【高中数学】数列小题秒杀技巧

合集下载

高中数学—数列技巧—利用数列的推论秒杀数列相关问题

高中数学—数列技巧—利用数列的推论秒杀数列相关问题
2
例题
【例题2】已知等差数列 {an }满足:存在互异实数 m, n, p, 使得 ( 1 )m p 2n; 1 (2) S m S p 2 S n,且a1 , 15 则集合{( x, y ) | S x S y 1, x, y N }的元素个数为_____.
【解析】 由条件(2)2 S n S m S p
【例题2】已知等差数列 {an }满足:存在互异实数 m, n, p, 使得 ( 1 )m p 2n; 1 (2) S m S p 2 S n,且a1 , 15 则集合{( x, y ) | S x S y 1, x, y N }的元素个数为_____.
【解析】 数列{an }是等差数列
【解析】 d 由结论可知, A , d 2 A 2 又 等差数列 {an }和{ S n }的公差相等
例题
【例题1】记数列 {an }的前n项和为S n , 如果{an }和{ S n }都是等差数列, 且公差相同,且不为 0,则a1 __________ .
【解析】 d 由结论可知, A , d 2 A 2 又 等差数列 {an }和{ S n }的公差相等 1 A 2 A,即A 4
【解析】 {an }是等差数列 { S n }是等差数列
例题
【例题1】记数列 {an }的前n项和为S n , 如果{an }和{ S n }都是等差数列, 且公差相同,且不为 0,则a1 __________ .
【解析】 {an }是等差数列 2 B 0 S An S n An( A 0) n { S n }是等差数列
例题
【例题2】已知等差数列 {an }满足:存在互异实数 m, n, p, 使得 ( 1 )m p 2n; 1 (2) S m S p 2 S n,且a1 , 15 则集合{( x, y ) | S x S y 1, x, y N }的元素个数为_____.

数列解题方法与技巧

数列解题方法与技巧

数列解题方法与技巧数列是数学中的一个重要概念,它在各种数学问题中都有着重要的应用。

解题时,我们常常需要掌握一些数列的解题方法和技巧,下面就来介绍一些常见的数列解题方法和技巧。

首先,我们需要了解数列的基本概念。

数列是按照一定的顺序排列的一组数,其中每个数都有着特定的位置和规律。

数列可以分为等差数列、等比数列、递推数列等多种类型,每种类型都有着不同的特点和解题方法。

对于等差数列来说,其相邻两项之间的差值是一个常数,我们可以利用这一特点来求解等差数列中的各种问题。

当我们遇到一个数列题目时,首先要判断这个数列是否是等差数列,如果是,我们就可以利用等差数列的性质来进行解题。

比如,我们可以利用等差数列的通项公式来求解数列的第n项,从而得到数列中任意一项的值。

对于等比数列来说,其相邻两项之间的比值是一个常数,我们同样可以利用这一特点来求解等比数列中的各种问题。

当我们遇到一个数列题目时,如果判断这个数列是等比数列,我们就可以利用等比数列的性质来进行解题。

比如,我们可以利用等比数列的通项公式来求解数列的第n项,从而得到数列中任意一项的值。

此外,对于递推数列来说,其每一项都是由前面的若干项按照一定的规律得到的,我们可以利用递推关系来求解递推数列中的各种问题。

当我们遇到一个数列题目时,如果判断这个数列是递推数列,我们就可以利用递推关系来进行解题。

比如,我们可以通过递推关系来求解数列的第n项,从而得到数列中任意一项的值。

在解题过程中,我们还需要注意一些常见的数列解题技巧。

比如,当我们求解数列的和时,可以利用数列的部分和公式来简化计算过程;当我们求解数列的极限时,可以利用数列的收敛性和极限定义来进行推导。

这些技巧在解题过程中都能够起到很大的帮助。

总之,数列是数学中一个非常重要的概念,解题时我们需要掌握一些数列的基本概念、解题方法和技巧。

只有通过不断的练习和总结,我们才能够更加熟练地运用数列的知识来解决各种数学问题。

希望本文介绍的数列解题方法和技巧能够对大家有所帮助,谢谢阅读!。

高中数学数列试题的解题方法与技巧

高中数学数列试题的解题方法与技巧

高中数学数列试题的解题方法与技巧解题方法与技巧
一、一步一步思考
解决高中数学数列试题的最重要的方法就是一步一步思考,即仔细分析题目,把题目分解成一个一个的小问题,然后一步一步解决,最后得出结论。

