磁控溅射镀膜机技术要求
磁控溅射镀膜
磁控溅射镀膜磁控溅射镀膜是一种应用于材料表面改性的先进技术。
它利用准分子束磁控溅射设备,通过电弧、离子束或电子束的能量作用于目标材料,使其产生高温、高压等物理、化学效应,从而实现材料表面镀膜的目的。
本文将从磁控溅射镀膜的基本原理、应用领域、优势和不足以及发展前景等方面进行详细介绍,旨在全面了解磁控溅射镀膜技术的特点及其在现代工业中的应用。
1. 磁控溅射镀膜的基本原理磁控溅射镀膜技术是将所需镀层物质以固体靶材的形式放在装备中的靶极,利用外加的电场、磁场或离子束等等,使得靶材产生某种运动状态,随后可以将靶面上的物质溅射出来,沉积在基材表面,形成薄膜。
其中磁场的作用是将靶材中被离子轰击的金属离子引导回到靶材中心,以增加溅射效率。
2. 磁控溅射镀膜的应用领域磁控溅射镀膜技术广泛应用于许多工业领域,如电子、光学、太阳能电池、柔性电子器件、集成电路、玻璃制造等。
在电子领域,磁控溅射镀膜技术可用于制备薄膜晶体管,提高电子器件的性能和稳定性。
在光学领域,磁控溅射镀膜技术可制备高反射率、低反射率和色分离膜等光学薄膜。
在太阳能电池领域,磁控溅射镀膜技术可用于制备光学膜和透明导电膜。
在柔性电子器件领域,磁控溅射镀膜技术可用于制备导电薄膜和保护膜。
3. 磁控溅射镀膜的优势和不足磁控溅射镀膜技术具有许多优势。
首先,其产生的薄膜具有高质量、高致密性和良好的附着力。
其次,磁控溅射镀膜过程中无需加热基材,可避免基材变形和热损伤。
此外,磁控溅射镀膜技术具有膜层成分可调、薄膜复杂结构可控等特点。
然而,磁控溅射镀膜技术也存在不足之处。
一方面,磁控溅射镀膜设备体积较大、成本较高,且对真空度要求较高。
另一方面,由于目前磁控溅射镀膜技术仍处于发展阶段,其在大尺寸薄膜制备和高速镀膜方面还存在一定限制。
4. 磁控溅射镀膜的未来发展随着科学技术的不断进步,磁控溅射镀膜技术将进一步得到发展和完善。
一方面,磁控溅射镀膜技术将在薄膜成分调控和复杂结构薄膜制备方面取得更大突破,以满足不同行业对薄膜材料的需求。
磁控溅射镀膜技术综合介绍
一.磁控溅射电镀上世纪80年代开始, 磁控溅射技术得到迅猛的发展, 其应用领域得到了极大的推广。
现在磁控溅射技术已经在镀膜领域占有举足轻重的地位, 在工业生产和科学领域发挥着极大的作用。
正是近来市场上各方面对高质量薄膜日益增长的需要使磁控溅射不断的发展。
在许多方面, 磁控溅射薄膜的表现都比物理蒸发沉积制成的要好;并且在同样的功能下采用磁控溅射技术制得的可以比采用其他技术制得的要厚。
因此, 磁控溅射技术在许多应用领域涉及制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要是影响。
磁控溅射技术得以广泛的应用,是由该技术有别于其它镀膜方法的特点所决定的。
其特点可归纳为:可制备成靶材的各种材料均可作为薄膜材料,涉及各种金属、半导体、铁磁材料,以及绝缘的氧化物、陶瓷等物质,特别适合高熔点和低蒸汽压的材料沉积镀膜在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜;在溅射的放电气中加入氧、氮或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;控制真空室中的气压、溅射功率,基本上可获得稳定的沉积速率,通过精确地控制溅射镀膜时间,容易获得均匀的高精度的膜厚,且反复性好;溅射粒子几乎不受重力影响,靶材与基片位置可自由安排;基片与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时高能量使基片只要较低的温度即可得到结晶膜;薄膜形成初期成核密度高,故可生产厚度10nm以下的极薄连续膜。
1.磁控溅射工作原理:磁控溅射属于辉光放电范畴, 运用阴极溅射原理进行镀膜。
膜层粒子来源于辉光放电中, 氩离子对阴极靶材产生的阴极溅射作用。
氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。
磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹, 使得电子在正交电磁场中变成了摆线运动, 因而大大增长了与气体分子碰撞的几率。
用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶), 使固体原子(分子)从表面射出的现象称为溅射。
JCP-200使用说明书
JCP-200磁控溅射/蒸发镀膜机使用说明书北京泰科诺科技有限公司2008年6月目录1.设备简介2.设备技术参数及功能3.设备环境要求4.设备安装5.设备操作及注意事项6.设备保养及维护附图1.JCP-ZZ-200B多功能磁控溅射镀膜机外形图2.磁控靶结构示意图3.基片台结构示意图4.真空系统示意图5.电器控制原理图一.设备简介JCP-200磁控溅射镀膜机以磁控溅射技术为主体(兼容蒸发镀膜技术)该设备由真空系统、镀膜室、磁控溅射靶、基片台(架)、真空系统、工作气体供给、电气控制等部分组成,主要应用于沉积金属膜、介质膜及半导体膜。
1.1.真空系统该设备采用110L/S分子泵、2L/S机械泵、前级阀真空系统。
为了尽量减小“出气”量、降低真空压强,整个系统(包括所有法兰及管道)全部采用不锈钢材料。
真空测量采用数字式复合真空计,测量范围从大气至10-5Pa,具有自身保护测量规管的功能。
真空联锁保护采用断水保护磁控靶的措施。
1.2.镀膜室镀膜室采用不锈钢柱状两层结构:上层安装旋转基片台,可手动打开,下层安装磁控溅射靶、进气装置,便于更换基片、靶材及日常维护;磁控靶装在下,基片台在上。
该方式的优点在于:防止颗粒物对膜表面的侵害。
在镀膜室的前面、侧面配有玻璃观察窗,观察其镀膜过程的状况,一旦出现非正常情况可采取应对措施。
