人教版八年级数学上册整式的乘法及因式分解章节测试题

合集下载

人教版初中数学八年级上册 第十四章 整式的乘法与因式分解 单元测试题附答案

人教版初中数学八年级上册 第十四章 整式的乘法与因式分解 单元测试题附答案

初中数学人教版八年级上学期第十四章整式的乘法与因式分解一、单选题(共9题;共18分)1.下列运算正确的是:()A. B. C. D.2.下列各式从左到右的变形中,属于因式分解的是()A. m(a+b)=ma+mbB. a2+4a﹣21=a(a+4)﹣21C. x2﹣1=(x+1)(x﹣1)D. x2+16﹣y2=(x+y)(x﹣y)+163.把多项式分解因式,下列结果正确的是( )A. B. C. D.4.若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A. -3B. 3C. 0D. 15.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x﹣y,a﹣b,2,x2﹣y2,a,x+y,分别对应下列六个字:华、我、爱、美、游、中,现将2a(x2﹣y2)﹣2b(x2﹣y2)因式分解,结果呈现的密码信息可能是()A. 爱我中华B. 我游中华C. 中华美D. 我爱美6.已知有一个因式为,则另一个因式为()A. B. C. D.7.下列二次三项式在实数范围内不能因式分解的是()A. B. C. D.8.若, ,则ab的值为()A. 1B. -1C. 2D. -2.9.计算(2+1)(22+1)(24+1)(28+1)+1的值是( )A. 1024B. 28+1C. 216+1D. 216二、填空题(共8题;共8分)10.若a3•a m÷a2=a9,则m=________11.若一个正方形的面积是9m2+24mn+16n2,则这个正方形的边长是________.12.因式分解:________.13.已知,则的值________.14.已知,则的值为________.15.如果(2a+2b+1)(2a+2b﹣1)=3,那么a+b 的值为________.16.若是一个完全平方式,则常数k的值为________.17.如果可以因式分解为(其中,均为整数),则的值是________.三、计算题(共3题;共25分)18.因式分解:(1)2a3-12a2+18a(2)a2(x﹣y)+4(y﹣x)19.因式分解(1)(2)20.计算:四、解答题(共5题;共45分)21.已知a= +2012,b= +2013,c= +2014,求a2+b2+c2-ab-bc-ca的值.22.若(x2 +mx-8)(x2-3x+n)的展开式中不含x2和x3项,求m和n的值.23.已知a,b,c是的三边,且满足,试判断的形状,并说明理由.24.(1)计算下列各式,并寻找规律:① =(_+_)(_-_)=② =(_+_)(_-_)=_;(2)运用(1)中所发现的规,计算:;(3)猜想的结果,并写出推理过程.25.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4-b4的值.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】C7.【答案】D8.【答案】D9.【答案】D二、填空题10.【答案】811.【答案】3m+4n12.【答案】13.【答案】214.【答案】7515.【答案】±116.【答案】±417.【答案】2或4三、计算题18.【答案】(1)解:(2)19.【答案】(1)解:原式=;(2)原式=.20.【答案】解:四、解答题21.【答案】解:∵a= +2012,b= +2013,c= +2014,∴a-b=-1,b-c=-1,c-a=2,∴a2+b2+c2-ab-bc-ca= (2a2+2b2+2c2-2ab-2bc-2ca)= [(a-b)2+(b-c)2+(c-a)2]= ×(1+1+4)=3.22.【答案】解:(x +mx-8)(x -3x+n)==∵展开式中不含x 和x 项∴解得:23.【答案】解:∵,,是的三边,都大于0∴∴△ABC是等腰三角形.24.【答案】(1)解:① ;② ;(2)解:原式;(3)解:原式. 25.【答案】(1)解:两个阴影图形的面积和可表示为:a2+b2或(a+b)2-2ab(2)解:a2+b2=(a+b)2-2ab(3)解:∵a,b(a>b)满足a2+b2=53,ab=14,∴①(a+b)2=a2+b2+2ab=53+2×14=81∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵a4-b4=(a2+b2)(a+b)(a-b),且∴a-b=±5又∵a>b>0,∴a-b=5,∴a4﹣b4=(a2+b2)(a+b)(a-b)=53×9×5=2385.。

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)一、单选题1.下列多项式:①244x x +;②2224x xy y -+;③2214a ab b -+;④224a b -+中,能用公式法分解因式的有( ).A .1个B .2个C .3个D .4个 2.计算()()9910022-+-的结果为( ) A .992- B .992 C .2- D .23.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b 的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ).A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++4.若a+b=1,则22a b 2b -+的值为( )A .4B .3C .2D .1 5.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 6.如果(x -2)(x+3)=x 2+px+q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=6C .p=5,q=-6D .p=1,q=-67.下列各式子的运算,正确的是( )A .(3a +2b )(3a ﹣2b )=3a 2﹣2b 2B .222(2)44x y x xy y -+=-+C .221136222x y xy xy xy x y ⎛⎫⎛⎫-+÷-=-+ ⎪ ⎪⎝⎭⎝⎭ D .(a +2)(a ﹣3)=a 2﹣68.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =2,n =4B .m =3,n =6C .m =﹣2,n =﹣4D .m =﹣3,n =﹣69.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .aB .2()a b +C . 2()a b -D .22a b -10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A .3-,4-B .3-,4C .3,4-D .3,411.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题12.分解因式:24xy x -=__________.13.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________.14.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为___.15.若多项式225a ka ++是完全平方式,则k 的值是______.16.已知2310a a -+=,求441a a +的值为____.17.若2260x x --=,则()()()22321212x x x x -++--的值为__________.三、解答题18.因式分解(1)229(3)4(32)a b a b +--(2)()()22252732x x x x +++-+ 19.计算:(1)(﹣2a 2b )2•ab 2÷(﹣a 3b );(2)(x ﹣1)(x +1)(x 2+1);(3)20202﹣2022×2018(用乘法公式计算);(4)(a ﹣b ﹣3)(a ﹣b +3).20.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.21.(1)先化简,再求值:x 2﹣3x ﹣5=0,求代数式(x ﹣3)2+(x +y )(x ﹣y )+y 2的值;(2)已知x +y =4,xy =3,求x 2+y 2,(2x ﹣2y )2的值.22.我们知道几个非负数的和等于0,只有这几个数同时等于0才成立,如|x -2|+(y +3)2=0,因为|x -2|,(y +3)2都是非负数,则x -2=0,y +3=0,即可求x =2,y =-3,应用知识解决下列各题:(1)若(x +4)2+(y -3)2=0,求x ,y 的值.(2)若x 2+y 2-2x+4y=-5,求y x .(2)若2x 2+3y 2+8x -6y =-11,求(x +y )2020的值.23.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。

