中考数学压轴题精编--浙江篇(试题及答案)

合集下载

动点的函数图象问题(压轴题专项讲练)解析版—2024-2025学年九年级数学上册压轴题专项(浙教版)

动点的函数图象问题(压轴题专项讲练)解析版—2024-2025学年九年级数学上册压轴题专项(浙教版)

动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。

【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A.B.C.D.【思路点拨】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.根据题意,分三段(0<x<1,1≤x<3,3≤x<4)分别求解y与x的解析式,从而求解.【解题过程】解:当0<x<1时,M、N分别在线段AB、AD上,此时AM=x cm,AN=2x cm,y=S△AMN=12×AM×AN=x2,为二次函数,图象为开口向上的抛物线;当1≤x<3时,M、N分别在线段、CD上,此时AM=x cm,△AMN底边AM上的高为AD=2cm,y=S△AMN=12×AM×AD=x,为一次函数,图象为直线;当3≤x<4时,M、N分别在线段AB、BC上,此时AM=x cm,△AMN底边AM上的高为BN=(8―2x)cm,y=S△AMN=12×AM×BN=12x(8―2x)=―x2+4x,为二次函数,图象为开口向下的抛物线;结合选项,只有A选项符合题意,故选:A.2.(22-23九年级上·安徽合肥·期中)如图,在△ABC中,∠C=135°,AC=BC=P为BC边上一动点,PQ∥AB交AC于点Q,连接BQ,设PB=x,S△BPQ=y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【思路点拨】过点Q作QE⊥BC交BC延长线于点E,根据S△BPQ=y=12QE⋅BP列出解析式再判断即可.【解题过程】解:如图,过点Q作QE⊥BC交BC延长线于点E,∵AC =BC =∴∠A =∠ABC∵PQ∥AB ,∴∠CQP =∠A,∠CPQ =∠ABC∴∠CQP =∠CPQ∴CQ =CP =―x .∵∠ACB =135°∴∠ECQ =45°在Rt △CEQ 中,∠ECQ =45°,∴QE ==―x )=2―,∴y =12QE ⋅BP =12x 2x =―2+x =――2+∴当x =y 最大值=故选:C.3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A .B .C .D .【思路点拨】如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,证明四边形ACFD 为平行四边形,可得AD =CF =x ,BF =4―x ,求解CT =FT =12x ,TH ==,同理可得:GK =―x ),再利用面积公式建立函数关系式即可判断.【解题过程】解:如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,由题意可得:AD∥CF ,DF∥AC ,∴四边形ACFD 为平行四边形,∴AD =CF =x ,∴BF =4―x ,∵△ABC 和△DEF 均为边长为4的等边三角形,AD∥CF ,∴∠D =∠DFB =60°,而∠B =60°,∴△BGF 为等边三角形,同理:△CFH 为等边三角形,∵HT ⊥BC ,∴CT =FT =12x ,TH ==,同理可得:GK =―x ),∴y =12x +12(4―x )⋅―x )=2―+故选B4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B→C→D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .【思路点拨】本题考查了动点问题函数图象.根据矩形的性质求出点O 到BC 的距离等于4,到CD 的距离等于6,求出点Q 到达点C 的时间为6s ,点P 到达点C 的时间为12s ,点Q 到达点D 的时间为14s ,然后分①0≤t ≤6时,点P 、Q 都在BC 上,表示出PQ ,然后根据三角形的面积公式列式计算即可;②6<t ≤12时,点P 在BC 上,点Q 在CD 上,表示出CP 、CQ ,然后根据S ΔOPQ =S ΔCOP +S ΔCOQ ―S ΔPCQ 列式整理即可得解;③12<t ≤14时,表示出PQ ,然后根据三角形的面积公式列式计算即可得解.【解题过程】解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12AB =4,到CD 的距离=12AD =6,∵点M 是BC 的中点,∴CM =12BC =6,∴点Q到达点C的时间为6÷1=6s,点P到达点C的时间为12÷1=12s,点Q到达点D的时间为(6+8)÷1=14s,①0≤t≤6时,点P、Q都在BC上,PQ=6,△OPQ的面积=12×6×4=12;②6<t≤12时,点P在BC上,点Q在CD上,CP=12―t,CQ=t―6,SΔOPQ=SΔCOP+SΔCOQ―SΔPCQ,=12×(12―t)×4+12×(t―6)×6―12×(12―t)×(t―6),=12t2―8t+42,=12(t―8)2+10,③12<t≤14时,PQ=6,△OPQ的面积=12×6×6=18;纵观各选项,只有B选项图形符合.