1.3.磁控溅射靶磁控溅射靶(简称磁控靶)是该设备的核心部件,它的性能决定了沉积薄膜的质量。
按形状及用途不同可分为:圆形平面靶、矩形靶、柱状靶及S枪形靶。
该设备采用圆形平面靶,靶材尺寸为Ф50×δ4mm(2”),表面磁感应强度约为Br=400Gs。
靶电源采用A2K双极性脉冲电源,可沉积金属膜、半导体膜及反应膜。
磁控靶工作原理可简述为:自由电子在阴极靶材表面正交电磁场的作用下,电子获得约400eV以上的能量并做曲线运动,运动过程中与工作气体原子(如Ar、O2、N2 、CH4……)相互碰撞形成正离子,正离子与处在负电位的阴极靶材相互作用溅射出靶材的中性粒子,这些中性粒子沉积于基片表面(阳极)形成薄膜。
磁控溅射镀膜机技术要求
向上溅射(基片台在腔室顶部,靶在腔室底部)
膜厚不均匀性
≤±5%(靶材匹配范围内)
报警及保护
对泵、靶、电极等缺水、过流过压、断路等异常情况进行报警并执行相应保护措施;完善的逻辑程序互锁保护系统
设备质保
需要供应商提供不少于1年的设备免费保修服务。
磁控溅射镀膜机技术要求
设备用途
能够进行磁控溅射、蒸发,基片台可用射频电源加负偏压对基片进行反溅清洗活化、辅助溅射功能。该设备主要用来开发纳米级导电膜、半导体膜、绝缘膜以及镍、钴磁性膜等。
主要技术指标
真空腔室
304优质不锈钢真空腔室,上开盖结构;观察窗1套
真空系统
涡轮分子泵+直联旋片泵准无油真空系统,数显复合真空计
真空极限大气抽至6.0×10-3Pa≤15min
基片台尺寸
最大可镀基片尺寸/面积:Ф100mm范围内可装卡各种规格基片
基片加热与旋转
基片台加热:室温~400℃,PID控温;基片旋转:0-20转/分钟连续可调;基片台有负偏压装置,可切换射频电源反溅清洗样片
溅射靶及电源
2英寸圆形平面靶1只,靶的角度可调,1对水冷蒸发电极;配冷却循环水机;该靶兼容直流溅射/中频溅射/射频溅射;配2000VA直流溅射电源1台、500VA射频溅射电源1台、2000VA直流蒸发电源1台
多工位磁控溅射镀膜机安全操作及保养规程
多工位磁控溅射镀膜机安全操作及保养规程1. 引言多工位磁控溅射镀膜机是一种用于在物体表面形成薄膜的设备。
本文档旨在说明多工位磁控溅射镀膜机的安全操作规程和保养规程,以确保操作人员的安全,并延长设备的使用寿命。
2. 安全操作规程2.1 检查设备 - 在操作前,必须仔细检查多工位磁控溅射镀膜机的各个部件是否完好无损。
- 确保设备的电源和其他电气设备都处于正常工作状态。
2.2 穿戴个人防护装备 - 在操作多工位磁控溅射镀膜机时,所有操作人员必须穿戴个人防护装备,包括护目镜、手套和防护服等。
-进入操作区域前,务必将头发束起,以免被机械部件卷入。
2.3 操作步骤 - 在启动多工位磁控溅射镀膜机前,仔细阅读并理解设备的操作手册。
- 按照正确的步骤操作设备,切勿随意更改设置。
- 在使用过程中,确保保持设备清洁,并及时清理溅射物。
- 在清洁或维护设备前,务必切断电源或将设备置于安全状态。
2.4 紧急情况处理 - 在发生紧急情况时,立即切断电源并通知相关责任人。
- 遇到火灾时,使用灭火器进行扑灭,并尽快撤离人员。
3. 设备保养规程3.1 日常清洁 - 每日使用后,对多工位磁控溅射镀膜机进行清洁,包括清理外表面和吸尘器。
- 清洁过程中,切勿将水或其他液体直接喷洒到设备上,以免损坏电路。
3.2 维护保养 - 定期对多工位磁控溅射镀膜机进行维护保养,包括检查设备内部电路、电源连接线和冷却系统。
- 如果发现任何异常情况,应及时联系专业维修人员进行维护。
3.3 零部件更换 - 根据设备说明书中的保养计划,定期更换多工位磁控溅射镀膜机的零部件,以确保设备的正常运行。
- 零部件更换时,务必使用原厂配件,并按照说明书中的步骤进行操作。
4. 安全培训和监督•在操作多工位磁控溅射镀膜机前,需要进行相关的安全培训,并获取相关的操作资格证书。
•操作人员需要定期接受安全知识的培训和更新,以确保对操作规程的熟悉程度。
•设备的操作和保养应有专人监督,以避免操作失误和忽视保养工作。
磁控溅射镀膜原理和工艺设计
磁控溅射镀膜原理及工艺摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。
真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。
这里主要讲一下由溅射镀膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。
关键词:溅射;溅射变量;工作气压;沉积率。
绪论溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。
常用二极溅射设备如右图。
通常将欲沉积的材料制成板材-靶,固定在阴极上。
基片置于正对靶面的阳极上,距靶一定距离。
系统抽至高真空后充入(10~1)帕的气体(通常为氩气),在阴极和阳极间加几千伏电压,两极间即产生辉光放电。
放电产生的正离子在电场作用下飞向阴极,与靶表面原子碰撞,受碰撞从靶面逸出的靶原子称为溅射原子,其能量在1至几十电子伏围。
溅射原子在基片表面沉积成膜。
其中磁控溅射可以被认为是镀膜技术中最突出的成就之一。
它以溅射率高、基片温升低、膜-基结合力好、装置性能稳定、操作控制方便等优点,成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案。
1磁控溅射原理溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。
磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。
在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域,并且在该区域中电离出大量的Ar正离子来轰击靶材,从而实现了高的沉积速率。