《整式的乘法与因式分解》单元测试带答案

《整式的乘法与因式分解》单元测试带答案
试题解析:∵x2-9=(x+3)(x-3),x2-6x+9=(x-3)2,
∴多项式x2-9与x2-6x+9有相同的因式是:x-3.
考点:公因式.
18.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是_______.
【答案】-2
【解析】
【分析】
先提取公因式ab,整理后再把a+b的值代入计算即可.
【解析】
【分析】
根据单项式乘单项式法则计算逐一分析即可.
【详解】解:A. 3ab·3ac=9a2bc,故此答案不正确;
B. 4a2b·4b2a=16a3b3,故此答案不正确;
C. 2x2·7x2=14x4,故此答案不正确;
D. 3y2·2y2=6y4,故此答案正确;
故选:D.
【点睛】本题考查了单项式乘单项式,掌握单项式乘单项式法则是解决问题的关键.
C.x2-x =" x(x-1)"D. 2a(b+c)=2ab+2ac
6.如果(x+1)(5x+a) 乘积中不含x的一次项,则a为()
A.5B.-5C. D.
7.多项式a2-9与a2-3a的公因式是( )
A. a+3B. a-3C. a+1D. a-1
8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()
(2)请写出三个代数式(a+b)2,(a-b)2,ab之间的一个等量关系:___________________________;
问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x-y的值.
26.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如 ,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:

人教版八年级上册第十四章整式的乘法与整式因式分解全章测验卷含答案

人教版八年级上册第十四章整式的乘法与整式因式分解全章测验卷含答案

第十四章整式的乘法与整式因式分解 全章测验卷班级_____ 姓名_____ 得分_____一、选择题(每小题3分,共24分)1.下列各式从左到右的变形中,是因式分解的是( )。

A.(x+3)(x-3)=x ²-9B.x ²+1=x(x+1x) C.3x ²-3x+1=3x(x-1)+1 D.a ²-2ab+b ²=(a-b)²2、a 4b-6a 3b+9a 2b 分解因式的正确结果是( ) A. a ²b(a ²-6a+9) B. a ²b(a+3)(a-3)C. b(a ²-3) D. a ²b(a-3) ²3、下列各式是完全平方公式的是( )A. 16x ²-4xy+y ²B. m ²+mn+n ²C. 9a ²-24ab+16b ²D. c ²+2cd+14d ² 4.下列多项式能用平方差公式分解的因式有( )(1)a 2+b 2 (2)x 2-y 2 (3)-m 2+n 2 (4) -b 2-a 2 (5)-a 6+4 A.2个 B.3个 C.4个 D.5个5.已知多项式3x ²-mx+n 分解因是的结果为(3x+2)(x-1)则,m,n 的值分别为( )A.m=1 n=-2B.m=-1 n=-2C.m=2 n=-2D.m=-2 n=-26. 不论x,y 取何实数,代数式x 2-4x+y 2-6y+13总是( )A. 非负数B. 正数C. 负数D. 非正数7.在边长为a 的正方形中挖去一个边为b 的小正方形(a>b )( 如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a 2+2ab+b 2B.(a-b)2= a 2-2ab+b 2C. a 2-b 2=(a+b)(a-b) D. (a+2b )(a-b)= a 2+ab-2b 28.设n 是任意正整数,带入式子n 3-n 中计算时,四名同学算出如下四个结果,其中正确的结果可能是( )A 、388947B 、388944C 、388953D 、388949二、填空题(每小题3分,共24分)9.236mx mx -中公因式是10.分解因式214m m ++=_______ 11.利用因式分解计算:299616=-__________12. 若x 2+m xy+16y 2是完全平方式,则m=. 13.已知a+b=9,ab=7,则a ²b+ab ²=14.若|2a-18|+(4-b )2=0,则am 2-bn 2分解因式为 15.一个长方形的面积为22a ab a -+, 宽为a , 则长方形的长为;16.观察下列等式12-02=1,22-12=3,32-22=5,42-32=7…试用n 的等式表示这种规律为 (n ≥1且为正整数)三、计算题(每小题5分,共40分)17.2249147a bc ab c ab --+18.(2)(23)8(2)a b a b a a b ++-+19.41x - 20.2244x y xy --+21.4282y y- 22.2232ax a x a++23.()()22a b a b+--24.1222-+-baba四、解答题(每小题6分,共12分)25. 利用合适的计算(例如分解因式),求代数式的值:()()()()22232232323x y x y x y x y +-+-+-,其中11,23x y ==26. 已知,,a b c 是ABC ∆的三边,且满足关系式222222a c ab bc b +=+-,试判定ABC ∆的形状.答案1、D2、D3、C4、A5、B6、A7、C8、B10、2(1)2m + 11、99200012、8±13、6314、(32)(32)m n m n +- 15、21a b -+16、22(1)21n n n --=- 17、7(721)ab ac bc --+ 18、3(2)(2)a b b a +-19、2(1)(1)(1)x x x ++- 20、2(2)x y --21、22(21)(21)y y y +- 22、2()a x a + 23、4ab24、(1)(1)a b a b -+--26、等边三角形。

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。

人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)

人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)

