1.1.1集合的含义与表示
数学1:1.1.1_集合的含义与表示

1、1集合一、教材分析:新课标把集合作为现代数学一种基本语言来学习,课标中明确提出了:给一个数学对象怎么去描述?可以用自然语言,可以用venn图,也可以用集合的语言表述数学对象。
把集合作为一种语言来学习,要注意三件事:1)要把集合的有关概念、表示方法、集合之间关系的符号、集合的运算搞清楚,这是教学中首先要把握好的一个重点;2)语意的转换、方法的选择、了解用集合语言和别的语言,优点是什么,提高学生学习的自觉性;3)用集合语言来表述数学对象、数学关系的任务不能在这一章中全部完成,我们仅仅是为了给学生打一个基础,在今后的学习中,只要有适当的机会就主动地引导学生应用、比较,不断提高学生的表达能力,用集合语言来交流的能力。
二、学情分析:在初中阶段已经学习了自然数集合、有理数集合,对集合有了初步的认识,对用集合语言还不熟悉,难在将集合语言和自然语言进行转换。
§1、1、1 集合的含义与表示教学目标:了解集合的含义,体会元素与集合的从属关系;知道常用数集及其专用记号;了解集合中元素的三大特征;会用集合语言表示有关数学对象,能选择自然语言、集合语言表述不同的具体问题;培养学生抽象概括能力。
教学重点:集合的含义与表示方法教学难点:表示法的适当选择教学情境设计:教师:军训时,我们听到教官口令“高一(9)班同学集合”这里的“集合”作为动词,听到口令后高一(9)班的同学就会从四面八方聚集到一起,不是高一(9)班的同学会走开,这一声“集合”就能把某些指定的对象集在一起,如果把这个集在一起的整体作为研究对象,这个整体即我们数学中所说的集合。
教师:你能举一些集合的例子吗?学生:举例、交流。
教师:引导学生阅读教科书上的8个例子,并思考概括它们的共同特征。
1、集合的含义:一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合,简称集。
完成P2思考题教师:集合中元素可以是数,可以是点,也可以是事物或其它东西,是不是任何事物一定能构成集合?集合中的元素有什么特征?学生:阅读教科书、举例,发表自己看法。
【数学】1.1.1集合的含义与表示

3、元素与集合的关系
关系 元 素 与 集 合 的 关 系 概念 记法 读法
如果a是集合A中的 于 属于 元素,就说a属于集 a∈A 集合 合A 如果a不是集合A中 不 的元素,就说a不属 a∉A 属于 于集合A
a属 A a不 A
属于 集合
4、常用的数集及记法 名称 意义 记法 非负整数集 全体非负整数组成的 N (自然数集) 集合 所有正整数组成的集 * 正整数集 N 或N+ 合 整数集 有理数集 实数集 全体整数组成的集合 全体有理数组成的集 合 全体实数组成的集合 Z Q R
练习2:已知集合A={a+2,(a+1)2,a2+3a +3},若1∈A,求实数a的值.
解:若a+2=1,则a=-1,所以A={1,0,1}, 与集合中元素的互异性矛盾,应舍去; 若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3},满足题意. 当 a =- 2 时, A = {0,1,1} ,与集合中元素的互 异性矛盾,舍去; 若a2+3a+3=1,则a=-1或a=-2(均舍去). 综上可知,a=0.
例4
用适当的方法表示下列集合.
* *
(1)A={(x,y)|x+y=4,x∈N ,y∈N };
6 ; ∈ Z| x ∈ N (2)B= 1+x
(3)方程 x +y -4x+6y+13=0 的解集; (4)平面直角坐标系中所有第二象限的点.
先明确集合中元素的特点,再选择 适当的方法来表示.
(4)我国古代四大发明; (5)抛物线y=x2上的点.
知识梳理: 1、定 义 一般地, 指定的某些对象的全体称 为集合. 集合中每个对象叫做这个集合的元素.
2、集合与元素 (1)、元素:一般地,我们把研究对象统 称为元素,元素常用小写拉丁字母 a , b , c„表示. (2)、集合:把一些元素组成的总体叫做 集合 ( 简称集 ) ,集合通常用大写拉丁字 母A,B,C,„表示. (3)、集合元素的三个特性:确定性、互 异性、无序性.
