模拟电子方波—正弦波—三角波转换全解
方波-三角波-正弦波-锯齿波发生器
方波-三角波-正弦波-锯齿波发生器电子工程设计报告目录设计要求1.前言 (1)2方波、三角波、正弦波发生器方案 (2)2.1原理框图 (2)3.各组成部分的工作原理 (3)3.1方波发生电路的工作原理 (3)3.2方波--三角波转换电路的工作原理 (4)3.3三角波--正弦波转换电路的工作原理 (6)3.4方波—锯齿波转换电路的工作原理 (7)3.5总电路图 (8)方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在0.02-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
方波转三角波转正弦波信号
课程设计报告题目方波、三角波、正弦波信号发生器设计课程名称模拟电子技术课程设计院部名称机电工程学院专业电气工程及其自动化班级学生姓名学号课程设计地点课程设计学时 1周指导教师目录1、绪论 (3)1.1课程设计目的.......... (3)1.2课程设计的任务 (3)1.3课程设计的技术指标 (3)2、信号发生器的基本原理 (4)2.1原理框图 (4)2.2总体设计思路 (4)3、各组成部分的工作原理 (5)3.1 正弦波产生电路 (5)3.1.1正弦波波产生电路的工作原理 (5)3.2 正弦波到方波转换路 (6)3.2.1正弦波到方波转换电路图 (7)3.2.2正弦波到方波转换电路的工作原理 (7)3.3 方波到三角波转换电路 (7)3.3.1方波到三角波转换电路图 (8)3.3.2方波到三角波转换电路的工作原理 (9)4、电路仿真结果 (10)4.1正弦波产生电路的仿真结果 (10)4.2三角波到正弦波转换电路的仿真结果 (10)4.3方波到三角波转换电路的仿真结果 (10)5、设计结果分析与总结 (11)1.绪论1.1课程设计的目的课程设计的目的在于巩固和加强电子技术理论学习,促进其工程应用,着重于提高学生的电子技术实践技能,培养学生综合运用所学知识分析问题和解决问题的能力,了解开展科学实践的程序和基本方法,并逐步形成严肃、认真、一丝不苟、实事求是的科学作风和一定的生产观、经济观和全局观。
1.2课程设计的任务设计方波——三角波——正弦波函数信号发生器。
1.3课程设计的技术指标.设计.组装.调试函数发生器2.输出波形正弦波.方波.三角波3.频率范围0.02—20kHZ范围内可调4.输出电压方波幅值为5V正弦波幅值为±5V三角波峰-峰值为5V占空比可调。
1.4课程设计题目及要求信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。
设计题目:如何实现正弦波、方波与三角波信号之间的变换
内蒙古工业大学信息工程学院课程学习报告设计题目:如何实现正弦波、方波与三角波信号之间的变换课程名称:模拟电子技术班级:通信10-1 班姓名:学号:成绩:指导教师:设计题目:如何实现正弦波、方波与三角波信号之间的变换一、课题设计任务与要求1、输出电压:0-1V之间2、频率范围:20Hz-20kHz之间3、信号频率:1KHz的正弦波、2KHz的方波和三角波任务如下:1KHz的正弦波2KHz2KHz的方波2KHz二、总体电路设方案(1)函数信号发生器设计思路①产生正弦波可以通过RC文氏电桥正弦波振荡电路,通过控制RC的值达到选频即控制频率大小的目的。
②产生的方波经RC积分电路后输出,得到三角波,为调节幅值,则用电压跟随器隔离三角波输出端,再用电位器接在运放输出端调节电压输出幅值。
③要先产生方波,就必须先用电压比较器和稳压管组成方波产生电路,为调节幅值,则用专用的电压跟随器隔离方波产生端,再用电位器接在运放输出端调节电压输出幅值。
(2)函数信号发生器原理函数信号发生器是一种用来产生特定需要波形信号的装置,比较常见的有方波、三角波、正弦波和锯齿波发生器。
本实验用来产生正弦波--方波--三角波信号。
正弦波发生器:采用RC桥式振荡电路实现输出为正弦波。
②正弦波转换成方波发生器:采用电压比较器与稳压管相结合,实现输出为方波。
③方波转三角波发生电路:将RC积分电路与运放结合,实现方波转三角波。
(图一)正弦波发生电路图(图二)正弦波转换成方波发生电路图(图三)方波转换成三角波发生电路图错误!未指定书签。
三、电路设计与原理说明1、正弦波发生电路的工作原理正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
【multisim】正弦波-三角波-方波转换电路
【multisim】正弦波-三角波-方波转换电路要实现从正弦波到三角波再到方波的转换电路,可以使用集成运算放