第十四章《整式乘法与因式分解》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共8小题,每小题4分,共32分)三、解答题(本大题共6小题,共58分)19.(8分)计算:20.(8分)分解因式:21.(10分)(1)若,求的值;(2)已知,求的值.22.(10分)观察下列等式:…(1)根据以上等式写出______;(2)直接写出的结果(n 为正整数)______;2225,()9m n m n -=+=m n -()()2121y y y m +-+=224424y my m y m -+-+()()2111x x x -÷-=+()()32111xx x x -÷-=++()()432111xx x x x -÷-=+++()()511x x -÷-=()()11nx x -÷-(3)计算:.23.(10分)材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:.(1)分解因式:(2)若a ,都是正整数且满足,求的值;(3)若a ,b为实数且满足 , ,求S 的最小值.24.(12分)我们学习了完全平方公式,把它适当变形,可解决很多数学问题.2342023122222+++++⋅⋅⋅+()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++1ab a b +++()b a b >40ab a b ---=a b +50ab a b ---=22235S a ab b a b =+++-()()22222222a b a ab b a b a ab b +=++-=-+,例如:若,求的值.解∶又根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则___________;②若,则________________;(3)如图点C 是线段上的一点,以为边向线段的两侧作正方形,已知,两正方形的面积和20,求图中阴影部分的面积.42a b ab +==,²²a b +4a b += 2()16a b ∴+=22216a ab b ∴++=2ab = 2216216412a b ab ∴+=-=-=22626x y x y +=+=,xy 231m n mn +==,2m n -=()()456m m --=()()2245m m -+-=AB AC BC 、AB 5AB =12S S +=答案解析:一、单选题1.B【分析】先利用多项式与多项式乘法法则,展开后合并同类项,再令含x 、y 的一次项的系数均为零,列方程组求解即可得到答案.【详解】解:==展开后多项式不含x 、y 的一次项,,,,故选B .2.A【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法、乘法法则计算各式进行判断即可.【详解】(1)若,,则; 小明计算正确;(2);小明计算正确;(3);小明计算错误;(4);小明计算错误;(5).小明计算错误;故正确的有2个故答案为:A .3.D【分析】利用面积公式以及面积的和差将阴影面积表示出来即可.【详解】解:∵由图知阴影部分边长分别为(x -1),(x -2),()()2342x y x ay b +-++22422633844x axy bx xy ay by x ay b +++++---224(26)(28)(34)34x a xy b x b a y ay b+++-+-+- 280340b b a -=⎧∴⎨-=⎩34a b =⎧∴⎨=⎩1a b ∴-=-3m a =7n a =3721m n m n a a a +==⨯= ()()2020202020210.12580.125888-⨯=-⨯⨯=()222221a b ab ab a b ab ab ab a -÷=÷-÷=-()3328a a -=-()()22321263253x x x x x x x -+=+--=--连接,则阴影部分的面积,BD ()()1122a a b b a b =+++()212a b =+10=(2)由题意得,故答案为:;(3)由题意得,23.(1);(2)由得,,,,,,,,,解得,,;(3)由得,,,()121(1)1,n n n x x x x x ---÷-=++++ 121n n x x x --++++ ()2342023202412222221++++++=-÷ 2024(21)2 1.-=-1ab a b +++1()()ab a b =+++(1)(1)a b b =+++11()()a b =++40ab a b ---=15ab a b --+=115()()a b b ---=(1)(1)5a b --=a b > 11a b ∴->-551=⨯ 15a ∴-=11b -=6a =2b =8a b ∴+=50ab a b ---=5ab a b =++22235S a ab b a b∴=+++-()222355a a b b a b=+++++-22233155a a b b a b=+++++-2228215a b a b =++++22288216a ab b =++++++()()222216a b =++++,,,当,时,,∴S 的最小值为6.24.(1)解:;(2)①,,,,;②(3)设,则,所以,()2220a +≥ ()210b +≥6S ∴≥2a =-1b =-6S =6x y += 222()236x y x y xy ∴+=++=2226x y += 210xy ∴=5xy ∴=231m n mn +== ,()2222449m n m mn n ∴+=++=2245m n ∴+=()2222441m n m n mn -=+-= 21m n ∴-=±4,5,m a m b -=-= 4(5)45a b m m m ∴-=---=--1m +=-(4)(5)6,m m --= 6,ab ∴=2222(4)(5)m m a b ∴-+-=+2()2a b ab=-+2(1)26=-+⨯112=+13,=,AC m BC n ==2212,S m S n ==221220S S m n +=+=。

《整式的乘法与因式分解》单元测试题带答案

《整式的乘法与因式分解》单元测试题带答案
故答案为-3.
【点睛】本题考查了幂的乘方与积的乘方,解决本题的根据是熟记幂的乘方与积的乘方的定义.
12.分解因式:4x2-2x=.
【答案】 .
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式2x即可: .
【答案】D
【解析】
【分析】
多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.依据法则运算,展开式不含关于字母a的一次项,那么一次项的系数为0,就可求m的值.
【详解】解:∵(a+m)(a+ )=a2+(m+ )a+ •m,
又∵不含关于字母a的一次项,
∴m+ =0,
∴m=- .
【解析】
【分析】
原式利用平方差公式计算即可求出值.
【详解】解:原式=(x2-1)(x2+1)-(x4+1)=x4-1-(x4+1)=-2,
故选C.
【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
9.计算(a+m) 的结果不含关于字母a的一次项,那么m等于()
A.2B.-2C. D.-
3.计算(2a)3·a2的结果是【】
A.2a5B.2a6C.8a5D.8a6
4.一个长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()
A.4a-3bB.8a-6b
C.4a-3b+1D.8a-6b+2
5.多项式a-b+c(a-b)因式分解的结果是()
A. (a-b)(c+1)B. (b-a)(c+1)

《整式的乘法与因式分解》单元检测(含答案)

《整式的乘法与因式分解》单元检测(含答案)
23. 如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.
(1) 用含a、b的代数式表示绿化面积;
(2) 求出当a=3米,b=2米时的绿化面积.
24.图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.
【详解】∵a2n-1an+5=a16,
∴a2n-1+n+5=a16,即a3n+4=a16,
则3n+4=16,
解得n=4,
故选B.
【点睛】本题考查了同底数幂 乘法,属于基础题,解答本题的关键掌握同底数幂的运算法则.
4.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()
A.1﹣3abB.﹣3abC.1+3abD.﹣1﹣3ab
A. 60B. 50C. 25D. 15
二.填空题(共8小题)
11.计算:0.6a2b• a2b2﹣(﹣10a)•a3b3=_____.
12.如果(nx+1)(x2+x)的结果不含x2的项(n为常数),那么n=_____.
13.若2018m=6,2018n=4,则20182m﹣n=_____.
14.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,则剩下的钢板的面积为_____.
【详解】解:a2﹣16=(a+4)(a﹣4).
【点睛】本题主要考查用平方差公式进行分解因式,牢记公式是解题的关键.
17.已知4×2a×2a+1=29,且2a+b=8,求ab=_____.
【答案】9
【解析】
【分析】
先由第一个等式求出a的值,再求出b的值,相乘即可求的答案.

《整式的乘法与因式分解》单元综合检测(附答案)

《整式的乘法与因式分解》单元综合检测(附答案)