故选:B.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.【思路点拨】先求出点P在BC上运动是时间为6秒,点Q在CD上运动是时间为4秒,再根据中点的定义可得AE =BE =12AB ,然后分①点Q 在CD 上时,表示出BP 、CP 、CQ ,再根据△EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,列式整理即可得解;②点Q 在AD 上时,表示出BP 、AQ ,再根据△EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,列式整理即可得解,再根据函数解析式确定出函数图象即可.【解题过程】解:∵点P 、Q 的速度均为每秒1个单位,∴点P 在BC 上运动的时间为6÷1=6(秒),点Q 在CD 上运动的时间为4÷1=4(秒),∵E 为AB 中点,∴AE =BE =12AB =12×4=2,①如图1,点Q 在CD 上时,0≤x ≤4,则BP =x,CP =6―x,CQ =x ,∴ △EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,=12(2+x )×6―12×2x ―12(6―x )⋅x =12x 2―x +6=12(x ―1)2+112②如图2,点Q 在AD 上时,4<x ≤6,则BP =x,AQ =6+4―x =10―x ,∴ △EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,=12(x +10―x )×4―12×2x ―12(10―x )⋅2=10,综上所述,y =2―x +6(0≤x ≤4)10(4<x ≤6),函数图象为对称轴为直线x =1的抛物线的一部分加一条线段,只有A 选项符合.故选:A .6.(2024·河南开封·一模)如图1,在△ABC 中,∠B =60°,点D 从点B 出发,沿BC 运动,速度为1cm/s .点P 在折线BAC 上,且PD ⊥BC 于点D .点D 运动2s 时,点P 与点A 重合.△PBD 的面积S (cm 2)与运动时间t (s)的函数关系图象如图2所示,E 是函数图象的最高点.当S (cm 2)取最大值时,PD 的长为( )A .B .(1+cm C .(1+cm D .(2+cm【思路点拨】本题考查动点函数图象,二次函数图象性质,三角形面积.本题属二次函数与几何综合题目.先根据点D 运动2s 时,点P 与点A 重合.从而求得PD ==,再由函数图象求得BC =(2+×1=(2+cm ,从而求得DC =BC ―BD =2+2=,得出PD =DC ,然后根据由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.所以当2≤t ≤2+点P 在AC边上,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,根据三角形面积公式求得S △PBD =―12t ―(13)2+2+【解题过程】解:由题意知,点D 运动2s 时,点P ,D 的位置如图1所示.此时,在Rt △PBD 中,BD =2cm ,∠B =60°,PD ⊥BC ,∴PB =2BD =4(cm),∴PD ==.由函数图象得BC =(2+×1=(2+cm ,∴DC =BC ―BD =2+2=,∴PD =DC .由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.当2≤t ≤2+P 在AC 边上,如图2,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,∴S △PBD =12×BD ×PD =12×t ×(2+t )=―12t 2+(1+t .∵S △PBD =――(1+3)2+2+又∵―12<0,∴当t =1+S △PBD 的值最大,此时PD =CD =2+―(1+=(1+cm .故选:B .7.(2024·安徽·一模)如图,在四边形ABCD 中,∠A =60°,CD ⊥AD ,∠BCD =90°, AB =BC =4,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A ―B ―C 向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,△APQ 的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A .B .C .D .