大器(Op-Amp)和滞回器电路。
以下是实现该转换电路的步骤:
1. 正弦波至三角波的转换:将正弦波输入到一个比较器电路中。
比较
器电路由一个集成运算放大器和两个电阻组成。
其中一个电阻连接到
一个固定电压源,另一个电阻连接到一个可调电压源,可调电压源的
输出与正弦波输入相连。
比较器电路会将正弦波与一个参考电压进行
比较,并根据比较结果输出高电平或低电平。
通过调节可调电压源的
电压,可以改变比较器的输出电平,从而实现正弦波至三角波的转换。
2. 三角波至方波的转换:之前得到的三角波接入一个滞回器电路中。
滞回器电路也由一个集成运算放大器和两个电阻组成。
其中一个电阻
连接到固定电压源,另一个电阻连接到滞回器电路的输出端。
滞回器
电路会将三角波的波峰和波谷进行限幅,输出一个具有较高/低电平的
方波信号。
需要注意的是,电阻值的选择以及比较器和滞回器电路的参数设置,
都会影响转换电路的性能和效果。
可根据具体需求进行调整。
正弦波,三角波,方波转方波电路
正弦波、方波、三角波转方波电路
设计理念:
现在很多电子产品都用软件代替硬件部分的工作,软件运行靠的是单片机,单片机与硬件之间的通讯都是依靠模拟数字信号,模拟数字信号一般都用方波来代替,但是模拟电路输出的大多都不是方波,而是其他的波形,所以必须将其转换为方波,下面提供一款新能可靠的方波转换电路设计
1,仿真效果图:
此电路的特点是输入信号幅值高低均可,输出幅值基本与电源电压持平(已在产品上使用)
输入限幅
输入放大
二次限幅
比较器方波输出
输出放大
完整电路线路板图1
图2。
正弦波、方波、三角波发生电路解析
一、设计目的及要求:1.1、设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。
1.2、设计要求: (1)设计波形产生电路。
(2)信号频率范围:100Hz ——1000Hz 。
(3)信号波形:正弦波。
二、实验方案:方案一:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。
但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。
如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。
反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。
选频网络由R 、C 和L 、C 等电抗性元件组成。
正弦波振荡器的名称一般由选频网络来命名。
正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。
产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。
只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。
在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。
(a)负反馈放大电路 (b)正反馈振荡电路图1 振荡器的方框图比较图1(a) 和 (b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。
由于振荡电路的输入信号i X =0,所以i X =fX 。
由于正、负号的改变,正反馈的放大倍数为:F AA A -=1f,式中A 是放大电路的放大倍数,.F 是反馈网络的放大倍数。
振荡条件:1..=F A幅度平衡条件:|..F A |=1相位平衡条件:ϕAF = ϕA +ϕF = ±2n π振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求1|..|>F A 这称为起振条件。
积分电路能实现的波形转换
积分电路能实现的波形转换
《积分电路能实现的波形转换》
摘要:积分电路是一种常用的电子电路元件,能够完成波形的积分操作。
本文将介绍积分电路能实现的三种常见波形转换:从方波到三角波、从正弦波到余弦波以及从锯齿波到曲线波。
一、从方波到三角波
积分电路可以利用其积分特性,将方波信号转换为三角波信号。
当输入方波信号施加到积分电路中时,积分电路对输入信号进行积分操作。
由于方波信号的特性,即高电平与低电平的时间相等,当前电平变化时,积分电路将连续产生正(或负)斜率的三角波信号。
二、从正弦波到余弦波
积分电路同样可以将正弦波信号转换为余弦波信号。
当正弦波信号施加到积分电路中时,积分电路对输入信号进行积分操作。
