ab2)﹣3(2ab2﹣a2b).四、解答题(每小题10分,共40分)21.先化简,再求值:﹣2(x2﹣3y)﹣[x2﹣3(2x2﹣3y)],其中x和y满足(x+1)2+|y+2|=0.22.已知多项式A,B,其中A=x2﹣2x+1,小马在计算A+B时,由于粗心把A+B看成了A﹣B求得结果为﹣3x2﹣2x﹣1,请你帮小马算出A+B的正确结果.23.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?24.若任意数a、b有这样运算规律:1⊗2=22﹣1×2,3⊗4=42﹣3×4.(1)则﹣2⊗3= ;﹣3⊗(﹣5)= ;(2)根据上述题,试用字母a、b表示其规律;(3)若[x]表示不大于x的最大整数,如:[﹣2.2]=﹣3,[5.8]=5,则求:[﹣π]⊗[4.1].五、解答题(25小题10分,26小题12分,共22分)25.“囧”(jiong)是最近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示右图中“囧”的面积;(2)若|x﹣8|+(y﹣4)2=0时,求此时“囧”的面积.26.某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):月用水量(吨)水价(元/吨)第一级20吨以下(含20吨) 1.6第二级20吨﹣30吨(含30吨) 2.4第三级30吨以上 3.2例:某用户的月用水量为32吨,按三级计量应缴交水费为:1.6×20+2.4×10+3.2×2=62.4(元)(1)如果甲用户的月用水量为12吨,则甲需缴交的水费为 元;(2)如果乙用户缴交的水费为39.2元,则乙月用水量 吨;(3)如果丙用户的月用水量为a吨,则丙用户该月应缴交水费多少元?(用含a的代数式表示,并化简)参考答案与试题解析一、选择题(每小题4分,共48分)1.相反数是( )A.﹣B.2C.﹣2D.【分析】一个数的相反数就是在这个数前面添上“﹣”号.的相反数是﹣.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下面不是同类项的是( )A.﹣2与12B.2m与2nC.﹣2a2b与a2b D.﹣x2y2与12x2y2【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,结合选项即可得出答案.【解答】解:A、是两个常数项,故是同类项;B、所含字母不同,故不是同类项;C、符合同类项的定义,故是同类项;D、符合同类项的定义,故是同类项.故选:B.【点评】此题考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,难度一般.3.x2y3﹣3xy2﹣2次数和项数分别是( )A.5,3B.5,2C.2,3D.3,3【分析】利用多项式的定义求解即可.【解答】解:x2y3﹣3xy2﹣2次数和项数分别是5,3.故选:A.【点评】本题主要考查了多项式,解题的关键是熟记多项式的定义.4.重庆直辖十年以来,全市投入环保资金约3 730 000万元,那么3 730 000万元用科学记数法表示为( )A.37.3×105万元B.3.73×106万元C.0.373×107万元D.373×104万元【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3 730 000=3.73×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列各式中,运算正确的是( )A.6m﹣5m=1B.n2+n2=n4C.3a2+2a3=5a5D.3x2y﹣4yx2=﹣x2y【分析】合并同类项,系数相加字母和字母的指数不变.【解答】解:A、6m﹣5m=m.系数相减,字母和字母的指数不变.故本选项错误;B、n2+n2=2n2.系数相减,字母和字母的指数不变.故本选项错误;C、3a2与2a3不是同类项,不能合并.故本选项错误;D、3x2y﹣4yx2=﹣x2y,系数相减,字母和字母的指数不变.故本选项正确;故选:D.【点评】本题考查了合并同类项.“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.6.已知a与b互为相反数,c和d互为倒数,|m|=3,则=( )A.4B.﹣2C.4或2D.4或﹣2【分析】利用相反数,倒数,以及绝对值的定义求出a+b,cd,m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=3或﹣3,当m=3时,原式=0+1+3=4;当m=﹣3时,原式=0+1﹣3=﹣2,故选:D.【点评】此题考查了代数式求值,绝对值,相反数,倒数,熟练掌握运算法则是解本题的关键.7.若多项式(k+1)x2﹣3x+1中不含x2项,则k的值为( )A.0B.1C.﹣1D.不确定【分析】直接利用多项式(k+1)x2﹣3x+1中不含x2项,即k+1=0,进而得出答案.【解答】解:∵多项式(k+1)x2﹣3x+1中不含x2项,∴k+1=0,解得:k=﹣1,则k的值为:﹣1.故选:C.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.8.下列图形都是由同样大小的圆按照一定规律摆放而成,其中第①个图形有5个小圆,第②个图形有9个小圆,第③个图形有13个小圆,…,按此规律排列,则第10个图形中小圆的个数为( )A.37B.40C.41D.42【分析】由图形可知:第①个图形有5个小圆,第②个图形有5+4=9个小圆,第③个图形有5+4+4=13个小圆,…,由此得出第n个图形中小圆的个数为5+4(n﹣1)=4n+1,由此进一步代入求得答案即可.【解答】解:∵第①个图形有5个小圆,第②个图形有5+4=9个小圆,第③个图形有5+4+4=13个小圆,…,∴第n个图形中小圆的个数为5+4(n﹣1)=4n+1,∴第10个图形中小圆的个数为4×10+1=41.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.9.若a=﹣2×32,b=(﹣2×3)2,c=﹣(2×3)2,则下列大小关系中正确的是( )A.a>b>c B.b>c>a C.b>a>c D.c>a>b【分析】分别计算出各数,再根据有理数比较大小的法则进行比较即可.【解答】解:∵a=﹣2×32=﹣2×9=﹣18,b=(﹣2×3)2=36,c=﹣(2×3)2=﹣36,又∵36>﹣18>﹣36,∴b>a>c.故选:C.【点评】本题考查的是有理数的乘方及有理数比较大小的法则,比较简单.10.已知|x|=3,|y|=7且xy<0,则x+y=( )A.4B.10C.±4D.±10【分析】先根据绝对值的性质可求出x,y的值,再根据xy<0可判断出x,y只能异号,即可求解.【解答】解:因为|x|=3,|y|=7,所以x=±3,y=±7,又xy<0,所以x,y只能异号,当x=3,y=﹣7时,x+y=﹣4;当x=﹣3,y=7时,x+y=4.故选:C.【点评】解答此题的关键是熟知绝对值具有非负性,绝对值是正数的数有两个,且互为相反数.11.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是( )A.4B.5C.7D.不能确定【分析】先根据已知条件易求x+2y的值,再将所求代数式提取公因数2,最后把x+2y的值代入计算即可.【解答】解:根据题意得x+2y+1=3,∴x+2y=2,那么2x+4y+1=2(x+2y)+1=2×2+1=5.故选:B.【点评】本题考查了代数式求值,解题的关键是整体代入.12.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是( )A.a+c B.c﹣a C.﹣a﹣c D.a+2b﹣c【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【解答】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为:a+c.故选:A.【点评】本题主要考查了实数与数轴的对应关系、整式的加减法则及数形结合的方法,难度适中.二、填空题(每小题4分,共24分)13.﹣的倒数是 ﹣ .【分析】根据倒数的定义即可解答.【解答】解:(﹣)×(﹣)=1,所以﹣的倒数是﹣.故答案为:﹣.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.甲数x的与乙数y的的差可以表示为 x﹣y .【分析】被减式为x的,减式为y的,让它们相减即可.【解答】解:所求的关系式为:x﹣y.【点评】求两个式子的差的关键是找到被减式和减式.15.比较大小: < .【分析】先比较出两个数的绝对值,再根据两个负数比较,绝对值大的反而小,即可得出答案.【解答】解:∵>,∴<.故答案为:<.【点评】此题考查了有理数的大小比较,掌握两个负数比较大小的方法即两个负数比较,绝对值大的反而小是本题的关键.16.若﹣4x m y3与2y n x2是同类项,则m﹣n= ﹣1 .【分析】根据同类项(所含字母相同,相同字母的指数相同的单项式叫同类项)的概念可得:m =2,n=3,再代入m﹣n即可.【解答】解:根据同类项的概念,得m=2,n=3.所以m﹣n=2﹣3=﹣1.故答案为:﹣1.【点评】此题考查了同类项的概念:所含字母相同,相同字母的指数相同的单项式叫同类项.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+= 0 (直接写出答案).【分析】根据题中的新定义化简,计算即可得到结果.【解答】解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.【点评】此题考查了有理数的加减混合运算,弄清题中的新定义是解本题的关键.18.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:①x5=1;②x4=x10;③x103<x104;④x2007<x2008,⑤x2009=401,其中正确的结论有 ①②④ .【分析】机器人没5秒完成一个循环,每个循环前进一个单位长度,逐个检验求解.【解答】解:x1=1,x2=2,x3=3,x4=3﹣1=2,x5=3﹣2=1,机器人没5秒完成一个循环,每个循环前进一个单位长度.所以①②正确;③x103=20+3=23,x104=20+2=22,故③错误;④x2007=401+2=403,x2008=401+3=404,故④正确;⑤x2009=401+2=403,故⑤错误,故答案为:①②④.【点评】此题主要考查了数轴上点对应数字的规律探索,弄清题中的基本循环规律是解本题的关键.三、计算(每题8分,共16分)19.(1)﹣14÷(﹣5)2×(﹣)(2)|﹣2|÷(﹣)2+(﹣+)×(﹣48).【分析】(1)根据有理数的乘方和有理数的乘除法可以解答本题;(2)根据乘法分配律和有理数的加减法可以解答本题.【解答】解:(1)﹣14÷(﹣5)2×(﹣)=﹣1÷25×(﹣)=﹣1××(﹣)=;(2)|﹣2|÷(﹣)2+(﹣+)×(﹣48)=2÷+(﹣66)+40+(﹣68)=2×4+(﹣66)+40+(﹣68)=8+(﹣66)+40+(﹣68)=﹣86.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.合并同类项(1)x3﹣2x2﹣x3﹣5+5x2+4;(2)2(a2b﹣3ab2)﹣3(2ab2﹣a2b).【分析】(1)根据合并同类项系数相加字母及指数不变,可得答案;(2)根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:(1)原式=(1﹣1)x3+(﹣2+5)x2+(﹣5+4)=3x2﹣1;(2)原式=2a2b﹣6ab2﹣6ab2+a2b=a2b﹣12ab2.【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键.四、解答题(每小题10分,共40分)21.先化简,再求值:﹣2(x2﹣3y)﹣[x2﹣3(2x2﹣3y)],其中x和y满足(x+1)2+|y+2|=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=﹣2x2+6y﹣x2+6x2﹣9y=3x2﹣3y,∵(x+1)2+|y+2|=0,∴x=﹣1,y=﹣2,则原式=3+6=9.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.已知多项式A,B,其中A=x2﹣2x+1,小马在计算A+B时,由于粗心把A+B看成了A﹣B求得结果为﹣3x2﹣2x﹣1,请你帮小马算出A+B的正确结果.【分析】根据A﹣B的差,求出B,即可确定出A+B.【解答】解:根据题意得:B=(x2﹣2x+1)﹣(﹣3x2﹣2x﹣1)=x2﹣2x+1+3x2+2x+1=4x2+2,则A+B=x2﹣2x+1+4x2+2=5x2﹣2x+3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 24.5 千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准,25﹣0.5=24.5故答案为:24.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.【点评】本题考查了正数和负数,利用了绝对值的意义,有理数的加法运算.24.若任意数a、b有这样运算规律:1⊗2=22﹣1×2,3⊗4=42﹣3×4.(1)则﹣2⊗3= 15 ;﹣3⊗(﹣5)= 10 ;(2)根据上述题,试用字母a、b表示其规律;(3)若[x]表示不大于x的最大整数,如:[﹣2.2]=﹣3,[5.8]=5,则求:[﹣π]⊗[4.1].【分析】首先审题弄清新定义的运算法则:后一个数的平方减去前后两个数的积,然后根据法则将相应数值代入计算求值即可.第(3)小题要先根据规则求出[﹣π]=﹣4,[4.1]=4再代入计算.【解答】解:(1)﹣2⊗3=32﹣(﹣2)×3=15,(﹣3)⊗(﹣5)=(﹣5)2﹣(﹣3)×(﹣5)=10.故答案为:15,10;(2)a⊗b=b2﹣ab.(3)由题意得[﹣π]=﹣4,[4.1]=4,故[﹣π]⊗[4.1]=﹣4⊗4=42﹣4×(﹣4)=32.【点评】此题主要考察新定义运算,分析得出新运算的运算法则是解题的关键,注意:在计算中要认真特别要注意“﹣”号.五、解答题(25小题10分,26小题12分,共22分)25.“囧”(jiong)是最近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示右图中“囧”的面积;(2)若|x﹣8|+(y﹣4)2=0时,求此时“囧”的面积.【分析】(1)根据图形,用正方形的面积减去两个直角三角形的面积和长方形的面积,列式整理即可;(2)利用非负数的性质得出x、y的值,代入代数式进行计算即可得解.【解答】解:(1)“囧”的面积:20×20﹣xy×2﹣xy=400﹣xy﹣xy=400﹣2xy;(2)∵|x﹣8|+(y﹣4)2=0,∴x=8,y=4,当x=8,y=4时,“囧”的面积=400﹣2×8×4=400﹣64=336.【点评】本题考查了列代数式和代数式求值,主要利用了正方形的面积,长方形的面积和三角形的面积公式,准确识图是解题的关键.26.某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):月用水量(吨)水价(元/吨)第一级20吨以下(含20吨) 1.6第二级20吨﹣30吨(含30吨) 2.4第三级30吨以上 3.2例:某用户的月用水量为32吨,按三级计量应缴交水费为:1.6×20+2.4×10+3.2×2=62.4(元)(1)如果甲用户的月用水量为12吨,则甲需缴交的水费为 19.2 元;(2)如果乙用户缴交的水费为39.2元,则乙月用水量 23 吨;(3)如果丙用户的月用水量为a吨,则丙用户该月应缴交水费多少元?(用含a的代数式表示,并化简)【分析】(1)根据20吨以下(含20吨)水价为1.6元/吨,得甲需缴交的水费为12×1.6,再进行计算即可;(2)设乙月用水量为x吨,根据20吨以下(含20吨)的水价和20吨﹣30吨(含30吨)的水价列出方程,求出x的值即可;(3)分三种情况当0<a≤20时、当20<a≤30时、当a>30时,分别进行讨论,即可得出答案.【解答】解:(1)甲需缴交的水费为12×1.6=19.2(元);故答案为:19.2;(2)设乙月用水量为x吨,根据题意得:1.6×20+(x﹣20)×2.4=39.2,解得:x=23,答:乙月用水量23吨;故答案为:23;(3)当0<a≤20时,丙应缴交水费=1.6a(元);当20<a≤30时,丙应缴交水费=1.6×20+2.4×(a﹣20)=2.4a﹣16(元);当a>30时,丙应缴交水费=1.6×20+2.4×10+3.2(a﹣30)=3.2a﹣40(元).【点评】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,列出代数式,注意a的取值范围.。

2019-2020学年重庆实验外国语学校七年级(上)期中数学试卷 727(解析版)

2019-2020学年重庆实验外国语学校七年级(上)期中数学试卷 727(解析版)

2019-2020学年重庆实验外国语学校七年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.给出−2,−1,0,13这四个数,其中最小的是()A. 13B. 0C. −2D. −12.下列计算正确的是()A. −3+3=0B. −4−4=0C. 5÷15=1 D. 62=123.下列计算正确的是()A. 3a+2b=5abB. 2ab−2ba=0C. 5y2−2y2=3D. 3x2y−5xy2=2x2y4.如果3x2m y3与−12x2y n+1是同类项,则m,n的值为()A. m=1,n=2B. m=−1,n=−2C. m=−1,n=3D. m=1,n=−35.下列说法中正确的个数有()①a和0都是单项式;②多项式3a2b+7a2b2−2ab+1的次数是3;③单项式−2xy3的系数为−2.A. 3个B. 2个C. 1个D. 0个6.若关于x、y的多项式2x2+mx+5y−2nx2−y+5x+7的值与x的取值无关,则m+n=()A. −4B. −5C. −6D. 67.下列说法:①若ab =−1,则a、b互为相反数;②若a5=−|a|5,则a≤0;③若ba>0,则|a+b|=a+b;④若a、b为整数且a2+b2=1,则(a+b)2019=1,则正确的是()A. ①②③④B. ①②④C. ②D. ①②8.若|m|=7,n2=81,且m−n>0,则m+n的值为()A. 2或16B. −2或−16C. ±2D. ±169.将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为()A. 64B. 76C. 89D. 9310.已知|x|=5,|y|=2,且xy>0,则x−y的值等于()A. 7或−7B. 7或3C. 3或−3D. −7或−3二、填空题(本大题共10小题,共40.0分)11.若一个人的身份证号码是320830************,则他的出生是______年______月______日.12.−4的相反数为______.13. 在数轴上点P 到原点的距离为5,且点P 在原点的左边,则点P 表示的数是______. 14. 若(1−m)2+|n +2|=0,则m +n 的值为______.15. 已知a 与b 互为相反数,c 、d 互为倒数,x 的绝对值是2,y 不能作除数,则2(a +b)2012−2(cd)2011+1x +y 2010的值等于_________。

重庆市2019-2020学年上学期初中七年级期中联考数学试卷

重庆市2019-2020学年上学期初中七年级期中联考数学试卷

重庆市开县2019-2020学年上学期初中七年级期中联考数学试卷(时间:90分钟 满分:100分)一、选择题(本大题共10个小题,每小题3分,共30分;每题只有一个选项正确)1、下列各数中,比-2小的数是( )A .-3B .-1C .1D .02、下列各式:-(-3);-|-3|;-32;-(-3)2,,计算结果为负数的有( ). A .4个 B.3个 C.2个 D.1个3、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A .12.05×108B .0.1205×107C .1.205×108D .1.205×1074、绝对值小于2015的所有整数的乘积为( )A.2015B.1C.0D.-20155、下列说法正确的是( )A .单项式a 的系数是0B .单项式-53xy 的系数和次数分别是-3和2 C .3mn 与4nm 不是同类项 D .单项式-3πxy²z³的系数和次数分别是-3π和66、下列各式去括号正确的是( )A .a - ( b – c ) = a – b - cB .a + ( b-c ) = a + b - cC .22()a a b c a a b c --+=--+D .2(35)65a a a a +-=+-7、一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( )A .3x 2y-4xy 2;B .x 2y-4xy 2;C .x 2y+2xy 2;D .-x 2y-2xy 28、若|a+b|=-(a+b ),下列结论正确的是( )A.a+b ≤0B.a+b<0C.a+b=0D.a+b>09、若2(2)30x y ++-=,则y x 的值为( ) A .6 B .-6 C .8 D .-810、如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )A. b -a>0B. a -b>0C. ab >0D. a +b>0二、填空题(本大题共6个小题,每题3分,共18分)11、32-的相反数的倒数是 ,近似数1.54×510 精确到 位, 0.19052≈ (精确到0.001)12、若a+b=6,则18-2(a+b )= 。