1.1.1集合的含义与表示

例2、已知集合A={x|ax2+4x+4=0,x∈R,
a∈R}只有一个元素,求a的值与这个元素. 解:(1)当a=0时,x=-1.
(2)当a≠0时,=16-4×4a=0. a=1. 此时x=-2. 综上所述:a=1时,这个元素为-2. a=0时,这个元素为-1.
练习、已知集合A={x|ax2+4x+4=0,x∈R,
1. 定 义
一般地, 把研究对象统称为
元素. 把一些元素组成的总体叫
做集合(又简称集).
2.
集合的表示
一般用花括号”{ }(表示全体)” 表示集合 也常用大写的拉丁字母A、B、C…表 示集合. 用小写的拉丁字母a,b,c…表示元素
3.集合与元素的关系:
如果a是集合A的元素,就说a属 于集合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA.
1.1.1集合的含义与表示
观察下列对象:
(1) 1-20以内所有的素数;
(2)到直线l的距离等于定长d 的所有 的点;
(3)满足x-3>2 的实数;
(4)宣汉中学2013年9月入学的所有的高一 学生; (5)抛物线y=x2上的点; 观察上面各对
(6)所有的正方形.
象,这6个实例 的共同特征是 什么?
问题2:我们看这样一个集合: { x |x2+x+1=0},它有什么特征? 显然这个集合没有元素.我们把这样的集合 叫做空集,记作.
⑶空 集:不含任何元素的集合.记作 .
2、按元素性质分为: 数集和点集
例1、设x∈R,y∈R,观察下面四个集合 A={ y=x2-1 } B={ x | y=x2-1 } C={ y | y=x2-1 } D = { ( x , y ) | y = x 2- 1 } 它们表示含义相同吗? 解:集合A表示由一个等式(或方程或函数)组成的集
1.1.1集 合的含义与表示

1.1.1集合的含义与表示在我们日常生活和数学学习中,经常会遇到“集合”这个概念。
那什么是集合呢?集合就像是一个“大口袋”,把一些具有特定性质的对象装在一起。
比如说,咱们班所有同学就可以组成一个集合;一个书架上的所有书籍也能构成一个集合;一年中所有的月份也能形成一个集合。
从这些例子可以看出,集合是由一些确定的、互不相同的对象所组成的整体。
集合中的每个对象都被称为这个集合的元素。
元素是构成集合的基本单位。
比如在班级同学这个集合中,每一位同学就是其中的一个元素。
那怎么来表示一个集合呢?常见的方法有列举法、描述法和图示法。
列举法就是把集合中的元素一个一个地列出来。
就像咱们刚刚说的一年中所有的月份这个集合,就可以用列举法表示为{1 月,2 月,3 月,4 月,5 月,6 月,7 月,8 月,9 月,10 月,11 月,12 月}。
再比如小于 5 的自然数组成的集合,用列举法就是{0,1,2,3,4}。
描述法呢,是通过描述元素所具有的共同特征来表示集合。
比如{x | x 是小于 10 的正整数},这个集合就表示了小于 10 的所有正整数。
又比如{x | x 是方程 x² 4 = 0 的解},通过这样的描述,我们就能清楚地知道这个集合里的元素是哪些。
图示法中,我们常用的是韦恩图。
通过画一个封闭的曲线,把集合中的元素放在这个曲线内部。
比如有两个集合 A 和 B,A 是{1,2,3},B 是{2,3,4},我们就可以用韦恩图来直观地表示它们之间的关系。
集合还有一些重要的特性。
确定性是说,对于一个给定的集合,任何一个对象是不是这个集合的元素是确定的。
不能模棱两可,比如说“个子高的同学”就不能构成一个集合,因为“个子高”这个标准不明确。
互异性指的是集合中的元素不能重复。
比如{1,2,2,3}这样的表示就是错误的,应该写成{1,2,3}。
无序性则表示集合中的元素排列顺序是无所谓的。
{1,2,3}和{3,2,1}表示的是同一个集合。
1.1.1集合的含义与表示

设 是集合A上的一个运算,若对任意a,b ,有a b ,则称A对运算 封闭,若集合A是由正整数的平方组成的集合,即A={1,4,9,16,25,…}.若 分别是;①加法,②减法③乘法,④除法,则A对运算 封闭的序号有.