由于正弦波信号的特性,即周期性变化且对称于0,积分电路将连续产生余弦波信号。
三、从锯齿波到曲线波
积分电路亦可将锯齿波信号转换为曲线波信号。
当锯齿波信号施加到积分电路中时,积分电路对输入信号进行积分操作。
由于锯齿波信号的特性,即呈线性变化,积分电路将连续产生曲线波信号。
结论:积分电路能够利用其积分特性实现方波到三角波、正弦波到余弦波以及锯齿波到曲线波的波形转换。
这些转换可以在电子电路设计中起到重要的作用,用于信号处理、音频合成、模拟仪器等领域。
【multisim】正弦波-三角波-方波转换电路
【multisim】正弦波-三角波-方波转换电路正弦波-三角波-方波转换电路是一种电路设计,可以将输入的正弦波
信号转换为三角波信号或方波信号。
以下是一个简单的示例电路设计:材料:
- 电源供应
- 运算放大器
- 电阻
- 电容
- 开关
步骤:
1. 将电源供应连接到运算放大器的正极和负极。
2. 将一个电阻连接到运算放大器的负极,并将另一个电阻连接到运算
放大器的输出端。
3. 将这两个电阻连接到一个开关上。
4. 将一个电容连接到运算放大器的输出端,另一端连接到运算放大器
的负极。
5. 将开关设置为关闭状态。
6. 连接输入的正弦波信号到运算放大器的正极。
7. 连接示波器或者峰值检测器到运算放大器的输出端,以输出转换后
的波形。
工作原理:
当开关关闭时,输入的正弦波信号通过电阻和电容组成的RC网络,经
过滤波后形成三角波信号。
当开关打开时,电容的充电和放电过程,
使输出信号变为方波信号。
通过控制开关的打开和关闭状态,可以在
正弦波、三角波和方波之间切换。
以上是一个简单的示例电路设计,实际的电路设计可能会根据具体的
需求和材料进行调整和改进。
使用电路设计软件(如Multisim)可以
帮助进行电路模拟和优化。
模拟电子技术课程设计报告(正弦波、方波—三角波波形发生器)
模拟电⼦技术课程设计报告(正弦波、⽅波—三⾓波波形发⽣器)模拟电⼦技术课程设计报告设计题⽬:正弦波、⽅波—三⾓波波形发⽣器专业班级学号学⽣姓名同组成员指导教师设计时间教师评分⽬录1、概述 (3)1.1、⽬的 (3)1.2、课程设计的组成部分 (3)2、正弦波、⽅波、三⾓波设计的内容 (3)3、总结 (4)3.1、课程设计进⾏过程及步骤 (4)3.2、所遇到的问题及是怎样解决这些问题的 (10)3.3、体会收获及建议 (10)3.4、参考资料 (10)4、教师评语 (11)5、成绩 (11)1、概述1.1、⽬的课程设计的⽬的在于巩固和加强电⼦技术理论学习,促进其⼯程应⽤,着重于提⾼学⽣的电⼦技术实践技能,培养学⽣综合运⽤所学知识分析问题和解决问题的能⼒,了解开展科学实践的程序和基本⽅法,并逐步形成严肃、认真、⼀丝不苟、实事求是的科学作风和⼀定的⽣产观、经济观和全局观。
1.2、课程设计的组成部分(1)、RC正弦波振荡电路(2)、⽅波—三⾓波产⽣电路2、正弦波、⽅波—三⾓波设计的内容(1)、RC正弦波振荡电路设计⼀个RC正弦波振荡电路,其正弦波输出为:a.振荡频率: 1592 Hzb.振荡频率测量值与理论值的相对误差<+5%c.振幅基本稳定d.振荡波形对称,⽆明显⾮线性失真(2)、⽅波—三⾓波产⽣电路设计⼀个⽤集成运算放⼤器构成的⽅波—三⾓波产⽣电路。
指标要求如下:⽅波 a.重复频率:4.35*103 Hzb.相对误差<+5%c.脉冲幅度 +(6--8)V三⾓波 a.重复频率:4.35*103 Hzb.相对误差<+5%c.幅度:6—8V3、总结3.1、课程设计进⾏过程及步骤1、正弦波实验参考电路如图(1)、根据已知条件和设计要求,计算和确定元件参数。
并在实验电路板上搭接电路,检查⽆误后接通电源,进⾏调试。
(2)、调节反馈电阻R4,使电路起振且波形失真最⼩,并观察电阻R4的变化对输出波形V o的影响。
模电设计性实验之正弦波-方波-三角波
模拟电路提高性实验学院:科目:指导老师:学生:学号:班级:波形发生及转换器一、实验任务要求用面包板搭建一个波形发生及转换器,测试满足要求后,在电路板上焊接出来。
指标要求如下:1.±12V直流电源供电,输出3路波形:正弦波、方波和三角波.2.信号频率1kHz,3种波形幅度均为±4V.3.信号频率和幅度连续可调,尽量减小波形失真.二、方案论证产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
本实验采用先产生正弦波,再将正弦波转换为方波,最后将方波转换为三角波的电路设计方法首先,±12V直流电源供电给运放,产生正弦波,本实验使用文氏振荡电路作为第一级电路,通过调节50kΩ的电位器将部分输出电压叠加反馈到输入电路;第二级使用滞回比较器将正弦波转换为方波,同时通过10kΩ和20kΩ的电阻串联取出部分电压反馈到输入,但本级电路无法调节输出的方波幅度;第三级为反相求和运算电路,使得输入的方波幅度可调;第四级通过一个积分运算电路将方波转变为三角波,取第三级的输出为输入,并通过50kΩ的电位器调节三角波的幅度。