2019-2020学年重庆实验外国语学校七年级(上)期中数学试卷 解析版

2019-2020学年重庆实验外国语学校七年级(上)期中数学试卷  解析版

2019-2020学年重庆实验外国语学校七年级(上)期中数学试卷一.选择题(共10小题)1.在﹣1,﹣,0,2这四个数中,最小的数是()A.﹣1B.﹣C.0D.22.下列计算正确的是()A.﹣2﹣1=﹣3B.﹣42=16C.﹣3+1=﹣4D.﹣|2|=23.下列式子正确的是()A.7a﹣6a=1B.2a+3b=5abC.x+x2=x3D.x2y﹣2x2y=﹣x2y4.若单项式﹣2a m+2b与a3b n﹣2是同类项,则m﹣n的值是()A.﹣1B.﹣2C.3D.45.下列说法正确的是()A.﹣的系数是﹣4B.23ab2是6次单项式C.是多项式D.x2﹣2x﹣1的常数项是16.若多项式3x﹣y+3的值是4,则多项式6x﹣2y的值是()A.0B.1C.2D.87.若a,b互为相反数,c和d互为倒数,m是最大的负整数,则cd﹣a﹣b+m2019的值是()A.0B.﹣2C.﹣2或0D.28.若|x|=2.|y|=3,x+y<0,则x﹣y的值是()A.5或l B.﹣1或5C.﹣1或﹣5D.﹣5或19.将一半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是()A.36B.74C.90D.9210.有理数a,b,c的位置如图所示,则下列各式:①ab<0②b﹣a+c>0③=1④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确的有()个.A.1B.2C.3D.4二.填空题(共10小题)11.截止2019年10月30日,电影《我和我的祖国》的累计票房达到大约2560000000元,数据2560000000用料学记数法表示为.12.﹣5的相反数是.13.一个数在数轴上表示的点距原点7个单位长度,且在原点的左边,则这个数是.14.已知(a﹣2)2+|b﹣3|=0,那么3a﹣5b的值为.15.如果a,b互为相反数,c,d互为倒数,m的绝对值是3,则m2﹣2019a+5cd﹣2019b 的值是.16.按如图程序输入一个数x,若输入的数x=4,则输出结果为.17.对于任意有理数a,b,定义新运算:a⊗b=a2﹣2b+1,则2⊗(﹣6)=.18.若整式(2x2+mx﹣12)﹣2(nx2﹣3x+8)的结果中不含x项,x2项,则m2+n2=.19.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有个苹果.三.解答题(共3小题)21.计算(1)﹣2+7﹣(﹣3)﹣2(2)(﹣4)×5+(﹣120)÷6(3)9×(﹣12)+35.5×4﹣5.5×4(4)﹣22﹣22.化简(1)﹣2a+3b+5a﹣6b+4b(2)3(x2+2xy﹣y2)﹣2(3xy+x2)23.先化简,再求值xy2﹣(2x2y+xy2+3)+3(x2y+xy2),其中x=2,y=﹣1.24.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超18立方米时,按1.9元/立方米计费;月用水量超过18立方米时,其中的18立方米仍按1.9元/立方米收费,超过部分按3.4元/立方米计费.设每户家庭月用水量为x立方米.(1)若小明家某月用水量为20立方米,则这个月的水费为.(2)当x不超过18时,应收水费为(用含x的整式表示):当x超过18时,应收水费为(用含x的整式表示);(3)小亮家某月应交水费为68.2元,求小亮家本月用水量.25.小明是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小明把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2)(1)直接写出计算结果,f(5,)=,f(6,3)=;(2)关于“有理数的除方”下列说法正确的是(填序号)①对于任何正整数n,都有f(n,﹣1)=1:②f(6,3)=f(3,6);③f(2,a)=1(a≠0);①对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式.请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:26.已知数轴上的A、B、C、D四点所表示的数分别是a、b、c、d,且(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|.(1)求a、b、c、d的值;(2)点A,B沿数轴同时出发相向匀速运动,4秒后两点相遇,点B的速度为每秒2个单位长度,求点A的运动速度;(3)A,B两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C点以每秒1个单位长度的速度向数轴正方向开始运动,若t秒时有2AB=CD,求t的值;(4)A,B两点以(2)中的速度从起始位置同时出发,相向而行当A点运动到C点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C点运动;当B点运动到A点的起始位置后停止运动.当B点停止运动时,A点也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.参考答案与试题解析一.选择题(共10小题)1.在﹣1,﹣,0,2这四个数中,最小的数是()A.﹣1B.﹣C.0D.2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出在2,0,﹣1,﹣2这四个数中,最小的数是哪个即可.【解答】解:根据有理数比较大小的方法,可得<﹣1<0<2,故在﹣1,﹣,0,2这四个数中,最小的数是.故选:B.2.下列计算正确的是()A.﹣2﹣1=﹣3B.﹣42=16C.﹣3+1=﹣4D.﹣|2|=2【分析】A、根据有理数的减法法则即可求解;B、根据有理数的乘方法则即可求解;C、根据有理数的加法法则即可求解;D、根据绝对值的性质即可求解.【解答】解:A、﹣2﹣1=﹣3,故选项正确;B、﹣42=﹣16,故选项错误;C、﹣3+1=﹣2,故选项错误;D、﹣|2|=﹣2,故选项错误.故选:A.3.下列式子正确的是()A.7a﹣6a=1B.2a+3b=5abC.x+x2=x3D.x2y﹣2x2y=﹣x2y【分析】根据合并同类项法则解答即可.【解答】解:A.7a﹣6a=a,故本选项不合题意;B.2a与3b不是同类项,所以不能合并,故本选项不合题意;C.x与x2不是同类项,所以不能合并,故本选项不合题意;D.x2y﹣2x2y=﹣x2y,正确,故本选项符合题意.故选:D.4.若单项式﹣2a m+2b与a3b n﹣2是同类项,则m﹣n的值是()A.﹣1B.﹣2C.3D.4【分析】根据同类项的概念列式计算求出m、n,根据有理数的减法法则计算,得到答案.【解答】解:由题意得,m+2=3,n﹣2=1,解得,m=1,n=3,则m﹣n=1﹣3=﹣2,故选:B.5.下列说法正确的是()A.﹣的系数是﹣4B.23ab2是6次单项式C.是多项式D.x2﹣2x﹣1的常数项是1【分析】直接利用多项式的定义以及单项式的次数与系数确定方法分析得出答案.【解答】解:A、﹣的系数是﹣,故此选项错误;B、23ab2是3次单项式,故此选项错误;C、是多项式,故此选项正确;D、x2﹣2x﹣1的常数项是﹣1,故此选项错误;故选:C.6.若多项式3x﹣y+3的值是4,则多项式6x﹣2y的值是()A.0B.1C.2D.8【分析】由3x﹣y+3=4得出3x﹣y=1,代入计算可得.【解答】解:∵3x﹣y+3=4,∴3x﹣y=1,则6x﹣2y=2(3x﹣y)=2×1=2,故选:C.7.若a,b互为相反数,c和d互为倒数,m是最大的负整数,则cd﹣a﹣b+m2019的值是()A.0B.﹣2C.﹣2或0D.2【分析】由a、b互为相反数,c和d互为倒数,m是最大的负整数,可以得到:a+b=0,cd=1,m=﹣1,代入代数式即可求解.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∵m是最大的负整数,∴m=﹣1,∴cd﹣a﹣b+m2019=1﹣0+(﹣1)2019=1﹣0﹣1=0.故选:A.8.若|x|=2.|y|=3,x+y<0,则x﹣y的值是()A.5或l B.﹣1或5C.﹣1或﹣5D.﹣5或1【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y的值.【解答】解:∵|x|=2,|y|=3,且x+y<0,∴x=2,y=﹣3;x=﹣2,y=﹣3,则x﹣y=5或1.故选:A.9.将一半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是()A.36B.74C.90D.92【分析】根据图形的变化寻找规律即可求解.【解答】解:观察图形的变化可知:第1个图形有1×2+2=4个小圆,第2个图形有2×3+2=8个小圆,第3个图形有3×4+2=14个小圆,…,发现规律:第n个图形的小圆个数是n(n+1)+2.所以第9个图形的小圆个数是9×10+2=92.故选:D.10.有理数a,b,c的位置如图所示,则下列各式:①ab<0②b﹣a+c>0③=1④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确的有()个.A.1B.2C.3D.4【分析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再对各小题进行分析即可.【解答】解:由图可知a<0<b<c.①∵a<0<b<c,∴ab<0,故本小题正确;②∵a<0<b<c,∴b﹣a+c>0,故本小题正确;③∵a<0<b<c,∴,,,∴=1,故本小题正确;④∵a﹣b<0,c+a>0,b﹣c<0,∴原式=b﹣a﹣(c+a)+(c﹣b)=b﹣a﹣c﹣a+c﹣b=﹣2a,故本小题正确.∴正确的有①②③④共4个.故选:D.二.填空题(共10小题)11.截止2019年10月30日,电影《我和我的祖国》的累计票房达到大约2560000000元,数据2560000000用料学记数法表示为 2.56×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2560000000=2.56×109,故答案为:2.56×109.12.﹣5的相反数是5.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故答案为:5.13.一个数在数轴上表示的点距原点7个单位长度,且在原点的左边,则这个数是﹣7.【分析】在原点的左边,符号为负,距原点7个单位,绝对值为7,因此表示的数为﹣7.【解答】解:在原点的左边,符号为负,距原点7个单位,绝对值为7,因此这个有理数为﹣7.故答案为:﹣7.14.已知(a﹣2)2+|b﹣3|=0,那么3a﹣5b的值为﹣9.【分析】根据非负数的性质列出关系式,解出a、b的值,计算得到答案.【解答】解:由题意得,a﹣2=0,b﹣3=0,解得,a=2,b=3,则3a﹣5b=3×2﹣5×3=6﹣15=﹣9,故答案为:﹣9.15.如果a,b互为相反数,c,d互为倒数,m的绝对值是3,则m2﹣2019a+5cd﹣2019b 的值是14.【分析】直接利用互为相反数以及互为倒数、绝对值的性质分别得出各式的值,进而将原式变形代入即可.【解答】解:∵a,b互为相反数,c,d互为倒数,m的绝对值是3,∴a+b=0,cd=1,m=±3,则m2﹣2019a+5cd﹣2019b=9﹣2019(a+b)+5cd=9﹣0+5=14.故答案为:14.16.按如图程序输入一个数x,若输入的数x=4,则输出结果为78.【分析】将x=4代入计算,判断是否大于16,小于16时,将所得结果代入再次计算,直到结果大于16为止即可.【解答】解:当x=4时,==6<16,当x=6时,==14<16,当x=14时,==78>16,所以输出结果为78,故答案为:78.17.对于任意有理数a,b,定义新运算:a⊗b=a2﹣2b+1,则2⊗(﹣6)=17.【分析】直接利用已知运算公式计算得出答案.【解答】解:∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.18.若整式(2x2+mx﹣12)﹣2(nx2﹣3x+8)的结果中不含x项,x2项,则m2+n2=37.【分析】原式去括号、合并同类项进行计算,根据结果不含x项,x2项,确定出m与n 的值,再代入计算即可求解.【解答】解:(2x2+mx﹣12)﹣2(nx2﹣3x+8)=2x2+mx﹣12﹣2nx2+6x﹣16=(2﹣2n)x2+(m+6)x﹣28,∵结果中不含x项,x2项,∴2﹣2n=0,m+6=0,解得n=1,m=﹣6,∴m2+n2=36+1=37.故答案为:37.19.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是9.【分析】由已知可知尾数四个一循环,每四个的尾数和是0,因为2019÷4=504…3,即可求.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187……,∴尾数四个一循环,∴每四个的尾数和是0,∵2019÷4=504…3,∴3+32+33+34+…+32019的末位数字是9,故答案为9.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有198个苹果.【分析】可设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【解答】解:设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,依题意有,解得.故甲堆原来有198个苹果.故答案为:198.三.解答题(共3小题)21.计算(1)﹣2+7﹣(﹣3)﹣2(2)(﹣4)×5+(﹣120)÷6(3)9×(﹣12)+35.5×4﹣5.5×4(4)﹣22﹣【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案;(3)直接利用乘法分配律进而得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【解答】解:(1)﹣2+7﹣(﹣3)﹣2=﹣2+7+3﹣2=6;(2)(﹣4)×5+(﹣120)÷6=﹣20﹣20=﹣40;(3)9×(﹣12)+35.5×4﹣5.5×4=(9+)×(﹣12)+4×(35.5﹣5.5)=﹣108﹣11+120=1;(4)﹣22﹣=﹣4﹣(9+24)÷4=﹣4﹣=﹣.22.化简(1)﹣2a+3b+5a﹣6b+4b(2)3(x2+2xy﹣y2)﹣2(3xy+x2)【分析】(1)直接合并同类项进而得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)原式=(﹣2a+5a)+(3b﹣6b+4b)=3a+b;(2)原式=3x2+6xy﹣3y2﹣6xy﹣3x2=﹣3y2.23.先化简,再求值xy2﹣(2x2y+xy2+3)+3(x2y+xy2),其中x=2,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=xy2﹣2x2y﹣xy2﹣3+3x2y+2xy2=x2y+2xy2﹣3,当x=2,y=﹣1时,原式=﹣4+4﹣3=﹣3.24.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超18立方米时,按1.9元/立方米计费;月用水量超过18立方米时,其中的18立方米仍按1.9元/立方米收费,超过部分按3.4元/立方米计费.设每户家庭月用水量为x立方米.(1)若小明家某月用水量为20立方米,则这个月的水费为41元.(2)当x不超过18时,应收水费为 1.9x元(用含x的整式表示):当x超过18时,应收水费为(3.4x﹣27)元(用含x的整式表示);(3)小亮家某月应交水费为68.2元,求小亮家本月用水量.【考点】32:列代数式;33:代数式求值;8A:一元一次方程的应用.【专题】34:方程思想;521:一次方程(组)及应用;69:应用意识.【分析】(1)根据应交水费=1.9×18+3.4×超出18立方米的部分,即可求出结论;(2)分x≤18及x>18两种情况,利用总价=单价×数量,即可用含x的代数式表示出应收水费;(3)由68.2>41可得出x>20,由(2)的结论结合应交水费为68.2元,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)1.9×18+3.4×(20﹣18)=41(元).故答案为:41元.(2)当x≤18时,应收水费1.9x元;当x>18时,应收水费1.9×18+3.4(x﹣18)=(3.4x﹣27)元.故答案为:1.9x元;(3.4x﹣27)元.(3)∵68.2>41,∴x>20.依题意,得:3.4x﹣27=68.2,解得:x=28.答:小亮家本月用水量为28立方米.25.小明是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小明把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2)(1)直接写出计算结果,f(5,)=8,f(6,3)=;(2)关于“有理数的除方”下列说法正确的是③(填序号)①对于任何正整数n,都有f(n,﹣1)=1:②f(6,3)=f(3,6);③f(2,a)=1(a≠0);①对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式.请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:【考点】1D:有理数的除法.【专题】11:计算题;23:新定义;66:运算能力.【分析】(1)根据题意计算即可;(2)①要考虑n为奇数和偶数的两种情况;②分别计算f(6,3)和f(3,6)的结果进行比较即可;③正确④2n为偶数,偶数个a相除,结果应为正.(3)推导f(n,a)(n为正整数,a≠0,n≥2),按照题目中的做法推到即可;(4)按照上题的推导式可以将算式中的每一部分表示出来再计算.【解答】解:(1)f(5,)==8,f(6,3)=3÷3÷3÷3÷3÷3=;故答案为8;.(2)①对于任何正整数n,都有f(n,﹣1)=1,n为奇数时,f(n,﹣1)=﹣1,①错误;②∵f(6,3)=;f(3,6)=∴f(6,3)≠f(3,6),②错误;③f(2,a)=a÷a=1(a≠0),③正确;④对于任何正整数n,都有f(2n,a)>0,而不是f(2n,a)<0(a<0),④错误;故答案为③.(3)公式f(n,a)=a÷a÷a÷a÷…÷a÷a=1÷(a n﹣2)=(n为正整数,a ≠0,n≥2)(4)=33×()2×23÷(﹣4)3÷(﹣2)4=27×÷(﹣64)÷16=﹣26.已知数轴上的A、B、C、D四点所表示的数分别是a、b、c、d,且(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|.(1)求a、b、c、d的值;(2)点A,B沿数轴同时出发相向匀速运动,4秒后两点相遇,点B的速度为每秒2个单位长度,求点A的运动速度;(3)A,B两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C点以每秒1个单位长度的速度向数轴正方向开始运动,若t秒时有2AB=CD,求t的值;(4)A,B两点以(2)中的速度从起始位置同时出发,相向而行当A点运动到C点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C点运动;当B点运动到A点的起始位置后停止运动.当B点停止运动时,A点也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.【考点】13:数轴;16:非负数的性质:绝对值;1F:非负数的性质:偶次方;8A:一元一次方程的应用.【专题】122:几何动点问题;511:实数;69:应用意识.【分析】(1)根据非负数的性质可以解答;(2)根据4秒后两点相遇,点A和B两点的路程和为24,列方程可以解答;(3)t秒时,点A表示的数为:﹣16+4t,点B表示的数为:8+2t,点C表示的数为:10+t,根据2AB=CD,列方程可得结论;(4)分三种情况讨论:当A、B在两点之间相遇时;当点A从点C返回出发点时与B相遇;当点A又从出发点返回点C时与点B相遇.分别依据线段的和差关系列方程求解即可.【解答】解:(1)∵(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|,(a+16)2+(d+12)2+|b﹣8|+|c﹣10|=0,∴a=﹣16,b=8,c=10,d=﹣12;(2)设点A的运动速度为每秒v个单位长度,4v+4×2=8=16,v=4,答:点A的运动速度为每秒4个单位长度;(3)如图1,t秒时,点A表示的数为:﹣16+4t,点B表示的数为:8+2t,点C表示的数为:10+t,∵2AB=CD,①2[(﹣16+4t)﹣(8+2t)]=10+t+12,2(﹣24+2t)=22+t,﹣48+4t=22+t,3t=70,t=;②2[(8+2t)﹣(﹣16+4t)]=10+t+12,2(24﹣2t)=22+t,5t=26,t=,综上,t的值是秒或秒;(4)B点运动至A点所需的时间为=12(s),故t≤12,①由(2)得,当t=4时,A,B两点同时到达的点表示的数是﹣16+4×4=0;②当点A从点C返回出发点时,若与B相遇,由题意得:=6.5(s),=3.25,∴点A到C,从点C返回到出发点A,用时6.5+3.25=9.75,则2×4×(t﹣6.5)=10﹣8+2t,t=9<9.75,此时A,B两点同时到达的点表示的数是8﹣9×2=﹣10;③当点A第二次从出发点返回点C时,若与点B相遇,则8(t﹣9.75)+2t=16+8,解得t=10.2;综上所述,A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.。

重庆市九龙坡区重庆实验外国语学校2023-2024学年七年级上学期期末数学试题(含解析)

重庆市九龙坡区重庆实验外国语学校2023-2024学年七年级上学期期末数学试题(含解析)

2023-2024学年度(上)七年级期末考试数学试题(满分150分,120分钟完成)一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.下列四个数中,最小的是( )A .0B .C .1D .2.若单项式与是同类项,则的值分别为( )A .B .C .D .3.将一副三角板如图摆放,若,则的度数为( )A .B .C .D .4.下列说法正确的是( )A .对顶角相等B .两条直线被第三条直线所截,同位角相等C .过一点有且只有一条直线与已知直线平行D .直线外一点到这条直线的垂线段,叫做点到直线的距离5.已知,求的值为( )A .2000B .2008C .2016D .20246.如图,下列条件中,能判断的是( )4-1-32a b x y +2a x y -,a b 3,1a b ==-3,1a b =-=3,1a b ==3,1a b =-=-30BOC ∠=︒AOD ∠120︒130︒140︒150︒240a a +-=2332012a a ++AB CD ∥A .B .10.某多项式除首尾两项外其余各项都可删减,对值,并用减号连接,则称此为两项,三项.“删减变形”只针对多项式,同时去掉与180α︒-180︒x z m n --++y -17.已知关于的方程有正整数解,则整数的所有可能的取值之和x 3(2)6x ax --=a20.若一个四位自然数去掉个位与十位数字后得到的两位数恰好是个位数字与十位数字的和的9倍,则这个四位数为“九数”;又如:,M M 4525M =459≠ M a b证明:∵,,(已知)①② ( ③ ),(已知) ④ ( ⑤ )(1)求证:;(2)若平分,求26.列方程解应用题:甲、乙两个工程队共同承包了一项总长度为计划由甲、乙两个工程队分别从两端同时开始施工,每天比甲队多施工120米.BD AC ⊥EF AC ⊥90BDF EFC ∴∠=∠=︒BD ∴∥2∴∠=12∠=∠ 1∴∠=DG AC ∥EF ,30DEC GDE ∠∠=︒∠(1)如图1.点在直线、之间,连接、,若,则的度数为______;(2)如图2,点在直线的上方,平分平分,延长交交于点,若,求的度数;(3)如图3,点在直线的上方,平分交于点.将绕着点以每秒的速度逆时针方向旋转得,旋转时间为:秒:同时将射线绕着点以每秒的速度顺时针方向旋转得射线,当射线与射线首次重合时,和射线同时停止转动.在旋转过程中,作的角平分线,作的角平分线,请直接写出当时的值.参考答案与解析1.B 【分析】本题主要考查有理数大小的比较,熟练掌握有理数大小比较的方法是解题的关键.根据正数负数;两个负数比较大小,绝对值大的反而小进行判断即可.【详解】解:,这四个数中,最小的数是.C MN GH AC BC 24,40NAC CBH ∠=︒∠=︒ACB ∠C MN AE ,CAN BF ∠GBC ∠EA BFD 21,20CAE ACB ∠=︒∠=︒BDE ∠C MN 40,100,CAN CBG BF ∠=︒∠=︒GBC ∠MN F CAN ∠A 1︒C AN ''∠t BF B 3︒BF 'BF 'BG CAN ∠BF C AN ''∠AP F BH ∠'BQ AP BQ ∥t 0>>4101-<-<< ∴4-故选:B2.A【分析】根据同类项的定义进行解答即可.本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项.掌握同类项的定义是解题的关键.【详解】由题意得,解得,.故答案为:A3.D【分析】本题考查角的和差,结合已知条件求得的度数是解题的关键.由题意可得,然后利用角的和差计算即可.【详解】解:由题意可得,∵,∴,∴,故选D .4.A【分析】本题主要考查了平行线的性质、平行公理、点到直线的距离,熟记各定义和性质是解题关键.【详解】解:A 、对顶角相等,故A 正确;B 、两条平行直线被第三条直线所截,同位角相等,故B 错误;C 、过直线外一点有且只有一条直线与已知直线平行,故C 错误;D 、从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,故D 错误.故选:A .5.D【分析】本题考查了求代数式的值,熟练掌握整体的思想是解答本题的关键.用整体代入法求解即可.【详解】解:∵,∴,32a ab =⎧⎨+=⎩3a =1b =-AOC ∠90AOB COD ∠=∠=︒90AOB COD ∠=∠=︒30BOC ∠=︒903060AOC AOB BOC ∠∠∠=-=︒-︒=︒6090150AOD AOC COD ∠=∠+∠=︒+︒=︒240a a +-=24a a +=∴.故选D .6.C【分析】本题主要考查了平行线的判定,能根据图形准确找出同位角、内错角和同旁内角是解决问题的关键.结合图形分析两角的位置关系,根据平行线的判定方法逐项进行判断即可得到结论.【详解】解:,,故A 选项不符合题意;,不能判定,故B 选项不符合题意;,,故C 选项符合题意;,,故D 选项不符合题意;故选:C .7.D【分析】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.根据快马可追上慢马时与慢马所走的路程相等列方程即可.【详解】解:由题意,得.2332012a a ++()232012a a =++3420122024=⨯+=180D A B A B C ∠+∠=︒ AD BC ∴∥B D ∠=∠ AB CD ∥12∠=∠ AB CD ∴∥34∠∠= AD BC ∴∥270180(12)x x =+由点E ,F 分别是线段、的中点,得由点E ,F 分别是线段、的中点,得AB BC AB BC26.(1)甲原计划每天修,乙原计划每天修(2)甲工程队提高效率后平均每天施工【分析】本题考查的是一元次方程的应用,确定相等关系是解本题的关键.(1)设甲原计划每天修米.则乙为米.利用“原计划由甲、乙两个工程队分别从两端同时开始施工,恰好9天完成整个工程”建立一元一次方程求解即可;(2)设甲提高后速度为米/天,由各部分的工作量之和等于总工作量列方程求解即可.【详解】(1)解:设甲原计划每天修米.则乙为米.,解得:,乙:,答:甲原计划每天修,乙原计划每天修.(2)设甲提高后速度为米/天解得:答:甲工程队提高效率后平均每天施工.27.(1);(2)(3)19或20【分析】本题考查了列代数式,一元一次方程的应用,解题的关键是理解题意,正确列代数式,找到相等关系列方程求解.(1)依题意可知,分别列出甲、乙商品的销售价格即可;(2)根据利润为售价减去成本列方程即可解答;()18030275DEG ∴∠=︒-︒÷=︒180EDG DEG DGE ∠+∠+∠=︒Q 180307575DGE ∴∠=︒-︒-︒=︒180DGE DGF ∠+∠=︒18075105DGF ∴∠=︒-︒=︒240m 360m360mx (120)x +y x (120)x +9(120)5400x x ++=240x =240120360m +=240m 360m y (240360)655400y +⨯+=360y =360m 1.5m 0.810.4m +12m =(3)求出选择优惠方案一一次性付款,两种优惠方案结合应付款数,比较即可.【详解】(1)解:(元),元,故答案为:,;(2)解:由题意得,整理得,解得;(3)解:妈妈选择优惠方案一一次性付款,应付款(元),如果选择优惠方案二一次性付款,应付款(元),如果选择两次购物,可选择如下:方法一:购买一盒草莓60元,一盒蓝莓20元,选择优惠方案一付款,应付款(元),购买一个进口车厘子礼盒380元,选择优惠方案二付款,应付款(元),则共付款(元);方法二:购买一盒草莓60元,选择优惠方案一付款,应付款(元),购买一个进口车厘子礼盒380元,一盒蓝莓20元,选择优惠方案二付款,应付款(元);则共付款(元);∴从优惠的角度看,小优最多还能为妈妈节省(元),故答案为:19.28.(1)(2)(3)综上所述,当时的值为18或90【分析】(1)根据平行线的性质解决;(2)根据角平分线的定义及三角形外角的性质即可解决;(3)根据角平分线的结合平行线的性质,分情况列方程解决.()150% 1.5a m m =+=()()3100.80.810.4b m m =++⨯=+1.5m ()0.810.4m +()()800.810.432001.5760m m m m +--+-=()807.40.2100760m m -+=2m =()60203800.810358++⨯-=()60203800.75345++⨯=()60200.81054+⨯-=3800.75285⨯=54285339+=600.8543⨯-=()380200.75300+⨯=43300343+=35833919-=64︒80BDE ∠=︒AP BQ ∥t,,,,,平分,MN GH ∥CP GH ∴∥,NAC ACP CBH BCP ∴∠=∠∠=∠21CAE OAE ∴∠=∠=︒2021AOB C OAC ∴∠=∠+∠=︒+︒MN GH ∥62AOB OBH ∴∠=∠=︒BF GBC ∠11,,由题意得:解得:;当点在下方时,反向延长,,由题意得:解得:;综上所述,当时的值为【点睛】本题考查了平行线的性质、,MN GH AP BQ ∥∥PAN ATB QBH ∴∠=∠=∠11805034022t t --+⨯=18t =BQ GH ,MN GH AP BQ ∥∥PAN ARH GBQ ∴∠=∠=∠13401802t +⨯=-90t =AP BQ ∥t。