二、熟悉数列的基本概念
在解决数列试题之前,首先要熟悉数列的基本概念,如数列的定义、等差数列、等比数列、递推公式、求和公式等,这些概念是解决数列试题的基础。

三、熟悉数列的解题方法
在解决数列试题时,要熟悉数列的解题方法,如构造数列法、求和法、递推法、比例法、变量法等,这些方法可以帮助我们更好地解决数列试题。

四、熟悉数列的解题技巧
在解决数列试题时,要熟悉数列的解题技巧,如把复杂的问题分解成简单的问题、利用数列的性质、利用数列的特殊性质、
利用数列的变换性质等,这些技巧可以帮助我们更好地解决数列试题。

五、练习
最后,要多练习,多练习可以帮助我们更好地掌握数列的基本概念、解题方法和解题技巧,从而更好地解决数列试题。

高中数学 高考数学50条秒杀型公式与方法

高中数学  高考数学50条秒杀型公式与方法

高中数学| 高考数学50条秒杀型公式与方法1,适用条件:[直线过焦点],必有e c o sA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):①、若f(x)=-f(x+k),则T=2k;②、若f(x)=m/(x+k)(m不为0),则T=2k;③、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=s i n x y=si n派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:①,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;②、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;③、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4,函数奇偶性:①、对于属于R上的奇函数有f(0)=0;②、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项③,奇偶性作用不大,一般用于选择填空。

5,数列爆强定律:①,等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);②,等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;③,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;④,等比数列爆强公式:S(n+m)=S(m)+q²m S(n)可以迅速求q。

6,数列的终极利器,特征根方程。

首先介绍公式:对于a n+1=p an+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结

知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数)例1、? 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解? ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1例2、已知{}n a 满足112n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a .解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★ 说明 ?只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。

两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2? ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。

高中数学个考试秒杀公式

高中数学个考试秒杀公式

高中数学48条秒杀型公式和方法,看过的都说好除了课本上的常规公式之外,掌握一些必备的秒杀型公式能够帮你在考试的时候节约大量的时间,通哥这次的分享就是48条爆强的秒杀公式,直接往下看!1.适用条件:直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线和焦点所在轴夹角,是锐角。

.x为别离比,肯定大于1。

注上述公式适宜一切圆锥曲线。

.如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)假设f(x)=-f(x+k),则T=2k;(2)假设f(x)=m/(x+k)(m不为0),则T=2k;(3)假设f(x)=f(x+k)+f(x-k),则T=6k。

.注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)假设在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)和y=f(b-x)的图像关于x=(b-a)/2对称;(3)假设f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一样用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

高中数学48条秒杀型公式与方法,一定要掌握!

高中数学48条秒杀型公式与方法,一定要掌握!

高中数学48条秒杀型公式与方法,一定要掌握!今天,小数老师为大家整理了高中数学二级公式,赶快收藏起来吧~~高考数学48条秒杀公式1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高中数学数列高考小题秒杀技巧

高中数学数列高考小题秒杀技巧

高中数学数列高考小题秒杀技巧-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN今天给大家讲解数列技巧,今天会讲7道题,这些题都来源于高考真题,难题并不大,难度并不大,常规做2-3分钟一道题是不成问题,今天主要讲秒杀技巧,同学只要掌握这思维方式,这类题型可以做到5-10秒内出答案,在讲秒杀之前,先看一下这种题型用常规解答应该如何去分析。

我们先来看第一道题:我们先用常规方法解,大家会发现等差数列的首项和公差都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和d表达,如图:针对等差数列,我们首先想到的是有两种特殊类型:一类是公差为0;另一类公差为1、2、3这种特殊的等差数列。

像这类首项和公差都未知,大家可以看到,当公差为0的时候,是不是跟题干不相违背,那么我就让公差为0。

那就是等差数列的所有项都均等!前面讲了5道等差数列的题,这些题用技巧是不是直接秒杀!接下来我们就来看看等比数列的题型,我们再来看第6道题:我们先用常规方法解,同样大家会发现等比数列的首项和公比也都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和q表达,如图:同样,针对等比数列,我们首先想到的是有两种特殊类型:一类是公比为1;另一类公比为2、4、6这种特殊的等比数列。

像这类首项和公比都未知,当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。

那就是等比数列的所有项都均等!第7题,同样首项和公比都未知,大家可以看到,由于题干中强调了各项为正数,那么当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。