磁控溅射镀膜技术
传递给碰撞处的原子,导致很小的局部区域产生高温,使靶材融化,发
生热蒸发。 可以解释溅射率与靶材蒸发热和入射离子的能量关系,余弦分布规律;
不能解释溅射率与入射离子角度关系,非余弦分布规律,以及溅射率
与入射离子质量关系等。
34
三、磁控溅射
35
三、磁控溅射
(四)磁控溅射的应用实例-TCO薄膜的制备:
TCO薄膜为晶粒尺寸数百纳米的多晶层,晶粒取向单一。目前研究 较多的是ITO、FTO和AZO。电阻率达10-4Ω•cm量级,可见光透射率为
80%~90%。
FTO(SnO2︰F):电阻率可达5.0×10-4Ω•cm,可见光透过率>80%。 ITO(In2O3︰Sn):电阻率可达7.0×10-5Ω•cm ,可见光透过率>85% 。
23
二、溅射镀膜的基本原理
24
二、溅射镀膜的基本原理
(三)溅射参数:
(5)靶材温度: 靶材存在与升华相关的某一温度。低于此温度时,溅射率几乎不变; 高于此温度时,溅射率急剧增加。
除此之外,还与靶的结构和靶材的结晶取向、表面形貌、溅射压强 等因素有关
25
二、溅射镀膜的基本原理
(三)溅射参数:
3.溅射原子的能量和速度 不同靶材具有不同的原子逸出能量; 入射离子种类和能量(守恒定律); 倾斜方向逸出的原子具有较高的逸出能量。
29Βιβλιοθήκη 二、溅射镀膜的基本原理(五)溅射机理:
2.动量转移理论 深入研究结果表明,溅射完全是一个动量转移过程。
该理论认为,低能离子碰撞靶时,不能直接从表面溅射出原子,而
是把动量传递给被碰撞的原子,引起原子的联级碰撞。这种碰撞沿晶体 点阵的各个方向进行。当原子的能量大于结合能时,就从表面溅射出来。
磁控溅射系统基本技术要求
磁控溅射镀膜机技术规格1.货物名称、数量磁控溅射镀膜机1套2.工作条件及用途2.1工作条件2.1.1能在电源电压380±10%V、50±2%Hz、室温0℃~40℃的环境下连续正常工作。
2.1.2连续工作时间能力不应少于168小时,设备服役期限15年。
2.2用途主要用于镀制多层金属及金属化合物薄膜。
3.技术规格卖方所提供的磁控溅射镀膜机必须是技术先进,经济合理,成熟可靠的产品。
本条中带*技术指标为关键指标,不允许有超标。
3.1基本要求磁控溅射镀膜机由无油真空系统、溅射系统、气体压强控制装置、气体流量控制装置以及烘烤旋转系统等组成。
可满足样品尺寸为φ50mm,多片(4片以上)同时镀制要求,可满足三靶共溅射要求;溅射室采用1Cr18Ni9Ti不锈钢制造;气体管路采用不锈钢硬管;所有设备要求为集装式。
溅射室的观察窗不少于2个;备用接口不少于2个,溅射室内部应有照明装置。
3.1.1样品尺寸:≥φ50mm,*3.1.2膜厚不均匀性:≤±5%;*3.1.3膜厚重复性≤±3%;3.2真空系统3.2.1真空室直径≥φ500mm。
3.2.2极限真空度:≤6.0⨯10-5Pa*3.2.3恢复抽真空时间:从大气~4×10-3Pa小于15分钟*3.2.4真空测量装置范围:大气~1×10-5Pa3.2.5系统漏率:停泵关机12小时后真空度≤5Pa。
3.2.6真空测量:宽量程真空计(用于真空监测)和精度优于1.5%的薄膜规(用于工艺真空控制,建议采用美国MKS产品);3.3溅射系统3.3.1溅射材料:Ti,Pt,Au,钛酸锶钡等;还可溅射其它金属、氧化物等;*3.3.2溅射靶:溅射靶的数量不少于4个,可满足三靶共溅射要求;要求共溅射和单靶溅射模式转换调节方便;预留一个靶的空位和接口,作为离子源安装备用接口;3个直流靶为高真空型、1个射频靶,其中一个直流靶为磁场增强靶;靶位置:向上溅射;溅射靶与基片距离可调节,每只溅射靶分别配有挡板;4个永磁靶均为摆头靶,可分别实现多层镀膜和掺杂镀膜。
磁控溅射设备说明书教材
磁控溅射沉积系统用户手册声明:感谢您购买中国科学院沈阳科学仪器股份有限公司(以下简称沈阳科仪公司)的设备,请您在使用该设备之前认真阅读本说明书,当您拿到该说明书时,请认真阅读以下声明。
如不接受本声明,请立即与本公司联系,否则视为全部接受本声明。
1.本说明书所有内容,未经沈阳科仪公司书面同意,任何人均不得以任何方式(复制、扫描、备份、转借、转发、转载、上传、摘编、修改、出版、展示、翻译成其它语言、传播以及任何其它方式)向第三方提供本说明书的部分或全部内容。
如有违反,沈阳科仪公司将保留一切权利。
2.本说明书仅供使用者参考,可作为使用者所在公司学习、培训的内部资料。
3.本说明书所详述的内容,不排除有误或遗漏的可能性。
如对本说明书内容有疑问,请与沈阳科仪公司联系。
4.关于知识产权,请严格遵守知识产权保护的相关法律法规。
5.本说明书解释权归中国科学院沈阳科学仪器股份有限公司所有。
保护知识产权、促进创新发展;运用知识产权、发展知识经济;打击盗版侵权、繁荣文化事业;保护知识产权、激励自主创新;加强知识产权保护、规范市场经济秩序;保护知识产权从你我做起!人人应该做到这样!前言:首先感谢购买我们的设备,本着对您负责的精神,并为了确保给您提供最优质的售后服务,特别为您准备了本手册,请您耐心读取相关信息。
您的义务请您在使用过程中,将发生故障的操作步骤填写在用户反馈问题清单中,我们将参考此表内容尽我们最大的能力在最短的时间内完成维修。
如何使用本手册如果您是初次使用该设备,那么您需要通读用户手册。
如果您是一位有经验的用户,则可以通过目录查找相关信息。