2019-2020学年重庆实验外国语学校七年级上学期期中数学试卷

2019-2020学年重庆实验外国语学校七年级上学期期中数学试卷

2019-2020学年重庆实验外国语学校七年级上学期期中数学试卷一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卷上对应题目的正确答案标号涂黑.1.(4分)在﹣1,−43,0,2这四个数中,最小的数是( )A .﹣1B .−43C .0D .2【解答】解:根据有理数比较大小的方法,可得−43<−1<0<2,故在﹣1,−43,0,2这四个数中,最小的数是−43.故选:B .2.(4分)下列计算正确的是( )A .﹣2﹣1=﹣3B .﹣42=16C .﹣3+1=﹣4D .﹣|2|=2 【解答】解:A 、﹣2﹣1=﹣3,故选项正确;B 、﹣42=﹣16,故选项错误;C 、﹣3+1=﹣2,故选项错误;D 、﹣|2|=﹣2,故选项错误.故选:A .3.(4分)下列式子正确的是( )A .7a ﹣6a =1B .2a +3b =5abC .x +x 2=x 3D .x 2y ﹣2x 2y =﹣x 2y【解答】解:A .7a ﹣6a =a ,故本选项不合题意;B .2a 与3b 不是同类项,所以不能合并,故本选项不合题意;C .x 与x 2不是同类项,所以不能合并,故本选项不合题意;D .x 2y ﹣2x 2y =﹣x 2y ,正确,故本选项符合题意.故选:D .4.(4分)若单项式﹣2a m +2b 与13a 3b n﹣2是同类项,则m ﹣n 的值是( )A .﹣1B .﹣2C .3D .4 【解答】解:由题意得,m +2=3,n ﹣2=1,解得,m =1,n =3,则m ﹣n =1﹣3=﹣2,故选:B .5.(4分)下列说法正确的是( )A .−4vt 5的系数是﹣4 B .23ab 2是6次单项式 C .x−y 2是多项式D .x 2﹣2x ﹣1的常数项是1 【解答】解:A 、−4vt 5的系数是−45,故此选项错误; B 、23ab 2是3次单项式,故此选项错误;C 、x−y 2是多项式,故此选项正确;D 、x 2﹣2x ﹣1的常数项是﹣1,故此选项错误;故选:C .6.(4分)若多项式3x ﹣y +3的值是4,则多项式6x ﹣2y 的值是( )A .0B .1C .2D .8【解答】解:∵3x ﹣y +3=4,∴3x ﹣y =1,则6x ﹣2y =2(3x ﹣y )=2×1=2,故选:C .7.(4分)若a ,b 互为相反数,c 和d 互为倒数,m 是最大的负整数,则cd ﹣a ﹣b +m 2019的值是( )A .0B .﹣2C .﹣2或0D .2【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,∴a +b =0,cd =1,∵m 是最大的负整数,∴m =﹣1,∴cd ﹣a ﹣b +m 2019=1﹣0+(﹣1)2019=1﹣0﹣1=0.故选:A .8.(4分)若|x |=2.|y |=3,x +y <0,则x ﹣y 的值是( )A .5或lB .﹣1或5C .﹣1或﹣5D .﹣5或1。

人教版数学七年级上学期《期中考试试卷》(含答案解析)

人教版数学七年级上学期《期中考试试卷》(含答案解析)
答案与解析
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格



家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;

2018-2019学年重庆实验外国语学校七年级(上)第一次月考数学试卷(含解析)

2018-2019学年重庆实验外国语学校七年级(上)第一次月考数学试卷(含解析)

2018-2019学年重庆实验外国语学校七年级(上)第一次月考数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共40分)1.﹣5的倒数是()A.B.5 C.﹣D.﹣52.一种巧克力的质量标识为“23±0.25千克”,则下列哪种巧克力的质量是合格的()A.23.30千克B.22.70千克C.23.55千克D.22.80千克3.计算﹣12018的值为()A.1 B.﹣1 C.2018 D.﹣20184.在﹣(﹣2)、|﹣1|、﹣|﹣3|、(﹣3)2、﹣(﹣4)2中,正数有()A.1个B.2个C.3个D.4个5.已知点A、B、C是数轴上的三个点,点A表示的数是﹣5,点B表示的数是1,且A、B两点间的距离是B、C两点间距离的2倍,则点C表示的数是()A.4 B.﹣1 C.﹣1或3 D.﹣2或46.若a3+b3=0,那么有理数a,b的关系是()A.a=b=0 B.a,b至少一个是0C.a+b=0 D.a,b不都是07.下列说法正确的有()个①0是绝对值最小的有理数;②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数;④|a|=|b|,则a=b.A.1 B.2 C.3 D.48.墨尔本与北京的时差是+3小时(即同一时刻墨尔本时间比北京时间早3小时).班机从墨尔本飞到北京需用12小时,若乘坐从题尔本10:00(当地时间)起飞的航班,到达北京机场时,北京时间是()A.22:00 B.19:00 C.18:00 D.15:009.若|a|=1,|b|=4,且|a﹣b|=a﹣b,则a﹣b等于()A.5 B.3 C.﹣5或5 D.5或310.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2018为()A.2017 B.C.2 D.﹣1二、填空题(每小题4分,共40分)11.用“>”“<”或“=”填空:(1)0 2018;(2)0.33;(3)﹣(+5)﹣|﹣5|12.﹣9的绝对值是,的相反数是,﹣1的倒数是.13.用四舍五入法,将100.009精确到十分位为.14.已知|x+3|+(y﹣2)2=0,则x+y=.15.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=.16.大于﹣2且不大于3的所有非负整数的和是.17.当x=时,式子﹣|x﹣3|+5有值.18.已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,则式子x2+cd+a+b的值为.19.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,若取最左端3个格子中的后两个数记作m、n,那么|m﹣n|是.9 m n ﹣6 2 …20.我校每年12月30日晚上各班的元旦晚会是同学们施展才艺的舞台.在某班晚会上,主持人为同学们准备了一个游戏:从100个外形相同的气球中找到唯一的里面装有奖品的气球.主持人将这些气球按1至100的顺序编号排成一列,第一次先请一位同学从中取出所有序号为单数的球,均没发现装有奖品.接着主持人将剩下的球又按1﹣50重新编号排成一列(即原来的2号变为1号,原来的4号变为2号,…,原来的100号变为50号),又请一位同学从中取出所有新序号为单数的球,也没有发现奖品,…如此下去,直到最后一个气球才是装有奖品的,那么这个装有奖品的气球最初的序号是.三、解答题(共70分)21.(6分)在规定直线上画出数轴,将数字0,﹣3,2,﹣1,0.5表示在数轴上,并用“<”符号将这些数连接起来.22.(24分)计算:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)(2)﹣49÷×(﹣)÷(﹣10)(3)﹣32×(﹣2)+(﹣4)2﹣(﹣2)+(4)3﹣36×(﹣+)(5)|﹣1.2+3|﹣3﹣|4.5﹣5.2| (6)19×(﹣8)+19.5×6﹣1.5×6 (10分)某自行车厂规定每天要生产200辆自行车,由于各种原因实际每天生产量与规定量相比有出入.下23.表是某一周的实际生产情况(超产为正、减产为负):星期一二三四五六日与规定量的差值+6 ﹣3 ﹣4 +12 ﹣9 +17 ﹣11(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每天计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖25元;少生产一辆则扣10元,那么该厂工人这一周的工资总额是多少?24.(8分)已知,|a|=5、|b|=3、c2=81,又知,|a+b|=a+b且|a+c|=a+c,求2a﹣3b+c的值.25.(10分)我们知道,|x|表示x在数轴上对应的点到原点的距离我们可以把|x|看作|x﹣0|,所以,|x ﹣3|就表示x在数轴上对应的点到3的距离,|x+1|=|x﹣(﹣1)|就表示x在数轴上对应的点到﹣1的距离,由上面绝对值的几何意义,解答下列问题:(1)求|x﹣4|+|x+2|的最小值,并写出此时x的取值情况;(2)求|x﹣3|+|x+2|+|x+6|的最小值,并写出此时x的取值情况;(3)已知|x﹣1|+|x+2|+|y﹣3|+|y+4|=10,求2x+y的最大值和最小值.26.(12分)如图,数轴上有两个长方形ABCD和FFGH,这两个长方形的宽都是1个单位长度,长方形ABCD 的长AD是2个单位长度,长方形EFGH的长EH是4个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是;(2)若长方形ABCD以每秒2个单位的速度向右匀速运动,当点D运动到E时,两个长方形开始有重叠部分,此时长方形ABCD运动了秒;若长方形ABCD继续向右运动,再经过秒后,两个长方形不再有重叠部分.经过6.5秒时,两个长方形重叠部分的面积是个平方单位;(3)设AD的中点为M,若两个长方形ABCD和EFGH同时从图中位置出发,长方形EFGH以每秒2个单位的速度向左匀速运动,长方形ABCD仍以每秒2个单位的速度向右匀速运动,运动多少秒时,点M与线段EH 端点E的距离为1个单位长度.1.【解答】解:﹣5的倒数是.故选:C.2.【解答】解:∵23+0.25=23.25,23﹣0.25=22.75,∴巧克力的重量在23.25与22.75kg之间.故选:D.3.【解答】解:﹣12018=﹣1.故选:B.4.【解答】解:﹣(﹣2)=2、|﹣1|=1、﹣|﹣3|=﹣2、(﹣3)2=9、﹣(﹣4)2=﹣16,则正数有3个,故选:C.5.【解答】解:设点C表示的数是x,由题意得|1﹣(﹣5)|=2|1﹣x|,解得:x=﹣2或8.故选:D.6.【解答】解:∵a3+b3=0,∴a3与b3互为相反数,∴a与b互为相反数.故选:C.7.【解答】解:①0是绝对值最小的有理数是正确的;②相反数大于本身的数是负数是正确的;③数轴上原点两侧的数并且与原点的距离相等的数互为相反数,故错误;④|a|=|b|,则a=b或a=﹣b,故错误.故选:B.8.【解答】解:10+12﹣3=19,即乘坐从墨尔本10:00(当地时间)起飞的航班,到达北京机场时,北京时间是19:00.故选:B.9.【解答】解:∵|a|=1,|b|=4,且|a﹣b|=a﹣b,∴a=1或﹣1,b=﹣8,∴a﹣b等于5或3.故选:D.10.【解答】解:依题意得:a1=2,a2=1﹣=,a3=1﹣2=﹣6,a4=1+1=3;周期为3;所以a2018=a2=.故选:B.11.【解答】解:(1)0<2018;(2)<0.33;(3)﹣(+5)=﹣|﹣5|,故答案为:<;<;=.12.【解答】解:﹣9的绝对值是 9,的相反数是﹣,﹣1的倒数是﹣,故答案为:9,﹣,﹣.13.【解答】解:将100.009精确到十分位为100.0,故答案为:100.0.14.【解答】解:∵|x+3|+(y﹣2)2=3,∴x=﹣3,y=2,故答案为:﹣1.15.【解答】解:根据题意,最小的正整数是1,最大的负整数﹣1,绝对值最小的有理数是0,∴a=1,b=﹣1,c=0,故应填2.16.【解答】解:大于﹣2且不大于3的所有非负整数为:0,1,2,80+1+2+3=5,故答案为:617.【解答】解:∵﹣|x﹣3|≤0,∴﹣|x﹣3|+5≤8,故答案为:3,最大.18.【解答】解:∵a,b互为相反数,c,d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴x2+cd+a+b=4+6+0故答案为:5.19.【解答】解:设第四个数为x,∵任意三个相邻格子中所填整数之和都相等,解得x=9,∴m=﹣6,第9个数与第三个数相同,即n=2,故答案为:8.20.【解答】解:第一次取出的是单号的气球,剩下的气球的序号是2的倍数,因为原来是100只,所以还剩50只;第二次取出后,剩下的气球的序号是4的倍数,所以还剩25只;第四次取出后,剩下的气球的序号是16的倍数,所以还剩6只;第六次取出后,剩下的气球的序号是64的倍数,所以还剩1只;故答案为:64.21.【解答】解:所画数轴和数轴上表示数如图所示:由数轴的特点可知,﹣3<﹣1<7<0.5<2.22.【解答】解:(1)(+4.3)﹣(﹣4)+(﹣2.4)﹣(+4)=4.3+4+(﹣2.3)+(﹣4)(2)﹣49÷×(﹣)÷(﹣10)=﹣;=﹣9×(﹣2)+16+4+=36;=5﹣8+27﹣3(5)|﹣1.2+3|﹣3﹣|4.5﹣6.2|=﹣1.9;=(19+)×(﹣8)+(19.5﹣1.5)×8=﹣152﹣7.5+108=﹣51.5.23.【解答】解:(1)3×200+6﹣3﹣7=599(辆);(2)17﹣(﹣11)=28(辆);=1408×50+35×25﹣27×10=70400+875﹣270=71005(元).答:该厂工人这一周的工资总额是71005元.24.【解答】解:∵|a|=5、|b|=3、c2=81,|a+b|=a+b且|a+c|=a+c,∴a=±7,b=±3,c=±9,a+b≥0,a+c≥0,当a=4,b=﹣3,c=9时,原式=10+9+9=28.25.【解答】解:(1)|x﹣4|+|x+2|的最小值为4﹣(﹣2)=3,此时x的取值情况是﹣2≤x≤4;(2)|x﹣3|+|x+2|+|x+6|的最小值为(﹣2+6)+0+(3+5)=9,此时x的取值情况是x=﹣2;∴﹣2≤x≤1,﹣7≤y≤3,故2x+y的最大值为5,最小值为﹣8.26.【解答】解:(1)∵点E在数轴上表示的数是5,EH是4个单位长度,∴H点表示9,∴D点表示﹣7,∴A点表示﹣9,(2)∵E、D之间的距离是12,长方形ABCD以每秒2个单位的速度向右匀速运动,∵当A点运动到H时,两个长方形没有重叠,∴A运动到H,运动了9秒;此时D点在数轴上表示的点是2,故答案为6,9,1;此时t=12÷4=7秒;②当E在D的左侧,距离为2时,此时t=14÷4=3.5秒;综上所述:当E、D运动3秒,4.5秒时,点M与线段EH端点E的距离为1个单位长度。