那就是等比数列的所有项都均等!同学们,是不是这些题用技巧是不是直接秒杀,大家或许会疑惑,我告诉大家,这种方法绝对可靠,只要是公差公比未知,而题中又没强调公差不能为0,或者公比不能为1,所以我们就可以用特例,如果我们用这种方法做答案不对,也不可能强调公差不能为0、公比不能为1,高考是不可能出这种不严谨的题,所以大家放心大胆的使用。

高中数学52个秒杀技巧

高中数学52个秒杀技巧

高中数学52个秒杀技巧1. 利用整除定理判断数字能否被2、3、4、5、6等整除。

若一个数能同时被2和3整除,则也能被6整除。

2. 奇数的任意两个相邻自然数之和必为偶数。

3. 计算乘法口诀表时,对称性可以简化计算。

例如,$3 \times 7$ 和$7 \times 3$ 的结果是相同的。

4. 对于一个除数和一个商,被除数等于除数乘以商加上余数。

这是除法的基本原理。

5. 学会使用倍数关系来计算百分数。

例如,100%的1/3等于33.33%的3。

6. 对于一个等差数列,求和的公式为$S = \frac{n(a_1 + a_n)}{2}$,其中 $n$ 是项数,$a_1$ 是首项,$a_n$ 是末项,$S$ 是总和。

7. 切割一个正方形可以得到两个相似的正方形。

这可以用于比例和相似形状的题目。

8. 当解决直角三角形题目时,可以使用勾股定理:$c = \sqrt{a^2 +b^2}$,其中 $c$ 为斜边长,$a$ 和 $b$ 分别为两个直角边的长度。

9. 计算圆的周长和面积时,可以使用公式:周长 $C = 2\pi r$,面积$A = \pi r^2$,其中 $r$ 是半径,$\pi$ 是一个无限不循环小数,取近似值 3.14。

10. 求解一元一次方程时,可以通过移项、合并同类项等代数运算简化方程。

确保每一步都在两边同时操作。

11. 了解序列和数列的概念,可以应用到等差数列和等比数列的题目中。

12. 可以使用配方法来解决二元一次方程组,将其中一个方程整体乘以一个适当的系数,然后相加或相减消去一个未知数。

13. 学会使用二次方程求根公式解决二次方程题目。

公式为:$x =\frac{-b \pm \sqrt{b^2-4ac}}{2a}$。

14. 复习平面几何的性质和定理,熟悉各种图形的面积和周长公式。

15. 对于概率题目,可以使用概率公式:$P(A) = \frac{{\text{有利事件的个数}}}{{\text{总事件的个数}}}$。

高中数学数列答题技巧

高中数学数列答题技巧

高中数学数列答题技巧一、数列问题解题方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证为同一常数。

(2)通项公式法:①若= +(n-1)d= +(n-k)d ,则为等差数列;②若,则为等比数列。

(3)中项公式法:验证中项公式成立。

2. 在等差数列中,有关的最值问题——常用邻项变号法求解:(1)当>0,d<0时,满足的项数m使得取最大值.(2)当<0,d>0时,满足的项数m使得取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。

三、数列问题解题注意事项1.证明数列是等差或等比数列常用定义,即通过证明或而得。

2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。

3.注意与之间关系的转化。

如:=,=.4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k 为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。

3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。

4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m -S3m、……仍为等差数列。

高中数学数列题型及解题方法

高中数学数列题型及解题方法

高中数学数列题型及解题方法一、基本概念在高中数学中,数列是一个数的有序集合,按照一定的规律排列。

数列中的每一个数称为该数列的项,通常用字母表示。

数列中的项的位置或顺序称为项数。

数列一般通过通项公式或递推式来表示。

通项公式直接给出数列中第n个项与n之间的关系,递推式则通过前一项得出后一项,常见的数列有等差数列和等比数列。

二、等差数列等差数列是指数列中相邻两项的差是一个常数的数列。

若一个等差数列的前n 项和可递推出通项公式,即第n项的表达式。

解题方法1.根据已知条件列出等差数列的性质2.利用通项公式或递推式解决问题3.注意区分公差和项数的不同,避免混淆三、等比数列等比数列是指数列中相邻两项的比是一个常数的数列。