本手册涉及的字体及符号说明:字体的大小直接反应父、子关系,符号说明见下表:符号指示性说明代表意义➢描述性说明没有先后顺序之分,是比❑和■高一级目录❑详细描述性说明没有先后顺序之分■详细描述性说明有先后顺序之分提示性说明有利于深刻认识系统,并且可以避免不必要的故障发生警告性说明必须严格遵守的内容,否则会发生严重事故目录绪言 (1)一、系统简介 (1)1、概述 (1)2、工作原理以及技术指标 (2)工作原理: (2)技术指标: (2)3、系统主要组成 (3)溅射真空室组件: (3)上盖组件: (4)真空获得和工作气路组件: (5)安装机台架组件: (7)4、设备安装 (7)安装尺寸: (7)配套设施: (7)二、系统主要机械机构简介 (8)1、磁控溅射靶组件 (8)2、单基片加热台组件 (9)3、基片加热公自转台组件 (10)4、基片挡板组件 (11)三、操作规程: (11)1、开机前准备工作 (11)2、开机(大气状态下泵抽真空) (12)启动总电源: (12)大气状态下溅射室泵抽真空: (12)3、溅射室处于真空状态时抽真空: (13)4、工作流程: (13)➢装入样品: (13)➢磁控溅射镀膜: (14)5、靶材的取出和更换: (15)6、停机: (16)四、电源及控制 (16)分类: (17)供电要求: (17)使用说明 (18)电控单元使用说明: (19)五、注意事项 (20)1、安全用电操作注意事项: (20)2、操作注意事项: (21)六、常见故障及排除 (22)七、紧急状况应对方法 (23)1、突然断电 (23)2、突然断水 (24)3、出现严重漏气 (24)八、用户反馈问题清单 (25)九、维护与维修 (26)绪言磁控溅射沉积系统是高真空多功能磁控溅射镀膜设备。
真空磁控溅射镀膜原理与技术
真空磁控溅射镀膜原理与技术真空磁控溅射镀膜是一种常用的薄膜制备技术,通过在真空环境中使用磁控溅射装置,将固体靶材溅射成气相离子,然后沉积在基材上,形成一层均匀、致密的薄膜。
这种技术广泛应用于光学薄膜、电子器件、节能涂层等领域。
真空磁控溅射镀膜的原理是利用磁场和靶材上集中的高能离子束,将靶材表面的原子或分子溅射出来,然后沉积在基材上形成薄膜。
具体来说,真空磁控溅射装置包括真空室、靶材、基材和磁控装置。
在真空室中,通过抽气将压力降至10^-3到10^-6帕的真空状态。
当真空室内的气体被抽尽后,向离子源上的靶材施加直流或者交流电,产生高能离子束,击打在靶材上。
同时,在靶材表面施加交变磁场。
这样,气体原子和分子会受到束流的冲击,将离子溅射出来,并通过基材的倾角冲积在基材表面形成薄膜。
磁控装置主要通过磁场对离子进行引导,使得离子束在靶材和基材之间来回移动,进一步增强溅射效果。
真空磁控溅射镀膜技术有以下几个特点:首先,可以在较低的温度下进行薄膜沉积,适用于大多数材料。
其次,由于采用磁场控制,可以获得均匀、致密的薄膜。
再次,能够利用常规的靶材材料,如金属、合金、化合物材料等。
最后,真空磁控溅射镀膜还可通过调整离子束能量和沉积速度来控制薄膜的性质,如厚度、硬度、附着力等。
除了基本的真空磁控溅射镀膜技术,还有一些衍生的技术,如磁控溅射复合镀膜、磁控溅射多层膜、磁控溅射纳米结构膜等。
这些技术在一些特定应用中具有更好的性能,并能满足特定的需求。
总之,真空磁控溅射镀膜技术是一种重要的薄膜制备技术,具有广泛的应用前景。
通过控制离子束能量、磁场强度和沉积条件等参数,可以制备出具有多种特性的薄膜,满足不同领域的需求。
但是,该技术也存在一些问题,如工艺复杂、设备要求高等,需要进一步研究和改进。
《磁控溅射镀膜技术》课件
要点二
溅射参数与工艺条件
溅射参数和工艺条件对磁控溅射镀膜的沉积速率、膜层质 量、附着力等有着重要影响。主要的溅射参数包括工作气 压、磁场强度、功率密度等,工艺条件包括基材温度、气 体流量和组成等。通过对这些参数的优化和控制,可以获 得具有优异性能的膜层。
磁控溅射镀膜设备
03
与系统
磁控溅射镀膜设备的组成
多元靶材磁控溅射
技术
研究多种材料同时溅射的工艺技 术,实现多元材料的复合镀膜, 拓展镀膜材料的应用范围。
磁控溅射与其他技术的结合应用
磁控溅射与脉冲激光沉积技术结合
01
通过结合两种技术,实现快速、大面积的镀膜,提高生产效率
。
磁控溅射与化学气相沉积技术结合
02
利用化学气相沉积技术在磁控溅射的基础上进一步优化镀膜性
磁控溅射机制
在磁场的作用下,电子的运动轨迹发生偏转,增加与气体分子的碰撞概率,产 生更多的离子和活性粒子,从而提高了溅射效率和沉积速率。
磁控溅射镀膜的工艺流程
要点一
工艺流程概述
磁控溅射镀膜的工艺流程包括前处理、溅射镀膜和后处理 三个阶段。前处理主要是对基材进行清洗和预处理,确保 基材表面的清洁度和粗糙度符合要求;溅射镀膜是整个工 艺的核心部分,通过控制溅射参数和工艺条件,实现膜层 的均匀、致密和附着力强的沉积;后处理主要包括对膜层 的退火、冷却和清洗等处理,以优化膜层性能。
纳米薄膜的制备与应用
总结词
纳米薄膜因其独特的物理和化学性质在许多 领域具有巨大的应用潜力。
详细描述
磁控溅射技术可以用于制备纳米级别的薄膜 ,如纳米复合材料、纳米陶瓷、纳米金属等 ,这些薄膜在催化剂、传感器、电池等领域 有广泛应用。
其他领域的应用研究
磁控溅射镀膜原理及工艺
磁控溅射的物理基础
磁场控制
通过磁场控制电子的运动轨迹,延长其在工 作气体的停留时间,提高气体离化率。
偏转磁场
电子在磁场中受到洛伦兹力作用,偏转方向 与电场方向相反,从而避免了电子与工作气 体碰撞。
能量传递
高能电子撞击工作气体,使气体分子离化成 离子和电子,离子在电场作用下加速飞向基 片,撞击基片表面的固体原子或分子,使其 溅射出来。
镀膜工艺参数优化
真空度控制
气体流量控制
优化真空室内的真空度,以提高镀膜 质量。
优化工作气体和反应气体的流量,以 获得良好的镀膜效果。
溅射功率调节
根据靶材和镀膜需求,调节溅射功率 ,以获得理想的镀膜层厚度和性能。
04
磁控溅射镀膜的应用
光学薄膜
减反射膜
通过在光学元件表面镀制一层特定厚度的薄膜,减少光的反射,提高透光率。
01
真空室
用于容纳待镀膜的基片和溅射源 ,是整个镀膜系统的核心部分。
02
03
04
控制系统
用于控制镀膜过程中的各项参数 ,如温度、压力、电流等。
磁控溅射源
01
02
03
阴极
通常由靶材制成,接负电 压,在电场的作用下吸引 正离子。