10.求参数的取值范围
(1)已知集合元素个数求参数问题的解题策略:已知集合中元素的个数,求参数的值或取值范围时,关键是对集合的表示方法灵活掌握,弄清其实质,即集合中的元素是什么.
高考水平突破:
1、由a,-a,|a|, 构成的集合中,最多含有元素的个数是().
A. 1个B. 2个C. 3个D. 4个
2、含有三个实数的集合可表示为{a, ,1},也可表示为{a2,a+b,0},则a2013+b2014=()
A. 0B. 1 C.-1 D. 2
3、已知x,y都是非零实数,z= + + 可能的取值组成集合A,则().
(2)集合问题方程化的思想:对于一些已知某个集合(此集合中涉及方程)中的元素个数,求参数的问题,常把此集合的问题转化为方程的解的问题.
(3)集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关注判别式在一元二次方程的实数根个数的讨论中的作用.
集合中的元素,必须具备确定性、互异性、无序性。反过来,一组元素若不具备这三个特性,则这组对象也就不能构成集合。故集合中元素的这三个特性是判断指定对象是否构成集合的元素。
例题2判断下列说法是否正确,并说明理由。
(1)全体高个子的中国人构成一个集合;
(2)由1, , ,|- |, 组成的集合有五个元素;
D.上海的所有高楼
2、已知A={x|3-3x>0},则有().
1.1.1集合的概念及其表示(一)

用列举法表示下列集合: 例1 用列举法表示下列集合: (1) 小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 的所有自然数组成的集合;
(2) 方程x 2 = x的所有实数根组成的集合;
(3) 由1~20以内的所有质数组成的集合. 以内的所有质数组成的集合. ~ 以内的所有质数组成的集合
• 全体非负整数组成的集合称为自然数集,记为 N 全体非负整数组成的集合称为自然数集, • 所有正整数组成的集合称为正整数集,记为 N *或N + 所有正整数组成的集合称为正整数集, • 全体整数组成的集合称为整数集,记为 Z 全体整数组成的集合称为整数集, • 全体有理数组成的集合称为有理数集,记为 Q 全体有理数组成的集合称为有理数集, • 全体实数组成的集合称为实数集,记为 R 全体实数组成的集合称为实数集,
一般形式: 一般形式:{ x ∈ A x满足的条件}
说明: 1、不能出现未被说明的字母; 说明: 、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 、多层描述时,准确使用“ 3、描述语言力求简明、准确; 、描述语言力求简明、准确; 4、多用于元素无限多个时。 、多用于元素无限多个时。
的所有自然数组成的集合为A, 解:⑴设小于10的所有自然数组成的集合为A,那么 设小于 的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. } A={
由于元素完全相同的两个集合相等,而与列举的顺序无关, 由于元素完全相同的两个集合相等,而与列举的顺序无关,因此 集合A可以有不同的列举方法. 集合A可以有不同的列举方法.例如 A={9 A={9,8,7,6,5,4,3,2,1,0}. }
具体方法:在花括号内先写上表示这个集合元素的一般符 具体方法 在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化 范围,再画一条竖线 或变化)范围 再画一条竖线,在竖线后写出这个 号及以取值 或变化 范围 再画一条竖线 在竖线后写出这个 集合中元素所具有的共同特征. 集合中元素所具有的共同特征
1.1.1 集合的含义与表示

有理数于3小于11的偶数; { 4,6,8,10 } A=
②1∼10以内的奇数;
1、列举法 B= { 1,3,5,7,9 }
就是将集合中的元素一一列举出来并放在 大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内; 3、别忘了大括号。
例1.用列举法表示下列集合: (1)小于10的所有自然数组成的集合 (2)方程
{ x | p(x) }
x为该集合的 代表元素 p(x)表示该集 合中的元素x 所具有的性 质
例如:x―7<3的解集可以表示为:
{x∈R|x<10}
例2.用描述法表示下列集合:
1. 小于10的所有有理数组成的集合; 2. 所有偶数组成的集合; 2 3. 二次函数 y x 2 的函数值组成 的集合; 2 4. 抛物线 y x 2 上的点组成的 集合;
4、集合与元素的关系:
若a是A中元素,记为
a A,
若a不是A中元素,记为
a A
5、有限集:元素个数有限的集合. 无限集:元素个数无限的集合.