等比数列也有通项公式和前n项和的性质。

解题方法1.确定数列是等比数列2.利用通项公式或递推式解决问题,计算项之间的比3.注意等比数列的比值,及时列出通项公式或递推式四、常见题型及解题方法1. 求等差数列第n项或前n项和•要求:已知等差数列的公差和首项,求第n项或前n项和•解题方法:利用通项公式或递推式计算第n项或前n项和2. 求等比数列第n项或前n项和•要求:已知等比数列的比和首项,求第n项或前n项和•解题方法:利用通项公式或递推式计算第n项或前n项和3. 求等差数列或等比数列的一些特殊性质•要求:已知等差数列或等比数列的相关条件,求解一些特殊的性质•解题方法:根据数列的性质列出条件,运用相关知识推导出需要的结果以上是高中数学数列题型及解题方法的简要介绍,希望能对学习数列有所帮助。

如果想深入了解更多数列知识,可以继续深入学习相关内容。

专题23 数列的基本知识与概念 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题23 数列的基本知识与概念 (学生版)高中数学53个题型归纳与方法技巧总结篇

高中数学53个题型归纳与方法技巧总结篇专题23数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N*-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】题型一:数列的周期性题型二:数列的单调性题型三:数列的最大(小)项题型四:数列中的规律问题题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值()A .1147B .1148C .1142-D .1143-例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =()A .2B .5C .7D .8例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于()A .16B .16-C .6D .6-例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为()A .67B .68C .134D .167例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于()A .15B .25C .35D .45例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩ *(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为()A .60572B .3028C .60552D .3029例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =()A .14-B .45C .5D .45-例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于()A .12-B .12C .-1D .2题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是()A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是()A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为()A .12a <<B .23a <<C .3522a <<D .1322a <<例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为()A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是()A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列,则实数b 的取值范围为()A .(2,)-+∞B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【方法技巧与总结】解决数列的单调性问题的3种方法作差比较法根据1n n a a +-的符号判断数列{}n a 是递增数列、递减数列或是常数列作商比较法根据1(>0<0)n n n na a a a +或与1的大小关系进行判断数形结合法结合相应函数的图象直观判断题型三:数列的最大(小)项例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是()A .12B .1C .2D .3例16.已知数列{}n a 满足110a =,12n na a n+-=,则n a n 的最小值为()A .-1B .112C .163D .274例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na nn b S =,则数列{}n b 的最小项为()A .第3项B .第4项C .第5项D .第6项例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____例19.数列,1n =,2, ,中的最小项的值为__________.【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n nn a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =.题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =();()f n =().A .352331n n +-B .362331n n -+C .372331n n -+D .382331n n +-例21.由正整数组成的数对按规律排列如下:()1,1,()1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在()A .第386位B .第193位C .第348位D .第174位例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为()A .()1,12B .()3,10C .()2,11D .()3,9例23.将正整数排列如下:123456789101112131415……则图中数2020出现在A .第64行3列B .第64行4列C .第65行3列D .第65行4列题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为()A .343B .575C .D .12例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n -=+-,则下列说法正确的是()A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a 例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是()A .12B .34C .1D .32例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为()A .92-B .102-C .112-D .122-例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为()A .235B .143C 12D .13例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为()A .134B .5C .6D .132例30.(2022·浙江·高三专题练习)已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是()A .[]40,25--B .[]40,0-C .[]25,25-D .[]25,0-【过关测试】一、单选题1.(2022·陕西·交大附中模拟预测(理))函数()f x 定义如下表,数列{}()N n x n ∈满足02x =,且对任意的自然数n 均有()1n n x f x +=,则2022x =()x 12345()f x 51342A .1B .2C .4D .52.