【思路点拨】分当0≤x <2时,点Q 在AB 上和当2≤x ≤4时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【解题过程】解:过Q 作QN ⊥AD 于N ,当0≤x <2时,点Q 在AB 上,∵∠A =60°,∴∠AQN =90°―60°=30°,∴AN = 12AQ =12×2x =x ,∴QN ==,∴y =12×AP ×NQ =12×x ×=2,当2≤x ≤4时,点Q 在BC 上,过点B 作BM ⊥AD 于点M ,∵BM ⊥AD ,∠A =60°,∴∠ABM =30°,∴AM = 12AB =12×4=2,∴BM ==∵CD ⊥AD ,QN ⊥AD ,∴QN ∥CD ,∴∠BQN =∠BCD =90°,∵BM ⊥AD, CD ⊥AD ,∴四边形BMNQ 是矩形,∴QN =BM = ,y =12AP ⋅QN =12x ×=,综上所述,当0≤x <2时的函数图象是开口向上的抛物线的一部分,当2≤x ≤4时,函数图象是直线的一部分,故选:D .8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,CD =,D 为AC 上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C→B→A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF ,设点P 的运动时间为t s ,正方形DPEF 的面积为S ,当点P 由点C 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象,若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等,当t 3=5t 1时,则正方形DPEF 的面积为( )A .3B .349C .4D .5【思路点拨】由题意可得:CD =CP =t ,当点P 在BC 上运动时S =t 2+2,由图可得,当点P 与点B 重合时,S =6,求出t=2,即BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,求出抛物线解析式为S=(t―2)2+2,从两个函数表达式看,两个函数a相同,都为1,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,t1+t2=4①,t2+t3=8②,结合t3=5t1③,求出t的值即可得出答案.【解题过程】解:由题意可得:CD=CP=t,当点P在BC上运动时,S=DP2=CP2+CD2=t2+2,由图可得,当点P与点B重合时,S=6,∴t2+2=6,∴t=2或t=―2(不符合题意,舍去),∴BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,则抛物线的表达式为S=a(t―4)2+2,将2,6代入得:a(2―4)2+2=6,∴a=1,∴抛物线的表达式为:S=(t―4)2+2,从两个函数表达式看,两个函数a相同,都为1,若存在3个时刻t1,t2,t3(t1<t2t3)对应的正方形DPEF的面积均相等,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,∴t1+t2=4①,t2+t3=8②,∵t3=5t1③,由①③③解得t1=1,∴S=t2+2=1+2=3,故选:A.9.(22-23九年级上·浙江嘉兴·期中)如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC=6,点O为AC 中点,点D为线段AB上的动点,连接OD,设BD=x,OD2=y,则y与x之间的函数关系图像大致为( )A .B .C .D .【思路点拨】如图:过O 作OE ⊥AB ,垂足为E ,先根据直角三角形的性质求得AB =12,AC =OA =12AC =AE ==92可得DE =152―x ,然后再根据勾股定理求得函数解析式,最后确定函数图像即可.【解题过程】解:如图:过O 作OE ⊥AB ,垂足为E∵∠C =90°,∠ABC =60°∴∠A =30°∵BC =6∴AB =2BC =12∴AC ===∵点O 为AC 中点∴OA =12AC =∵∠A =30°∴OE =12AO =∴AE ===92∴DE =|152―x |∴OD 2=OE 2+DE 2,即y =+―x 2=x +274当x =0时,y =0―+274=63当x =152时,y =―+274=274当x =12时,y =12+274=27则函数图像为.故选C .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C .D .【思路点拨】本题主要考查动点问题,依托三角形面积考查二次函数的图象和分类讨论思想,取BC 的中点F,连接DF 根据题意得到DF 和DE ,分三种情况讨论三角形的面积:(1)当0<t ≤6时,得MN =AE =6,结合三角形面积公式求解即可;(2)当6<t ≤12时,得AM ,MC ,CN 和BN ,结合S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN ;(3)当12<t ≤14时,点M 、N 都在BC 上,结合DF 和MN 求面积即可.