集合的三种表示方法:
1、列举法:
2、描述法:
3、图示法:
集合中元素具有 确定性 互异性 无序性
一般 地:我们用小写拉丁字母a,b,c…表示元 素,用大写拉丁字母A,B,C,…表示集合.
若a是A中元素,记为 a A 若a不是A中元素,记为 a A
1、常见数集的表示
N:自然数集(含0)即非负整数集 N+或N*:正整数集(不含0) Z: 整数集
Q:
R:
练习,用适当的方法表示下列集合
1. 小于100的自然数组成的集合; 2. 不等式 2 x 3 3x 的解集 2 3. 方程 x x 6 0 的解集
必修一教案-1.1.1集合的含义与表示

1.1.1集合的含义与表示(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:x+=的解;(5)(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)全班成绩好的学生;(9)平面直角坐标系内所有第三象限的点4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。
7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1.用“∈”或“∉”符号填空:(1)8 N;(2)0 N;(3)-3 Z;(4)2Q;(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。
例2.已知集合P的元素为1,m,m2-3m-1, 若3∈P且-1∉P,求实数m的值。
(一).集合的表示方法(1) 列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3≠x 3 ≠ x ²- 2x x ≠ x ²- 2x 解得x ≠ -1, x ≠ 0,且x ≠ 3
讨论题2: 集合A={1,3,5}与集合 B={3,1,5}是同一集合吗?
解:根据集合的三要素,可以知道两个 集合是同一集合.
讨论题3: 若{1,2}={a-2,2h},则求 a, h?
知识要 点
集合的表示方法之二: 像这样把集合的元素一一列举出来,并用花括号 “{ }”括起来表示集合的方法叫做列举法.
课堂检测: 用列举法表示下列集合: (1)小于10的所有自然数; (2)方程 x2 + 3x + 2 = 0 的解; (3) 小于10的所有奇数.
解:(1)A={0,1,2,3,4,5,6,7,8,9}
1.地球上的七大洲这一集合可以表示成什么呢? 2. 12的所有约数可以表示成什么呢? 3.方程x-1=0的解的集合可以表示成什么呢?
1.地球上的七大洲可表示为{亚洲,非 洲,南极洲,北美洲,南美洲,欧 洲,大洋洲}.
2.12的所有约数可表示为{1,2,3, 4,6,12}.
3.方程x-1=0的解集可以表示为{1}.
⑵ 方程 x2 5x 6 0的解集.
用列举法表示集合时,不必考虑
分析 这两. 个元集素合的都排是列有顺序限,集但是.列举的元素 (1)题的元素不可能以出现直重接复列.举出来; (2)题的元素需要解方程 x2 5x 6 0 得到.{-1,6}.
高教社
课堂练习:P5,上,练习。3
个元素,求a的值和这个元素.
解:A中只有一个元素, (1)当a=0时,4x+4=0,x=4
A={-1};
(2)当a 0时, 16-16a=0,a=1 即x2+4x+4=0 ,x=-2 A={-2}.
讨论题1: x ∊ R,则{3,x,x ²- 2x}中的 元素应满足什么条件?
分析:根据集合的三要素:确定性, 互异性,无序性.
1.1集合及其表示
复习回顾
一般地,我们把研究对象统称为元素 (element);
把一些元素组成的总体叫做集合(set) (简称为集).
回顾:集合的表示?
集合的表示方法之一: 通常用大写拉丁字母A,B,C,…表示集合; 通常用小写拉丁字母a,b,c, …表示集合中的元素.