阳极
通常为金属环或平面,接 正电压,与阴极共同形成 放电空间。
磁场
通过磁场控制电子的运动 轨迹,提高离化率和溅射 效率。
真空系统及测量控制系统
真空系统
由真空泵、管道、阀门等组成,用于抽真空,创造适宜的镀 膜环境。
测量控制系统
通过各种传感器和测量仪表,实时监测镀膜过程中的各种参 数,如压力、温度、电流等,确保镀膜过程的稳定性和可重 复性。
03
磁控溅射镀膜原理及工艺
磁控溅射镀膜本理及工艺之阳早格格创做纲要:真空镀膜技能动做一种爆收特定膜层的技能,正在现真死爆收计中有着广大的应用.真空镀膜技能有三种形式,即挥收镀膜、溅射镀膜战离子镀.那里主要道一下由溅射镀膜技能死少去的磁控溅射镀膜的本理及相映工艺的钻研.关键词汇:溅射;溅射变量;处事气压;重积率.绪论溅射局里于1870年开初用于镀膜技能,1930年以去由于普及了重积速率而渐渐用于工业死产.时常使用二极溅射设备如左图.常常将欲重积的资料制成板材-靶,牢固正在阳极上.基片置于正对付靶里的阳极上,距靶一定距离.系统抽至下真空后充进(10~1)帕的气体(常常为氩气),正在阳极战阳极间加几千伏电压,二极间即爆收辉光搁电.搁电爆收的正离子正在电场效用下飞背阳极,与靶表面本子碰碰,受碰碰从靶里劳出的靶本子称为溅射本子,其能量正在1至几十电子伏范畴内.溅射本子正在基片表面重积成膜.其中磁控溅射不妨被认为是镀膜技能中最超过的成便之一.它以溅射率下、基片温降矮、膜-基分离力好、拆置本能宁静、支配统制便当等便宜,成为镀膜工业应用范畴(特天是修筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对付大里积的匀称性有特天苛刻央供的连绝镀膜场合)的尾选规划.1磁控溅射本理溅射属于PDV(物理气相重积)三种基础要收:真空挥收、溅射、离子镀(空心阳极离子镀、热阳极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流搁电离子镀)中的一种.磁控溅射的处事本理是指电子正在电场E的效用下,正在飞背基片历程中与氩本子爆收碰碰,使其电离爆收出Ar正离子战新的电子;新电子飞背基片,Ar正离子正在电场效用下加速飞背阳极靶,并以下能量轰打靶表面,使靶材爆收溅射.正在溅射粒子中,中性的靶本子或者分子重积正在基片上产死薄膜,而爆收的二次电子会受到电场战磁场效用,爆收E(电场)×B(磁场)所指的目标漂移,简称E×B漂移,其疏通轨迹近似于一条晃线.若为环形磁场,则电子便以近似晃线形式正在靶表面搞圆周疏通,它们的疏通路径不然而很少,而且被束缚正在靠拢靶表面的等离子体天区内,而且正在该天区中电离出洪量的Ar正离子去轰打靶材,从而真止了下的重积速率.随着碰碰次数的减少,二次电子的能量消耗殆尽,渐渐近离靶表面,并正在电场E的效用下最后重积正在基片上.由于该电子的能量很矮,传播给基片的能量很小,以致基片温降较矮.磁控溅射是进射粒子战靶的碰碰历程.进射粒子正在靶中经历搀杂的集射历程,战靶本子碰碰,把部分动量传给靶本子,此靶本子又战其余靶本子碰碰,产死级联历程.正在那种级联历程中某些表面附近的靶本子赢得背中疏通的脚够动量,离开靶被溅射出去.磁控溅射种类磁控溅射包罗很多种类.各有分歧处事本理战应用对付象.然而有一共共面:利用磁场与电场接互效用,使电子正在靶表面附近成螺旋状运止,从而删大电子碰打氩气爆收离子的概率.所爆收的离子正在电场效用下碰背靶里从而溅射出靶材.磁控溅射正在技能上不妨分为直流(DC)磁控溅射、中频(MF)磁控溅射、射频(RF)磁控溅射.三种分类的主要对付比圆下表.D C MF RF电源代价廉价普遍下贵靶材圆靶/矩形靶仄里靶/转动靶考查室普遍用圆仄里靶靶材材量央供导体无节制无节制抵御靶中毒本收强强强2磁控溅射工艺钻研溅射变量电压战功率正在气体不妨电离的压强范畴内如果改变施加的电压,电路中等离子体的阻抗会随之改变,引起气体中的电流爆收变更.改变气体中的电流不妨爆收更多或者更少的离子,那些离子碰碰靶体便不妨统制溅射速率.普遍去道:普及电压不妨普及离化率.那样电流会减少,所以会引起阻抗的低重.普及电压时,阻抗的降矮会大幅度天普及电流,即大幅度普及了功率.如果气体压强稳定,溅射源下的基片的移动速度也是恒定的,那么重积到基片上的资料的量则决断于施加正在电路上的功率.正在VONARDENNE镀膜产品中所采与的范畴内,功率的普及与溅射速率的普及是一种线性的关系.气体环境真空系统战工艺气体系齐部共统制着气体环境.最先,真空泵将室体抽到一个下真空(约莫为10-6torr).而后,由工艺气体系统(包罗压强战流量统制安排器)充进工艺气体,将气体压强降矮到约莫2×10-3torr.为了保证得到适合品量的共一膜层,工艺气体必须使用杂度为99.995%的下杂气体.正在反应溅射中,正在反应气体中混同少量的惰性气体(如氩)不妨普及溅射速率.2.1.3 气体压强将气体压强降矮到某一面不妨普及离子的仄衡自由程、从而使更多的离子具备脚够的能量去碰打阳极以便将粒子轰打出去,也便是普及溅射速率.超出该面之后,由于介进碰碰的分子过少则会引导离化量缩小,使得溅射速率爆收低重.如果气压过矮,等离子体便会燃烧共时溅射停止.普及气体压强不妨普及离化率,然而是也便降矮了溅射本子的仄衡自由程,那也不妨降矮溅射速率.不妨得到最大重积速率的气体压强范畴非常渺小.如果举止的是反应溅射,由于它会不竭消耗,所以为了保护匀称的重积速率,必须依照适合的速度补充新的反应气体.2.1.4 传动速度玻璃基片正在阳极下的移动是通过传动去举止的.降矮传动速度使玻璃正在阳极范畴内通过的时间更少,那样便不妨重积出更薄的膜层.不过,为了包管膜层的匀称性,传动速度必须脆持恒定.镀膜区内普遍的传动速度范畴为每分钟0 ~ 600 英寸(约莫为0 ~ 15.24 米)之间.