重庆市渝北区2019-2020学年七年级(上)期末数学试卷解析版

重庆市渝北区2019-2020学年七年级(上)期末数学试卷解析版

重庆市渝北区2019-2020学年七年级(上)期末数学试卷姓名座号题号一二三总分得分考后反思(我思我进步):一、选择题(每小题3分,共48分)1.(3分)﹣2的相反数是()A.﹣2B.2C.D.﹣2.(3分)如图,是由9个相同的正方体组成的立体图形,从正面观察这个立体图形,得到的平面图形是()A.B.C.D.3.(3分)下列各式的计算,正确的是()A.3a+2b=5ab B.5y2﹣3y2=2C.﹣12x+7x=﹣5x D.4m2n﹣2mn2=2mn4.(3分)下列说法错误的是()A.连接两点的线段叫两点之间的距离B.经过两点有一条直线,并且只有一条直线C.两点的所有连线中,线段最短D.同角(等角)的补角相等5.(3分)已知x=2是方程x+4a=﹣6的解,则a2+1的值是()A.10B.5C.2D.﹣36.(3分)∠A的补角为125°12′,则它的余角为()A.54°18′B.35°12′C.35°48′D.以上都不对7.(3分)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100B.﹣3(100﹣x)=100C.3x﹣=100D.3x+=1008.(3分)按如图程序计算,当输入x=2时,输出结果是()A.19B.20C.21D.229.(3分)如图,已知点C为线段AB的中点,点D在线段BC上.若DA=6cm,DB=4cm,则CD的长是()A.1cm B.1.5cm C.2cm D.2.5cm10.(3分)如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=130°,则∠BOC =()A.20°B.30°C.40°D.50°11.(3分)若关于x的一元一次方程ax+2x=6的解是正整数,则符合条件的所有整数a的和为()A.0B.4C.12D.2012.(3分)已知,点C在直线AB上,AC=a,BC=b,且a≠b,点M是线段AB的中点,则线段MC的长为()A.B.C.或D.或二、填空题(每小题3分,共24分)13.(3分)2019年国庆黄金周期间,重庆市实现旅游总收入约4117000000,其中4117000000用科学记数法表示为.14.(3分)若单项式﹣2a m b3与的和是单项式,则m+n=.15.(3分)代数式2a﹣3b+8的值是18,则代数式4a﹣6b+2的值为.16.(3分)小红从O点出发向北偏西32°方向走到A点,小明从O点出发向南偏西54°方向走到B点,则∠AOB的度数是.17.(3分)已知|x|=8,|y|=3,|x+y|=x+y,则x+y=18.(3分)小明爸爸带着小明和小明弟弟去离家66千米的外婆家,小明爸爸有一辆摩托车,只坐一人时速度为50千米/小时,坐两人时速度为40千米/小时(交通法规定:摩托车最多只能坐两人).小明和小明弟弟如果步行速度均为10千米/小时,为尽快达到外婆家,出发时,小明步行,小明爸爸将小明弟弟载了一段路程后让其步行前往外婆家,并立即返回接步行的小明,再到外婆家,结果与小明弟弟同时到达外婆家,则小明从家到外婆家步行的时间为.三、解答题(每小题0分,共70分)19.计算或解方程:(1);(2)|﹣2|×[﹣32÷(﹣3)2+(﹣2)3];(3)3(x﹣3)=2﹣2(x﹣2);(4).20.先化简,再求值:3x2y﹣[xy2﹣2(2xy2﹣3x2y)+x2y]+4xy2,其中(x+2)2+|y+1|=0.21.如图所示.点C,B是线段AD上的两点,AC:CB:BD=3:1:4,点E,F分别是AB,CD的中点,且EF=14,求AB,CD的长.22.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.23.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE(图中所说的角都是小于平角的角).(1)如图1,若∠COF=58°,求∠BOE的度数;(2)将∠COE绕点O顺时针旋转到如图2所示的位置时,若∠COF=m°,求∠BOE 的度数(用含字母m的代数式表示).24.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)工厂补充40名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置,则补充新工人后每天能配套生产多少产品?补充新工人后20天内能完成总任务吗?四、解答题25.如图,已知数轴上有三点A,B,C,若用AB表示A,B两点的距离,AC表示A,C两点的距离,且BC=2AB,点A、点C对应的数分别是a、c,且|a﹣20|+|c+10|=0.(1)若点P,Q分别从A,C两点同时出发向右运动,速度分别为2个单位长度/秒、5个单位长度/秒,则运动了多少秒时,Q到B的距离与P到B的距离相等?(2)若点P,Q仍然以(1)中的速度分别从A,C两点同时出发向右运动,2秒后,动点R从A点出发向左运动,点R的速度为1个单位长度/秒,点M为线段PR的中点,点N为线段RQ的中点,点R运动了x秒时恰好满足MN+AQ=25,请直接写出x的值.参考答案与试题解析一、选择题(每小题3分,共48分)1.(3分)﹣2的相反数是()A.﹣2B.2C.D.﹣【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选:B.2.(3分)如图,是由9个相同的正方体组成的立体图形,从正面观察这个立体图形,得到的平面图形是()A.B.C.D.【分析】从正面看到的图形为两层,最底层摆5个小立方体,上册在最左侧摆1个小立方体,得出答案.【解答】解:根据主视图的意义可得,A选项的图形符合题意,故选:A.3.(3分)下列各式的计算,正确的是()A.3a+2b=5ab B.5y2﹣3y2=2C.﹣12x+7x=﹣5x D.4m2n﹣2mn2=2mn【分析】根据合并同类项法则,对各选项计算后利用排除法求解.【解答】解:A、3a与2b不是同类项,不能合并,故错误;B、5y2﹣3y2=2y2,故错误;C、正确;D、4m2n与2mn2不是同类项,不能合并,故错误.故选:C.4.(3分)下列说法错误的是()A.连接两点的线段叫两点之间的距离B.经过两点有一条直线,并且只有一条直线C.两点的所有连线中,线段最短D.同角(等角)的补角相等【分析】利用线段定义、确定直线的条件、两点间的距离的定义及补角的性质分别判断后即可确定正确的选项.【解答】解:A.连接两点的线段的长度叫做这两点之间的距离,故原说法错误;B.经过两点有一条直线,并且只有一条直线,说法正确;C.两点的所有连线中,线段最短,说法正确;D.同角(等角)的补角相等,说法正确.故选:A.5.(3分)已知x=2是方程x+4a=﹣6的解,则a2+1的值是()A.10B.5C.2D.﹣3【分析】将x=2代入原方程即可求出答案.【解答】解:将x=2代入原方程可得:2+4a=﹣6,解得:a=﹣2,∴原式=4+1=5故选:B.6.(3分)∠A的补角为125°12′,则它的余角为()A.54°18′B.35°12′C.35°48′D.以上都不对【分析】两角互补和为180°,互余和为90°,先求出∠A,再用90°﹣∠A即可解出本题.【解答】解:∵∠A=180°﹣125°12′,∴∠A的余角为90°﹣∠A=90°﹣(180°﹣125°12′)=125°12′﹣90°=35°12′.故选:B.7.(3分)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100B.﹣3(100﹣x)=100C.3x﹣=100D.3x+=100【分析】设大和尚有x人,则小和尚有(100﹣x)人,根据3×大和尚人数+小和尚人数÷3=100,即可得出关于x的一元一次方程,此题得解.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100.故选:D.8.(3分)按如图程序计算,当输入x=2时,输出结果是()A.19B.20C.21D.22【分析】将x=2代入代数式,并判断其结果是否大于18,从而得出答案.【解答】解:当x=2时,==4<18,当x=4时,==20>18,输出;故选:B.9.(3分)如图,已知点C为线段AB的中点,点D在线段BC上.若DA=6cm,DB=4cm,则CD的长是()A.1cm B.1.5cm C.2cm D.2.5cm【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD 的长.【解答】解:∵DA=6cm,DB=4cm,∴AB=AD+BD=10,∵C是AB的中点,∴AC=AB=5,∴CD=AD﹣AC=6﹣5=1cm.故选:A.10.(3分)如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=130°,则∠BOC =()A.20°B.30°C.40°D.50°【分析】从图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=130°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣130°=50°.故选:D.11.(3分)若关于x的一元一次方程ax+2x=6的解是正整数,则符合条件的所有整数a的和为()A.0B.4C.12D.20【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:x=,∵x>0,且x是整数,∴a+2=1或2或3或6,∴a=﹣1或0或1或4,∴所有整数a的和为4,故选:B.12.(3分)已知,点C在直线AB上,AC=a,BC=b,且a≠b,点M是线段AB的中点,则线段MC的长为()A.B.C.或D.或【分析】分点C在线段AB上和在线段AB的延长线(或反向延长线)两种情况解答.【解答】解:当点C在线段AB上且a<b时,MC=﹣AC=,当点C在线段AB上且a>b时,MC=﹣BC=,∴当点C在线段AB上时,MC=;当C在在线段AB的延长线时,MC=+BC==,当C在在线段AB的反向延长线时,MC=+AC==,∴线段MC的长为或.故选:D.二、填空题(每小题3分,共24分)13.(3分)2019年国庆黄金周期间,重庆市实现旅游总收入约4117000000,其中4117000000用科学记数法表示为 4.117×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4117000000用科学记数法表示应为4.117×109.故选答案为:4.117×109.14.(3分)若单项式﹣2a m b3与的和是单项式,则m+n=4.【分析】根据单项式与单项式的和是单项式,可得两个单项式是同类项,根据同类项的定义,可得答案.【解答】解:由题意,得:﹣2a m b3与是同类项,∴m=5,2﹣n=3,解得:m=5,n=﹣1.m+n=5+(﹣1)=4.故答案为:4.15.(3分)代数式2a﹣3b+8的值是18,则代数式4a﹣6b+2的值为22.【分析】由题意求出2a﹣3b的值,原式变形后代入计算即可求出值.【解答】解:由2a﹣3b+8=18,得到2a﹣3b=10,则4a﹣6b+2=2(2a﹣3b)+2=2×10+2=22故答案为:22.16.(3分)小红从O点出发向北偏西32°方向走到A点,小明从O点出发向南偏西54°方向走到B点,则∠AOB的度数是94°.【分析】根据方向角和角的关系解答即可.【解答】解:根据题意得:∠AOB=180°﹣32°﹣54°=94°.故答案为:94°.17.(3分)已知|x|=8,|y|=3,|x+y|=x+y,则x+y=5或11【分析】根据题意,利用绝对值的代数意义确定出x与y的值,即可求出x+y的值.【解答】解:∵|x|=8,|y|=3,∴x=±8、y=±3,又|x+y|=x+y,即x+y=≥0,∴x=8、y=3或x=8、y=﹣3,当x=8、y=3时,x+y=11;当x=8、y=﹣3时,x+y=5;故答案为:5或11.18.(3分)小明爸爸带着小明和小明弟弟去离家66千米的外婆家,小明爸爸有一辆摩托车,只坐一人时速度为50千米/小时,坐两人时速度为40千米/小时(交通法规定:摩托车最多只能坐两人).小明和小明弟弟如果步行速度均为10千米/小时,为尽快达到外婆家,出发时,小明步行,小明爸爸将小明弟弟载了一段路程后让其步行前往外婆家,并立即返回接步行的小明,再到外婆家,结果与小明弟弟同时到达外婆家,则小明从家到外婆家步行的时间为 1.8小时.【分析】画出示意图,由小明与弟弟步行速度、乘车速度都是相同的,且同时到达,得到两人步行路程相同,即AB=CD.设小明步行路程为x千米,则AB=CD=x,BC=66﹣2x.由爸爸所用的时间=小明所用的时间,即可得出关于x的一元一次方,解之即可得出结论.【解答】解:设小明家为点A,小明上车的地点为点B,弟弟下车的地点为点C,外婆家为点D,如图所示.∵小明与弟弟步行速度、乘车速度都是相同的,且同时到达,∴两人步行路程相同,即AB=CD.设小明步行路程为x千米,则AB=CD=x,BC=66﹣2x.∵爸爸由C到B是一人乘坐摩托车,∴爸爸一共用的时间为()小时,小明一共用的时间为()小时.∵爸爸所用的时间=小明所用的时间,∴,解得:x=18,∴小明从家到外婆家步行的时间为18÷10=1.8(小时).故答案为:1.8小时.三、解答题(每小题0分,共70分)19.计算或解方程:(1);(2)|﹣2|×[﹣32÷(﹣3)2+(﹣2)3];(3)3(x﹣3)=2﹣2(x﹣2);(4).【分析】(1)根据乘法分配律计算即可;(2)根据有理数四则混合运算法则计算即可;(3)去括号、移项、合并同类项、化系数为1解答即可;(4)去分母、去括号、移项、合并同类项、化系数为1解答即可.【解答】解:(1)原式=×(﹣12)﹣×(﹣12)=﹣8+9=1;(2)原式=2×[﹣9÷9﹣8]=2×[﹣1﹣8]=2×(﹣9)=﹣18;(3)3x﹣9=2﹣2x+4,移项得:3x+2x=2+4+9,合并得:5x=15,解得:x=3;(4)去分母得:2(5x+1)﹣(2x﹣1)=6,去括号得:10x+2﹣2x+1=6,移项得:10x﹣2x=6﹣1﹣2,合并得:8x=3,解得:x=.20.先化简,再求值:3x2y﹣[xy2﹣2(2xy2﹣3x2y)+x2y]+4xy2,其中(x+2)2+|y+1|=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3x2y﹣[xy2﹣4xy2+6x2y+x2y]+4xy2=3x2y﹣xy2+4xy2﹣6x2y﹣x2y+4xy2=﹣4x2y+7xy2,∵(x+2)2+|y+1|=0,∴x=﹣2,y=﹣1,当x=﹣2,y=﹣1时,原式=﹣4×(﹣2)2×(﹣1)+7×(﹣2)×(﹣1)2=16﹣14=2.21.如图所示.点C,B是线段AD上的两点,AC:CB:BD=3:1:4,点E,F分别是AB,CD的中点,且EF=14,求AB,CD的长.【分析】根据已知条件“AC:CB:BD=3:1:4”设AC=3x,则CB=x,BD=4x,表示出BE,CF,根据EF=14列方程求解,即可得到x的值.从而求得线段AB、CD的长.【解答】解:设AC=3x,则CB=x,BD=4x,∴AB=AC+CB=3x+x=4x,CD=CB+BD=x+4x=5x.∵点E,F分别是AB,CD的中点则BE=AB=2x,CF=CD=.∵EF=14,∴EB+CF﹣CB=14,∴=14,解得:x=4,∴AB=4x=16,CD=5x=20.22.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.【分析】(1)设在网上平台购票单价为x元,则在现场购票单价为(x+10)元.根据“从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元”列方程求解即可;(2)根据“网上平台和现场售出电影票数为500张,a%为网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元”列方程,求解即可.【解答】解:(1)设在网上平台购票单价为x元,则在现场购票单价为(x+10)元.根据题意得:4x+2(x+10)=200,解得:x=30,∴x+10=40.答:在网上平台购票单价为30元,在现场购票单价为40元.(2)根据题意得:500×a%×30+500×(1﹣a%)×40=17000,解得:a=60.答:a的值为60.23.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE(图中所说的角都是小于平角的角).(1)如图1,若∠COF=58°,求∠BOE的度数;(2)将∠COE绕点O顺时针旋转到如图2所示的位置时,若∠COF=m°,求∠BOE 的度数(用含字母m的代数式表示).【分析】(1)根据互余得到∠EOF的度数,再由OF平分∠AOE,得到∠AOE=2∠EOF,然后根据邻补角的定义得到∠BOE的度数;(2)当∠COF=m°,根据互余得到∠EOF=m°﹣90°,再由OF平分∠AOE,得到∠AOE=2∠EOF=2m°﹣180°,然后根据邻补角的定义得到∠BOE的度数,即可得到结论.【解答】解:(1)∵∠COE是直角,∠COF=58°,∴∠EOF=90°﹣58°=32°.∵OF平分∠AOE,∴∠AOE=2∠EOF=64°,∴∠BOE=180°﹣64°=116°.答:∠BOE的度数为116°;(2)∵∠COF=m°,∴∠EOF=m°﹣90°.又∵OF平分∠AOE,∴∠AOE=2∠EOF=2m°﹣180°,∴∠BOE=180°﹣(2m°﹣180°)=360°﹣2m°.答:∠BOE的度数为360°﹣2m°.24.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)工厂补充40名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置,则补充新工人后每天能配套生产多少产品?补充新工人后20天内能完成总任务吗?【分析】(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H型装置,根据“生产的装置总数=每人每天生产的数量×人数”结合每台GH型产品由4个G型装置和3个H型装置配套组成,即可得出关于x的一元一次方程,解之可得出x的值,再将其代入中即可求出结论;(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,同(1)可得出关于y的一元一次方程,解之可得出y的值,再将其代入中即可求出补充新工人后每天能配套生产的套数,进而可求出20天生产的总数,与1200比较即可得出结论.【解答】解:(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H型装置,依题意,得:,解得:x=32,∴=48.答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,依题意,得:,解得:y=72,∴=y=72.∵72×20=1440>1200,∴补充新工人后20天内能完成总任务.答:补充新工人后每天能配套生产72套产品,补充新工人后20天内能完成总任务.四、解答题25.如图,已知数轴上有三点A,B,C,若用AB表示A,B两点的距离,AC表示A,C两点的距离,且BC=2AB,点A、点C对应的数分别是a、c,且|a﹣20|+|c+10|=0.(1)若点P,Q分别从A,C两点同时出发向右运动,速度分别为2个单位长度/秒、5个单位长度/秒,则运动了多少秒时,Q到B的距离与P到B的距离相等?(2)若点P,Q仍然以(1)中的速度分别从A,C两点同时出发向右运动,2秒后,动点R从A点出发向左运动,点R的速度为1个单位长度/秒,点M为线段PR的中点,点N为线段RQ的中点,点R运动了x秒时恰好满足MN+AQ=25,请直接写出x的值.【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC=2AB,求出b的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【解答】解:(1)∵|a﹣20|+|c+10|=0,∴a﹣20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=.答:运动了秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为=,点N对应的数为=2x+10,∴MN=|﹣(2x+10)|=|12﹣1.5x|.∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.分三种情况讨论:①当0<x<4时,12﹣1.5x+20﹣5x=25,解得:x=;当4≤x≤8时,12﹣1.5x+5x﹣20=25,解得:x=>8,不合题意,舍去;当x>8时,1.5x﹣12+5x﹣20=25,解得:x=.综上所述:x的值为或.。

2019-2020学年七年级上学期期末考试数学试卷(附解析)

2019-2020学年七年级上学期期末考试数学试卷(附解析)

2019-2020学年七年级上学期期末考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣7的倒数是()A.B.7C.D.﹣72.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.55.已知x=0是关于x的方程5x﹣4m=8的解,则m的值是()A.B.﹣C.2D.﹣26.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=9,那么a+b+c+d的值为()A.0B.9C.8048D.807610.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.51二、填空题(每题3分,共24分)11.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高℃.12.单项式﹣的次数是.13.如图,点A位于点O的方向上.14.一个角的余角是54°38′,则这个角的补角是.15.若方程:(m﹣1)x|m|﹣2=0是一元一次方程,则m的值为.16.长方形的长是3a,它的周长是10a﹣2b,则宽是.17.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应调往乙处人.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共66分)19.(10分)计算(1)(2).20.(10分)解方程:(1)2x﹣9=5x+3(2).21.(6分)先化简,再求值:2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9,其中(x﹣3)2+|y+|=0 22.(6分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.23.(10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(12分)如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM 平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).25.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故选:C.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.【分析】分别分析各数的有效数字与精确数位,再作答.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到了某一位,即应看这个数字最后一位实际在哪一位.【解答】解:根据近似数有效数字的确定方法和意义可知A、B、D正确,而近似数2.0万精确到千位,故C错误.故选:C.【点评】本题考查了有效数字和近似数的确定.精确到哪一位,即对下一位的数字进行四舍五入.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.【分析】绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.【点评】考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.5.【分析】已知x=0是方程5x﹣4m=8的解,代入可求出m的值.【解答】解:把x=0代入5x﹣4m=8得,0﹣4m=8,解得:m=﹣2.故选:D.【点评】本题是知道一个字母的值求另一个字母的值,解决此题常用代入的方法.6.【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.7.【分析】先求出AD,然后可得出CD,继而根据BC=BD+CD即可得出答案.【解答】解:∵AB=10cm,BD=4cm,∴AD=AB﹣BD=10﹣4=6(cm),∵点C是AD中点,∴CD=AD=3cm,则BC=CD+BD=7cm,故选:C.【点评】本题考查了两点之间的距离,关键是掌握中点的性质.8.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内的值分别是:±1,±3,据此可得出结论.【解答】解:∵a、b、c、d是四个不同的正整数,∴四个括号内的值分别是:±1,±3,∴2019+1=2020,2019﹣1=2018,2019+3=2022,2019﹣3=2016,∴a+b+c+d=2020+2018+2022+2016=8076.故选:D.【点评】本题考查的是有理数的混合运算,根据题意得出四个括号中的数是解答此题的关键.10.【分析】设图形n中星星的颗数是a n(n为正整数),列出部分图形中星星的个数,根据数据的变化找出变化规律“+n﹣1”,依此规律即可得出结论.【解答】解:设图形n中星星的颗数是a n(n为正整数),∵a1=2=1+1,a2=6=(1+2)+3,a3=11=(1+2+3)+5,a4=17=(1+2+3+4)+7,∴a n=1+2+…+n+(2n﹣1)=+(2n﹣1)=+n﹣1,∴a7=×72+×7﹣1=41.故选:C.【点评】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.二、填空题(每题3分,共24分)11.【分析】根据有理数减法的运算方法,用这天中午的气温减去早晨的气温,求出中午的气温比早晨的气温高多少即可.【解答】解:3﹣(﹣7)=10(℃)∴中午的气温比早晨的气温高10℃.故答案为:10.【点评】此题主要考查了有理数的减法,要熟练掌握.12.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的次数是:3+2+1=6.故答案为:6.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.【分析】根据方位角的概念直接解答即可.【解答】解:点A位于点O的北偏西30°方向上.【点评】规律总结:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.14.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.15.【分析】根据一元二次方程的定义解答即可.【解答】解:∵(m﹣1)x|m|﹣2=0是一元一次方程,∴,∴m=﹣1;故答案为:﹣1.【点评】本题考查了一元一次方程的概念,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【分析】根据长方形的周长=2(长+宽),表示出宽即可.【解答】解:根据题意得:(10a﹣2b)﹣3a=5a﹣b﹣3a=2a﹣b,故答案为:2a﹣b【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【分析】设调往甲处的人数为x,则调往乙处的人数为(20﹣x),根据甲处的人数是在乙处人数的2倍列方程求解.【解答】解:设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.故答案是:3.【点评】考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或156【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.三、解答题(共66分)19.【分析】(1)先把除法运算转化为乘法运算,然后利用乘法的分配律进行计算;(2)先算乘方和乘法运算,然后加减运算.【解答】解:(1)原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(2)原式=﹣1+6+2+1=8.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程移项合并得:﹣3x=12,解得:x=﹣4;(2)去分母得:2(x﹣1)﹣3(3﹣x)=6,去括号得:2x﹣2﹣9+3x=6,移项合并得:5x=17,解得:x=3.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5,∵(x﹣3)2+|y+|=0,∴x=3,y=﹣,则原式=4×3×(﹣)2+2×3+5=3+6+5=14.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【分析】设甲乙两地的路程是x千米,则公共汽车原来的车速是km/h,开通高速公路后的车速是(+20)km/h,根据两地的路程这个相等关系列方程得(+20)×5=x,借这个方程即可求出甲乙两地的路程.【解答】解:设:甲乙两地的路程是x千米.根据题意列方程得:(+20)×5=x,解得:x=350.答:甲乙两地的路程是350千米.【点评】本题主要考查了列一元一次方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.24.【分析】(1)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(2)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(3)根据(2)的原理,可直接得出结论.【解答】解:(1)∵∠BOC=∠AOB+∠AOC=90°+30°=120°,射线OM平分∠BOC,∴∠COM=∠BOC=×120°=60°,∵ON平分∠AOC,∴∠CON=∠AOC=×30°=15°,∴∠MON=∠COM﹣∠CON=60°﹣15°=45°.(2)∵∠BOC=∠AOB+∠AOC=α+β,∵射线OM平分∠BOC,∴∠COM=∠BOC=(α+β),∵ON平分∠AOC,∴∠CON=∠AOC=β,∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α.(3)MN=m.【点评】本题考查的是角的计算,解题的关键是明白角平分线的特点,根据此特点结合角与角间的数量关系即可得出结论.25.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。

2019-2020学年重庆实验外国语学校七年级(下)期中数学试卷(含答案解析)

2019-2020学年重庆实验外国语学校七年级(下)期中数学试卷(含答案解析)

2019-2020学年重庆实验外国语学校七年级(下)期中数学试卷一、选择题(本大题共12小题,共48.0分) 1. 下列各式中正确的是( )A. B.C.D .2. 下列计算正确的是( )A. √4=±2B. ±√19=13C. (−√5)2=5D. √83=±23. 关于点P(−2,0)在直角坐标平面中所在的象限说法正确的是( )A. 点P 在第二象限B. 点P 在第三象限C. 点P 既在第二象限又在第三象限D. 点P 不在任何象限4. 下列六个数:−√4,0.3030030003,√93,π,227,其中无理数有( )A. 1个B. 2个C. 3个D. 4个5. 计算22012−22013的结果是( )A. −(12)2012B. 22012C. (12)2012D. −220126. 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克 0.5 11.5 22.5 33.5 4烤制时间/分40 60 80 100 120 140 160 180设鸭的质量为x 千克,烤制时间为t ,估计当x =2.8千克时,t 的值为( )A. 128B. 132C. 136D. 1407. 如图,AB//CD ,直线l 分别交AB 、CD 于E 、F ,∠1=58°,则∠2的度数是( )A. 58°B. 148°C. 132°D. 122°8.某项工作甲单独做需要4天完成,乙单独做需要6天完成,若乙先做1天,然后再由甲、乙合作完成此项工作,若设甲乙合作需x天完成,则可列的方程为()A. B.C. D.9.在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A. (0,5)B. (5,1)C. (2,4)D. (4,2)x的图象,过点A(0,1)作y轴的10.如图,直线l为正比例函数y=√33垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点B n的坐标是()A. (√3×4n,4n)B. (√3×4n−1,4n−1)C. (√3×4n−1,4n)D. (√3×4n,4n−1)11.如图,BC平分∠ABE,AB//CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A. 70°B. 65°C. 62°D. 60°12.如图,已知△ABC与△CDA关于点O对称,过点O任作直线EF分别交AD、BC于点M、N,下列结论:(1)点M和点N;点B和点D是关于点O的对称点;(2)直线BD必经过点O;(3)四边形ABCD是中心对称图形;(4)四边形DMOC和四边形BNOA的面积相等;(5)△AOM和△CON成中心对称.其中,正确的有()A. 2 个B. 3个C. 5个D. 1个二、填空题(本大题共8小题,共32.0分)13.雅居乐地产在曲石投资20 000 000 000元的“原乡”生态族游度假小镇现已开盘,如果用科学记数法表示20 000 000 000,应为______ .14.若一个整数的平方根是−a+2和2a−1,则a=______,这个正数是______.15.如图,在平面直角坐标系xOy中,一次函数y=x+1与x、y轴分别交于点A、B,在直线AB上截取BB1=AB,过点B1分别作y轴的垂线,垂足为点C1,得到△BB1C1;在直线AB上截取B1B2=BB1,过点B2分别作y轴的垂线,垂足为点C2,得到△BB2C2;在直线AB上截取B2B3=B1B2,过点B3作y轴的垂线,垂足为点C3,得到△BB3C3;…;第3个△BB3C3的面积是______;第n个△BB n C n的面积是______(用含n的式子表示,n是正整数).16.化简:2(x2−y)−3(x2+y)的结果是______.17.若x轴上的点P到y轴的距离为4,则点P的坐标为______.18.如图,已知△ABC中,∠B,∠C的平分线相交于点F,过点F作DE//BC交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为.19.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100110120130…月销量(件)200180160140…已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是______件,销售该运动服的月利润为______元(用含x的式子表示).20.小宇、小明、小华和小芳四个人到文具店购买同一种笔记本和钢笔,他们把各自购买的数量和总价列成了表格,聪明的小华发现其中有一人把总价算错了,这个算错的人是______.小宇小明小华小芳笔记本(本)93612钢笔(支)1551020总价(元)198********三、解答题(本大题共8小题,共70.0分) 21. 计算(1)√−83−√14(2)(√7+√3)(√7−√3)−√1622. 在直角坐标系中,△ABC 的三个顶点的位置如图所示.(1)请画出△ABC 关于y 轴对称的△A 1B 1C 1(其中A 1、B 1、C 1分别是A 、B 、C 的对应点,不写作法).(2)直接写出A 1、B 1、C 1三点的坐标:A 1______、B 1______、C 1______; (3)求出△ABC 的面积.23.化简求值:(a+b)2−(a+b)(a−b)−2b(2a+b),其中a=√5,b=1.224.先化简再求值:3(a2+2b)−(2a2−b),其中a=−2,b=1.25.快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y与x之间的函数关系,请解答下列问题:(1)甲、乙两地相距______千米,快车休息前的速度是______千米/时、慢车的速度是______千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.26.如图,已知AB//CD,直线FG分别与AB、CD交于点F、点G.(1)如图1,当点E在线段FG上,若∠EAF=40°,∠EDG=30°,则∠AED=______°.(2)如图2,当点E在线段FG的延长线上,CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请证明你的结论;(3)如图3,在(2)的条件下,DM平分∠EDG,交AE于点K,射线AN将∠EAB分成∠EAN:∠NAB=1:2,且与DM交于点I,若∠DEA=22°,∠DIA=20°,求∠DKE的度数.27.一种混凝土排水管,其形状为空心的圆柱体,它的内径d=68cm,外径D=88cm,长ℎ=200cm.浇制一节这样的排水管需要多少立方米的混凝土(结果保留π)?怎样计算较简便?28.如图,平面直角坐标系中有A(−3,0),B(1,0),C三点.(1)连接AC,若C(−4,1).①线段AC的长为______ (直接写出结果);②如图1,点P为y轴负半轴上一点,点D为线段AB上一点,连接CD,作DE⊥CD,且DE=CD,当点D从A向B运动时,C点不变,E点随之运动,连接EP,求线段EP的中点Q的运动路径长;(2)如图2,作AF⊥AC,连接FB并延长,交CA延长线于G,GH⊥CF于H.若BF=BG,且∠C=67.5°,在平面内是否存在点M,使以B,A,H,M为顶点的四边形是平行四边形,若存在,请求出点M的坐标;若不存在,请说明理由.【答案与解析】1.答案:B解析:试题分析:根据平方根和立方根的知识点进行解答,若x3=a,则x=,x2=b(b≥0)则x=,算术平方根只能为正,据此进行判断正确答案.A、,本选项错误,B、,本选项正确,C、,本选项错误,D、,本选项错误,故选B.2.答案:C解析:解:A、√4=2,故选项错误;B、±√19=±13,故选项错误;C、(−√5)2=5,故选项正确;D、√83=2,故选项错误.故选:C.A、根据算术平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的性质计算即可判定;D、根据立方根的定义即可判定.本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.3.答案:D解析:解:∵点P(−2,0)的横坐标不等于0,纵坐标为0,∴点P(−2,0)在x轴上,故点P不在任何象限.故选:D .根据在x 轴上的点的纵坐标为0解答即可.本题考查了的的坐标,熟记在数轴上的点的坐标特点是解答本题的关键.4.答案:B解析:解:在所列实数中,无理数有√93,π这2个, 故选:B .根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.5.答案:D解析:试题分析:提取公因式后即可求得结果. 原式=22012(1−2)=−22012 故选D .6.答案:B解析:解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b , {k +b =602k +b =100, 解得{k =40b =20所以t =40x +20.当x =2.8千克时,t =40×2.8+20=132. 故选B .观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b ,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x =2.8千克代入即可求出烤制时间t .。