本实验中除了第一级的两个200kΩ的可调电位器用来调节幅度外,其余50kΩ的电位器均是用来调节幅度,使得正弦波、方波、三角波三种波形的幅度可调范围较大,而且本电路均引入反馈,尽量减小波形失真。
三、实验电路图及说明说明:第一级为RC桥式正弦波振荡电路,两个200kΩ的电位器接入电路的电阻相同,作用为调节正弦波的频率;50kΩ的电位器的作用是调节幅度。
第二级为滞回比较器(正弦波->方波),输出方波,但幅度不可调节。
第三级为反相求和运算电路,通过50kΩ的电位器调节方波的幅度。
第四级为积分运算电路,将输入的方波转变为三角波,同时也通过50kΩ的电位器调节三角波的幅度。
基于LM324的方波、三角波、正弦波发生器(含原理图)讲解
课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
模拟电子方波—正弦波—三角波转换全解
模拟电⼦⽅波—正弦波—三⾓波转换全解第1章绪论1.1简介在⼈们认识⾃然、改造⾃然的过程中,经常需要对各种各样的电⼦信号进⾏测量,因⽽如何根据被测量电⼦信号的不同特征和测量要求,灵活、快速的选⽤不同特征的信号源成了现代测量技术值得深⼊研究的课题。
信号源主要给被测电路提供所需要的已知信号(各种波形),然后⽤其它仪表测量感兴趣的参数。
可见信号源在各种实验应⽤和实验测试处理中,它不是测量仪器,⽽是根据使⽤者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满⾜测量或各种实际需要。
波形发⽣器就是信号源的⼀种,能够给被测电路提供所需要的波形。
传统的波形发⽣器多采⽤模拟电⼦技术,由分⽴元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。
随着微电⼦技术的发展,运⽤单⽚机技术,通过巧妙的软件设计和简易的硬件电路,产⽣数字式的正弦波、⽅波、三⾓波、锯齿等幅值可调的信号。
与现有各类型波形发⽣器⽐较⽽⾔,产⽣的数字信号⼲扰⼩,输出稳定,可靠性⾼,特别是操作简单⽅便。
根据⽤途不同,有产⽣三种或多种波形的波形发⽣器,使⽤的器件可以是分⽴器件 (如低频信号函数发⽣器S101全部采⽤晶体管),也可以采⽤集成电路(如单⽚函数发⽣器模块8038)。
信号发⽣器⼜称信号源或振荡器,在⽣产实践和科技领域中有着⼴泛的应⽤。
各种波形曲线均可以⽤三⾓函数⽅程式来表⽰。
能够产⽣多种波形,如三⾓波、锯齿波、矩形波(含⽅波)、正弦波的电路被称为函数信号发⽣器。
它⽤于产⽣被测电路所需特定参数的电测试信号。
在测试、研究或调整电⼦电路及设备时,为测定电路的⼀些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际⼯作中使⽤的待测设备的激励信号。
当要求进⾏系统的稳态特性测量时,需使⽤振幅、频率已知的正弦信号源。
当测试系统的瞬态特性时,⼜需使⽤前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。
并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在⼀定范围内进⾏精确调整,有很好的稳定性,有输出指⽰。
在 fpga 内部实现三角波、方波、正弦波生成原理
在 fpga 内部实现三角波、方波、正弦波生成原理FPGA(可编程逻辑门阵列)是一种灵活可编程的电子元件,它能够在硬件上实现各种数字电路。
本文将介绍如何在FPGA内部实现三角波、方波和正弦波的生成原理。
生成三角波的原理是通过一个计数器和一个加/减器实现。
计数器以固定速度递增,当计数器值达到上界时,将其反向递减。
这样,计数器的值就会在上下界之间循环波动,从而产生连续的三角波形。
生成方波的原理类似于生成三角波,但区别在于计数器只需递增,不需要递减。
当计数器值小于某个阈值时,输出为高电平;当计数器值大于等于阈值时,输出为低电平。
通过调整阈值和计数器的时钟频率,可以调整方波的周期和占空比。
生成正弦波的原理是利用Look-Up Table(查找表)中存储的正弦值来生成波形。
FPGA内部的ROM(只读存储器)模块通常用于存储这些数字化的正弦值。
通过一个计数器作为地址输入,每个时钟周期从Look-Up Table中读取一个正弦值并输出。
通过调整计数器的时钟频率和Look-Up Table的大小,可以调整正弦波的频率和精度。