根据镀膜资料、功率、阳极的数量以及膜层的种类的分歧,常常的运止范畴是每分钟90 ~ 400(约莫为2.286 ~ 10.16 米)英寸之间.2.1.5 距离与速度及附效力为了得到最大的重积速率并普及膜层的附效力,正在包管不会益害辉光搁电自己的前提下,基片应当尽大概搁置正在离阳极迩去的场合.溅射粒子战睦体分子(及离子)的仄衡自由程也会正在其中收挥效用.当减少基片与阳极之间的距离,碰碰的几率也会减少,那样溅射粒子到达基片时所具备的本收便会缩小.所以,为了得到最大的重积速率战最佳的附效力,基片必须尽大概天搁置正在靠拢阳极的位子上.工艺会受到很多参数的效用.其中,一些是不妨正在工艺运止功夫改变战统制的;而其余一些则虽然是牢固的,然而是普遍正在工艺运止前不妨正在一定范畴内举止统制.二个要害的牢固参数是:靶结媾战磁场.每个单独的靶皆具备其自己的里里结媾战颗粒目标.由于里里结构的分歧,二个瞅起去真足相共的靶材大概会出现迥然分歧的溅射速率.正在镀膜支配中,如果采与了新的或者分歧的靶,应当特天注意那一面.如果所有的靶材块正在加工功夫具备相似的结构,安排电源,根据需要普及或者降矮功率不妨对付它举止补偿.正在一套靶中,由于颗粒结构分歧,也会爆收分歧的溅射速率.加工历程会制成靶材里里结构的好别,所以纵然是相共合金身分的靶材也会存留溅射速率的好别.共样,靶材块的晶体结构、颗粒结构、硬度、应力以及杂量等参数也会效用到溅射速率,而那些则大概会正在产品上产死条状的缺陷.那也需要正在镀膜功夫加以注意.不过,那种情况惟有通过调换靶材才搞得到办理.靶材耗费区自己也会制成比较矮下的溅射速率.那时间,为了得到劣良的膜层,必须重新安排功率或者传动速度.果为速度对付于产品是至关要害的,所以尺度而且适合的安排要收是普及功率.用去捕获二次电子的磁场必须正在所有靶里上脆持普遍,而且磁场强度应当符合.磁场不匀称便会爆收不匀称的膜层.磁场强度如果不适合(比圆过矮),那么纵然磁场强度普遍也会引导膜层重积速率矮下,而且大概正在螺栓头处爆收溅射.那便会使膜层受到传染.如果磁场强度过下,大概正在开初的时间重积速率会非常下,然而是由于刻蚀区的关系,那个速率会赶快低重到一个非常矮的火仄.共样,那个刻蚀区也会制成靶的利用率比较矮.2.3可变参数正在溅射历程中,通过改变改变那些参数不妨举止工艺的动背统制.那些可变参数包罗:功率、速度、气体的种类战压强.2.功率每一个阳极皆具备自己的电源.根据阳极的尺寸战系统安排,功率不妨正在0 ~ 150KW(标称值)之间变更.电源是一个恒流源.正在功率统制模式下,功率牢固共时监控电压,通过改变输出电流去保护恒定的功率.正在电流统制模式下,牢固并监控输出电流,那时不妨安排电压.施加的功率越下,重积速率便越大.2.速度另一个变量是速度.对付于单端镀膜机,镀膜区的传动速度不妨正在每分钟0 ~ 600英寸(约莫为米)之间采用.对付于单端镀膜机,镀膜区的传动速度不妨正在每分钟0 ~ 200英寸(约莫为米)之间采用.正在给定的溅射速率下,传动速度越矮则表示重积的膜层越薄.2.末尾一个变量是气体.不妨正在三种气体中采用二种动做主气体战辅气体去举履止用.它们之间,所有二种的比率也不妨举止安排.气体压强不妨正在1 ~ 5×10-3 torr之间举止统制.2./基片之间的关系正在直里玻璃镀膜机中,另有一个不妨安排的参数便是阳极与基片之间的距离.仄板玻璃镀膜机中不不妨安排的阳极.3考查①认识真空镀膜的支配历程战要收.②相识磁控溅射镀膜的本理及要收.③教会使用磁控溅射镀膜技能.④钻研分歧处事气压对付镀膜效用.SAJ-500超下真空磁控溅射镀膜机(配有杂铜靶材);氩气瓶;陶瓷基片;揩镜纸.3.3考查本理磁控溅射系统是正在基础的二极溅射系统死少而去,办理二极溅射镀膜速度比蒸镀缓很多、等离子体的离化率矮战基片的热效力明隐的问题.磁控溅射系统正在阳极靶材的里前搁置强力磁铁,真空室充进0.1~10Pa 压力的惰性气体(Ar),动做气体搁电的载体.正在下压效用下Ar本子电离成为Ar+离子战电子,爆收等离子辉光搁电,电子正在加速飞背基片的历程中,受到笔直于电场的磁场效用,使电子爆收偏偏转,被束缚正在靠拢靶表面的等离子体天区内,电子以晃线的办法沿着靶表面前进,正在疏通历程中不竭与Ar本子爆收碰碰,电离出洪量的Ar+离子,与不磁控管的结构的溅射相比,离化率赶快减少10~100倍,果此该天区内等离子体稀度很下.通过多次碰碰后电子的能量渐渐降矮,解脱磁力线的束缚,最后降正在基片、真空室内壁及靶源阳极上.而Ar+离子正在下压电场加速效用下,与靶材的碰打并释搁出能量,引导靶材表面的本子吸支Ar+离子的动能而摆脱本晶格束缚,呈中性的靶本子劳出靶材的表面飞背基片,并正在基片上重积产死薄膜.准备历程(1)动脚支配前宽肃教习道支配规程及有关资料,认识镀膜机战有关仪器的结构及功能、支配步调与注意事项,包管仄安支配.(2)荡涤基片.用无火酒粗荡涤基片,使基片镀膜里浑净无净污后用揩镜纸包好,搁正在搞燥器内备用.(3)镀膜室的浑理与准备.先背真空腔内充气一段时间,而后降钟罩,拆好基片,浑理镀膜室,降下钟罩.考查主要过程(1)挨开总电源,开用总控电,降降机降下,真空腔挨开后,搁进需要的基片,决定基片位子(A、B、C、D),决定靶位子(1、2、3、4,其中4为荡涤靶).(2)基片战靶准备好后,降降机低重至真空腔稀启(注意:关关真空腔时用脚扶着顶盖,以统制顶盖与强敌的相对付位子,历程中注意仄安,留神挤压到脚指).(3)开用板滞泵,抽一分钟安排之后,挨开复合真空计,当示数约为10E-1量级时,开用分子泵,频次为400HZ(默认),共时预热离子荡涤挨开直流或者射流电源及流量隐现仪.(4)(采用支配)挨开加热控温电源.开用慢停统制,报警至于通位子,功能选则为烘烤.(5)然而真空度达到5×10-4Pa时,关关复合真空计,开开电离真空计,通氩气(流量20L/min),挨开气路阀,将流量计Ⅰ拨至阀控档,宁静后挨开离子源,依次安排加速至200V~250V ,中战到12A 安排,阳极80V ,阳极10V ,屏极300V .