(2022·内蒙古赤峰·模拟预测(理))大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,其中一列数如下:0,2,4,8,12,18,24,32,40,50,…….按此规律得到的数列记为{}n a ,其前n 项和为n S ,给出以下结论:①22122n a n n -=-;②182是数列{}n a 中的项;③21210a =;④当n 为偶数时,()2122n n n S S S n n *++-+=+∈N .其中正确的序号是()A .①②B .②③C .①④D .③④3.(2022·河南·模拟预测(理))观察数组()2,2,()3,4,()4,8,()5,16,()6,32,…,根据规律,可得第8个数组为()A .()9,128B .()10,128C .()9,256D .()10,2564.(2022·吉林长春·模拟预测(理))已知数列{}n a 满足()()11120n n a a +-++=,112a =,则数列{}n a 的前2022项积为()A .16-B .23C .6-D .325.(2022·江西·临川一中模拟预测(理))已知数列{}n a 满足()1112,21*+-==∈-n n n a a a n N a ,则2022=a ()A .13B .1C .2D .526.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为n aa n n=+,则“21a a >”是“数列{}n a 单调递增”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2022·全国·高三专题练习)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是()A .919,24⎛⎫⎪⎝⎭B .9,2⎛⎫+∞ ⎪⎝⎭C .()5,+∞D .(]1,48.(2022·全国·高三专题练习)若数列{an }的前n 项和Sn =n 2-10n (n ∈N *),则数列{nan }中数值最小的项是()A .第2项B .第3项C .第4项D .第5项9.(2022·上海普陀·二模)数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是()A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-10.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题11.(2022·河北·衡水第一中学高三阶段练习)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是()A .此数列的第20项是200B .此数列的第19项是180C .此数列偶数项的通项公式为222n a n=D .此数列的前n 项和为(1)n S n n =⋅-12.(2022·全国·高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩ ,则数列{}n a 中的项的值可能为()A .13B .2C .23D .4513.(2022·全国·高三专题练习)下列四个选项中,不正确的是()A .数列2345,,,3456,⋯的一个通项公式是1n n a n =+B .数列的图象是一群孤立的点C .数列1,1-,1,1-,⋯与数列1-,1,1-,1,⋯是同一数列D .数列11,24,⋯,12n是递增数列14.(2022·全国·高三专题练习)已知n S 是{}n a 的前n 项和,12a =,()1112n n a n a -=-≥,则下列选项错误的是()A .20212a =B .20211012S =C .331321n n n a a a ++⋅⋅=D .{}n a 是以3为周期的周期数列15.(2022·全国·高三专题练习)若数列{an }满足112,2712,62n n n n n a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,123a =,则数列{an }中的项的值可能为()A .19B .16C .13D .4316.(2022·全国·高三专题练习)已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有()A .2-B .23C .32D .317.(2022·全国·高三专题练习(文))南宋杨辉在他1261年所著的《详解九章算术》一书中记录了一种三角形数表,称之为“开方作法本源”图,即现在著名的“杨辉三角”.如图是一种变异的杨辉三角,它是将数列{}n a 各项按照上小下大,左小右大的原则写成的,其中{}n a 是集合{}220,,s ts t s t Z +≤<∈且中所有的数从小到大排列的数列,即13a =,25a =,36a =,49a =,510a =,…,则下列结论正确的是()A .第四行的数是17,18,20,24B .()11232-+=⋅n n n a C .()11221n n a n +=+D .10016640a =18.(2022·全国·高三专题练习)如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是()A .第6行第1个数为192B .第10行的数从左到右构成公差为102的等差数列C .第10行前10个数的和为9952⨯D .数表中第2021行第2021个数为202060612⨯19.(2022·河北·石家庄实验中学高三开学考试)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是()A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n=D .此数列的前n 项和为(1)n S n n =⋅-20.(2022·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是().A .{}n a 是递增数列B .{}n a 是递减数列C .122n a n=-D .数列{}n S 的最大项为5S 和6S 21.(2022·湖南·长沙一中高三阶段练习)对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=(1,2,4,5,7,8与9互质),则()A .若n 为质数,则()1n n ϕ=-B .数列(){}n ϕ单调递增C .数列()2n n ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前5项和等于72D .数列(){}3nϕ为等比数列三、填空题22.(2022·北京·人大附中模拟预测)能说明命题“若无穷数列{}n a 满足()111,2,3,n na n a +>= ,则{}n a 为递增数列”为假命题的数列{}n a 的通项公式可以为n a =__________.23.(2022·陕西·宝鸡中学模拟预测)写出一个符合下列要求的数列{}n a 的通项公式:①{}n a 是无穷数列;②{}n a 是单调递减数列;③20n a -<<.这个数列的通项可以是__________.24.(2022·海南·模拟预测)写出一个同时具有下列性质①②③的数列{}n a 的通项公式:n a =__________.①10n n a a +<;②数列{}n a 是单调递减数列;③数列{}2nn a 是一个等比数列.25.(2022·江西·临川一中模拟预测(文))已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是_______.26.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8n n a n =+,则数列{}n a 中的最大项的n =________.27.(2022·山西·模拟预测(理))数列{}n a 中,已知11a =,20a >,()*21n n n a a a n ++=-∈N ,则2022a 的取值范围是___________.28.(2022·四川成都·三模(理))已知数列{}n a 满足13a =,122n n n a a a ++=,则2022a 的值为______.29.(2022·全国·模拟预测)在数列{}na 中,11a =,1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,则1232021a a a a ++++= ___.。