【解题过程】解:如图,取BC 的中点F ,连接DF ,∴DF ∥AC ,DF =12AC =6∵点D 、E 是中点,∴DE =12BC =4,DF ∥CB ,∵∠C =90°,∴四边形DECF 为矩形,当0<t ≤6时,点M 在AE 上,点N 在EC 上,MN =AE =6,∴S =12MN ⋅DE =12×6×4=12;如图,当6<t ≤12时,点M 在EC 上,点N 在BC 上,∵AM =t ,∴MC =12―t ,CN =t ―6,BN =14―t ,∴S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN=12×8×12―12×4t ―12×6(14―t)―12(12―t)(t ―6)=12t 2―8t +42;如图,当12<t ≤14时,点M 、N 都在BC 上,∴S =12MN ⋅DF =12×6×6=18,综上判断选项A 的图象符合题意.故选:A .11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A 、B 、C 、D 分别是菱形的四个顶点,∠A =60°.现有两个机器人(看成点)分别从A ,C 两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C 和C→D→A .若移动时间为t ,两个机器人之间距离为d .则 d²与t 之间的函数关系用图象表示大致为( )A .B .C .D .【思路点拨】设菱形的边长为2,根据菱形的性质求出关于两个机器人之间的距离d2的解析式,再利用二次函数的性质即可解答.【解题过程】解:①设AD=2,如图所示,∵移动时间为t,∠A=60°,∴CK=1,FT=KB=∴AE=t,CF=2―t,∴FK=2―t―1=1+t,∴ET=2―t―(1+t)=1+2t,∴在Rt△EFT中,EF2=ET2+FT2=(1+2t)2+2=4t2+4t+4;②设AD=2,如图所示,∵移动时间为t,∠A=60°,∴BM=t―2,CM=2―(t―2)=4―t,CP=1,PD=LQ=∴MQ=CM―CQ=(4―t)―1=―t,∴在Rt△LMQ中,ML2=MQ2+LQ2=(3―t)2+2=t2―6t+12,∴函数图像为两个二次函数图象;③当从A出发的机器人在B点,从C出发的机器人在D点,此时距离是BD;从A出发的机器人在A点,从C出发的机器人在C点,此时距离是AC;∵设AD=2,∠A=60°,∴BD=2,AE=∴AC=2AE=∴BD<AC,∴函数图象的起点和终点高于中间点;综上所述:A项符合题意;故选A.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.【思路点拨】本题主要考查了动点问题的函数图象,二次函数的图象,等腰三角形的性质等知识,如图,作AQ⊥BC于点Q,可知AQ=0<x≤1或1<x≤2或2<x≤3三种情形,分别求出重叠部分的面积,即可得出图象.【解题过程】解:如图①,设AC与DE交于点H,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC=2,BC=1,过点A作AQ⊥BC于点Q,则BQ=CQ=12∴AQ===∵四边形DEFG 是矩形,∴∠DEF =90°,DE =AQ ==OF ―OE =5―2=3,当0<x ≤1时,在Rt △HCE 中,∠ACE =60°,EC =x,∴∠CHE =30°,∴HC =2x ,∴HE ===∴S =12EC ×HE =12x ×=2,所以,S 关于x 的函数图象是顶点为原点,开口向上且在0<x ≤1内的一段;当1<x ≤2时,如图,设AB 与DE 交于点P ,∵EC =x,BC =2,∴BE =BC ―EC =2―x,同理可得,PE =x ―2),∴S =S △ABC ―S △PBE =12×2―12(2―x )⋅―x )=―x ―2)2+所以,图象为1<x ≤2时开口向下的一段抛物线索;当2<x ≤3时,如图,S =12×2×=此时的函数图象是在2<x≤3范围内的一条线段,即S=<x≤3),故选:C13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.【思路点拨】本题考查了二次函数与几何图形的综合,涉及等腰直角三角形,平移的性质,二次函数的性质等知识,解题的关键是灵活运用这些性质,学会分类讨论.过点D作DM⊥AB于M,由△ABC为等腰直角三角形,∠ABC=90°,可设AB=BC=2,可得AD=CD=BD=DM=AM=BM=1,然后分情况讨论:当0<x≤1时,当1<x≤2时,分别求出关于S、x的函数,再数形结合即可求解.