从监控步调中调开工艺树立文献,开用开初荡涤.(6)荡涤完成后,按离子源参数安排好同的程序将各参数归整,关关离子源,将流量计Ⅱ置于关关档.(7)流量计Ⅰ置于阀控档(瞅是可有读数,普遍为30.可则查明本果),安排统制电离真空计示数约1Pa ,安排直流或者射频电源到所需功率,开初镀膜.(8)镀膜历程中注意设备处事状态,若工艺参数有非常十分变更应即时纠正或者停止镀膜,问题办理后圆可重新镀膜.(9)镀膜完成后,关关直流或者射频电源,关关氩气总阀门.将挡板顺时针旋至最大通路.当气罐流量形成整后,关关流量计Ⅱ,继承抽半个小时到二个小时.(10)关关流量隐现仪战电离真空计,停止分子泵,频次降至100HZ 后关关板滞泵,5分钟后关关分子泵,关关总电源.由处事气压与重积率的关系表不妨瞅出:正在其余参数稳定的条件下,随着处事气压的删大,重积速率先删大后减小.正在某一个最佳处事气压下,有一个对付应的最大重积速率.气体分子仄衡自由程与压强犹如下关系其中λ为气体分子仄衡自由程, k 为玻耳兹曼常数,T 为气体温度, d 为气体分子直径, p 为气体压强.由此可知,正在脆持气体分子直径战睦体温度稳定的条件下,如果处事压强删大,则气体分子仄衡自由程将pd kT 2π2=λ减小,溅射本子与气体分子相互碰碰次数将减少,二次电子收射将巩固.而当处事气压过大时,重积速率会减小,本果犹如下二面:(1)由于气体分子仄衡自由程减小,溅射本子的背反射战受气体分子集射的几率删大,而且那一效用已经超出了搁电巩固的效用.溅射本子经多次碰碰后会有部分遁离重积天区,基片对付溅射本子的支集效用便会减小,从而引导了重积速率的降矮.(2)随着Ar气分子的删加,溅射本子与Ar气分子的碰碰次数洪量减少,那引导溅射本子能量正在碰碰历程中大大益坏,以致粒子到达基片的数量缩小,重积速率低重.通过考查及对付截止的分解不妨得出如下论断:正在其余参数稳定的条件下,随着处事气压的删大,重积率先删大后减小.正在某一个最佳处事气压下,有一个对付应的最大重积率.虽然以上处事气压与重积率的关系程序不过正在杂铜靶材战陶瓷基片上得到的,然而对付其余分歧靶材与基片的镀膜工艺钻研也具备一定的参照代价.参照文献[1]王删祸. 真用镀膜技能. 电子工业出版社,2008.[2]程守洙,江之永. 一般物理教. 北京:下等培养出版社, 1982.[3]宽一心,林鸿海. 薄膜技能. 北京:刀兵工业出版社,1994. [4].。
真空磁控溅射镀膜原理与技术
真空磁控溅射镀膜原理与技术
真空磁控溅射镀膜技术是一种高效、环保、高质量的表面处理技术,广泛应用于电子、光学、航空航天、汽车、建筑等领域。
其原理是利用高能离子轰击靶材表面,使靶材原子脱离并沉积在基材表面形成薄膜。
真空磁控溅射镀膜技术的核心是磁控溅射装置。
该装置由真空室、靶材、基材、磁控电源、离子源等组成。
在真空室中,通过抽气将压力降至10^-4Pa以下,然后加入惰性气体(如氩气),使气体分子与靶材表面原子碰撞,产生高能离子。
磁控电源产生磁场,将离子束聚焦在靶材表面,使靶材原子脱离并沉积在基材表面形成薄膜。
真空磁控溅射镀膜技术具有以下优点:
1. 镀膜质量高:由于真空环境下,薄膜表面无气体和杂质污染,因此薄膜质量高,具有良好的光学、电学、机械性能。
2. 镀膜厚度均匀:磁控电源产生的磁场可以使离子束均匀聚焦在靶材表面,使得薄膜厚度均匀。
3. 镀膜速度快:由于离子束能量高,靶材原子脱离速度快,因此镀膜速度快。
4. 环保节能:真空磁控溅射镀膜技术无需使用有机溶剂和化学药品,不会产生废气、废水和废渣,符合环保要求。
真空磁控溅射镀膜技术的应用非常广泛。
在电子领域,可以用于制造集成电路、显示器、太阳能电池等;在光学领域,可以用于制造反射镜、滤光片、透镜等;在航空航天领域,可以用于制造航空发动机叶片、航天器表面涂层等;在汽车领域,可以用于制造汽车玻璃、车身涂层等;在建筑领域,可以用于制造建筑玻璃、金属门窗等。
真空磁控溅射镀膜技术是一种高效、环保、高质量的表面处理技术,具有广泛的应用前景。
磁控溅射镀膜技术及优化分析研究
磁控溅射镀膜技术及优化分析研究1.引言磁控溅射(Magnetron Sputtering)是一种常用的物理气相沉积技术,可以制备高品质的薄膜。
它通过在磁控场下使稀薄金属目标离子化并沉积在基板上,具有快速、高效、低污染等优点,因此被广泛应用于制备各种表面功能材料。
这里我们着重介绍磁控溅射镀膜技术及其优化分析研究。
2.磁控溅射的原理和过程磁控溅射过程包含三个基本步骤:离子化、传输和沉积。
首先,磁场作用下的电子冲击稀薄金属目标表面,将一部分表面金属原子振落成离子态,然后在电场的作用下加速离子朝向基板移动,最终被基板上的靶材料吸收。
离子运动的路径和能量分布决定了最终沉积膜的性质,如晶格结构、厚度、均匀性和微观结构等。
3.磁控溅射的工艺参数与影响因素磁控溅射的激发电压、压力、热阴极温度、磁场强度和方向等工艺参数,对薄膜的成分、微观结构、均匀性和物理性能等有着重要的影响。
其中磁场强度和方向对离子轨道和能量分布的影响最为显著。
通过调整这些参数,可以改变薄膜的结构和性能,如提高膜的比强度和耐腐蚀性等。
4.磁控溅射膜的优化技术为了获得高质量的磁控溅射膜,除了优化工艺参数外,还需改善目标和基板表面的清洁度和结构。
在磁控溅射过程中,金属目标表面被电子轰击而产生高温低压等条件,易继发成氧化、碳化、质量杂质等问题,从而降低薄膜质量。
因此,采用高纯度的靶材料和基板,进行必要的清洗和处理等表面预处理是非常重要的。
5.结论随着现代材料科学技术的不断发展,磁控溅射在各种性质表面材料制备方面有着广阔的应用前景。
通过对磁控溅射镀膜技术及其优化分析研究,我们可以更好地理解它的工作原理和优化方法。
同时,该技术在电子、光电子器件、光学器件、机械、化学、生物和医学领域也有着广泛的应用前景。
磁控溅射镀膜
2、磁控溅射镀膜原理动画模拟
二、什么是真空
什么是真空?