2019-2020学年重庆实验外国语学校七年级(上)第一次定时作业数学试卷解析版

2019-2020学年重庆实验外国语学校七年级(上)第一次定时作业数学试卷解析版

2019-2020学年重庆实验外国语学校七年级(上)第一次定时作业数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卷上对应题目的正确答案标号涂黑)1.(4分)5-的倒数是( ) A .15B .5C .15-D .5-2.(4分)一种巧克力的质量标识为“230.25±千克”,则下列哪种巧克力的质量是合格的()A .23.30千克B .22.70千克C .23.55千克D .22.80千克3.(4分)计算20181-的值为( ) A .1B .1-C .2018D .2018-4.(4分)在(2)--、|1|-、|3|--、2(3)-、2(4)--中,正数有( ) A .1个B .2个C .3个D .4个5.(4分)已知点A 、B 、C 是数轴上的三个点,点A 表示的数是5-,点B 表示的数是1,且A 、B 两点间的距离是B 、C 两点间距离的2倍,则点C 表示的数是( ) A .4B .1-C .1-或3D .2-或46.(4分)若330a b +=,那么有理数a ,b 的关系是( ) A .0a b == B .a ,b 至少一个是0 C .0a b +=D .a ,b 不都是07.(4分)下列说法正确的有( )个 ①0是绝对值最小的有理数; ②相反数大于本身的数是负数; ③数轴上原点两侧的数互为相反数; ④||||a b =,则a b =. A .1B .2C .3D .48.(4分)墨尔本与北京的时差是3+小时(即同一时刻墨尔本时间比北京时间早3小时).班机从墨尔本飞到北京需用12小时,若乘坐从题尔本10:00(当地时间)起飞的航班,到达北京机场时,北京时间是( ) A .22:00B .19:00C .18:00D .15:009.(4分)若||1a =,||4b =,且||a b a b -=-,则a b -等于( ) A .5B .3C .5-或5D .5或310.(4分)有一列数1a ,2a ,3a ,⋯,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2018a 为( ) A .2017B .12C .2D .1-二、填空题(本大题共8个小题,每小题4分,共40分,请将答案写在答题卷上,) 11.(4分)用“>”“ <”或“=”填空:(1)0 2018;(2)13- 0.33; (3)(5)-+|5|-- 12.(4分)9-的绝对值是 ,23的相反数是 ,314-的倒数是 . 13.(4分)用四舍五入法,将100.009精确到十分位为 . 14.(4分)已知2|3|(2)0x y ++-=,则x y += .15.(4分)设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a b c -+= .16.(4分)大于2-且不大于3的所有非负整数的和是 . 17.(4分)当x = 时,式子|3|5x --+有 值.18.(4分)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则式子2x cd a b +++的值为 .19.(4分)如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,若取最左端3个格子中的后两个数记作m 、n ,那么||m n -是 .20.(4分)我校每年12月30日晚上各班的元旦晚会是同学们施展才艺的舞台.在某班晚会上,主持人为同学们准备了一个游戏:从100个外形相同的气球中找到唯一的里面装有奖品的气球.主持人将这些气球按1至100的顺序编号排成一列,第一次先请一位同学从中取出所有序号为单数的球,均没发现装有奖品.接着主持人将剩下的球又按150-重新编号排成一列(即原来的2号变为1号,原来的4号变为2号,⋯,原来的100号变为50号),又请一位同学从中取出所有新序号为单数的球,也没有发现奖品,⋯如此下去,直到最后一个气球才是装有奖品的,那么这个装有奖品的气球最初的序号是 . 三、解答题:(本大题2个小题,21题6分,22题4分,共30分)解答时每小题必须给出必要的演算过程或推理步骤.请将解答书写在答题卷中对应的位置上21.(6分)在规定直线上画出数轴,将数字0,3-,2,112-,0.5表示在数轴上,并用“<”符号将这些数连接起来.22.(24分)计算:(1)( 4.3)(4)( 2.3)(4)+--+--+ (2)7549()(10)57-÷⨯-÷-(3)2213(2)(4)(2)2-⨯-+---+ (4)231336()9412-⨯-+(5)22| 1.23|3|4.5 5.2|33-+---(6)1519(8)19.56 1.5616⨯-+⨯-⨯ 四、解答题:(本大题3个小题,23题10分,24题8分,25题10分,共28分)解答时每小题必须给出必要的演算过程或推理步骤.请将解答书写在答题卷中对应的位置上 23.(10分)某自行车厂规定每天要生产200辆自行车,由于各种原因实际每天生产量与规定量相比有出入.下表是某一周的实际生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产 辆;(2)产量最多的一天比产量最少的一天多生产 辆;(3)该厂实行每天计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖25元;少生产一辆则扣10元,那么该厂工人这一周的工资总额是多少? 24.(8分)已知,||5a =、||3b =、281c =,又知,||a b a b +=+且||a c a c +=+,求23a b c -+的值.25.(10分)我们知道,||x表示x在数轴上对应的点到原点的距离我们可以把||x看作|0|x-,所以,|3|+=--就表示x在数轴上对x-就表示x在数轴上对应的点到3的距离,|1||(1)|x x应的点到1-的距离,由上面绝对值的几何意义,解答下列问题:(1)求|4||2|-++的最小值,并写出此时x的取值情况;x x(2)求|3||2||6|x x x-++++的最小值,并写出此时x的取值情况;(3)已知|1||2||3||4|10+的最大值和最小值.x x y y-+++-++=,求2x y五、探究题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤、请将解答书写在答题卷中对应的位置上26.(12分)如图,数轴上有两个长方形ABCD和FFGH,这两个长方形的宽都是1个单位长度,长方形ABCD的长AD是2个单位长度,长方形EFGH的长EH是4个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是;(2)若长方形ABCD以每秒2个单位的速度向右匀速运动,当点D运动到E时,两个长方形开始有重叠部分,此时长方形ABCD运动了秒;若长方形ABCD继续向右运动,再经过秒后,两个长方形不再有重叠部分.经过6.5秒时,两个长方形重叠部分的面积是个平方单位;(3)设AD的中点为M,若两个长方形ABCD和EFGH同时从图中位置出发,长方形EFGH 以每秒2个单位的速度向左匀速运动,长方形ABCD仍以每秒2个单位的速度向右匀速运动,运动多少秒时,点M与线段EH端点E的距离为1个单位长度.参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卷上对应题目的正确答案标号涂黑)1.(4分)5-的倒数是( ) A .15B .5C .15-D .5-【分析】根据倒数的定义可知. 【解答】解:5-的倒数是15-.故选:C .【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2.(4分)一种巧克力的质量标识为“230.25±千克”,则下列哪种巧克力的质量是合格的()A .23.30千克B .22.70千克C .23.55千克D .22.80千克【分析】根据正负数的意义,得出巧克力的重量在25.2524.75kg -之间,进而判断产品是否合格.【解答】解:230.2523.25+=,230.2522.75-=,∴巧克力的重量在23.25与22.75kg 之间. ∴符合条件的只有D .故选:D .【点评】此题主要考查正负数在实际生活中的应用,解答此题关键是要弄清巧克力上的质量标识为“250.25kg ±”的意思. 3.(4分)计算20181-的值为( ) A .1B .1-C .2018D .2018-【分析】直接利用有理数的乘方运算法则计算得出答案. 【解答】解:201811-=-. 故选:B .【点评】此题主要考查了有理数的乘方运算,正确掌握运算法则是解题关键.4.(4分)在(2)--、|1|-、|3|--、2(3)-、2(4)--中,正数有( ) A .1个B .2个C .3个D .4个【分析】利用相反数,绝对值,以及乘方的意义得到结果,判断即可. 【解答】解:(2)2--=、|1|1-=、|3|3--=-、2(3)9-=、2(4)16--=-, 则正数有3个, 故选:C .【点评】此题考查了有理数的乘方,正数与负数,相反数,以及绝对值,熟练掌握各自的性质是解本题的关键.5.(4分)已知点A 、B 、C 是数轴上的三个点,点A 表示的数是5-,点B 表示的数是1,且A 、B 两点间的距离是B 、C 两点间距离的2倍,则点C 表示的数是( ) A .4B .1-C .1-或3D .2-或4【分析】设点C 表示的数是x ,根据两点之间的距离计算方法列出方程解答即可. 【解答】解:设点C 表示的数是x ,由题意得 |1(5)|2|1|x --=-, |1|3x -=,解得:2x =-或4. 故选:D .【点评】此题考查数轴,掌握两点之间的距离计算方法是解决问题的关键. 6.(4分)若330a b +=,那么有理数a ,b 的关系是( ) A .0a b == B .a ,b 至少一个是0 C .0a b +=D .a ,b 不都是0【分析】根据330a b +=,可得3a 与3b 互为相反数,从而得出a 与b 互为相反数. 【解答】解:330a b +=, 3a ∴与3b 互为相反数, 0a b ∴+=, a ∴与b 互为相反数.故选:C .【点评】本题考查了有理数的乘方,相反数的性质,互为相反数的两个数的和为0.7.(4分)下列说法正确的有( )个 ①0是绝对值最小的有理数; ②相反数大于本身的数是负数; ③数轴上原点两侧的数互为相反数; ④||||a b =,则a b =. A .1B .2C .3D .4【分析】本题涉及绝对值的性质,相反数的定义,需要根据知识点,逐一判断. 【解答】解:①0是绝对值最小的有理数是正确的; ②相反数大于本身的数是负数是正确的;③数轴上原点两侧的数并且与原点的距离相等的数互为相反数,故错误; ④||||a b =,则a b =或a b =-,故错误. 故说法正确的有2个. 故选:B .【点评】本题综合考查绝对值的性质,相反数的定义,注意0是绝对值最小的有理数. 8.(4分)墨尔本与北京的时差是3+小时(即同一时刻墨尔本时间比北京时间早3小时).班机从墨尔本飞到北京需用12小时,若乘坐从题尔本10:00(当地时间)起飞的航班,到达北京机场时,北京时间是( ) A .22:00B .19:00C .18:00D .15:00【分析】乘坐从墨尔本10:00(当地时间)起飞的航班,到达北京机场时为墨尔本时间121022+=(点),由于同一时刻墨尔本时间比北京时间早3小时,则此时北京时间为223-. 【解答】解:1012319+-=,即乘坐从墨尔本10:00(当地时间)起飞的航班,到达北京机场时,北京时间是19:00. 故选:B .【点评】本题考查了有理数的加减法混合运算.掌握有理数的加减法混合运算的法则是解题的关键.9.(4分)若||1a =,||4b =,且||a b a b -=-,则a b -等于( ) A .5B .3C .5-或5D .5或3【分析】本题只给出a ,b 的绝对值,则需要分类讨论,然后求解. 【解答】解:||1a =,||4b =,且||a b a b -=-, 1a ∴=或1-,4b =-,1(4)5a b ∴-=--=或1(4)3a b -=---=, a b ∴-等于5或3.故选:D .【点评】此题考查了有理数的减法,以及绝对值,熟练掌握运算法则是解本题的关键. 10.(4分)有一列数1a ,2a ,3a ,⋯,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2018a 为( ) A .2017B .12C .2D .1-【分析】本题可分别求出2n =、3、4⋯时的情况,观察它是否具有周期性,再把2018代入求解即可.【解答】解:依题意得:12a =,211122a =-=,3121a =-=-,4112a =+=; 周期为3;201836722÷=⋯,所以2018212a a ==. 故选:B .【点评】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.二、填空题(本大题共8个小题,每小题4分,共40分,请将答案写在答题卷上,) 11.(4分)用“>”“ <”或“=”填空:(1)0 < 2018;(2)13- 0.33; (3)(5)-+|5|-- 【分析】根据有理数的大小比较解答即可.【解答】解:(1)02018<;(2)10.333-<; (3)(5)|5|-+=--,故答案为:<;<;=.【点评】此题考查有理数的大小比较,关键是根据有理数的大小比较解答. 12.(4分)9-的绝对值是 9 ,23的相反数是 ,314-的倒数是 . 【分析】根据负数的绝对值是它的相反数,只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:9-的绝对值是 9,23的相反数是23-,314-的倒数是47-, 故答案为:9,23-,47-.【点评】本题考查了倒数,先把带分数化成假分数再求倒数,注意在一个数的前面加上负号就是这个数的相反数.13.(4分)用四舍五入法,将100.009精确到十分位为 100.0 . 【分析】对百分位四舍五入即可得.【解答】解:将100.009精确到十分位为100.0, 故答案为:100.0.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字. 14.(4分)已知2|3|(2)0x y ++-=,则x y += 1- .【分析】直接利用偶次方的性质以及绝对值的性质化简进而求出答案. 【解答】解:2|3|(2)0x y ++-=, 3x ∴=-,2y =,321x y ∴+=-+=-,故答案为:1-.【点评】此题主要考查了偶次方的性质以及绝对值的性质,正确得出x ,y 的值是解题关键.15.(4分)设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a b c -+= 2 .【分析】先根据题意判断出a 、b 、c 的值,再代入代数式计算.【解答】解:根据题意,最小的正整数是1,最大的负整数1-,绝对值最小的有理数是0, 1a ∴=,1b =-,0c =,1(1)01102a b c ∴-+=--+=++=.故应填2.【点评】本题主要考查特殊的有理数,必须熟练掌握它们方能解好题目. 16.(4分)大于2-且不大于3的所有非负整数的和是 3 . 【分析】先根据绝对值和非负整数的定义得出数值,进而解答即可.【解答】解:大于2-且不大于3的所有非负整数为:0,1,2, 0123++=,故答案为:3【点评】本题考查了有理数大小的比较和绝对值的定义:在数轴上表示数的点到原点的距离叫这个数的绝对值;若0a >,则||a a =;若0a =,则||0a =;若0a <,则||a a =-.也考查了负整数的定义.17.(4分)当x = 3 时,式子|3|5x --+有 值. 【分析】根据|3|0x --…可知|3|5x --+的最值情况. 【解答】解:|3|0x --…, |3|55x ∴--+…,∴当3x =时,式子|3|5x --+有最大值.故答案为:3,最大.【点评】本题主要考查代数式的最值情况,熟练掌握绝对值的意义是解题的关键. 18.(4分)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则式子2x cd a b +++的值为 5 .【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,可以得到a b +、cd 、x 的值,从而可以求而所求式子的值.【解答】解:a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2, 0a b ∴+=,1cd =,2x =±,24x ∴=, 2x cd a b ∴+++ 41()a b =+++ 410=++5=,故答案为:5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.(4分)如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,若取最左端3个格子中的后两个数记作m 、n ,那么||m n -是 8 .【分析】根据三个相邻格子的整数的和相等列式求出第四个数的值,再根据第9个数是2可得2n=,然后找出格子中的数每3个为一个循环组依次循环,因此可用前三个数的重复多次计算出结果.【解答】解:设第四个数为x,任意三个相邻格子中所填整数之和都相等,∴++=++,9m n m n x解得9x=,++=+-,m n x n x6∴=-,m6所以,数据从左到右依次为9、6-、n、⋯,-、n、9、6第9个数与第三个数相同,即2n=,∴-=,m n||8故答案为:8.【点评】此题考查数字的变化规律,找出数字之间的联系,得出规律,是解决问题的关键.20.(4分)我校每年12月30日晚上各班的元旦晚会是同学们施展才艺的舞台.在某班晚会上,主持人为同学们准备了一个游戏:从100个外形相同的气球中找到唯一的里面装有奖品的气球.主持人将这些气球按1至100的顺序编号排成一列,第一次先请一位同学从中取出所有序号为单数的球,均没发现装有奖品.接着主持人将剩下的球又按150-重新编号排成一列(即原来的2号变为1号,原来的4号变为2号,⋯,原来的100号变为50号),又请一位同学从中取出所有新序号为单数的球,也没有发现奖品,⋯如此下去,直到最后一个气球才是装有奖品的,那么这个装有奖品的气球最初的序号是64.【分析】第一次取出的是序号为单号的气球,则剩下的气球的序号能被2整除;第二次把剩下的气球按原来的位置编150-号,取出新编的单号,则剩下的蛋气球原来的编号能被4整除;按此方法第三次取气球后,剩下的气球原来的编号能被8整除;依此下去就可求出装有奖品的气球的序号.【解答】解:第一次取出的是单号的气球,剩下的气球的序号是2的倍数,因为原来是100只,所以还剩50只;第二次取出后,剩下的气球的序号是4的倍数,所以还剩25只;第三次取出后,剩下的气球的序号是8的倍数,所以还剩12只;第四次取出后,剩下的气球的序号是16的倍数,所以还剩6只;第五次取出后,剩下的气球的序号是32的倍数,所以还剩3只;第六次取出后,剩下的气球的序号是64的倍数,所以还剩1只;故装有奖品的气球最初的序号是64.故答案为:64.【点评】此题主要考查了推理论证,根据题意,分析每次取出的序号是后剩下的气球的序号,就能知道装有奖品的气球最初的序号.三、解答题:(本大题2个小题,21题6分,22题4分,共30分)解答时每小题必须给出必要的演算过程或推理步骤.请将解答书写在答题卷中对应的位置上21.(6分)在规定直线上画出数轴,将数字0,3-,2,112-,0.5表示在数轴上,并用“<”符号将这些数连接起来.【分析】画好数轴,在数轴上表示出各数即可,根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:所画数轴和数轴上表示数如图所示:由数轴的特点可知,13100.522-<-<<<.【点评】本题考查了数轴,有理数大小比较.解题的关键是能够正确画出数轴,明确有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.22.(24分)计算:(1)( 4.3)(4)( 2.3)(4)+--+--+(2)7549()(10)57-÷⨯-÷-(3)2213(2)(4)(2)2 -⨯-+---+(4)231 336()9412 -⨯-+33(6)1519(8)19.56 1.56 16⨯-+⨯-⨯【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据有理数的乘法和加减法可以解答本题;(4)根据乘法分配律和有理数的加减法可以解答本题;(5)根据有理数的加减法可以解答本题;(6)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)( 4.3)(4)( 2.3)(4)+--+--+4.34( 2.3)(4)=++-+-2=;(2)7549()(10)57-÷⨯-÷-551497710 =-⨯⨯⨯52=-;(3)2213(2)(4)(2)2 -⨯-+---+19(2)1622=-⨯-+++1181622=+++1362=;(4)231 336()9412 -⨯-+38273 =-+-19=;(5)22| 1.23|3|4.5 5.2|33-+---223 1.230.733=---1.9=-;(6)1519(8)19.56 1.56 16⨯-+⨯-⨯16151521862=--+⨯ 1527.5108=--+51.5=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.四、解答题:(本大题3个小题,23题10分,24题8分,25题10分,共28分)解答时每小题必须给出必要的演算过程或推理步骤.请将解答书写在答题卷中对应的位置上23.(10分)某自行车厂规定每天要生产200辆自行车,由于各种原因实际每天生产量与规定量相比有出入.下表是某一周的实际生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产 599 辆;(2)产量最多的一天比产量最少的一天多生产 辆;(3)该厂实行每天计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖25元;少生产一辆则扣10元,那么该厂工人这一周的工资总额是多少?【分析】(1)3天的规定的辆数是3200⨯辆,然后加上每天的与规定量的差值即可求解;(2)最多的是星期六的产量,最低的是星期天的常量,这两天的与规定量的差值的差就是所求的解;(3)自行车的总辆数乘以50元,加上奖励的钱数再减去扣的钱数即可求得.【解答】解:(1)3200634599⨯+--=(辆);(2)17(11)28--=(辆);(3)[2007(6341291711)]50(61217)25(34911)10⨯+--+-+-⨯+++⨯-+++⨯ 140850352527107040087527071005=⨯+⨯-⨯=+-=(元).答:该厂工人这一周的工资总额是71005元.【点评】本题考查了有理数的计算,正确表示出自行车的总辆数是关键.24.(8分)已知,||5a =、||3b =、281c =,又知,||a b a b +=+且||a c a c +=+,求23a b c -+的值.【分析】利用绝对值的代数意义,乘方的意义判断求出a ,b ,c 的值,代入原式计算即可求出值.【解答】解:||5a =、||3b =、281c =,||a b a b +=+且||a c a c +=+,5a ∴=±,3b =±,9c =±,0a b +…,0a c +…, 当5a =,3b =,9c =时,原式109910=-+=;当5a =,3b =-,9c =时,原式109928=++=.【点评】此题考查了有理数的乘方,绝对值,以及有理数的加减混合运算,熟练掌握运算法则是解本题的关键.25.(10分)我们知道,||x 表示x 在数轴上对应的点到原点的距离我们可以把||x 看作|0|x -,所以,|3|x -就表示x 在数轴上对应的点到3的距离,|1||(1)|x x +=--就表示x 在数轴上对应的点到1-的距离,由上面绝对值的几何意义,解答下列问题:(1)求|4||2|x x -++的最小值,并写出此时x 的取值情况;(2)求|3||2||6|x x x -++++的最小值,并写出此时x 的取值情况;(3)已知|1||2||3||4|10x x y y -+++-++=,求2x y +的最大值和最小值.【分析】(1)求|4||2|x x -++的最小值,由线段的性质,两点之间,线段最短,可知当24x -剟时,|4||2|x x -++有最小值;(2)先找到中间点,再根据绝对值的性质即可求出最小值及x 的取值情况;(3)由于|1||2||3||4|1037x x y y -+++-++==+,可知12x -剟,43y -剟,依此得到2x y -的最大值和最小值.【解答】解:(1)|4||2|x x -++的最小值为4(2)6--=,此时x 的取值情况是24x -剟;(2)|3||2||6|x x x -++++的最小值为(26)0(32)9-++++=,此时x 的取值情况是2x =-;(3)|1||2||3||4|10x x y y -+++-++=,12x ∴-剟,43y -剟,2x y ∴+的最大值为2237⨯+=,最小值为2(1)(4)6⨯-+-=-.故2x y +的最大值7,最小值6-.【点评】考查了绝对值和数轴,借助数轴可以使有关绝对值的问题转化为数轴上有关距离的问题,反之,有关数轴上的距离问题也可以转化为绝对值问题.这种相互转化在解决某些问题时可以带来方便.事实上,||A B -表示的几何意义就是在数轴上表示数A 与数B 的点之间的距离.这是一个很有用的结论,我们正是利用这一结论并结合数轴的知识解决了(2)(3)这两道难题.五、探究题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤、请将解答书写在答题卷中对应的位置上26.(12分)如图,数轴上有两个长方形ABCD和FFGH,这两个长方形的宽都是1个单位长度,长方形ABCD的长AD是2个单位长度,长方形EFGH的长EH是4个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是9,点A在数轴上表示的数是;(2)若长方形ABCD以每秒2个单位的速度向右匀速运动,当点D运动到E时,两个长方形开始有重叠部分,此时长方形ABCD运动了秒;若长方形ABCD继续向右运动,再经过秒后,两个长方形不再有重叠部分.经过6.5秒时,两个长方形重叠部分的面积是个平方单位;(3)设AD的中点为M,若两个长方形ABCD和EFGH同时从图中位置出发,长方形EFGH 以每秒2个单位的速度向左匀速运动,长方形ABCD仍以每秒2个单位的速度向右匀速运动,运动多少秒时,点M与线段EH端点E的距离为1个单位长度.【分析】(1)由数轴上两点间的距离性质,可求解;(2)E、D重合时,运动路程12个单位长度;当两个长方形没有重叠时,运动路程18个单位长度;经过6.5秒时,D点运动了13个单位长度,求出相交时1ED=,即可求此时的面积;(3)①当E、D重合时,1==,此时1243MD MEt=÷=秒;②当E在D的左侧,距离为2时,此时144 3.5t=÷=秒.【解答】解:(1)点E在数轴上表示的数是5,EH是4个单位长度,∴点表示9,H且E、D两点之间的距离为12.∴点表示7-,DAD是2个单位长度,∴点表示9-,A故答案为9,9-;(2)E、D之间的距离是12,长方形ABCD以每秒2个单位的速度向右匀速运动,∴、D重合时,运动了6秒;E当A点运动到H时,两个长方形没有重叠,A∴点运动的距离是18,∴运动到H,运动了9秒;A经过6.5秒时,D点运动了13个单位长度,此时D点在数轴上表示的点是6,=⨯=个平方单位;∴重叠部分长方形面积111故答案为6,9,1;(3)①当E、D重合时,1==,MD ME此时1243t=÷=秒;②当E在D的左侧,距离为2时,此时144 3.5t=÷=秒;综上所述:当E、D运动3秒,3.5秒时,点M与线段EH端点E的距离为1个单位长度.【点评】本题考查数轴的意义;根据数轴上点的特点,两点之间距离的求法,准确分析运动过程中各点的变化,两点距离的变化,从而准确求出运动的距离和时间是解题的关键.。