集合中元素的特征:
1.确定性:给定的集合,他的元素必须是确 定的,也就是说给定一个集合,那么任何一 个元素在不在这个集合中就确定了.
2.互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同.
3.无序性:集合中的元素是无先后顺序的,即 集合里的任何两个元素可以交换位置.
回顾:元素和集 合的关系?
元素与集合的从属关系: 如果a是集合A中的元素,说a属于A,记作a∈A;
如果a不是集合A中的元素,说a不属于A,记作a A.
(1) 你能用自然语言描述集合{0,3,6,9}吗?
(2)所有的集合都可以用列举法来表示吗? 比如:不等式 x-7<3 的解集能用列举法吗?为什 么?那么怎样来表示这个集合呢?
这个集合中的元素是列举 不完的,可以用集合所含元素 的共同特征表示集合.
知识要点
集合的表示方法之三: 描述法:用确定的条件表示某些对象是否属于这个集 合的方法.
(4){大于-1且小于7的自然数};
(5){平方等于2的数};
解: (1) {(x, y) y = x2 }
(2) {x R x = y 或x = - y }
(3) {y R y = x2}
(4){0,1,2,3,4,5,6} (5) { 2, - 2}
例8 A={x | ax2+4x+4=0,x∈R,a∈R}中只有一
解:由集合的三要素知道,
1=a-2 2=2h
或
1=2h 2=a-2
a h
13或ha
4 1
2
课堂小结
1.集合的有关概念 (集合、元素、属于、不属于、有限集、无 限集). 2.集合的四种表示方法 (大写字母、列举法、描述法、文氏图共四 种). 3.常用数集的定义及记法.
A
1,2,3,
5, 4.
图1-1
图1-2
知识要 点
有些集合的公共属性不明显,难以概 括,不便用描述法表示,只能用列举法.
有些集合的元素不能无遗漏地一一列 举出来,或者不便于、不需要一一列举出 来,常用描述法.
巩固知识 典型例题
例2 试分别用描述法和列举法表示下列集合: ⑴ 大于6且小于16的全体整数;
只要构成两个集合的元素是一样的,我们 就称这两个集合是相等的.
集合 非(自负然整数数集)正 数整 集
整数 集
有理 数集
实 数 集
记号
N
N*或 N+ Z
QR
下列各种说法中,是集合吗?
(1)1—20以内的所有素数; (2)图书馆里所有的书 ; (3)我们班的全体学生; (4)方程x-1=0的解; (5)不等式2x-3>0的所有解; (6)函数y=x+1图像上的所有点;
高教社
思考1: 与{ }的含义是否相同? 思考2:集合{1,2}与集合{(1,2)}相同吗?
思考3:集合 {(x, y) | y x2 , x R} 的几何意义如何?
y
x o
2.用使当的方法表示下列集合:
(1)抛物线 x2 = y 上的点;
(2)抛物线 x2 = y 上点的横坐标;
(3)抛物线 x2 = y上点的纵坐标;集合为B, 那么B={-1,-2}.
(3)设小于100的所有奇数组成的集合为C, 那么C={1,3,5,7,9}.
注意
(1)大括号不能缺失.元素与元素之间用逗 号隔开 (2)有些集合元素个数较多,元素又呈现出 一定的规律,在不至于发生误解的情况下, 亦可如下表示:从1到100的所有整数组成的 集合:{1,2,3,…,100} 自然数集N:{1,2,3,4,…,n,…} (3)区分a与{a}:{a}表示一个集合,该集 合只有一个元素.a表示这个集合的一个元素. (4)用列举法表示集合时不必考虑元素的前 后次序.相同的元素不能出现两次.
具体方法:
在花括号内先写上表示这个集合元素的一般
符号及取值范围,在画一条竖线,在竖线后写出 这个集合中的元素所具有的共同特征.
{ x | p(x)}
x为该集合的代 表元素
p(x)表示该集 合中的元素x 所具有的性质
3 .图示法(Venn图)
我们常常画一条封闭的曲线,用它的内部表示一个集合.
例如,图1-1表示任意一个集合A;图1-2表示集合 {1,2,3,4,5} .