高考数学数列问题的答题技巧

高考数学数列问题的答题技巧

高考数学数列问题的答题技巧高中数学中大家都学习了数列这一知识点,而数列在高考中也是经常出现的考点,数列问题有哪些技巧可以又快又准地解答?店铺为您准备了一些高考数列通项、求和的答题技巧,希望对您有所帮助!高考数列通项、求和的答题技巧(1)解题路线图①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

(2)构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

高考数列问题的易错点1.忽视等递推关系成立的条件,从而忽视检验前几项。

2.忽视n为正整数的默认条件,冒然求导,或利用不等式得到非整数的取等条件。

也会因此心理忽视这一个很好用的条件。

3.裂项相消忘记留下了几项。

可以先写几项验证。

4.通过方程求解的数列可能会漏下情况。

5.等比数列注意公比为1不等同于常数列(如0)。

6.下角标的不规范可能会使“-1”模棱两可,需要注意。

7.累加法或累乘法漏掉第一项。

高考数学数列知识点总结等差数列公式等差数列的`通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)*公差前n项的和=(首项+末项)*项数/2公差=后项-前项等比数列公式等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。

(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)(4)性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每 k项之和仍成等比数列.③若m、n、q∈N,且m+n=2q,则am×an=aq^2(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。

高中数学数列高考小题秒杀技巧教学内容

高中数学数列高考小题秒杀技巧教学内容

高中数学数列高考小题秒杀技巧今天给大家讲解数列技巧,今天会讲7道题,这些题都来源于高考真题,难题并不大,难度并不大,常规做2-3分钟一道题是不成问题,今天主要讲秒杀技巧,同学只要掌握这思维方式,这类题型可以做到5-10秒内出答案,在讲秒杀之前,先看一下这种题型用常规解答应该如何去分析。

我们先来看第一道题:我们先用常规方法解,大家会发现等差数列的首项和公差都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和d表达,如图:针对等差数列,我们首先想到的是有两种特殊类型:一类是公差为0;另一类公差为1、2、3这种特殊的等差数列。

像这类首项和公差都未知,大家可以看到,当公差为0的时候,是不是跟题干不相违背,那么我就让公差为0。

那就是等差数列的所有项都均等!前面讲了5道等差数列的题,这些题用技巧是不是直接秒杀!接下来我们就来看看等比数列的题型,我们再来看第6道题:我们先用常规方法解,同样大家会发现等比数列的首项和公比也都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和q表达,如图:同样,针对等比数列,我们首先想到的是有两种特殊类型:一类是公比为1;另一类公比为2、4、6这种特殊的等比数列。

像这类首项和公比都未知,当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。

那就是等比数列的所有项都均等!第7题,同样首项和公比都未知,大家可以看到,由于题干中强调了各项为正数,那么当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。

那就是等比数列的所有项都均等!同学们,是不是这些题用技巧是不是直接秒杀,大家或许会疑惑,我告诉大家,这种方法绝对可靠,只要是公差公比未知,而题中又没强调公差不能为0,或者公比不能为1,所以我们就可以用特例,如果我们用这种方法做答案不对,也不可能强调公差不能为0、公比不能为1,高考是不可能出这种不严谨的题,所以大家放心大胆的使用。

好了,今天我就分享就到这里,这是一部分秒杀技巧方法,更多技巧在体系课程里,有需要可以联系老师。

高中数学 高考数学50条秒杀型公式与方法

高中数学  高考数学50条秒杀型公式与方法

高中数学| 高考数学50条秒杀型公式与方法1,适用条件:[直线过焦点],必有e c o sA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):①、若f(x)=-f(x+k),则T=2k;②、若f(x)=m/(x+k)(m不为0),则T=2k;③、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=s i n x y=si n派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:①,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;②、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;③、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4,函数奇偶性:①、对于属于R上的奇函数有f(0)=0;②、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项③,奇偶性作用不大,一般用于选择填空。

5,数列爆强定律:①,等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);②,等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;③,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;④,等比数列爆强公式:S(n+m)=S(m)+q²m S(n)可以迅速求q。

