点到直线的距离说课稿范文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点到直线的距离说课稿范文

一、教材分析:

1、本节教材在本章中的地位和作用:

本章内容作为高中数学中仅有的两章解析几何知识的第一章,是属于解析几何学的基础知识,不但是进一步学习圆锥曲线以及其他曲线方程的基础,也是学习导数,微分、积分等的基础,在解决许多实际问题中有着广泛的应用,而本节教材是本章教材三大部分的第一部分中的重要内容,是本章环环紧扣的知识链中必不可少的一环。

这节课“点到直线的距离”是本节教材“两直线的位置关系”的最后一个内容,在解决实际生活问题中以及代数、解析几何、立体几何中都有着重要而广泛的应用。例如:求最小值问题,对一些新知识新概念的定义,建立方程的问题等等,立竿见影,运用点到直线的距离公式都可以简便迅速地解决问题,还可使学生形成完整的直线这部分知识的结构体系。

2、本节内容的具体安排及编写思路:

出于简洁性的考虑,教材编写单刀直入地直接提出核心问题,并给予解决的方法。我编写本节教案时,通过创设问题情境引入课题,降低难度,教给学生从特殊到一般的研究问题的方法和策略,激发学生去解决问题,探究问题,得出结论。在这个过程中,老师作适当的点拨、引导,让学生逐

步逼近目标,充分展示数学知识产生的思维过程,让学生均能自觉主动地参与进来。教师的主导作用,学生的主体地位都得以充分体现,然后让学生自己归纳、总结得出结论,享受成功的喜悦和快乐。对教材上的例10、例11,由于是直接应用点到直线的距离公式,较易,故我让学生直接去阅读、去理解,熟悉点到直线的距离公式。但对例11的稍许变化,却抓住不放,通过例11的解法的启示,激发学生进一步去应用点到直线的距离公式去探究二平行直线间的距离公式,利用有限的时间和学生刚成功的那一股学习的惯性,对教材进行拓广,让学生对归纳总结出的公式有更加深刻、透彻的理解和掌握,达到灵活应用的目的。

3、教学目标:

1)、使学生掌握点到直线的距离公式及结构特点,并能熟练准确的应用这一公式,达到理解掌握知识的目的。

2)、学会寻找点到直线距离公式的思维过程及推导方法,培养学生发现问题、探究问题的能力。

3)、教学中体现数形结合、转化的数学思想,分类讨论的数学思想,培养学生在研究讨论问题时的数学技能和实际动手能力以及思维的严密性。

4)、教学中鼓励同学相互讨论,取长补短,培养学生的合作意识和团队精神。

4、重点、难点:

理解和掌握点到直线的距离公式,熟练的应用公式求点到直线的距离是本节学习的重点,难点是点到直线距离公式

的推导。

二、学情分析:

我所在的学校——四川省渠县中学,虽然是一个国家级重点中学,但同时又由于渠县是一个农业大县,一个国家级贫困县,80%以上的学生来自偏远的乡村及山区,教育理念和教育水平都较落后,学生在小学、初中阶段基本上都是在死记硬背、囫囵吞枣中渡过的,很少在数学上享受过真正意义上的研究问题、探索发现问题的乐趣,都习惯于跟着老师的思路走,不善于自己开动脑筋去研究问题、探索问题。鉴于此,我们在教学中正逐步采用探索式教学,引导学生自己理解、掌握知识,逐步培养和提高学生发现问题、探索问题的能力,以及合作意识和合作精神的目的。

三、主要教学构想:

通过创设问题情景自然引入课题,降低教材难度。主要由学生去探究,去发现,去讨论,去归纳总结得到公式,再辅以适当的例题、习题帮助学生熟悉公式,学会运用。特别是引导学生对例11的进一步探究,既拓广了教材,又进一步加深了同学们对从特殊到一般的研究方法的理解。从而达到探究——讨论——归纳总结——完善结论——牢固掌握——灵活运用的目的。

四、教学过程:

1、创设问题情境:

实例:某供电局计划年底解决本地区最后一个村庄的用电问题,经过测量,若按部门内部设计的坐标图(即以供电

局为直角坐标原点,正东方向为x轴的正半轴,正北方向为y轴的正半轴,长度单位为千米),得知这个村庄的坐标是(15,20),离它最近的只有一条直线线路通过,其方程为:3x–4y–10=0,问要完成任务,至少需要多长的电线?(如图4—1所示)

〈字幕出示题及图,让学生阅读、理解、思考,约2分钟〉

引入课题:

[师讲]同学们,通过刚才的读题和理解已经知道,这实际上是一个求点到直线的距离的问题,也即我们这节课所要研究讨论的问题。

2、解决问题情境:

[师继续讲]下面,请同学们应用已学过的知识,自己想一个办法来解决此问题,甚至不一定要求结果,只要得出一个思路即可。

〈让同学思考、讨论约5分钟,然后让学生自己举手回答,老师点评,约10分钟〉

学生可能的回答:

[答一]拉一根绳子量一下即可。

[师问]可以,但哪里去找那么长的绳子?还有其它办法吗?

可能会有学生众补充:测距仪!测距仪!

[师肯定]好办法!将来肯定是做工程师的材料!请坐下。

[师继续]但如果由于条件的限制,我们手里仅有纸、笔

及三角板(或直尺),能不能发挥我们的数学特长,用所学数学知识来解决呢?

可以肯定,被开方式是一个二次项系数为正的二次函数,x0又不受限制,应该有最小值,从而︱PQ︱有最小值,此最小值即为所求。

[师肯定]好思路!既利用了直线方程设出了直线上的一点,又利用两点间的距离公式得到了一个二次项系数为正的二次函数,且不管根号的影响,大着胆子求二次函数的最小值,求出的最小值开平方即得结果。但要考虑两个问题:①求出的二次函数的最小值有无为负数的可能?②此种方法的运算量是否偏大?同学们可利用课后时间试着推演一下。

[答三]要求点P到直线上的点的最短距离,即求点P到直线的距离,由点到直线距离的概念,直接过点P作PQ垂直于直线于Q点,则线段PQ的长即为所求。(如图4—2所示)

Q的坐标,再由两点间的距离公式可得出:︱PQ︱=9

[师肯定]好思路!直接运用了刚学过的直线的方程,二直线的交点,二直线垂直的条件,两点间的距离公式等知识,用到了解析几何的基本方法。在有数据做具体运算时不失为一种好方法,但仍有一定的运算量。不信,同学们下来后又可验算一番。

[答四]可能预习过教材的同学

过P作PQ垂直于直线于Q点,则PQ即为所求,再过点P分别作轴、轴的平行线分别交直线于M,N点(如图4—3

相关文档
最新文档