2019-2020学年重庆市渝中区巴蜀中学七年级上学期期末数学试卷 (解析版)

2019-2020学年重庆市渝中区巴蜀中学七年级上学期期末数学试卷 (解析版)

2019-2020学年重庆市渝中区巴蜀中学七年级(上)期末数学试卷一、选择题(共12小题).1.﹣2的倒数是()A.2B.C.﹣2D.﹣2.如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中生每天锻炼所用的时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查4.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a25.正方体的侧面展开图如图所示,“重”字的对面为()字.A.巴B.蜀C.中D.学6.按图中程序运算,如果输出的结果为3,则输入的数据可能是()A.﹣1B.﹣2C.0D.27.如果x=﹣1是关于x的方程5x+2m﹣7=0的解,则m的值是()A.﹣1B.1C.6D.﹣68.如图所示,下列图案均是由完全相同的“太阳型”图案按一定的规律拼搭而成,第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律,第6个图案需要图标的个数是()A.28B.33C.36D.389.已知代数式x2﹣2x﹣1=4,则代数式2019+4x﹣2x2值是()A.2009B.2029C.2020D.202410.《九章算术》中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊,若每人出5钱,则还差45钱;若每人出7钱,则仍然差3钱.求买羊的人数和这头羊的价格.设买羊的人数为x人,根据题意,可列方程为()A.5x﹣45=7x+3B.5x+45=7x﹣3C.5x﹣45=7x﹣3D.5x+45=7x+3 11.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元12.已知关于x方程x﹣=﹣1的解是非正整数,则符合条件的所有整数a的和是()A.﹣4B.﹣3C.2D.3二、填空题(共8小题).13.万众瞩目的重庆来福士广场开业当天,游客数量突破了350000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350000用科学记数法表示为.14.若关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,则m﹣6n的值为.15.如图,线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD =3cm,E是AD中点,F是CD的中点.则EF的长度为cm.16.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.17.某电视台组织知识竞赛,共设有20道选择题,各题分值相同,每题必答.如表记录了3个参赛者的得分情况,如果参赛者F得76分,则他答对的题数为.参赛者答对题数答错题数得分A200100B19194C1828818.巴蜀中学下午到校时间为14:15分,此时钟表上时针和分针的夹角为.19.平面内,已知∠AOB=90°,∠BOC=20°,OE平分∠AOB,OF平分∠BOC,则∠EOF=.20.春节来临之际,元祖蛋糕店对凤梨味,核桃味、绿茶味年糕(分别记为A、B、C)进行混装,推出了甲、乙两种礼盒.礼盒的成本是盒中年糕的成本与包装盒成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中年糕的成本之和是1个A成本的15倍,甲礼盒每盒的包装盒成本与乙礼盒每盒的包装盒成本的之比为3:4,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%,当该店销售这两种礼盒的总利润率为25%时,甲、乙两种礼盒的销售量之比为.三、解答题(本大题9个小题,共70分)21.有理数的计算:(1)﹣42×|﹣1|﹣(﹣5)+2;(2)(﹣56)×(﹣1)÷(﹣1)×.22.解下列方程(1)4x﹣3(20﹣x)=3;(2).23.解二元一次方程:(1);(2).24.先化简再求值:3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b ﹣|=0.25.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为%,该扇形圆心角的度数为;(2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?26.如图所示,AB为一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE:∠BOD =2:5,∠COE=80°,求∠EOB的度数.27.“乐天乐地乐巴蜀,巴蜀孩子最幸福”巴蜀中学一年一度的艺术节是孩子们最盼望的节日,不仅有各种精彩的节目表演,还有美淘街各具特色的小店,就像过年一样热闹.初二(1)班的同学们在2018年的美淘街上大放异彩,他们手工编织的小挂件非常受欢迎,当天一共卖出了40件动物挂件与50件植物挂件,其中动物挂件每件售价8元,植物挂件每件售5元.2019年他们打算继续卖手工编织的挂件.与2018年的售价相比,动物挂件的售价不变,优惠如下:买2件,首件全价,第二件半价,不单件销售:植物摆件的单价上调m%.与2018年的销售量相比,动物挂件的销量增加了5m%,植物挂件的销量下降了10件.结果2019年的销售额比2018年的销售额增加了m元,求m的值.28.中国是最早使用十进制计数法,且认识到进位制的国家.英国著名科学史学家李约瑟教授曾对中国商代计数法予以很高评价:“如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了.“所谓进位制,就是人们规定的一种进位方法.对于任何一种进制﹣X进制,就表示某一位置上的数运算时是逢X进一位,十进制是逢十进一,十六进制是逢十六进一,二进制就是逢二进一,以此类推,X进制就是逢X进位.为与十进制进行区分,我们常把用X进制表示的数a写成(a)X.类比于十进制我们可以知道:X进制表示的数(1111)X中,右起第一位上的1表示1×X0,第二位上的1表示1×X1,第三位上的1表示1×X2,第四位上的1表1×X3,故(1111)X=1×X3+1×X2+1×X1+1×X0,即:(1111)X转化为了十进制表示的数X3+X2+X1+X0.如:(1111)2=1×23+1×22+1×21+1×20=15.根据材料,完成以下问题:(1)(1234)5=()10;(156)10=()4(2)若一个九进制数与一个八进制数之和为(999)10.则称这两个数互为“长长久久数”.若()9与()8互为“长长久久数“,求出a+b的值.29.如图,数轴上,点A表示的数为﹣7,点B表示的数为﹣1,点C表示的数为9,点D 表示的数为13,在点B和点C处各折一下,得到一条“折线数轴”,我们称点A和点D 在数轴上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴“的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,求出它们在数轴上对应的数.参考答案一、选择题(共12小题).1.﹣2的倒数是()A.2B.C.﹣2D.﹣解:﹣2的倒数是﹣.故选:D.2.如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.3.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中生每天锻炼所用的时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查解:A、为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B、为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C、为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D、为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选:D.4.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a2解:A、3a和4b不能合并,故本选项不符合题意;B、3a﹣2a=a,故本选项不符合题意;C、3a2b和﹣2ab2不能合并,故本选项不符合题意;D、2a2+3a2=5a2,故本选项符合题意;故选:D.5.正方体的侧面展开图如图所示,“重”字的对面为()字.A.巴B.蜀C.中D.学解:这是一个正方体的平面展开图,共有六个面,其中面“重”与面“蜀”相对,面“庆”与面“学”相对,“巴”与面“中”相对.故选:B.6.按图中程序运算,如果输出的结果为3,则输入的数据可能是()A.﹣1B.﹣2C.0D.2解:依题意有x+4﹣(﹣3)﹣5=3,解得x=1,依题意有x+4﹣(﹣3)﹣5=1,解得x=﹣1.故选:A.7.如果x=﹣1是关于x的方程5x+2m﹣7=0的解,则m的值是()A.﹣1B.1C.6D.﹣6解:将x=﹣1代入方程得:﹣5+2m﹣7=0,移项合并得:2m=12,解得:m=6.故选:C.8.如图所示,下列图案均是由完全相同的“太阳型”图案按一定的规律拼搭而成,第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律,第6个图案需要图标的个数是()A.28B.33C.36D.38解:由图形,得第n个图形是n+2n﹣1,第六个图形是6+25=38,故选:D.9.已知代数式x2﹣2x﹣1=4,则代数式2019+4x﹣2x2值是()A.2009B.2029C.2020D.2024解:由x2﹣2x﹣1=4得,x2﹣2x=5,∴2019+4x﹣2x2=﹣2(x2﹣2x)+2019,当x2﹣2x=5时,原式=﹣2×5+2019=2009.故选:A.10.《九章算术》中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊,若每人出5钱,则还差45钱;若每人出7钱,则仍然差3钱.求买羊的人数和这头羊的价格.设买羊的人数为x人,根据题意,可列方程为()A.5x﹣45=7x+3B.5x+45=7x﹣3C.5x﹣45=7x﹣3D.5x+45=7x+3解:设买羊的人数为x人,根据题意,可列方程为5x+45=7x+3,故选:D.11.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元解:设小慧同学不买卡直接购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.12.已知关于x方程x﹣=﹣1的解是非正整数,则符合条件的所有整数a的和是()A.﹣4B.﹣3C.2D.3解:x﹣=﹣1,6x﹣(4﹣ax)=2(x+a)﹣66x﹣4+ax=2x+2a﹣66x+ax﹣2x=2a﹣6+4(a+4)x=2a﹣2x=,∵方程的解是非正整数,∴≤0,解得:﹣4<a≤1,当a=﹣3时,x=﹣8;当a=﹣2时,x=﹣3;当a=﹣1时,x=﹣(舍去);当a=0时,x=﹣(舍去);当a=1时,x=0;则符合条件的所有整数a的和是﹣3﹣2+1=﹣4.故选:A.二、填空题(本大题共8小题,每小题4分,共32分)13.万众瞩目的重庆来福士广场开业当天,游客数量突破了350000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350000用科学记数法表示为 3.5×105.解:350000=3.5×105,故答案为:3.5×105.14.若关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,则m﹣6n的值为0.解:mx3﹣3nxy2﹣(2x3﹣xy2)+xy=(m﹣2)x3+(1﹣3n)xy2+xy,∵关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,∴m﹣2=0,1﹣3n=0,解得m=2,n=,∴m﹣6n=2﹣=2﹣2=0.故答案为:0.15.如图,线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD =3cm,E是AD中点,F是CD的中点.则EF的长度为 2.5cm.解:CD=AD+AB+BC=3+4+1=8cm;∵E是AD中点,F是CD的中点,∴DF=CD=×8=4cm,DE=AD=×3=1.5cm.∴EF=DF﹣DE=4﹣1.5=2.5cm,故答案为:2.5.16.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为a﹣3b.解:根据数轴得a<b<0<c且|a|>|b|>|c|,则a+c<0,a﹣b<0,b﹣c<0,则|a+c|﹣2|a﹣b|+|b﹣c|=﹣(a+c)+2(a﹣b)﹣(b﹣c)=﹣a﹣c+2a﹣2b﹣b+c=a﹣3b.故答案为:a﹣3b.17.某电视台组织知识竞赛,共设有20道选择题,各题分值相同,每题必答.如表记录了3个参赛者的得分情况,如果参赛者F得76分,则他答对的题数为16.参赛者答对题数答错题数得分A200100B19194C18288解:答对一题得100÷20=5(分),答错一题得94﹣5×19=﹣1(分).设参赛者F答对了x道题目,则答错了(20﹣x)道题目,依题意得:5x﹣(20﹣x)=76,解得:x=16.故答案为:16.18.巴蜀中学下午到校时间为14:15分,此时钟表上时针和分针的夹角为22.5°.解:∵时钟指示2时15分时,分针指到3,时针指到2与3之间,时针从2到这个位置经过了15分钟,时针每分钟转0.5°,因而转过7.5°,∴时针和分针所成的锐角是30°﹣7.5°=22.5°.故答案为:22.5°.19.平面内,已知∠AOB=90°,∠BOC=20°,OE平分∠AOB,OF平分∠BOC,则∠EOF=35°或55°.解:当OC在∠AOB内时,如图1,∠EOF=∠BOE﹣∠BOF=;当OC在∠AOB外时,如图2,∠EOF=∠BOE+∠BOF=,故答案为:35°或55°.20.春节来临之际,元祖蛋糕店对凤梨味,核桃味、绿茶味年糕(分别记为A、B、C)进行混装,推出了甲、乙两种礼盒.礼盒的成本是盒中年糕的成本与包装盒成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中年糕的成本之和是1个A成本的15倍,甲礼盒每盒的包装盒成本与乙礼盒每盒的包装盒成本的之比为3:4,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%,当该店销售这两种礼盒的总利润率为25%时,甲、乙两种礼盒的销售量之比为2.解:设凤梨味,核桃味、绿茶味年糕的成本分别为a、b、c,甲的包装成本为3p,乙的包装成本为4p,甲礼盒的销售量是x,乙礼盒的销售量是y,由题意可得每盒甲的成本为:6a+2b+2c+3p=15a+3p=3(5a+p),每盒乙的成本为:2a+4b+4c+4p=20a+4p=4(5a+p),∵每盒乙的利润率为20%,∴每盒乙的售价为:×4(5a+p)=5(5a+p),∵每盒乙的售价比每盒甲的售价高20%,∴每盒甲的售价为:,∵该店销售这两种礼盒的总利润率为25%,∴=75%,∴=75%=,∴,∴=2,∴甲、乙两种礼盒的销售量之比为2.故答案为:2.三、解答题(本大题9个小题,共70分)21.有理数的计算:(1)﹣42×|﹣1|﹣(﹣5)+2;(2)(﹣56)×(﹣1)÷(﹣1)×.解:(1)﹣42×|﹣1|﹣(﹣5)+2=﹣16×+5+2=﹣8+5+2=﹣1;(2)(﹣56)×(﹣1)÷(﹣1)×=(﹣56)×(﹣)×(﹣)×=﹣24.22.解下列方程(1)4x﹣3(20﹣x)=3;(2).【解答】(1)解:去括号得:4x﹣60+3x=3,移项得:4x+3x=3+60,合并同类项得:7x=63,两边同除以7得:x=9;(2)解:去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x﹣5x=6﹣1﹣2,合并同类项得:﹣x=3,两边同除以﹣1得:x=﹣3.23.解二元一次方程:(1);(2).解:(1),①×3得:15x+18y=39③,③﹣②得:8x=40,解得x=5,把x=5代入①得:25+6y=13,解得y=﹣2,∴原方程组的解为;(2),①×2得:6x+2y=14③,②+③得:11x=22,解得x=2,把x=2代入①得:6+y=7,解得y=1,∴原方程组的解为:.24.先化简再求值:3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b ﹣|=0.解:原式=3a2b﹣2ab2+2(ab﹣a2b)﹣ab+3ab2=3a2b﹣2ab2+2ab﹣3a2b﹣ab+3ab2=(3a2b﹣3a2b)+(﹣2ab2+3ab2)+(2ab﹣ab)=ab2+ab,∵(a+4)2+|b﹣|=0,∴a+4=0,b﹣=0,解得:a=﹣4,b=,原式=﹣4×()2+(﹣4)×=﹣1﹣2=﹣3.25.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为25%,该扇形圆心角的度数为90°;(2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣5%﹣15%=25%,该扇形所对圆心角的度数为360°×25%=90°;故答案为:25,90°;(2)参加社会实践活动的总人数是:=200(人),则参加社会实践活动为6天的人数是:200×25%=50(人),补图如下:(3)该市初一学生第一学期社会实践活动时间不少于5天的人数约是:20000×(30%+25%+20%)=15000(人).26.如图所示,AB为一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE:∠BOD =2:5,∠COE=80°,求∠EOB的度数.解:如图,设∠DOE=2x,∵∠DOE:∠BOD=2:5,∴∠BOE=3x,又∵OC是∠AOD的平分线,∠COE=80°,∴∠AOC=∠COD=80°﹣2x2×(80°﹣2x)+5x=180°,解得x=20°∴∠BOE=3x=3×20°=60°.故答案为:60°.27.“乐天乐地乐巴蜀,巴蜀孩子最幸福”巴蜀中学一年一度的艺术节是孩子们最盼望的节日,不仅有各种精彩的节目表演,还有美淘街各具特色的小店,就像过年一样热闹.初二(1)班的同学们在2018年的美淘街上大放异彩,他们手工编织的小挂件非常受欢迎,当天一共卖出了40件动物挂件与50件植物挂件,其中动物挂件每件售价8元,植物挂件每件售5元.2019年他们打算继续卖手工编织的挂件.与2018年的售价相比,动物挂件的售价不变,优惠如下:买2件,首件全价,第二件半价,不单件销售:植物摆件的单价上调m%.与2018年的销售量相比,动物挂件的销量增加了5m%,植物挂件的销量下降了10件.结果2019年的销售额比2018年的销售额增加了m元,求m的值.解:根据题意得:×40(1+5m%)+5(1+m%)×(50﹣10)=8×40+5×50+m,240+12m+200+2m=320+250+m,整理得,13m=130,解得m=10.故m的值为10.28.中国是最早使用十进制计数法,且认识到进位制的国家.英国著名科学史学家李约瑟教授曾对中国商代计数法予以很高评价:“如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了.“所谓进位制,就是人们规定的一种进位方法.对于任何一种进制﹣X进制,就表示某一位置上的数运算时是逢X进一位,十进制是逢十进一,十六进制是逢十六进一,二进制就是逢二进一,以此类推,X进制就是逢X进位.为与十进制进行区分,我们常把用X进制表示的数a写成(a)X.类比于十进制我们可以知道:X进制表示的数(1111)X中,右起第一位上的1表示1×X0,第二位上的1表示1×X1,第三位上的1表示1×X2,第四位上的1表1×X3,故(1111)X=1×X3+1×X2+1×X1+1×X0,即:(1111)X转化为了十进制表示的数X3+X2+X1+X0.如:(1111)2=1×23+1×22+1×21+1×20=15.根据材料,完成以下问题:(1)(1234)5=(194)10;(156)10=(2130)4(2)若一个九进制数与一个八进制数之和为(999)10.则称这两个数互为“长长久久数”.若()9与()8互为“长长久久数“,求出a+b的值.解:(1)(1234)5=1×53+2×52+3×51+4×50=125+50+15+4=194=1×102+9×101+4×100=(194)10;(156)10=156=2×43+1×42+3×41+0×40=(2130)4;(2)()9=a×92+a×91+8×90=90a+8,()8=b×82+b×81+1×80=72b+1,∴()9+()8=90a+72b+9=999,∴10a+8b=110,∵1≤a≤9,1≤b≤9,∴a=7,b=5,∴a+b=7+5=12.故答案为:194;2130.29.如图,数轴上,点A表示的数为﹣7,点B表示的数为﹣1,点C表示的数为9,点D 表示的数为13,在点B和点C处各折一下,得到一条“折线数轴”,我们称点A和点D 在数轴上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴“的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为15秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,求出它们在数轴上对应的数.解:(1)动点P从点A运动至D点需要时间t=(﹣1+7)÷2+(9+1)÷(2÷2)+(13﹣9)÷2=15(秒).答:动点P从点A运动至D点需要时间为15秒;(2)①当点P,点Q相遇时时,则(t﹣6÷2﹣1÷1)+6+1+4(t﹣4÷2)+4=20,解得t=,故动点P在数轴上所对应的数是t﹣6÷2﹣1÷1=;②当点P,点Q相遇后.(t﹣6÷2﹣1÷1)+6+1﹣7=4(t﹣4÷2)+4﹣13,解得t=,故动点P在数轴上所对应的数是t﹣6÷2﹣1÷1=.综上所述,故动点P在数轴上所对应的数是或;(3)4÷2=2(秒),10÷4=2.5(秒),6÷2=3(秒),2+2.5+3=7.5(秒),6÷(2+1)=2(秒),10÷(1+1)=5(秒),依题意有(2+1)(t﹣7.5﹣2﹣5)=2(t﹣3﹣10),解得t=17.5.9+2(t﹣3﹣10)=18.故它们在数轴上对应的数是18.故答案为:15.。