在FPGA内部实现三角波、方波和正弦波的过程还需要使用其他的逻辑电路,例如时钟模块、计数模块和输出模块等。
时钟模块用于提供一个稳定的时钟信号,用于驱动计数器。
计数模块用于生成递增和递减的计数器值。
输出模块用于将生成的波形信号输出至外部设备。
为了实现这些波形生成,需要使用HDL(硬件描述语言)如Verilog 或 VHDL 编写对应的逻辑电路描述代码,并使用FPGA开发工具进行编译和综合,最后生成比特流文件用于FPGA配置。
通过在FPGA内部实现三角波、方波和正弦波的生成原理,我们可以在数字电路中灵活地应用这些波形信号。
例如,在音频领域可以用来产生声音效果,在通信系统中可以用作调制信号等。
对于学习和理解数字信号处理的同学们,了解此基础知识对于深入研究和实践都具有指导意义。
模拟电子方波—正弦波—三角波转换全解
第1章绪论1.1简介在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。
波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。
传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。
随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。
与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。
根据用途不同,有产生三种或多种波形的波形发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
它用于产生被测电路所需特定参数的电测试信号。
在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。
当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。
当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。
并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。
正弦波-方波-三角波产生电路
正弦波-方波-三角波产生电路综述:正弦波、方波和三角波是按照不同波形的原理产生的电路。
此外,它们之间也存在着共同点,例如,它们都是复用的技术,均可利用振荡电路来产生多种波形。
本文旨在介绍正弦波、方波和三角波的电路原理,以及它们之间的异同点。
一、正弦波产生电路原理正弦波的产生原理,可以是指振荡电路的基本原理,或者是采用某种数字信号处理方法产生出来的。
振荡电路就是利用低压脉冲充电器充电电容,再将电容中的电荷引到另一个电荷;反复循环这个过程,便可形成一种“弹簧”式的脉冲振荡,从而形成正弦波。
按照数字信号处理的原理,把波形的高和低电压写入某种字段,用现有的处理器进行转换,便可以生成正弦波。
方波的产生电路利用了一种特殊的振荡电路来实现,它主要由四部分组成:加法->正弦波发生器->交织多路反馈网络、平衡多路反馈网络。
正弦波发生器可以产生必须控制电压大小,频率和起点电压起点(最低电压和最高电压)的正弦波;交织多路反馈网络用来调节正弦波的峰峰电压;平衡多路反馈网络则用来消除正弦波的一半电压,形成方波。
三角波产生电路也是基于共oscilla tor振荡原理实现,它利用振荡器来实现,只需改变振荡器的结构即可产生三角波。
比如,采用增益电子管、三极管和整流电路组成的振荡器,在控制调节的过程中,可以产生不同类型的振荡,从而得到完美的三角波。
四、正弦-方-三角波的异同点同点:三者都可以通过振荡电路或数字信号处理来产生。
不同点:(1)振荡电路原理上,正弦波是由低压脉冲电路充放电,产生弹性振荡;方波是利用加法/正弦/交织/反平衡振荡电路来完成;而三角波则需要增益电子管、三极管和整流电路组成振荡器,控制调节获取完美的三角波。
(2)如果以数字信号处理来产生各类波形,则不存在性质上的差别,就是利用现有的处理器,把波形的高和低电压写入某种字段,进行转换,即可产生对应的波形。
本文对正弦-方-三角波的产生电路及其异同点进行了简要说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论1.1简介在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。
波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。