6,数列的终极利器,特征根方程。

首先介绍公式:对于a n+1=p an+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

50条高考数学秒杀公式方法

50条高考数学秒杀公式方法

50条高考数学秒杀公式方法高考数学是高中阶段最重要的科目之一,也是考生们普遍感到困难的科目之一、而掌握一些高考数学的秒杀公式,不仅可以在考场上提高效率,还可以帮助考生更好地理解和解题。

下面是50条高考数学秒杀公式方法:一、二次函数1. 一般式:y=ax^2+bx+c,顶点是(-b/2a, -△/4a),对称轴是x=-b/2a;2.抛物线开口情况:a>0时,开口向上;a<0时,开口向下;3. 零点判别式:△=b^2-4ac,当△>0时,零点有2个;当△=0时,零点有1个;当△<0时,零点没有;4.顶点坐标:(-b/2a,c-b^2/4a);5. 切线方程:y=kx+b,k=2a;6. 直线与抛物线交点:求解方程ax^2+bx+c=y;7.最值:y=a最大值的时候,x=-b/2a;y=a最小值的时候,x=-b/2a;二、三角函数1. 正弦定理:a/sinA=b/sinB=c/sinC=2R,其中a,b,c为三角形的边长,A,B,C为对应的角度,R为外接圆半径;2. 余弦定理:c^2=a^2+b^2-2abcosC,其中a,b,c为三角形的边长,C为对应的角度;3. 正弦函数的性质:-1≤sinx≤1;4. 余弦函数的性质:-1≤cosx≤1;5. 三角函数的周期性:sin(x+2kπ)=sinx,cos(x+2kπ)=cosx,其中k为整数;6. 诱导公式:sin(A±B)=sinAcosB±cosAsinB,cos(A±B)=cosAcosB∓sinAsinB;7. 一些特殊角的值:sin30°=1/2,cos30°=√3/2,sin45°=cos45°=1/√2,sin60°=√3/2,cos60°=1/2;8. 三角函数图像:y=Asin(Bx+C)+D,A为振幅,B为周期,C为横向平移量,D为纵向平移量;三、数列与数列的和1.等差数列:an=a1+(n-1)d,Sn=(a1+an)n/2;2.等比数列:an=a1*q^(n-1),Sn=a1(q^n-1)/(q-1),其中q为公比;3. 通项和前n项和的换算:an=Sn-S(n-1);4.等差数列前n项和的推导:n=(an-a1)/d+1,Sn=(a1+an)n/2=(a1+an)/2*n;5.等比数列前n项和的推导:Sn=a1(1-q^n)/(1-q),当,q,<1时,Sn=a1/(1-q);四、导数与微分1. 导数的定义:f'(x)=lim(x→0)(f(x+h)-f(x))/h;2. 基本初等函数的导数:常数函数的导数为0,x^n的导数为nx^(n-1),sinx的导数为cosx,cosx的导数为-sinx,e^x的导数为e^x,lnx的导数为1/x;3. 乘法法则:(u·v)'=u'v+uv';4. 除法法则:(u/v)'=(u'v-uv')/v^2;5.链式法则:[f(g(x))]'=f'(g(x))·g'(x);6.整除法:P(x)=D(x)·G(x)+R(x),R(x)为余数;7. 幂函数的导数:y=x^n,y'=nx^(n-1);8. 指数函数的导数:y=a^x,y'=a^x·lna;9. 对数函数的导数:y=log_a(x),y'=1/(x·lna);五、空间几何1.平面方程:Ax+By+Cz+D=0;2.直线方程:(x-x0)/m=(y-y0)/n=(z-z0)/p,其中(x0,y0,z0)为直线上一点的坐标,m,n,p分别为直线在x,y,z轴上的方向比例;3.平面与平面的交线:先通过向量积求得交点的一个坐标,再带入两个平面方程解出其他两个坐标;4.立体图形的体积:长方体的体积为V=a·b·c,正方体的体积为V=a^3,圆柱的体积为V=πr^2h,圆锥的体积为V=1/3πr^2h,球体的体积为V=4/3πr^3以上是50条高考数学的秒杀公式方法,希望对你备考高考数学有所帮助!。

高中数学等比数列小题公式反用技巧

高中数学等比数列小题公式反用技巧

高中数学等比数列小题公式反用技巧全文共四篇示例,供读者参考第一篇示例:等比数列是高中数学中的重要内容,学习等比数列不仅能够帮助我们掌握数学知识,还可以提高我们的逻辑思维能力。