七年级(上)期中数学试卷 含解析

七年级(上)期中数学试卷  含解析

七年级(上)期中数学试卷一、选择题(10个题,每题3分,共30分)1.﹣2019的绝对值是()A.2019 B.﹣2019 C.D.﹣2.数32000000用科学记数法表示为()A.0.32×108B.3.2×107C.32×106D.3.2×106 3.三角形ABC绕BC旋转一周得到的几何体为()A.B.C.D.4.单项式﹣5x2y的次数和系数分别是()A.3,5 B.3,﹣5 C.2,5 D.2,﹣5 5.去括号正确的是()A.﹣(a﹣1)=a+1 B.﹣(a﹣1)=a﹣1C.﹣(a﹣1)=﹣a+1 D.﹣(a﹣1)=﹣a﹣16.下列代数式是同类项的是()A.与x2y B.2x2y与3xy2C.xy与﹣xyz D.x+y与2x+2y7.对如图所示的几何体认识正确的是()A.几何体是四棱柱B.棱柱的侧面是三角形C.棱柱的底面是四边形D.棱柱的底面是三角形8.一个两位数,用x表示十位数字,个位数字比十位数字大3,则这个两位数为()A.11x+3 B.11x﹣3 C.2x+3 D.2x﹣39.已知a﹣3b=﹣2,则2a﹣6b+7的值是()A.11 B.9 C.5 D.310.下列说法正确的个数是()(1)a的相反数是﹣a(2)非负数就是正数(3)正数和负数统称为有理数(4)|a|=aA.3 B.2 C.1 D.0二、填空题(7个题,每题4分,共28分)11.﹣的倒数是.12.比较大小:(填“>”或“<”)13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是.14.计算:(﹣35)+(﹣22)﹣(﹣35)﹣8=.15.将如图折叠成一个正方体,与“思”字相对的面上的字是.16.已知x、y为有理数,如果规定一种新运算x⊗y=﹣x2+y,则2⊗(﹣3)=.17.如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,求出的值.三.解答题(共62分)18.计算题:(﹣2)2×7+(﹣6)÷3﹣|﹣5|19.化简:(2x2+x)﹣2(3x﹣2x2)20.某出租车从车站出发在东西方向上营运.若规定向东为正,向西为负,一天的行车情况依先后序记录如下(单位:km):+8,﹣2,﹣4,+4,﹣8,+5,﹣3,﹣6,﹣4,+7.(1)将最后一名乘客送到目的地,出租车离车站多远?在车站什么方向?(2)若每千米的营运费为3元,求出司机一天的营运额是多少?21.已知A=3x2+x﹣2,B=2x2﹣2x﹣1.(1)化简A+B;(2)当x=﹣1时,求A+B的值.22.数轴上的点A,B所表示的数如图所示,回答下列问题:(1)求出A,B两点间的距离;(2)若点A在数轴上移动了m个单位长度到点C,且B,C两点间的距离是3,求m的值.23.一个正方体的六个面分别标有字母A,B,C,D,E,F,从三个不同方向看到的情形如图.(1)A对面的字母是,B对面的字母是;(请直接填写答案)(2)已知A=x,B=﹣x2+3x,C=﹣3,D=1,E=x2019,F=6.①若字母A表示的数与它对面的字母表示的数互为相反数,求E的值;②若2A﹣3B+M=0,求出M的表达式.24.某综合实践活动园区的门票价为:成人票50元,学生票25元,满40人可以购买团体票,票价打9折(不足40人也可按40人计算),某班在2位老师的带领下到园区参加综合实践活动.(1)如果学生人数为38人,买门票至少应付多少钱?(2)如果学生人数为34人,买门票至少应付多少钱?(3)若设学生人数为x人,你能用含x的代数式表示买门票至少应付多少钱吗?25.在《丰富的图形世界》一章中,我们认识了三棱柱、四棱柱、五棱柱和六棱柱,这些棱柱是由点、线和面构成.(1)请使用合适的方式统计上述四种棱柱顶点的个数、棱的条数和面的个数;(2)若棱柱顶点的个数用V表示、棱的条数用E表示、面的个数用F表示,观察你的统计数据,写出V,E,F三者间的数量关系;(3)若某几何体满足(2)的数量关系,且有24条棱和10个面,则几何体有多少个顶点?参考答案与试题解析一.选择题(共10小题)1.﹣2019的绝对值是()A.2019 B.﹣2019 C.D.﹣【分析】直接利用绝对值的定义进而得出答案.【解答】解:﹣2019的绝对值是:2019.故选:A.2.数32000000用科学记数法表示为()A.0.32×108B.3.2×107C.32×106D.3.2×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:32000000=3.2×107,故选:B.3.三角形ABC绕BC旋转一周得到的几何体为()A.B.C.D.【分析】由图形旋转的特点即可求解.【解答】解:由图形的旋转性质,可知△ABC旋转后的图形为C,故选:C.4.单项式﹣5x2y的次数和系数分别是()A.3,5 B.3,﹣5 C.2,5 D.2,﹣5【分析】直接利用单项式的次数与系数的定义分析得出答案.【解答】解:单项式﹣5x2y的次数是3,系数是:﹣5.故选:B.5.去括号正确的是()A.﹣(a﹣1)=a+1 B.﹣(a﹣1)=a﹣1C.﹣(a﹣1)=﹣a+1 D.﹣(a﹣1)=﹣a﹣1【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【解答】解:﹣(a﹣1)=﹣a+1,正确,故选项C符合题意;故选:C.6.下列代数式是同类项的是()A.与x2y B.2x2y与3xy2C.xy与﹣xyz D.x+y与2x+2y【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A.与x2y,所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确;B.2x2y与3xy2,所含字母相同,但相同字母的指数不同,不是同类项,故本选项错误;C.xy与﹣xyz,所含字母不尽相同,不是同类项,故本选项错误;D.x+y与2x+2y是多项式,不是同类项,故本选项错误.故选:A.7.对如图所示的几何体认识正确的是()A.几何体是四棱柱B.棱柱的侧面是三角形C.棱柱的底面是四边形D.棱柱的底面是三角形【分析】由图可知,该几何体是三棱柱,由三棱柱的性质即可求解.【解答】解:由图可知,该几何体是三棱柱,∴底面是三角形,侧面是四边形,故选:D.8.一个两位数,用x表示十位数字,个位数字比十位数字大3,则这个两位数为()A.11x+3 B.11x﹣3 C.2x+3 D.2x﹣3【分析】根据一个两位数,用x表示十位数字,个位数字比十位数字大3,可以用含x 的代数式表示出这个两位数.【解答】解:由题意可得,这个两位数为:10x+(x+3)=10x+x+3=11x+3,故选:A.9.已知a﹣3b=﹣2,则2a﹣6b+7的值是()A.11 B.9 C.5 D.3【分析】先变形,再整体代入,即可求出答案.【解答】解:∵a﹣3b=﹣2,∴2a﹣6b+7=2(a﹣3b)+7=2×(﹣2)+7=3,故选:D.10.下列说法正确的个数是()(1)a的相反数是﹣a(2)非负数就是正数(3)正数和负数统称为有理数(4)|a|=aA.3 B.2 C.1 D.0【分析】根据有理数的定义,相反数的定义,绝对值的定义,可得答案.【解答】解:(1)a的相反数是﹣a,故正确;(2)非负数就是正数和零,故不符合题意;(3)正数和负数和零统称为有理数,故不符合题意;(4)|a|=±a,故不符合题意;故选:C.二.填空题(共7小题)11.﹣的倒数是﹣.【分析】根据倒数的定义即可解答.【解答】解:(﹣)×(﹣)=1,所以﹣的倒数是﹣.故答案为:﹣.12.比较大小:>(填“>”或“<”)【分析】先把各数化为小数的形式,再根据负数比较大小的法则进行比较即可.【解答】解:∵﹣=﹣0.75<0,﹣=﹣0.8<0,∵|﹣0.75|=0.75,|﹣0.8|=0.8,0.75<0.8,∴﹣0.75>﹣0.8,∴﹣>﹣.故答案为:>.13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是圆锥.【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【解答】解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故答案为:圆锥.14.计算:(﹣35)+(﹣22)﹣(﹣35)﹣8=﹣30 .【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:原式=﹣35﹣22+35﹣8=(﹣35+35)﹣(22+8)=﹣30.故答案为:﹣30.15.将如图折叠成一个正方体,与“思”字相对的面上的字是量.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以与“思”字相对的面上的字是:量.故答案为:量.16.已知x、y为有理数,如果规定一种新运算x⊗y=﹣x2+y,则2⊗(﹣3)=﹣7 .【分析】根据x⊗y=﹣x2+y,可以求得所求式子的值.【解答】解:x⊗y=﹣x2+y,∴2⊗(﹣3)=﹣22+(﹣3)=﹣4+(﹣3)=﹣7,故答案为:﹣7.17.如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,求出的值.【分析】根据题意和图形可以得到所求式子的值,本题得以解决.【解答】解:由图可得,=1﹣=1﹣=,故答案为:.三.解答题(共8小题)18.计算题:(﹣2)2×7+(﹣6)÷3﹣|﹣5|【分析】根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(﹣2)2×7+(﹣6)÷3﹣|﹣5|=4×7+(﹣2)﹣5=28+(﹣2)﹣5=21.19.化简:(2x2+x)﹣2(3x﹣2x2)【分析】直接去括号进而合并同类项得出答案.【解答】解:原式=2x2+x﹣6x+4x2=6x2﹣5x.20.某出租车从车站出发在东西方向上营运.若规定向东为正,向西为负,一天的行车情况依先后序记录如下(单位:km):+8,﹣2,﹣4,+4,﹣8,+5,﹣3,﹣6,﹣4,+7.(1)将最后一名乘客送到目的地,出租车离车站多远?在车站什么方向?(2)若每千米的营运费为3元,求出司机一天的营运额是多少?【分析】(1)根据有理数的加法运算,可得出租车离车站出发点多远,在车站什么方向;(2)根据乘车收费:单价×里程,可得司机一下午的营业额.【解答】解:(1)8﹣2﹣4+4﹣8+5﹣3﹣6﹣4+7=﹣3,答:将最后一名乘客送到目的地,出租车离车站出发点3千米,在车站西方;(2)(|+8|+|﹣2|+|﹣4|+|+4|+|﹣8|+|+5|+|﹣3|+|﹣6|+|﹣4|+|+7|)×3=153(元),答:若每千米的营运费为3元,求出司机一天的营运额是153元.21.已知A=3x2+x﹣2,B=2x2﹣2x﹣1.(1)化简A+B;(2)当x=﹣1时,求A+B的值.【分析】(1)利用整式的加减法,计算A+B;(2)代入求出A+B的值.【解答】解:(1)A+B=3x2+x﹣2+(2x2﹣2x﹣1)=3x2+x﹣2+x2﹣x﹣=4x2﹣.(2)当x=﹣1时,A+B=4×(﹣1)2﹣=.22.数轴上的点A,B所表示的数如图所示,回答下列问题:(1)求出A,B两点间的距离;(2)若点A在数轴上移动了m个单位长度到点C,且B,C两点间的距离是3,求m的值.【分析】(1)由点A,B表示的数,求出线段AB的长;(2)由点B,C表示的数及线段BC的长,可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)∵点A表示的数为﹣2,点B表示的数为3,∴AB=3﹣(﹣2)=5.(2)∵点C表示的数为m﹣2,点B表示的数为3,BC=3,∴3﹣(m﹣2)=3或(m﹣2)﹣3=3,解得:m=2或m=8.∴m的值为2或8.23.一个正方体的六个面分别标有字母A,B,C,D,E,F,从三个不同方向看到的情形如图.(1)A对面的字母是D,B对面的字母是E;(请直接填写答案)(2)已知A=x,B=﹣x2+3x,C=﹣3,D=1,E=x2019,F=6.①若字母A表示的数与它对面的字母表示的数互为相反数,求E的值;②若2A﹣3B+M=0,求出M的表达式.【分析】(1)依据A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E;(2)①依据字母A表示的数与它对面的字母D表示的数互为相反数,即可得到x的值,进而得出E的值;②依据2A﹣3B+M=0,即可得到2x﹣3(﹣x2+3x)+M=0,进而得出M的表达式.【解答】解:(1)由图可得,A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E;故答案为:D,E;(2)①∵字母A表示的数与它对面的字母D表示的数互为相反数,∴x=﹣1,∴E=(﹣1)2019=﹣1;②∵2A﹣3B+M=0,∴2x﹣3(﹣x2+3x)+M=0,∴M=﹣2x+3(﹣x2+3x)=﹣3x2+7x.24.某综合实践活动园区的门票价为:成人票50元,学生票25元,满40人可以购买团体票,票价打9折(不足40人也可按40人计算),某班在2位老师的带领下到园区参加综合实践活动.(1)如果学生人数为38人,买门票至少应付多少钱?(2)如果学生人数为34人,买门票至少应付多少钱?(3)若设学生人数为x人,你能用含x的代数式表示买门票至少应付多少钱吗?【分析】(1)根据打折票价即可求解;(2)根据实际付款和(1)的结果进行比较即可求解;(3)根据(1)列出代数式即可.【解答】解:(1)根据题意,得0.9(2×50+38×25)=0.9×1050=945.答:如果学生人数为38人,买门票至少应付945元.(2)按团体买票需要945元,按人数买票需要:2×50+34×25=950,945<950,答:如果学生人数为34人,买门票至少应付945元.(3)根据题意,得0.9(2×50+25x)=22.5x+90.(x≥38)答:用含x的代数式表示买门票至少应付(22.5x+90)元.25.在《丰富的图形世界》一章中,我们认识了三棱柱、四棱柱、五棱柱和六棱柱,这些棱柱是由点、线和面构成.(1)请使用合适的方式统计上述四种棱柱顶点的个数、棱的条数和面的个数;(2)若棱柱顶点的个数用V表示、棱的条数用E表示、面的个数用F表示,观察你的统计数据,写出V,E,F三者间的数量关系;(3)若某几何体满足(2)的数量关系,且有24条棱和10个面,则几何体有多少个顶点?【分析】用表格分别列出三棱柱、四棱柱、五棱柱和六棱柱所对应的顶点的个数、棱的条数和面的个数,从而得到三者的关系为V+F﹣E=2.【解答】解:(1)如图:(2)由(1)可得V+F﹣E=2;(3)∵E=24,F=10,∴V=2+24﹣10=16,∴这个几何体有16个顶点.。

2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在表格相应位置上1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.82.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×1053.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.76.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分请将答案填在题中相应的横线上)9.的倒数是.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作11.写出一个比3大且比4小的无理数:.12.若a<0,且|a|=2,则a﹣1=13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示(结果能化简的要化简)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有(填写所有正确结论的序号)三、解谷题(本大题共7题,计56分)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)9920.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:数量范围(千克)0~50 50以上~150 150以上~250 250以上价格(元)零售价的90% 零售价的85% 零售价的80% 零售价的75% (1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.参考答案与试题解析一.选择题(共8小题)1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.8【分析】先比较数的大小,再得出选项即可.【解答】解:﹣2<0<1<8,最小的数是﹣2,故选:A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.3.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a【分析】根据数轴左边的数小于右边的数即可直接解答.【解答】解:根据实数实数a、0、b在数轴上的位置可以得知:b<0<a,且a距离原点比b近.,故|b|>a,故选:D.4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab【分析】根据有理数的运算法则以及合并同类项法则即可求出答案.【解答】解:(A)原式=﹣9,故A错误;(C)原式=a3﹣a2,故C错误;(D)原式=2a+3b,故D错误;故选:B.5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.7 【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=﹣2,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×(﹣2)=7;故选:D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是三次三项式,故本选项错误.故选:C.7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个二.填空题(共10小题)9.的倒数是﹣3 .【分析】根据倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作﹣120元【分析】首先审清题意,明确“正”和“负”所表示的意义,再结合题意作答.【解答】解:如果收入180元记作+180元,那么支出120元记作﹣120元.故答案为﹣120元.11.写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.若a<0,且|a|=2,则a﹣1=﹣3【分析】直接利用绝对值的性质得出a的值进而得出答案.【解答】解:∵a<0,且|a|=2,∴a=﹣2,∴a﹣1=﹣3.故答案为:﹣3.13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=0 【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵关于x的方程mx m﹣1﹣m+2=0是一元一次方程,∴m﹣1=1,解得:m=2,故2x=0,解得:x=0.故答案为:0.14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为0.8x﹣10=90【分析】设某种书包原价每个x元,根据两次降价后售价为90元,即可得出关于x的一元一次方程,此题得解.【解答】解:设某种书包原价每个x元,根据题意得:0.8x﹣10=90.故答案为:0.8x﹣10=90.15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.【分析】原式利用已知新定义化简,计算即可得到结果.【解答】解:原式==,故答案为:16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是34 .【分析】首先求出A+B,根据多项式A+B不含一次项,列出方程求出m的值即可解决问题.【解答】解:∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B不含一次项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故答案为3417.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示110a﹣97 (结果能化简的要化简)【分析】根据个位上的数字为a,十位上的数字比个位上的数字小1可以求出三左边的数字,再加上个位上的三,即可求出答案.【解答】解:∵个位上的数字为a,十位上的数字比个位上的数字小1,∴3的左边的数是100(a﹣1)+10a,∴这个三位数可以表示为100(a﹣1)+10a+3=100a﹣100+10a+3=110a﹣97.故答案为:110a﹣97.18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有④(填写所有正确结论的序号)【分析】利用题中的新定义判断即可.【解答】解:①[0)=1;②[x)﹣x无最小值;③[x)﹣x无最大值;④存在实数x,使[x)﹣x=0.4成立,故答案为:④三.解答题(共7小题)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99【分析】(1)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(2)先计算乘方,再利用乘法分配律变形,利用除法法则计算即可得到结果;【解答】解:(1)23+(﹣17)+(+7)+(﹣13),=23﹣17+7﹣13,=23+7﹣17﹣13,=30﹣30,=0;(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99,=﹣24×+24×+24×+16÷(﹣8)﹣1,=﹣16+12+30﹣2﹣1,=﹣19+42,=23.20.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=【分析】(1)原式去括号、合并同类项即可化简;(2)先将原式去括号、合并同类项化为最简形式,再将x,y的值代入计算可得.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=x﹣2x+y﹣x+y=﹣3x+y,当x=﹣2,y=时,原式=﹣3×(﹣2)+=6.21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?【分析】(1)根据题意列出算式,再根据有理数的减法法则计算可得;(2)根据题意列出算式B=4x2﹣6x﹣3﹣(2x2﹣x+5),再去括号、合并即可得.【解答】解:(1)根据题意,得:[(﹣1)﹣(﹣)]﹣=﹣1+﹣=﹣;(2)根据题意,得B=4x2﹣6x﹣3﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)【分析】(1)求出这些数的和,即可得出答案;(2)求出这些数的绝对值的和,再乘以0.15升即可.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16(千米),16×0.15=2.4(升),故这次巡逻(含返回)共耗油2.4升.23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【分析】(1)根据题意给出的等式,将a=20代入即可求出b的值.(2)根据题意给出的等式,将a=50时代入求出b的值,然后将b与23相比较即可知道是否有危险.【解答】解:(1)当a=20时,b=0.8(220﹣a)=0.8×(220﹣20)=160,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2)他有危险,当a=50时,b=0.8(220﹣a)=0.8×(220﹣50)=136,因为136÷60×10=<23,所以此人有危险.24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:数量范围(千克)0~50 50以上~150 150以上~250 250以上价格(元)零售价的90% 零售价的85% 零售价的80% 零售价的75% (1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.【分析】(1)根据A、B两家的优惠办法分别求出两家购买需要的费用即可;(2)根据题意列出式子分别表示出购买x千克太湖蟹所相应的费用即可.【解答】解:(1)A:80×60×95%=4560(元),B:50×70×90%+(80﹣50)×70×85%=4935(元),∵4560元<4935元,∴他在A商家批发合算;(2)A:60×90%x=54x(元),B:50×70×90%+100×70×85%+(x﹣150)×70×80%=56x+700(元).25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.。

2019-2020学年重庆市南岸区七年级上学期期末数学试卷(含解析)

2019-2020学年重庆市南岸区七年级上学期期末数学试卷(含解析)