人教版数学八年级上学期《整式的乘法与因式分解》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a42.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y23.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-154.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 86.计算:(a-b+3)(a+b-3)=()A. a2+b2-9B. a2-b2-6b-9C. a2-b2+6b-9D. a2+b2-2ab+6a+6b+97.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()学_科_网...学_科_网...A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)(a-b)=a2+ab-2b28.若m=2200,n=2550,则m,n的大小关系是()A. m>nB. m<nC. m=nD. 无法确定9.多项式77x2-13x-30可分解成(7x+a)(bx+c),其中a,b,c均为整数,求a+b+c之值为何?()A. 0B. 10C. 12D. 2210.观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;……请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66二、填空题(每小题3分,共24分)11.计算:(-5a4)·(-8ab2)=______.12.分解因式:ab4-4ab3+4ab2=_______.13.若(2x+1)0=(3x-6)0,则x的取值范围是_______.14.已知|x-y+2|+(x+y-2)2=0,则x2-y2的值为_____.15.已知a m=3,a n=2,则a2m-3n=_____.16.若一个正方形的面积为a2+a+,则此正方形的周长为______.17.已知△ABC的三边长为整数a,b,c,且满足a2+b2-6a-4b+13=0,则c为_____.18.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为______.三、解答题(共66分)19.计算:(1) y(2x-y)+(x+y)2;(2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘法公式计算:(1)982;(2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.25.已知a,b,c为△ABC的三条边的长,试判断代数式a2-2ac+c2-b2的值的符号,并说明理由.26.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.参考答案一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a4【答案】D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选:D.2.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y2【答案】D【解析】【分析】根据积的乘方的运算法则即可解答.【详解】根据积的乘方的运算法则可得:(-x3y)2= x6y2.故选D.【点睛】本题主要考查了积的乘方的运算法则:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘.3.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-15【答案】C【解析】【分析】根据零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则依次计算各项,即可解答.【详解】选项A,根据零指数幂的性质可得(-2)0=1,选项A正确;选项B,根据单项式除以单项式的运算法则可得28x4y2÷7x3=4xy2,选项B正确;选项C,根据多项式除以单项式的运算法则可得(4xy2-6x2y+2xy)÷2xy=2y-3x+1,选项C错误;选项D,根据多项式乘以多项式的运算法则可得(a-5)(a+3)=a2-2a-15,选项D正确.故选C.【点睛】本题考查了零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则,熟记法则是解题的关键.4.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】B【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B考点:因式分解-运用公式法;因式分解-提公因式法.5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 8【答案】B【解析】试题分析:把等式右边根据平方差公式去括号后即可得到结果。

《整式的乘法与因式分解》单元综合测试题带答案

《整式的乘法与因式分解》单元综合测试题带答案
4.已知a>b>c>d,x=(a+b)(c+d),y=(a+c)(b+d),则x与y的大小关系是( )
A.x>yB.x<yC.x=yD.以上皆有可能
【答案】B
【解析】
【分析】
先求出x﹣y的值,再判断其结果的符号,最后得出选项即可.
【详解】解:∵x=(a+b)(c+d),y=(a+c)(b+d),
∴x﹣y=(ac+ad+bc+bd)﹣(ab+ad+bc+cd)
A.﹣1B. 1C. 2D. 3
【答案】D
【解析】
详解】解:∵a﹣b=﹣ ,
∴原式=a2﹣2ab+b2=(a﹣b)2=3.
故选D.
【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
6.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()
3.若x+y+3=0,则x(x+4y)-y(2x-y)的值为
A. 3B. 9C. 6D.-9
4.已知a>b>c>d,x=(a+b)(c+d),y=(a+c)(b+d),则x与y的大小关系是( )
A.x>yB.x<yC.x=yD.以上皆有可能
5.若 ,则a2﹣b(2a﹣b)=( )
A. ﹣1B.1C.2D.3
人教版数学八年级上学期
《整式的乘法与因式分解》单元测试
(时间:120分钟 满分:150分)
一.选择题(共10小题,满分40分,每小题4分)

人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章整式的乘法与因式分解单元测试卷附解析一、单选题(共10题;共30分)1.(3分)计算(a3)2•a2的结果是()A.a7B.a8C.a10D.a112.(3分)若x n=2,则x3n的值为()A.6B.8C.9D.123.(3分)计算(-2a2b)3的结果是()A.-6a6b3B.-8a6b3C.8a6b3D.-8a5b34.(3分)如果(a-1)0=1成立,则()A.a≠1B.a=0C.a=2 D.a=0或a=2 5.(3分)计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024B.28+1C.216+1D.2166.(3分)已知a+1a=3,则a2+1a2的值为()A.5B.6C.7D.87.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x-2)=x2-4B.x2+4x-2=x(x+4)-2C.x2-4=(x+2)(x-2)D.x2-4+3x=(x+2)(x-2)+3x8.(3分)若4x2+5x+k有一个因式为(x−3),则k的值为()A.17B.51C.-51D.-579.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2−ab=a(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a+b)(a−b)10.(3分)如图,大正方形与小正方形的面积之差为S,则图中阴影部分的面积是()A.2S B.S C.12S D.14S 二、填空题(共5题;共15分)11.(3分)已知2n=3,则4n+1的值是.12.(3分)设4x2+mx+121是一个完全平方式,则m=13.(3分)计算(x−y)(−y−x)的结果是.14.(3分)已知a+10=b+12=c+15,则a2+b2+c2﹣ab﹣bc﹣ac=.15.(3分)若√a2−3a+1+b2+2b+1=0,则a2+1a2−|b|=.三、计算题(共3题;共21分)16.(8分)计算:(1)(2分)(5ab-3x)(-3x-5ab).(2)(2分)(-y2+x)(x+y2).(3)(2分)x(x+5)-(x-3)(x+3).(4)(2分)(-1+a)(-1-a)(1+b2).17.(8分)因式分解:(1)(2分)am−an+ap(2)(2分)2a(b+c)−3(b+c)(3)(2分)4x4−4x3+x2(4)(2分)x4−1618.(5分)已知(x+a)(x 2﹣x+c)的乘积中不含x 2和x 项,求a ,c 的值.四、解答题(共7题;共54分)19.(6分)仔细阅读下面例题,解答问题:例题:已知二次三项式 x 2 - 4x + m 有一个因式是(x+3),求另一个因式以及 m 的值. 解:设另一个因式为(x+n),得 x 2 - 4x + m = ( x + 3)( x + n) 则 x 2 - 4x + m = x 2 + (n + 3) x + 3n ∴{n +3=−4m =3n 解得:n=-7,m=-21∴另一个因式为(x -7),m 的值为-21. 问题:仿照以上方法解答下面问题:已知二次三项式 2x 2 + 3x - k 有一个因式是(2x -3),求另一个因式以及 k 的值.20.(6分)阅读下面解题过程,然后回答问题.分解因式: x 2+2x −3 .解:原式= x 2+2x +1−1−3 = (x 2+2x +1)−4 = (x +1)2−4 = (x +1+2)(x +1−2) = (x +3)(x −1) 上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: y 2−4y +3 .21.(6分)已知a,b,c是△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状。