在解题过程中,我们经常会遇到需要使用公式的情况,但有时候我们也可以反其道而行之,根据题目特点来灵活运用公式,达到更好的解题效果。

下面就让我们来探讨一些关于高中数学等比数列小题公式反用技巧吧。

让我们简单回顾一下等比数列的基本性质。

等比数列是指数列中的每一项与前一项的比值都相等的数列,这个比值称为公比,通常用q 表示。

等比数列的通项公式为an=a1*q^(n-1),其中an表示数列的第n项,a1表示第一项,q表示公比,n表示项数。

在解等比数列的题目时,有时候我们可以通过特定的条件来反过来使用等比数列的公式。

如果给定一个等比数列的第1项和第3项,让我们求公比q,我们可以使用等比数列的通项公式进行求解。

假设第1项为a,第3项为b,我们有b=a*q^2,代入通项公式an=a*q^(n-1),得到第3项的表达式b=a*q^2=a*q=an,从而能够得到公比q的值。

在解题时我们还可以使用等比数列的性质,比如等比数列的前n项和在n趋于无穷大时的极限值等,来快速解决问题。

通过对等比数列的性质和公式的灵活应用,我们可以更加深入地理解数学知识,并提高解题的效率和准确性。

高中数学等比数列小题公式反用技巧是一种解题思维的技巧,通过灵活运用等比数列的公式和性质,我们可以更好地解决各类等比数列的问题。

在学习和解题过程中,我们应该不断探索和积累这些技巧,提高我们的数学思维能力和解题能力。

希望以上内容能够帮助大家更好地理解和应用等比数列的知识,取得更好的学习成果。

【文章结束】。

第二篇示例:在高中数学的学习中,等比数列是一个非常基础又非常重要的概念。

它不仅在数学中有着广泛的应用,而且在现实生活中也有着很多实际意义。

等比数列由等比数列的定义、性质、等比数列通项公式以及等比数列的和等几部分组成。

高中数列小题技巧秒杀

高中数列小题技巧秒杀

高中数列小题技巧秒杀,一个特别的解题角度!在这里,我将以文字的方式讲解一个数列小题的解题思维,其实数列小题非常的容易就能解决,但是所有数学不好的人都有一个可怕的状况,一看到自己不会的题目就感觉他好难啊!这个题目肯定是特别的难,然后请教一位数学成绩好的同学一解就发现,哇,这位同学好厉害。

其实这并不是你数学差,而是你放弃了自身的能力。

人都是有烦恼的,明星也不例外,当人们看到关晓彤能算出数学题,围在身边的鹿晗满眼的羡慕佩服,才会觉得数学是一门非常神奇的科类!拥有数学思维在任何时候都是让人高看的。

数列解题的技巧和一些算法的罗列,更是会让你显得格外的精彩!需要答疑可加QQ201158719你别看完成这一道一道计算题,如此乏味枯燥,推理证明那一道一道逻辑题,如此艰难痛苦,这每一步,其实都是对你大脑的一种强有力的思维训练。

人类区别于其它动物的思维方式之一,就在于人类懂得运用理性思维去克制自己“非理性”的一面,懂得运用数学去处理生活中各种纷繁复杂的事物。

多少个世纪以来,由于人们辛勤钻研、反复辩论,数学的各种公式与定理已经得到了千锤百炼,其与逻辑推理深深地紧密交织着,大大地增强了我们处理事务的能力。

掌握了数学知识的人,就像戴了一副X射线眼镜一样,可以透过现实世界错综复杂的表面现象,看清其本质,并将其为己所用。

我们不能像韩寒一样大骂教育,说数学三年级就够用一辈子了。

是的,在这所有的前提下你得有人家的文学创作能力,我不相信那些满分作文的人都能写出非常好的文学,这同样基于一点天赋。

而数学就是一个非常神奇的科类,你只要掌握一个逻辑原理,在往后的生活计算层面你同样有非常好的理解能力。

思维,能让你把一件事用心的做成了,而思想能驱动你去做这件事。

学习,不管是文还是理最重要的是能够真正的理解其中意义。

每日一题提高自己的思维很重要,我们需要不断的寻找解决数学题的思维,反复的练习,就像锻炼我们的嘴唇一样,时间长了你自然会掌握一套有效的理解思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档