传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。
随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。
与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。
根据用途不同,有产生三种或多种波形的波形发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
它用于产生被测电路所需特定参数的电测试信号。
在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。
当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。
当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。
并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。
信号源可以根据输出波形的不同,划分为正弦波信号发生器、矩形脉冲信号发生器、函数信号发生器和随机信号发生器等四大类。
正弦信号是使用最广泛的测试信号。
现在,我们通过对函数信号发生器的原理以及构成设计一个能变换出正弦波、方波、三角波的简易发生器。
众所周知,制作函数发生器的电路有很多种。
本次设计先通过RC正弦波振荡电路产生正弦波,这是一种频率可调的移相式正弦波发生器电路,其频率稳定一般为实验所确定,然后可以通过改变电容值来改变再通过电压比较器产生方波,最后通过积分电路形成三角波。
此电路具有良好的正弦波和方波信号。
它的制作成本不高,路简单,使用方便,有效的节省了人力,物力资源。
信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。
该函数发生器要求能输出频率范围可调的正弦波、方波和三角波,能够很好的实现本次试验的目的,将一些线性和非线性的元件与集成运放组合,输出性能良好的波形.由正弦波、方波或三角波的发生器产生相应的信号,通过相互转换实现多种波形的输出。
正弦波可以由RC 正弦波振荡电路产生,之后通过过零比较器可产生方波,再积分可得三角波。
通过调节RC 振荡电路中的振荡电阻来实现频率可调。
通过调节比例运算电路的反馈电阻来实现幅度可调,最终做成要求的函数发生器。
1.2设计目的1.掌握电子系统的一般设计方法2.掌握模拟IC器件的应用3.培养综合应用所学知识来指导实践的能力4.掌握常用元器件的识别和测试5.熟悉常用仪表,了解电路调试的基本方法1.3设计任务方波-三角波-正弦波函数发生器①输出波形频率范围为10Hz~10kHz且连续可调;②正弦波幅值为±2V;③方波幅值为2V;④三角波峰-峰值为2V。
第2章 实验方案的设计2.1原理框图图2-1 原理框图2.2正弦波发生电路的工作原理一、产生正弦振荡的条件:正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路个部分。
二、正弦波振荡电路的组成判断及分类:(1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。
(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。
(3)正反馈网络:引入正反馈,使放大电路的输入信号等于其反馈信号。
稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。
方波 三角波 正弦波 电压比较器 积分电路 低通滤波器三、判断电路是否振荡的方法:(1)是否满足相位条件,即电路是否正反馈,只有满足相位条件才可产生振荡。
(2)放大电路的结构是否合理,有无放大能力,静态工作是否合适;(3)是否满足幅度条件。
四、正弦波振荡电路检验:(1)则不可能振荡; (2)振荡,但输出波形明显失真; (3) 产生振荡。
振荡稳定后。
此种情况起振容易,振荡稳定,输出波形的失真小。
五、RC 正弦波振荡电路:常见的RC 正弦波振荡电路是RC 串并联式正弦波振荡电路,它又被称为文氏桥正弦波振荡电路。
串并联网络在此作为选频和反馈网络。
图2-2 RC 桥式正弦波振荡电路RC 桥式正弦波振荡电路的构成如图所示。
当RC 1wo w ==时,RC 选频网络的相移为零,这样RC 串并联选频网络送到运算放大器同向输入端的信号电压Vi 与输出电压Vo 同相,所以RC 反馈网络形成正反馈,满足相位平衡条件。
为使在震荡建立期间信号做增幅震荡,应选择R1和R2可使Af ≥3,保证。