八年级数学上册《第14章 整式的乘法与因式分解》单元测试卷和答案详解

八年级数学上册《第14章 整式的乘法与因式分解》单元测试卷和答案详解

人教新版八年级上册《第14章整式的乘法与因式分解》单元测试卷(1)一.选择题(共10小题)1.多项式36a2bc﹣48ab2c+12abc的公因式是()A.24abc B.12abc C.12a2b2c2D.6a2b2c2 2.(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3B.0C.12D.243.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.104.若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±105.下列各式从左到右的变形中,属于因式分解的是()A.a(a+1)=a2+aB.a2+2a﹣1=a(a+2)﹣1C.4a2﹣2a=2a(2a﹣1)D.a2﹣4+4a=(a+2)(a﹣2)+4a6.已知x﹣y=3,xy=3,则(x+y)2的值为()A.24B.18C.21D.127.下列算式中,正确的是()A.a4•a4=2a4B.a6÷a3=a2C.a2b•a3b2=a5b2D.(﹣3a2b)2=9a4b28.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±69.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣310.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二.填空题(共8小题)11.已知xy=,x﹣y=﹣3,则x2y﹣xy2=.12.计算(20x3﹣8x2+12x)÷4x=.13.若2m=a,32n=b,m,n为正整数,则23m+10n=.14.已知x+=5,那么x2+=.15.若3m•3n=1,则m+n=.16.已知(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,则p+q的值=.17.分解因式:a2﹣4b2=.18.若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为.三.解答题(共4小题)19.计算:(1)﹣b2×(﹣b)2×(﹣b3)(2)(2﹣y)3×(y﹣2)2×(y﹣2)520.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.21.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.22.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.人教新版八年级上册《第14章整式的乘法与因式分解》单元测试卷(1)参考答案与试题解析一.选择题(共10小题)1.多项式36a2bc﹣48ab2c+12abc的公因式是()A.24abc B.12abc C.12a2b2c2D.6a2b2c2【考点】公因式.【分析】根据确定公因式的方法定系数,①即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进行计算即可得出答案.【解答】解:多项式36a2bc﹣48ab2c+12abc中,系数36、﹣48、12最大公约数是12,三项的字母部分都含有字母a、b、c,其中a的最低次数是1,b的最低次数是1,c的最低次数是1,因此公因式为12abc.故选:B.2.(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3B.0C.12D.24【考点】多项式乘多项式.【分析】先根据多项式乘以多项式法则进行计算,合并同类项,根据已知得出方程2m﹣24=0,求出即可.【解答】解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵(mx+8)(2﹣3x)展开后不含x的一次项,∴2m﹣24=0,∴m=12.故选:C.3.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.10【考点】同底数幂的除法.【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.4.若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±10【考点】完全平方式.【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x 和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.5.下列各式从左到右的变形中,属于因式分解的是()A.a(a+1)=a2+aB.a2+2a﹣1=a(a+2)﹣1C.4a2﹣2a=2a(2a﹣1)D.a2﹣4+4a=(a+2)(a﹣2)+4a【考点】因式分解的意义;因式分解﹣提公因式法.【分析】根据因式分解的定义判断即可.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形属于因式分解,故本选项符合题意;D.从左边到右边的变形不属于因式分解,故本选项不符合题意;故选:C.6.已知x﹣y=3,xy=3,则(x+y)2的值为()A.24B.18C.21D.12【考点】完全平方公式.【分析】先根据完全平方公式进行变形得出(x+y)2=(x﹣y)2+4xy,再求出答案即可.【解答】解:∵x﹣y=3,xy=3,∴(x+y)2=(x﹣y)2+4xy=32+4×3=21,故选:C.7.下列算式中,正确的是()A.a4•a4=2a4B.a6÷a3=a2C.a2b•a3b2=a5b2D.(﹣3a2b)2=9a4b2【考点】单项式乘单项式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数幂的乘法法则、同底数幂的除法法则、单项式乘单项式的运算法则、积的乘方法则计算,判断即可.【解答】解:A、a4•a4=a4+4=a8,本选项计算错误;B、a6÷a3=a6﹣3=a3,本选项计算错误;C、a2b•a3b2=a5b3,本选项计算错误;D、(﹣3a2b)2=9a4b2,本选项计算正确;故选:D.8.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±6【考点】完全平方式.【分析】根据完全平方公式进行计算即可.【解答】解:∵x2+mx+36是一个完全平方式,∴x2+mx+36=(x±6)2,∴m=±12,故选:C.9.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣3【考点】多项式乘多项式.【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.【解答】解:(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.10.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24【考点】完全平方公式的几何背景.【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【解答】解:如图,三角形②的一条直角边为(a﹣b),另一条直角边为b,因此S△②=(a﹣b)b=ab﹣b2,S△①=a2,∴S阴影部分=S大正方形﹣S△①﹣S△②,=a2﹣ab+b2,=[(a+b)2﹣3ab],=(100﹣54)=23,故选:C.二.填空题(共8小题)11.已知xy=,x﹣y=﹣3,则x2y﹣xy2=﹣.【考点】因式分解﹣提公因式法.【分析】提公因式法分解因式后,再整体代入求值即可.【解答】解:x2y﹣xy2=xy(x﹣y)=×(﹣3)=﹣,故答案为:﹣.12.计算(20x3﹣8x2+12x)÷4x=5x2﹣2x+3.【考点】整式的除法.【分析】根据整式的除法运算法则即可求出答案.【解答】解:原式=20x3÷4x﹣8x2÷4x+12x÷4x=5x2﹣2x+3,故答案为:5x2﹣2x+3.13.若2m=a,32n=b,m,n为正整数,则23m+10n=a3b2.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:32n=25n=b,则23m+10n=23m•210n=a3•b2=a3b2.故答案为:a3b2.14.已知x+=5,那么x2+=23.【考点】完全平方公式.【分析】所求式子利用完全平方公式变形后,将已知等式代入计算即可求出值.【解答】解:∵x+=5,∴x2+=(x+)2﹣2=25﹣2=23.故答案为:23.15.若3m•3n=1,则m+n=0.【考点】零指数幂;同底数幂的乘法.【分析】根据同底数幂的乘法法则及非0数的0次幂等于1进行计算.【解答】解:∵3m•3n=3m+n=1,16.已知(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,则p+q的值=4.【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出p+q.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴,解得:,所以p+q=3+1=4.17.分解因式:a2﹣4b2=(a+2b)(a﹣2b).【考点】因式分解﹣运用公式法.【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).18.若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为1.【考点】因式分解的应用.【分析】由已知字母a、b的系数为2、﹣3,代数式中前二项的系数4、﹣6,提取此二项的公因式2a后,代入求值变形得﹣2a+3b,与已知条件互为相反数,可求出代数式的值为1.【解答】解:∵2a﹣3b=﹣1,∴4a2﹣6ab+3b=2a(2a﹣3b)+3b=2a×(﹣1)+3b=﹣2a+3b=﹣(2a﹣3b)=﹣(﹣1)=1三.解答题(共4小题)19.计算:(1)﹣b2×(﹣b)2×(﹣b3)(2)(2﹣y)3×(y﹣2)2×(y﹣2)5【考点】同底数幂的乘法.【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【解答】解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(2﹣y)3×(y﹣2)2×(y﹣2)5=﹣(y﹣2)3(y﹣2)7=﹣(y﹣2)10.20.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.【考点】因式分解的意义.【分析】根据整式的乘法,可得相等的整式,根据相等整式中同类项的系数相等,可得答案.【解答】解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15.3A﹣B=3×2+15=21.21.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.【考点】平方差公式;完全平方公式.【分析】根据完全平方公式以及平方差公式解答即可.【解答】解:(1)如图所示:(2)(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣12xy+9y2﹣x2+4y2=3x2﹣12xy+13y2.22.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.【考点】完全平方公式.【分析】(1)由(a﹣b)2=a2+b2﹣2ab及已知条件可求得答案;(2)(a+b)2=a2+b2+2ab及已知条件可求得a+b的值,进而得出a2﹣b2﹣8的值即可.【解答】解:(1)∵a﹣b=1,∴(a﹣b)2=a2+b2﹣2ab=1,∵a2+b2=13,∴13﹣2ab=1,∴ab=6;(2)∵a2+b2=13,ab=6,∴(a+b)2=a2+b2+2ab=13+12=25,∴a+b=5或﹣5,∵a2﹣b2﹣8=(a+b)(a﹣b)﹣8,∴当a+b=5时,(a+b)(a﹣b)﹣8=﹣3;当a+b=﹣5时,(a+b)(a﹣b)﹣8=﹣5﹣8=﹣13.。