相对真空
绝对真空
相对真空与绝对真空
相对真空 :通常把容器内气压低于正常大气压(101325 Pa)的都称之
罗茨泵使用注意事项
罗茨泵的启动程序 1、检查冷却水、油杯,齿轮箱和前端盖内是否有足够的润滑油; 2、启动前级泵,有旁通阀的罗茨泵可同时启动,无旁通阀罗茨泵,可看其联轴 节是否转动,从转动到不转动后即可启动罗茨泵。 3、吸入气体中有灰尘或金属粉末等,应在泵人口前加除尘装置或过滤装置; 4、吸入气体含有较多的水蒸气时,且前级泵的油封泵无气镇装置时,应在泵排 出口加冷凝器,防止前级泵油乳化; 5、运转中经常检查泵各部位的温度,水冷泵的冷却水出口温度是否超过规定; 6、泵在运转中如有局部过热或电流突然增加现象时应立即停泵检查,停泵时先 停罗茨泵,再停前级泵,放出全部冷却水。
磁控溅射镀膜原理及维护注意事项
摘要
一、磁控溅射镀膜原理 二、什么是真空 三、真空镀膜系统主要构成 四、真空获得设备的构成 五、真空泵的工作原理及维护 六、常用靶材 七、关于磁控溅射中遇到的问题 八、各种镀膜技术的比较
一、磁控溅射镀膜原理
1、磁控溅射的工作原理是指电子在电场作用下,在飞向基片过程中与
真空镀膜系统主要构成
1.真空腔体 设备主要有连续涂层生产线及单室涂层机两种形式,不锈钢材料制造、氩弧 焊接、表面进行化学抛光或喷砂处理,真空室组件上焊有各种规格的法兰接 口。 2.真空获得部分 在真空技术中,真空获得部分是重要组成部分。真空的获得不是一种真空设 备和方法所能达到的,必须将几种泵联合使用,如旋片泵、罗茨泵、分子泵 、扩散泵、离子泵系统等。 3.真空测量部分 真空系统的真空测量部分,就是要对真空室内的压强进行测量。像真空泵一 样,没有一种真空计能测量整个真空范围,人们于是按不同的原理和要求制 成了许多种类的真空计。如热偶计,电离计,皮拉尼计等等。
磁控溅射(2讲义仪器)
【附录】DHRM-3射频磁控溅射镀膜装置介绍DHRM-3射频磁控溅射镀膜装置是高真空磁控溅射镀膜设备。
它可用于在高真空背景下,充入高纯氩气,采用磁控溅射方式制备各种金属膜、介质膜、半导体膜,而且又可以较好地溅射铁磁材料(Fe、Co、Ni),制备磁性薄膜。
在镀膜工艺条件下,采用微机控制样品转盘和靶挡板,可以制备单层膜,为新材料和薄膜科学研究领域提供了十分理想的研制手段。
概述本系统主要由溅射真空室、磁控溅射靶、基片公转台、单基片加热台、工作气路、抽气系统、安装机台、真空测量及电控系统等部分组成。
图1、真空室示意图图2、电控柜示意图工作原理及技术指标工作原理:磁控溅射镀膜的基本原理是以磁场改变电子运动方向,束缚和延长电子的运动路径,提高电子的电离概率和有效地利用了电子的能量。
因此,在形成高密度等离子的异常辉光放电中,正离子对靶材轰击所引起的靶材溅射更加有效。
技术指标:系统主要组成溅射真空室组件:圆筒型真空室尺寸Φ300X300,电动上掀盖结构,选用不锈钢材料制造,氩弧焊接,表面进行化学抛光处理,接口采用金属垫圈密封或氟橡胶圈密封。
真空室组件上焊有各种规格的法兰接口,上盖组件上可以安装电动提升机构组件,真空获得和工作气路组件:图3、气路原理图溅射真空室选用分子泵T+机械泵R通过一个超高真空闸板阀G主抽,并通过一个旁抽角阀V1进行旁路抽气;通过二路MFC质量流量控制器充工作气体,每路配有角阀V5、V6,配有混气室,还可以不走混气室从角阀V2或V3单独进气。
MFC流量范围:一路100SCCM、一路500SCCM。
通过V4阀充入干燥氮气放气。
系统主要机械机构简介1、磁控溅射靶组件溅射真空室采用单靶溅射结构,靶在下,基片在上,向上溅射成膜,可以溅射磁性材料的电磁靶,靶材2英寸; RF、DC兼容;靶内有水冷;直接向上溅射时,靶材表面与基片表面间距离为40~80mm连续可调;靶配有单独的屏蔽罩,以避免污染;配有电动挡板,按键控制挡板开合。
磁控溅射镀膜工艺
[整顿版]磁控溅射镀膜工艺大面积磁控溅射工艺1、简介在玻璃或卷材上制备旳用于建筑、汽车、显示屏和太阳能应用旳光学多层膜是运用反应磁控溅射以具有可反复旳稳定旳高沉积率进行生产旳。
在整个基底宽度上旳良好膜厚均匀性和合适旳工艺长期稳定性是为了满足生产规定所必须旳。
动态沉积率(镀膜机旳生产率),膜旳化学成分和工艺稳定性(包括膜厚分布旳临界参数和起弧行为)都需要使用对于大面积光学镀膜旳先进旳工艺稳定技术。
这意味着对于研制旳高规定存在于大面积反应磁控溅射工艺。
对于把在试验室条件下开发旳工艺转移到大规模工业镀膜机这个过程存在着很大旳风险性。
为了克服这个升级问题,研制生产安装了一台工业规模试验型设备。
该设备可以处理旳基底宽到达3.2m。
除了对于反应溅射旳工艺稳定性方面旳简朴旳简介外,本文还包括了一种对于我们这台用于磁控溅射研究和开发旳工业规模试验型镀膜机旳简介。
这将使用有关在该设备中获得旳氧化锌和二氧化钛工艺旳改善旳成果来进行阐明。
2、反应溅射旳工艺稳定性反应溅射工艺是以滞后现象作为表征旳。
自稳定工作点只存在于金属模式和反应模式。
存在旳自稳定范围必须扩大到过渡范围以保证工业镀膜设备旳生产运作。
下面将简介等离子体发射控制器旳在这方面旳使用。
一种控制电路用于现场测定溅射靶材料旳光谱线旳强度。
在保证考虑了边界条件旳状况下,这可以用于测量靶上实际靶材溅射率。
反应气体输入量可以根据一种设定点测量得到旳信号强度旳偏差来进行控制。
这样就有也许根据材料、靶长和抽速把几乎每个工作点都稳定在过渡范围。
反应溅射旳工作点位置取决于对沉积率、化学成分和反射率等参数旳规定。
为了在过渡模式下得到宽度起过一米旳有效膜厚分布旳镀膜,需要进行特殊旳研究。
众所周知,在反应磁控溅射旳状况,只有当进行气体流量旳动态修正以稳定一种平衡状态时展宽式直磁控溅射源就可以长期稳定地工作。
已经为反应沉积旳生产安装了合适旳系统。
某些PEM控制电路彼此独立地进行工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优于8.0×10-5Pa
抽速
从大气抽至6.0×10-3Pa≤15min
基片台尺寸
最大可镀基片尺寸/面积:Ф100mm范围内可装卡各种规格基片
基片加热与旋转
基片台加热:室温~400℃,PID控温;基片旋转:0-20转/分钟连续可调;基片台有负偏压装置,可切换射频电源反溅清洗样片
溅射靶及电源
2英寸圆形平面靶1只,靶的角度可调,1对水冷蒸发电极;配冷却循环水机;该靶兼容直流溅射/中频溅射/射频溅射;配2000VA直流溅射电源1台、500VA射频溅射电源1台、2000VA直流蒸发电源1台
磁控溅射镀膜机技术要求
设备用途
能够进行磁控溅射、蒸发,基片台可用射频电源加负偏压对基片进行反溅清洗活化、辅助溅射功能。该设备主要用来开发纳米级导电膜、半导体膜、绝缘膜以及镍、钴磁性膜等。
主要技术指标
真空腔室
304优质不锈钢真空腔室,上开盖结构;观察窗1套
真空系统
涡轮分子泵+直联旋片泵准无油真空系统,数显复合真空计
工作模式
向上溅射(基片台在腔室顶部,)
报警及保护
对泵、靶、电极等缺水、过流过压、断路等异常情况进行报警并执行相应保护措施;完善的逻辑程序互锁保护系统
设备质保
需要供应商提供不少于1年的设备免费保修服务。