因此它的起振条件为: ;它的振荡频率为: 。
它主要用于低频振荡。
要想产生更高频率的正弦信号,一般采用LC正弦波振荡电路。
它的振荡频率为:。
此外,石英振荡器的特点是其振荡频率特别稳定,它常用于振荡频率高度稳定的的场合。
RC文氏桥振荡电路的稳幅作用是靠两个并联的二极管组成的,当输出信号较小时,二极管工作电流小,动态电阻大,电路的增益较大,引起增幅震荡过程。
当输出幅度达到一定程度,二极管工作电流大,动态电阻小,电路的增益下降,电路的输出电压幅值将不再上升,从而使输出电压稳定,以此来达到稳幅的目的。
2.3正弦波变换成方波的工作原理一、电压比较器的功能:电压比较器是用来比较两个电压大小的电路,它的输入信号是模拟电压,输出信号一般是只有高电平和低电平两个稳定状态的电压。
利用电压比较器可将各周期性信号转换成矩形波。
二、过零比较器:参考电压为零的比较器称为过零比较器。
按输入方式的不同可分为反相输入和同相输入两种过零比较器,通常用阈值电压和传输特性来描述比较器的工作特性。
阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。
图2-3 过零比较器本电路中该电路的作用是将正弦信号转变成方波信号,其传输特性曲线如下图所示:2.4 方波变换成三角波的工作原理方波经过积分器就变成了三角波。
但是此电路要求前后电路的时间常数配合好,不能让积分器饱和。
图2-4 积分电路原理Vo-Vi为积分关系,负号表示输入和输出信号相位相反。
当Vi为定值时,电容将恒流充电,输出电压为:(2-1)当积分器输入信号为方波时,其输出信号为三角波,电路波形图如下:图2-5 三角波发生器工作波形图2-6 积分电路仿真图2.5正负12V直流稳压电源的设计直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要经过变压、整流、滤波、稳压四个环节才能完成。
一、设计原理:直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成,基本框图如图所示:图2-7 直流稳压电源设计框图及波形二、各部分作用:1、电源变压器T:作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。
2、整流电路:整流电路将交流电压Ui变换成脉动的直流电压。
再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。
3、滤波电路:经整流后的直流输出电压脉动性很大,不能直接使用,为减少其交流成分,常在整流电路后接滤波电路。
滤波电路的主要任务是将整流后的单向脉动直流电压中的纹波滤除掉,使其输出平滑的直流电压,这里我们采用接入滤波电容来组成滤波电路。
4、稳压电路:常用的稳压电路有两种形式:一是稳压管稳压电路,二是串联型稳压电路。
二者的工作原理有所不同。
稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。
三、具体电路设计:在整流电路中我们采用全波整流桥,该电路的整流效果和输出电压波形为单项半波整流的两倍,在稳压电路中采用CW7812和CW7912型号的这两个集成稳压器芯片组成的具有同时输出固定的+12V、-12V电压的稳压电路。
该电路对称性好,温度特性也近似一致。
图2-8 直流稳压电源电路图四、稳压电源的性能指标及测试方法:稳压电源的技术指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。
第3章仿真电路及运行结果3.1 Multisim简介Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
multisim 10概述:1.通过直观的电路图捕捉环境,轻松设计电路。
2.通过交互式SPICE仿真,迅速了解电路行为。
3.借助高级电路分析,理解基本设计特征。
4.通过一个工具链,无缝地集成电路设计和虚拟测试。
5.通过改进、整合设计流程,减少建模错误并缩短上市时间。
3.2 总波形发生电路图3-1 正弦波-方波-三角波函数发生器该电路分为三部分,第一部分为RC桥式正弦振荡电路,其功能是利用RC振荡产生特定频率的正弦波;第二部分为过零电压比较器电路,其功能为将正弦波转成方波;第三部分为积分电路,其功能为利用积分电路将方波转成三角波;此外,在积分电路之前设置一个电压跟随器,起到隔离作用,使过零电压比较器电路与积分电路不相互影响。
确定电路元器件参数:稳压管的作用是限制和确定方波的幅度,因此方波正负半周的对称性与稳压管性能有关。