2019-2020学年重庆市南岸区七年级(上)期末数学试卷一、选择题(共12小题). 1.计算34-,结果是( ) A .1-B .7-C .1D .72.若海平面以上1045米,记作1045+米,则海平面以下155米,记作( ) A .1200-米B .155-米C .155米D .1200米3.如图是一个由6个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .4.下列图形中,( )是正方体的展开图.A .B .C .D .5.重庆拥有长江索道、洪崖洞等网红景点,成为中国内地热门旅游地之一.今年国庆节期间,重庆共接待境内外游客接近38600000人次,数据38600000用科学记数法可表示为( )A .538610⨯B .638.610⨯C .73.8610⨯D .63.8610⨯6.下列计算中,正确的是( ) A .x y xy += B .2734x x x -=C .220x x --=D .65xy xy xy -=7.已知12a b +=,则代数式223a b +-的值是( )A.2B.2-C.4-D.1 32 -8.如图,90AOB COD∠=∠=︒,且OE平分AOD∠,以下等式不成立的是()A.AOC BOD∠=∠B.AOE EOD∠=∠C.EOC EOB∠=∠D.AOD COE∠=∠9.如图,钟表上10点整时,时针与分针所成的角是()A.30︒B.60︒C.90︒D.120︒10.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①11.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,求共有多少人?设有x人,根据题意可列方程为()A.9232x x--=B.9232x x++=C.9232x x-+=D.9232x x+-=12.体育课上的口令:立正,向右转,向后转,向左转之间可以相加.连结执行两个口令就把这两个口令加起来.例如:向右转+向左转=立正;向左转+向后转=向右转.如果分别用0,1,2,3分别代表立正,向右转,向后转,向左转,就可以用如图所示的加法表来表示,在表中填了部分的数值和代表数值的字母.下列对于字母a ,b ,c ,d 的值,说法错误的是( )A .0a =B .1b =C .2c =D .3d =二、填空题:(本大题6个小题,每小题4分,满分24分,将答案填在答题纸上) 13.计算:|2|1-+= .14.如图是某个几何体的三视图,该几何体是 .15.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB 的中点,则点C 所表示的数是 .16.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是 元.17.一列数1a ,2a ,3a ,4a ,5a ,6a ,⋯,已知第1个数13a =,第6个数66a =,且任意三个相邻的数之和为7,则第2020个数2020a 的值是 .18.科学考察队的一辆越野车需要穿越650千米的沙漠,但这辆车每次装满汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点P ,越野车装满油从起点A 出发,到储油点P 时从车中取出部分油放进P 储油点,然后返回出发点A ,加满油后再开往P ,到P 储油点时取出储存的所有油放在车上,再到达终点.用队长想出的方法,这辆越野车穿越这片沙漠的最大距离是 千米.三、解答题:(本大题共7个小题,每小题10分,共70分).解答应写出文字说明、证明过程或演算步骤.19.计算: (1)62( 1.5)--- (2)23(35)3(1)--⨯÷-20.先化简,再求值:22(34)(532)x x x x -+-+-+,其中2x =-. 21.解方程: (1)2(8)1x x +=- (2)2143132y y ---=22.某校根据课程设置要求,开设了数学类拓展性课程.为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如图所示的统计图(不完整).请根据图中信息回答问题:(1)求m ,n 的值; (2)补全条形统计图.23.有个填写运算符号的游戏:“2_3_5_9”,在每个“____”上,填入+,-,⨯,÷中的某一个(可重复使用),然后计算结果. (1)计算:2359+--;(2)若235÷⨯ 930=,请推算横线上的符号;(3)在“2 3 59+”的横线上填入符号后,使计算所得数最小,直接写出填上符号后的算式及算式的计算结果的最小值.24.在2020年元月的日历表中,某一天对应的号数的上、下、左、右四个数的和为m . (1)如果某一天是a 号,请用含a 的代数式把m 表示出来;(2)m 的值可能是96吗?如果可能,求出这一天上、下、左、右四天,如果不可能,请说明理由;(3)m的值可能是28吗?如果可能,求出这一天上、下、左、右四天,如果不可能,请说明理由.星期日星期一星期二星期三星期四星期五星期六1234 567891011121314151617181920212223242526272829303125.小明每天早上7:30从家出发,到距家1000m的学校上学,一天,小明以80/m min的速度上学,5min后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.(1)如果爸爸以160/m min的速度追小明,爸爸追上小明时距离学校多远?(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?(3)爸爸以180/m min的速度追赶小明,他把书给小明后及时原路原速返回(交书耽误的时间忽略不计),返回家的时间是多少?四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26.已知如图,A,B,C三点在同一直线上,6BC=.AB=,2(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案一、选择题:(本大题共12个小题,每小题4分,共48分).在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算34-,结果是()A.1-B.7-C.1D.7解:341-=-.故选:A.2.若海平面以上1045米,记作1045+米,则海平面以下155米,记作() A.1200-米C.155米D.1200米-米B.155解:若海平面以上1045米,记作1045-米.+米,则海平面以下155米,记作155故选:B.3.如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.4.下列图形中,()是正方体的展开图.A.B.C .D .解:A 、中间4个正方形是“田字形”,不是正方体展开图; B 、折叠不是正方体展开图; C 、符合正方体展开图;D 、不符合正方体展开图;故选:C .5.重庆拥有长江索道、洪崖洞等网红景点,成为中国内地热门旅游地之一.今年国庆节期间,重庆共接待境内外游客接近38600000人次,数据38600000用科学记数法可表示为( )A .538610⨯B .638.610⨯C .73.8610⨯D .63.8610⨯解:将38600000用科学记数法表示为73.8610⨯. 故选:C .6.下列计算中,正确的是( ) A .x y xy +=B .2734x x x -=C .220x x --=D .65xy xy xy -=解:A .x 与y 不是同类项,所以不能合并,故本选项不合题意; .734B x x x -=,故本选项不合题意; C .2222x x x --=-,故本选项不合题意;.65D xy xy xy -=,正确,故本选项符合题意.故选:D . 7.已知12a b +=,则代数式223a b +-的值是( ) A .2 B .2- C .4-D .132-解:2232()3a b a b +-=+-, ∴将12a b +=代入得:12322⨯-=- 故选:B .8.如图,90AOB COD ∠=∠=︒,且OE 平分AOD ∠,以下等式不成立的是( )A.AOC BOD∠=∠∠=∠D.AOD COE∠=∠C.EOC EOB∠=∠B.AOE EOD解:A.90∠=∠=︒,AOB COD∴∠=∠(同角的余角相等);AOC BODB.OE平分AOD∠,COE BOE∴∠=∠,又AOC BOD∠=∠,∴∠-∠=∠-∠,COE AOC BOD BOD∴∠=∠;AOE EOD∠,C.OE平分AODCOE BOE∴∠=∠;D.没有条件能证明AOD∠相等.∠与COE故选:D.9.如图,钟表上10点整时,时针与分针所成的角是()A.30︒B.60︒C.90︒D.120︒解:钟面分成12个大格,每格的度数为30︒,∴钟表上10点整时,时针与分针所成的角是60︒.故选:B.10.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.11.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,求共有多少人?设有x人,根据题意可列方程为()A.9232x x--=B.9232x x++=C.9232x x-+=D.9232x x+-=解:设有x人,依题意,得:9232x x-+=.故选:C.12.体育课上的口令:立正,向右转,向后转,向左转之间可以相加.连结执行两个口令就把这两个口令加起来.例如:向右转+向左转=立正;向左转+向后转=向右转.如果分别用0,1,2,3分别代表立正,向右转,向后转,向左转,就可以用如图所示的加法表来表示,在表中填了部分的数值和代表数值的字母.下列对于字母a,b,c,d的值,说法错误的是()A.0a=B.1b=C.2c=D.3d=解:根据题意,将表格中的数据填写完整如图所示:因此,0a=,1b=,1c=,3d=,故选:C.二、填空题:(本大题6个小题,每小题4分,满分24分,将答案填在答题纸上)13.计算:|2|1-+=3.解:原式213=+=.故答案为:3.14.如图是某个几何体的三视图,该几何体是三棱柱.解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故答案为:三棱柱.15.如图,数轴上A、B两点所表示的数分别是4-和2,点C是线段AB的中点,则点C所表示的数是1-.解:数轴上A,B两点所表示的数分别是4-和2,∴线段AB的中点所表示的数1(42)12=-+=-.即点C所表示的数是1-.故答案为:1-16.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是2000元.解:设这种商品的进价是x元,由题意得,(140%)0.82240x +⨯=. 解得:2000x =, 故答案为200017.一列数1a ,2a ,3a ,4a ,5a ,6a ,⋯,已知第1个数13a =,第6个数66a =,且任意三个相邻的数之和为7,则第2020个数2020a 的值是 3 .解:第1个数13a =,第6个数66a =,且任意三个相邻的数之和为7, 1237a a a ∴++=,14a a =,36a a =, 2367a ∴++=,22a ∴=-,202036731÷=⋯, ∴第2020个数2020a 的值是3,故答案为:3.18.科学考察队的一辆越野车需要穿越650千米的沙漠,但这辆车每次装满汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点P ,越野车装满油从起点A 出发,到储油点P 时从车中取出部分油放进P 储油点,然后返回出发点A ,加满油后再开往P ,到P 储油点时取出储存的所有油放在车上,再到达终点.用队长想出的方法,这辆越野车穿越这片沙漠的最大距离是 800 千米.解:设点P 与点A 距离为100a ,每次装满汽油最多只能驶600千米,则100千米的油耗为16箱,则第一次到达点P 时,用油6a 箱,最多取出的112(1)63a a -⨯=-箱油, 车第二次到达点P 时,还有(1)6a-箱油,加上点P 的油为11163a a -+-,这些油应该小于等于1箱油, 即111163a a -+-,解得:2a , 当2a =时,即200AP =,当第一次到达点P 时,考虑到车正好返回,往返共400千米,最多留下200千米的油; 当第二次到达点P 时,还有400千米的油,加上点P 存有的200千米的油,共计600千米的油,这样最大距离为200600800+=, 故答案为800.三、解答题:(本大题共7个小题,每小题10分,共70分).解答应写出文字说明、证明过程或演算步骤. 19.计算: (1)62( 1.5)--- (2)23(35)3(1)--⨯÷- 解:(1)62( 1.5)--- 6(2) 1.5=+-+ 5.5=;(2)23(35)3(1)--⨯÷- (2)9(1)=--⨯÷- 291=-⨯÷18=-.20.先化简,再求值:22(34)(532)x x x x -+-+-+,其中2x =-. 解:22(34)(532)x x x x -+-+-+ 2234532x x x x =-+-+-+ 2x x =+,当2x =-时,原式2(2)22=--=. 21.解方程: (1)2(8)1x x +=- (2)2143132y y ---=解:(1)去括号,可得:2161x x +=-, 移项,合并同类项,可得:17x =-.(2)去分母,可得:2(21)63(43)y y --=-, 去括号,可得:426129y y --=-,移项,合并同类项,可得:81y -=-, 系数化为1,可得:18y =. 22.某校根据课程设置要求,开设了数学类拓展性课程.为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如图所示的统计图(不完整).请根据图中信息回答问题:(1)求m ,n 的值; (2)补全条形统计图.解:(1)被调查的总人数为1220%60÷=(人), 15100%25%60m ∴=⨯=,9100%15%60n =⨯=;(2)D 类别人数为6030%18⨯=(人),E 类别人数为60(1215918)6-+++=(人), 补全图形如下:23.有个填写运算符号的游戏:“2_3_5_9”,在每个“____”上,填入+,-,⨯,÷中的某一个(可重复使用),然后计算结果. (1)计算:2359+--;(2)若235÷⨯ ⨯ 930=,请推算横线上的符号;(3)在“2359+”的横线上填入符号后,使计算所得数最小,直接写出填上符号后的算式及算式的计算结果的最小值.解:(1)原式5599=--=-;(2)若235930÷⨯⨯=,因此“空格”上的符号为“⨯”;(3)23594-⨯+=-,故答案为:-⨯.24.在2020年元月的日历表中,某一天对应的号数的上、下、左、右四个数的和为m.(1)如果某一天是a号,请用含a的代数式把m表示出来;(2)m的值可能是96吗?如果可能,求出这一天上、下、左、右四天,如果不可能,请说明理由;(3)m的值可能是28吗?如果可能,求出这一天上、下、左、右四天,如果不可能,请说明理由.解:(1)若某一天是a号,则这一天上、下,左、右四天分别为7a+,a-,7a-,1a+,1∴=-+++-++=,m a a a a a77114(2)根据题意可得:771196-+++-++=,a a a a∴=,a24∴这一天上、下,左、右四天分别为17,31,23,25;∴的值可能为96;,m(3)根据题意可得:771128-+++-++=a a a a∴=,a7a-=,70∴=不合题意,a7∴的值不可能为28.m25.小明每天早上7:30从家出发,到距家1000m的学校上学,一天,小明以80/m min的速度上学,5min后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.(1)如果爸爸以160/m min的速度追小明,爸爸追上小明时距离学校多远?(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?(3)爸爸以180/m min的速度追赶小明,他把书给小明后及时原路原速返回(交书耽误的时间忽略不计),返回家的时间是多少?解:(1)设爸爸追上小明时距离学校xm,依题意,得:100010005 80160x x---=,解得:200x=.答:爸爸追上小明时距离学校200m.(2)小明到校所需时间为25 100080()2min÷=,爸爸的速度为254001000(5)(/)23m min÷-=.答:爸爸的速度为400/3m min.(3)设爸爸需要ymin可追上小明,依题意,得:18080(5)y y=+,解得:4y=,3054443∴+++=.答:爸爸返回家的时间是7:43.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26.已知如图,A,B,C三点在同一直线上,6AB=,2BC=.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.解:(1)如图,如图1,6AB=,2BC=.∴=+=;AC AB BC8如备用图1,=-=.AC AB BC4答:AC的长为8或4;(2)如图,M,N分别是AB,BC的中点,132BM AB ∴==,112BN BC ==, 314MN BM BN ∴=+=+=,或312MN BM BN =-=-=. 答:MN 的长为4或2; (3)如图,M ,N 分别是AC ,BC 的中点, 142MC AC ∴==,112NC BC ==, 413MN MC NC ∴=-=-=;或如备用图3, 4AC =,2MC =, 213MN MC CN =+=+=.答:MN 的长为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年重庆实验外国语学校七年级(上)期中数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共40分)1.在﹣1,﹣,0,2这四个数中,最小的数是()A.﹣1 B.﹣C.0 D.22.下列计算正确的是()A.﹣2﹣1=﹣3 B.﹣42=16 C.﹣3+1=﹣4 D.﹣|2|=23.下列式子正确的是()A.7a﹣6a=1 B.2a+3b=5abC.x+x2=x3D.x2y﹣2x2y=﹣x2y4.若单项式﹣2a m+2b与a3b n﹣2是同类项,则m﹣n的值是()A.﹣1 B.﹣2 C.3 D.45.下列说法正确的是()A.﹣的系数是﹣4 B.23ab2是6次单项式C.是多项式D.x2﹣2x﹣1的常数项是16.若多项式3x﹣y+3的值是4,则多项式6x﹣2y的值是()A.0 B.1 C.2 D.87.若a,b互为相反数,c和d互为倒数,m是最大的负整数,则cd﹣a﹣b+m2019的值是()A.0 B.﹣2 C.﹣2或0 D.28.若|x|=2.|y|=3,x+y<0,则x﹣y的值是()A.5或1 B.﹣1或5 C.﹣1或﹣5 D.﹣5或19.将一半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是()A.36 B.74 C.90 D.9210.有理数a,b,c的位置如图所示,则下列各式:①ab<0②b﹣a+c>0③=1④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(每小题4分,共40分)11.截止2019年10月30日,电影《我和我的祖国》的累计票房达到大约2560000000元,数据2560000000用科学记数法表示为.12.﹣5的相反数是.13.一个数在数轴上表示的点距原点7个单位长度,且在原点的左边,则这个数是.14.已知(a﹣2)2+|b﹣3|=0,那么3a﹣5b的值为.15.如果a,b互为相反数,c,d互为倒数,m的绝对值是3,则m2﹣2019a+5cd﹣2019b的值是.16.按如图程序输入一个数x,若输入的数x=4,则输出结果为.17.对于任意有理数a,b,定义新运算:a⊗b=a2﹣2b+1,则2⊗(﹣6)=.18.若整式(2x2+mx﹣12)﹣2(nx2﹣3x+8)的结果中不含x项,x2项,则m2+n2=.19.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有个苹果.三、解答题(共70分)21.(4分)计算(1)﹣2+7﹣(﹣3)﹣2 (2)(﹣4)×5+(﹣120)÷6(3)9×(﹣12)+35.5×4﹣5.5×4 (4)﹣22﹣22.(4分)化简(1)﹣2a+3b+5a﹣6b+4b (2)3(x2+2xy﹣y2)﹣2(3xy+x2)23.(4分)先化简,再求值xy2﹣(2x2y+xy2+3)+3(x2y+xy2),其中x=2,y=﹣1.24.(8分)某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过18立方米时,按1.9元/立方米计费;月用水量超过18立方米时,其中的18立方米仍按1.9元/立方米收费,超过部分按3.4元/立方米计费.设每户家庭月用水量为x立方米.(1)若小明家某月用水量为20立方米,则这个月的水费为.(2)当x不超过18时,应收水费为(用含x的整式表示):当x超过18时,应收水费为(用含x的整式表示);(3)小亮家某月应交水费为68.2元,求小亮家本月用水量.25.(10分)小明是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小明把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2)(1)直接写出计算结果,f(5,)=,f(6,3)=;(2)关于“有理数的除方”下列说法正确的是(填序号)①对于任何正整数n,都有f(n,﹣1)=1:②f(6,3)=f(3,6);③f(2,a)=1(a≠0);①对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式.请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:26.(10分)已知数轴上的A、B、C、D四点所表示的数分别是a、b、c、d,且(a+16)2+(d+12)2=﹣|b ﹣8|﹣|c﹣10|.(1)求a、b、c、d的值;(2)点A,B沿数轴同时出发相向匀速运动,4秒后两点相遇,点B的速度为每秒2个单位长度,求点A的运动速度;(3)A,B两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C点以每秒1个单位长度的速度向数轴正方向开始运动,若t秒时有2AB=CD,求t的值;(4)A,B两点以(2)中的速度从起始位置同时出发,相向而行当A点运动到C点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C点运动;当B点运动到A点的起始位置后停止运动.当B点停止运动时,A点也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.参考答案与试题解析1.【解答】解:根据有理数比较大小的方法,可得<﹣1<0<6,故选:B.2.【解答】解:A、﹣2﹣1=﹣3,故选项正确;B、﹣42=﹣16,故选项错误;C、﹣3+1=﹣2,故选项错误;D、﹣|2|=﹣5,故选项错误.故选:A.3.【解答】解:A.7a﹣6a=a,故本选项不合题意;B.2a与3b不是同类项,所以不能合并,故本选项不合题意;D.x5y﹣2x2y=﹣x2y,正确,故本选项符合题意.故选:D.4.【解答】解:由题意得,m+2=3,n﹣2=1,解得,m=8,n=3,故选:B.5.【解答】解:A、﹣的系数是﹣,故此选项错误;B、53ab2是3次单项式,故此选项错误;C、是多项式,故此选项正确;D、x2﹣4x﹣1的常数项是﹣1,故此选项错误;故选:C.6.【解答】解:∵3x﹣y+3=4,∴3x﹣y=1,故选:C.7.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴m=﹣1,故选:A.8.【解答】解:∵|x|=2,|y|=3,且x+y<0,∴x=2,y=﹣3;x=﹣2,y=﹣4,故选:A.9.【解答】解:观察图形的变化可知:第1个图形有1×2+2=4个小圆,第3个图形有3×4+2=14个小圆,发现规律:所以第9个图形的小圆个数是2×10+2=92.故选:D.10.【解答】解:由图可知a<0<b<c.①∵a<0<b<c,②∵a<0<b<c,③∵a<0<b<c,∴=1,故本小题正确;④∵a﹣b<0,c+a>0,b﹣c<0,∴原式=b﹣a﹣(c+a)+(c﹣b)=b﹣a﹣c﹣a+c﹣b=﹣2a,故本小题正确.∴正确的有①②③④共7个.故选:D.11.【解答】解:2560000000=2.56×109,故答案为:2.56×109.12.【解答】解:﹣5的相反数是5.故答案为:5.13.【解答】解:在原点的左边,符号为负,距原点7个单位,绝对值为7,因此这个有理数为﹣7.故答案为:﹣7.14.【解答】解:由题意得,a﹣2=0,b﹣3=0,解得,a=6,b=3,故答案为:﹣9.15.【解答】解:∵a,b互为相反数,c,d互为倒数,m的绝对值是3,∴a+b=0,cd=1,m=±3,=9﹣2019(a+b)+5cd故答案为:14.16.【解答】解:当x=4时,==6<16,当x=6时,==14<16,所以输出结果为78,故答案为:78.17.【解答】解:∵a⊗b=a2﹣2b+1,∴2⊗(﹣8)=22﹣2×(﹣6)+1=4+12+8=17.故答案为:17.18.【解答】解:(2x2+mx﹣12)﹣2(nx2﹣5x+8)=2x2+mx﹣12﹣2nx2+2x﹣16∵结果中不含x项,x2项,解得n=1,m=﹣6,故答案为:37.19.【解答】解:∵31=3,32=5,33=27,34=81,35=243,56=729,37=2187……,∴尾数四个一循环,∵2019÷4=504…3,故答案为9.20.【解答】解:设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,依题意有,故甲堆原来有198个苹果.故答案为:198.21.【解答】解:(1)﹣2+7﹣(﹣3)﹣2=﹣2+6+3﹣2(2)(﹣4)×6+(﹣120)÷6=﹣40;=(9+)×(﹣12)+7×(35.5﹣5.5)=﹣4﹣(9+24)÷4=﹣.22.【解答】解:(1)原式=(﹣2a+5a)+(3b﹣6b+6b)=3a+b;=﹣3y4.23.【解答】解:原式=xy2﹣8x2y﹣xy2﹣3+7x2y+2xy7=x2y+2xy2﹣3,当x=2,y=﹣1时,原式=﹣4+4﹣3=﹣7.四、解答题:(本大题3个小题,24题10分,25题10分,26题12分,共32分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.24.【解答】解:(1)1.9×18+3.4×(20﹣18)=41(元).故答案为:41元.当x>18时,应收水费6.9×18+3.4(x﹣18)=(3.4x﹣27)元.(5)∵68.2>41,依题意,得:3.4x﹣27=68.2,答:小亮家本月用水量为28立方米.25.【解答】解:(1)f(5,)==8,f(6,2)=3÷3÷3÷3÷3÷2=;(2)①对于任何正整数n,都有f(n,﹣1)=1,n为奇数时,f(n,﹣8)=﹣1,①错误;②∵f(6,3)=;f(3,6)=∴f(6,3)≠f(3,6),②错误;③f(6,a)=a÷a=1(a≠0),③正确;④对于任何正整数n,都有f(2n,a)>0,而不是f(5n,a)<0(a<0),④错误;(3)公式f(n,a)=a÷a÷a÷a÷…÷a÷a=1÷(a n﹣2)=(n为正整数,a≠0,n≥2)=35×()2×23÷(﹣4)3÷(﹣2)4=﹣26.【解答】解:(1)∵(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|,(a+16)2+(d+12)2+|b﹣8|+|c﹣10|=0,(2)设点A的运动速度为每秒v个单位长度,v=4,(3)如图1,t秒时,点A表示的数为:﹣16+4t,点C表示的数为:10+t,①2[(﹣16+4t)﹣(8+2t)]=10+t+12,﹣48+4t=22+t,t=;②2[(8+8t)﹣(﹣16+4t)]=10+t+12,2(24﹣4t)=22+t,t=,(4)B点运动至A点所需的时间为=12(s),故t≤12,①由(2)得,当t=4时,A,B两点同时到达的点表示的数是﹣16+4×3=0;②当点A从点C返回出发点时,若与B相遇,由题意得:=6.5(s),=8.25,则2×4×(t﹣6.5)=10﹣4+2t,此时A,B两点同时到达的点表示的数是8﹣9×2=﹣10;③当点A第二次从出发点返回点C时,若与点B相遇,则8(t﹣9.75)+6t=16+8,此时A,B两点同时到达的点表示的数是8﹣10.2×2=﹣12.4;综上所述,A,B两点同时到达的点在数轴上表示的数为:0或﹣10或﹣12.4。

相关文档
最新文档