《整式的乘法与因式分解》单元检测题含答案

《整式的乘法与因式分解》单元检测题含答案
16.已知2a2+2b2=10,a+b=3,则ab=________.
17.若3m=2,3n=5,则32m+3n-1 值为________.
18. 请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a+b)6=.
三、解答题(共66分)
19.(8分)计算:
(1)x·x7; (2)a2·a4+(a3)2;
3.已知a、b、c为一个三角形的三条边长,则代数式(a﹣b)2﹣c2的值( )
A.一定为负数
B.一定是正数
C.可能是正数,可能为负数
D.可能为零
【答案】A
【解析】
【分析】
先把前三项利用完全平方公式配方,再与第四项利用平方差公式分解因式,然后根据三角形的任意两边之和大于第三边,任意两边之差小于第三边进行判断.
【答案】(1).-x5(2). a6b3(3).-
【解析】
-x2·x3=-x5; = a6b3; ×22016=(- =- .
12.已知a+b=3,a-b=5,则代数式a2-b2 值是________.
【答案】15
【解析】
∵a+b=3,a−b=5,
∴原式=(a+b)(a−b)=15,
故答案为15
此处有视频,请去附件查看】
3.已知a、b、c为一个三角形的三条边长,则代数式(a﹣b)2﹣c2的值( )
A.一定为负数
B.一定是正数
C.可能是正数,可能为负数
D.可能为零
4.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()
【答案】(1).y(x-1)(2).4(x-3)2

人教版八年级上册数学 第十四章 整式的乘法与因式分解 单元测试题

人教版八年级上册数学   第十四章  整式的乘法与因式分解  单元测试题

人教版八年级上册数学第十四章 整式的乘法与因式分解 单元测试题一.单选题(本大题共12小题,每小题3分,共36分)。

1.正整数a 、b 335398a <27b <a b =( )A .4B .8C .9D .162.计算23a a a ⋅⋅的正确结果是( )A .5aB .6aC .8aD .9a3.计算(a+3)(﹣a+1)的结果是( )A .﹣a 2﹣2a+3B .﹣a 2+4a+3C .﹣a 2+4a ﹣3D .a 2﹣2a ﹣3 4.制作拉面需将长方形面条摔匀拉伸后对折,并不断重复.随着不断地对折,面条根数不断增加.若一拉面店一碗面约有64根面条,一天能拉出2048碗拉面,用底数为2的幂表示拉面的总根数为( )A .62B .112C .172D .6625.若A 与12ab -的积为33221432a b a b ab -+-,则A 为( ) A .22861a b ab -+- B .2231224a b ab -++ C .22861a b ab -+ D .223212a b ab -+ 6.按如图所示的运算程序,能使输出 y 值为 5 的是( )A .2m =,1n =B .2m =,0n =C .2m =,2n =D .3m =,2n =7.若(2)(21)x y x my +--的结果中不含xy 项,则m 的值为( )A .4B .4-C .2D .2- 8.计算22023022430.75⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .﹣0.759.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于( )A .810B .1210C .1610D .241010.如图,ABC 中,若80BAC ∠=︒,70ACB ∠=︒,根据图中尺规作图的痕迹推断,以下结论错误的是( )A .40BAQ ∠=︒B .12DE BD = C .AF AC = D .25EQF ∠=︒ 11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( )A .1个B .2个C .3个D .4个12.若m n a a =(0a >且1a ≠),则m n =,已知43m =,412n =,448p =,那么m ,n ,p 三者之间的关系正确的有( )①1m n -=;②2m p n +=;③21n mp -=;④21m n p +=-.A .0个B .1个C .2个D .3个二.填空题(本大题共8小题,每小题3分,共24分)。

人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)

人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)

人教版八年级上册第十四章整式的乘法与因式分解一、单选题1.(2020八下·丹东期末)下列各式中从左到右的变形中,是因式分解的是()A. m(a+b+c)=ma+mb+mcB. x2+6x+36=(x+6)2C. a2−b2+1=(a+b)(a−b)+1D. 10x2−5x=5x(2x−1)2.(2020七下·汉中月考)计算(-2a)2-3a2的结果是()A. -a2B. a2C. -5a2D. 5a23.(2020·河北)对于① x−3xy=x(1−3y),② (x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解4.(2020七下·株洲开学考)下面式子从左边到右边的变形中是因式分解的是()A. (x+1)2=x2+2x+1B. x2+3x−16=x(x+3)−16C. (x+1)(x−1)=x2−1D. x2−16=(x+4)(x−4)5.(2021七下·阜南期末)计算a•a5−(2a3)2的结果为()A. a6−2a5B. −a6C. a6−4a5D. −3a66.(2020七下·汉中月考)下列计算正确的是()A. x2+3x2=4x4B. x2y⋅2x3=2x4yC. (6x2y2)÷(3x)=2x2D. (−3x)2=9x27.(2020七下·越城期中)已知2a=3,8b=6,22a﹣3b+1的值为()A. 3B. 32C. 2D. 58.(2019八下·鼓楼期末)计算3×((2018−√20182−12×20192×3)2﹣2018×(2018−√20182−12×20192×3)+1的结果等于()A. ﹣2017B. ﹣2018C. ﹣2019D. 20199.(2020七下·滨湖期中)任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s⩽t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=p q.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=3 6=12,给出下列关于F(n)的说法:① F(2)=12;② F(48)=13;③ F(n2+n)=nn+1;④若n是一个完全平方数,则F(n)=1,其中正确说法的个数是()A. 4B. 3C. 2D. 110.(2019七下·丹阳期中)已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B. −12C. ﹣2 D. 12二、填空题11.(2020七下·泰兴期中)已知32×9m×27=321,求m=________.12.(2020七下·溧阳期末)(-2020)0=________.13.(2020·上虞模拟)因式分解:a²-9b²=________。

《整式的乘法与因式分解》单元测试(含答案)

《整式的乘法与因式分解》单元测试(含答案)
A. B.
C.x2-xy+y2=(x-y)2D.2x-2y=2(x-y)
5.若 ,那么 值是
A. B. C. D.
6.如果 ,那么 的值为
A. B. C. D.
7.计算 的结果是
A. B. C. D.
8.已知 ,则 的值等于 .
A. B. C. D.
9.下列各式中与 相等的是
A. B. C. D.
10.如果 的左边是一个关于 的完全平方式,则 的值为
【点睛】本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都不能够在分解即可.
12.计算 _______________.
【答案】
【解析】
【分析】
把(-2)2014写成(-2)×(-2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.
【详解】原式=
故答案为2.
【点睛】考查有理数的乘方运算,掌握乘方运算法则是解题的关键.
13.分解因式: ____________________________.
【答案】(x-6)(x+1)
【解析】
因为-6×1=-6,-6+1=-5,所以利用十字相乘法分解因式为: =(x-6)(x+1).
故答案为(x-6)(x+1)
【解析】
【分析】
(1)先利用完全平方公式和多项式除单项式的方法计算,再合并同类项,再进一步代入求得数值即可;
(2)利用平方差公式和单项式乘以多项式进行计算,再进一步合并同类项,最后代入求得数值即可.
【详解】(1)原式=
=
当 , 时,原式=
(2) ,
当 , 时, .
【点睛】考查整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.

人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)

第十四章《整式的乘法与因式分解》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:1.计算(-a3)2的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x2=x4B.(a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a6 3.下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1) C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)24.多项式a(x2-2x+1)与多项式(x-1)(x+1)的公因式是( ) A.x-1 B.x+1 C.x2+1 D.x25.下列计算正确的是( )A.-6x2y3÷2xy3=3x B.(-xy2)2÷(-x2y)=-y3C.(-2x2y2)3÷(-xy)3=-2x3y3D.-(-a3b2)÷(-a2b2)=a46.若a>0且a x=2,a y=3,则a x-2y的值为()A.13B.-13C.23D.297.若a+b=3,a-b=7,则ab的值为()A.-10 B.-40 C.10 D.408.(2020·宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是() A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌9.分解因式x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果是(x-2)·(x+1),那么x2+ax+b分解因式的正确结果为() A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)10.已知n是整数,则式子18[1-(-1)n](n2-1)的计算结果( )A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二、填空题(共8小题,每小题3分,满分24分)11.已知a+b=3,a-b=5,则代数式a2-b2的值是________.12.分解因式:(1)x2y-4y=____________;(2)a2b-2ab+b=__________.13.多项式x2+mx+25恰好是另一个多项式的平方,则常数m=________. 14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.15.当x 时,(x﹣4)0等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .18.已知a+=3,则a2+的值是.三、解答题(共5小题,满分46分)19.(12分)计算:(1)a2·a4+(a3)2; (2)(-a3b)2÷(-3a5b2);(3)(a+b-c)(a+b+c).20.(10分)分解因式:(1)-x4+1 (2)y2-4-2xy+x2.21.(10分)阅读下面求y 2+4y +8的最小值的解答过程.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4.∵(y +2)2≥0,∴(y +2)2+4≥4.∴y 2+4y +8的最小值为4.仿照上面的解答过程,求x 2-2x +3的最小值.22.已知2a =3,2b =6,2c =12,x =355,y =444,z =533.(1)求证:a +c =2b ;(2)判断x ,y ,z 的大小关系,并说明理由.23.先化简,再求值:(1)[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =1;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎨⎧m +2n =1,3m -2n =11.七、(本题满分12分)24.(1)已知a-b=1,ab=-2,求(a+1)(b-1)的值;(2)已知(a+b)2=11,(a-b)2=7,求ab的值;(3)已知x-y=2,y-z=2,x+z=5,求x2-z2的值.25.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.《第14章整式乘法与因式分解》参考答案与试题解析一、选择题:1.C.2.C.3. D.4.A.5. B.6.D7.A.8. D.9.B.10.C.二、填空题(共8小题,每小题3分,满分24分)11.1512.y(x+2)(x-2) b(a-1)213.±1014.14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.【考点】代数式求值.【专题】计算题.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.15.当x 时,(x﹣4)0等于1.【考点】零指数幂.【专题】计算题.【分析】根据0指数幂底数不能为0列出关于x的不等式,求出x的取值范围即可.【解答】解:∵(x﹣4)0=1,∴x﹣4≠0,∴x≠4.故答案为:≠4.【点评】本题考查的是0指数幂的定义,即任何非0数的0次幂等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.【考点】因式分解的意义.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题应对方程进行变形,将b2﹣2b+1化为平方数,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”来解题.【解答】解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.【点评】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.18.已知a+=3,则a2+的值是.【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a 2+2+=9, ∴a 2+=9﹣2=7.故答案为:7.三、解答题(共5小题,满分46分)19.解:(1)原式=a 6+a 6=2a 6.(4分) (2)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)(3)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(12分) 20.解:(1)原式=-(x 2+4)(x +2)(x -2).(5分) (2)原式=(x -y )2-4=(x -y +2)(x -y -2).(10分)21.解:x 2-2x +3=x 2-2x +1+3-1=(x -1)2+2.(6分)∵(x -1)2≥0,∴(x -1)2+2≥2,(8分)∴x 2-2x +3的最小值为2.(10分)22.(1)证明:∵2a =3,2b =6,2c =12,∴2a ·2c =3×12=36=(2b )2,(2分)∴2a +c=22b ,∴a +c =2b .(4分)(2)解:y >x >z .(5分)理由如下:x =355=(35)11,y =444=(44)11,z =533=(53)11,而35=243,44=256,53=125.(7分)∵256>243>125,∴44>35>53,∴y >x >z .(9分)23.解:(1)原式=(x 2-2xy +y 2+x 2-y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x =3,y =1时,原式=3-1=2.(6分)(2)⎩⎨⎧m +2n =1①,3m -2n =11②,①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.(8分)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(12分)24.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(4分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,∴①-②得4ab =4,∴ab =1.(8分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =5,∴原式=(x +z )(x -z )=20.(12分)25.(1)(x-y+1)2(3分)(2)解:令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,再将A还原,得原式=(a+b-2)2.(8分)(3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1.令n2+3n=A,则原式=A(A+2)+1=A2+2A+1=(A+1)2,∴原式=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法及因式分解 章节测试题考试时间:90分钟 满分:100分一、选择题(每小题3分,共24分) 1. 11()4-等于( )A. 14-B. -4C. 4D. 142. 计算232()x y xy ÷,结果是( )A. xyB. yC. xD. 2xy3. 下列式子计算正确的是( )A. 660a a ÷= B. 236(2)6a a -=-C. 222()2a b a ab b --=-+ D. 22()()a b a b a b ---+=- 4. 下列从左到右的变形,属于分解因式的是( )A. 2(3)(3)9a a a -+=- B. 25(1)5x x x x +-=+- C. 2(1)a a a a +=+ D. 32x y x x y =⋅⋅ 5. 把2288x y xy y -+分解因式, 正确的是( )A. 22(44)x y xy y -+ B. 22(44)y x x -+ C. 22(2)y x - D. 22(2)y x + 6. 下列各式能用平方差公式计算的是( ) A. (2)(2)a b b a +- B. 11(1)(1)22x x -+-- C. ()(2)a b a b +- D. (21)(21)x x --+ 7. 若二项式241a ma ++是一个含a 的完全平方式,则m 等于( ) A. 4 B. 4或-4 C. 2 D. 2或-2 8. 如图,两个正方形边长分,a b ,如果6a b ab +==,则阴影部分的面积为( )A. 6B. 9C. 12 D .18二、填空题(每小题2分,共20分)9. (1)计算:232a b ab ⨯= . (2)(-0. 25)11×(-4)12= .10. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0. 000 000 076克,用科学记数法表示是 克。

11. (1)若34,97xy==,则23x y +的值为 .(2)已知2530m n ++=,则432m n⨯的值为 . 12. (1)若1a b -=,则221()2a b ab +-= . (2)已知8,10a b ab +=-=,则2211a ab b -++= .13. 计算()(21)x a x +-的结果中不含关于字母x 的一次项,则a = . 14. 3108与2144的大小关系是 . 15. 已知4s t +=,则228s t t -+= .16. 如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于,a b 的恒等式为 .17. 观察下列关于x 的单项式,探究其规律: 23456,3,5,7,9,11x x x x x x ,……按照上述规律,第2 016个单项式是 .18. 若多项式441x +加上一个含字母x 的单项式,就能变形为一个含x 的多项式的平方,则这样的单项式为 . 三、解答题(共56分) 19. (8分)计算.(1) 3201()20.256( 3.14)2π--⨯--+-;(2) 1020171()(2016)(1)2π-+---;(3) 0231(2016)()(3)2--++-;(4) 化简:2(23)(3)(3)x y y x x y --+-.20. (12分)将下列各式分解因式.(1) 21245x x -- ; (2) 32363x x x -+; (3) 29()4()a x y x y ---;(4) 32242x x x -+; (5) 268x y xy y -+-; (6) 22222()4x y x y +-.21. ( 3分)求代数式2(2)()2()a b a b a b +---的值,其中11,3a b =-=-.22. ( 3分)先化简,再求值: 2(2)(2)3(2)x y x y x y +-+-,其中1,2x y ==-.23. ( 6分)(1)先化简,再求值: (1)(3)4(1)3(1)(1)x x x x x x ---+++-,其中116x =.(2)已知1739273m m m+⨯⨯=,求: 2332()()m m m -÷⋅的值.24. ( 4分)已知25,1x y xy +==.求下列各式的值. (1) 2224x y xy +;(2) 22(2)(21)x y --.25. ( 6分)设22221231,53a a =-=-,……,22(21)(21)n a n n =+--. (n 为正整数)(1)试说明n a 是8的倍数;(2)若ABC ∆的三条边长分别为12,,k k k a a a ++ (k 为正整数). ①求k 的取值范围;②是否存在这样的k ,使得ABC ∆的周长为一个完全平方数,若存在,试举出一例;若不存在,说明理由.26. (7分)(1)猜想:试猜想22a b +与2ab 的大小关系,并说明理由;(2)应用:已知15(0)x x x -=≠,求221x x +的值 (3)拓展:代数式221x x+是否存在最大值或最小值,若不存在,请说明理由;若存在,请求出最小值.27. ( 7分)一个直角三角形的两条直角边分别为,()a b b a >,斜边为c .我国古代数学家赵爽用四个这样的直角三角形拼成了如图的正方形,(1)探究活动:如图①,中间围成的小正方形的边长为 (用含有,a b 的代数式表示);(2)探究活动:如图①,用不同的方法表示这个大正方形的面积,并写出你发现的结论:(3)新知运用:根据你所发现的结论完成下列问题.①某个直角三角形的两条直角边,a b 满足式子222616410a b a b +--+=,求它的斜边c 的值;②如图②,这个勾股树图形是由正方形和直角三角形组成的,若正方形,,,A B C D 的面积分别为2,3,1,2.则最大的正方形E 的面积是 .参考答案一、1. C 2. B 3. D 4. C5. C6. B7. B8. B 二、9. (1)326a b (2)4- 10. 87.610-⨯11. (1)28 (2) 1812. (1)12(2)45 13.1214. 10814432>15. 1616. 22()()a b a b a b -=+- 17. 20164031x18. 24x ±或84x三、19. (1) 2 (2)4(3)22- (4)2251210x xy y --+20. (1)(15)(3)x x -+ (2)23(1)x x -(3) ()(32)(32)x y a a -+- (4)22(1)x x - (5)(2)(4)y x x --- (6)22()()x y x y -+ 21. 原式222222(2)a ab b a ab b =----+22222242)a ab b a ab b =---+-233ab b =-当1a =-,13b =-时, 原式21123(1)()3()333=⨯-⨯---=22. 原式222243(44)x y x xy y =-+-+2222412123x y x xy y =-+-+ 2216122x xy y =-+当1x =,2y =-时,原式22161121(2)2(2)=⨯-⨯⨯-+⨯-1624848=++=23. (1)原式222434433x x x x x =-+--+- 8x =-当116x =时,原式118162=-⨯=- (2)因为1739273mmm+⨯⨯=所以511733m m ++=所以5117m m +=+ 所以4m =233265()()4m m m m m m -÷=-÷=-=-24. (1)原式2(2)10xy x y =+=(2)原式2222242x y x y =--+2222(2)4217x y x y xy =-+++=-25. (1)因为22(21)(21)n a n n =+--(2121)(2121)428n n n n n n =++-+-+==n 为正整数,所以n a 是8的倍数.(2)①由题意,得12k k k a a a +++>,即888(1)8(2)k k k ++>+ 解得1k >. ②ABC 的周长为88(1)8(2)24(1)k k k k ++++=+46(1)k =⨯+,故存在这样的k ,使得ABC 的周长为一个完全平方数,如5k =.26. (1)因为2222()0a b ab a b +-=-≥,所以222a b ab +≥(2) 222211()25227x x x x +=-+=+= (3)因22211()22x x x x +=-+≥,当1x x =时,221x x +取得最小值2,此时1x =或1x =-27. (1)b a -(2)大正方形的面积为2c 或22214()2ab b a a b ⨯+-=+.结论:222a b c +=. (3)①由题意,得22(3)2(4)0a b -+-=,故3a =,4b =,故22225c a b =+=,5c =②8。

相关文档
最新文档