【解题过程】解:过点D作DM⊥AB于M,∵△ABC为等腰直角三角形,∠ABC=90°,∴ AB =BC ,设AB =BC =2,∴ AD =CD =BD =DM =AM =BM =1,当0<x ≤1时,设B 1D 1交AC 于点G ,B 1C 1交BD 于N ,∴ AB 1=AB ―BB 1=2―x ,由平移知B 1G ∥BD ,∠AB 1G =∠ABD ,∴ △AB 1G 是等腰直角三角形,∴ S △AB 1G =12AB 1·12AB 1=14(2―x )2,又∵ S △ABD =12×12×2×2=1,S △BB 1N =12x 2∴ S =S △ABD ―S △AB 1G ―S △BB 1N =1―14(2―x )2―12x 2=―34x 2+x ,当x =―=23时取得最大值,故排除A 、B 选项当1<x ≤2时,B 1D 1交AC 于点G ,B 1C 1交AC 于点H ,∵ B 1H ∥BC ,∴ ∠B 1HG =∠ACB =45°,又∵ ∠D 1B 1C 1=45°,∴ △B 1GH 为等腰三角形,∵ ∠AB 1D 1=∠ABD =45°=∠A ,∴ AB 1G 为等腰三角形,∴ B 1G =1=―x ),∴ S =S △B 1GH =12·―x )―x )=14(2―x )2,即当1<x ≤2时,函数图像为开口向上的抛物线,故排除C 选项故选:D .14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.【思路点拨】根据题意可知分情况讨论,分别列出当点P在BC上时,点P在CD上时,点P在AD上时表达式,再画图得到函数解析式,即可得到本题答案.【解题过程】解:设点P的运动时间为x(s),△BPQ的面积为y(cm2),①当0≤x≤1时,点P在BC上时,过点P作PE⊥BA,,∵根据题知:∠B =60°,PB =3x,BQ =x ,∴BE =32x ,PE =,∴y =12BQ·PE =12x·=2;②当1<x ≤2时,点P 在CD 上时,过点P 作PH ⊥BA ,,∵根据题知:∠B =60°,BC =3,BQ =x ,∴PH =∴y =12BQ·PH =12x·=;③当2<x ≤3时,点P 在AD 上时,过点P 作PF ⊥BA 交DA 延长线于F ,,∵根据题知:∠B =60°,即∠FAD =60°,∵BC +CD +AD =3+3+3=9cm ,BC +CD +DP =3x ,∴AP =(9―3x)cm ,∴PF =9―3x 2·∴y =12BQ·PF =12x·9―3x 2·=―2;∴结合三种情况,图像如下所示:,故选:D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.【思路点拨】先根据菱形的性质求出各点坐标,分M的横坐标x在0∼1,1∼2,2∼3之间三个阶段,用含x的代数式表示出△PMN的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.【解题过程】解:∵菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半轴上,∴ AB =AD =2,OA=∴ OB===1,∴ OC =OB +BC =1+2=3,∴ A ,B (1,0),C (3,0),设直线AB 的解析式为y =kx +b ,将A ,B (1,0)代入,得:k +b = ,解得k =b =∴直线AB 的解析式为y =―+∵ MN∥y 轴,∴N 的横坐标为x ,(1)当M 的横坐标x 在0∼1之间时,点N 在线段AB 上,△PMN 中MN 上的高为1+x ,∴ N (x,―+,∴ MN=(―+=,∴ S △PMN =12MN ⋅(1+x )=⋅(1+x)=2+,∴该段图象为开口向上的抛物线;(2)当M 的横坐标x 在1∼2之间时,点N 在线段BC 上,△PMN 中MN =MN 上的高为1+x ,∴ S △PMN =12MN ⋅(1+x)=(1+x)=∴该段图象为直线;(3)当M 的横坐标x 在2∼3之间时,点N 在线段BC 上,△PMN 中MN 上的高为1+x ,由D ,C (3,0)可得直线CD 的解析式为y =―+∴ M (x,―+,N (x,0),∴ MN =―+∴ S △PMN =12MN ⋅(1+x )=12(+⋅(1+x )=―2∴该段图象为开口向下的抛物线;观察四个选项可知,只有选项A 满足条件,故选A .16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A (2,0),点B,点C (―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t 的关系图象是()A.B.C.D.【思路点拨】先分析各个线段的长,在Rt△OAB中,可知,OA=2,OB AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,易得△OBC是等边三角形,OC=BC=OB P在OA上运动用时2s,在AB上运动用时4s,点Q在OC上运动用时2s,在OC上运动用时2s,则点P和点Q共用时4s,可排除D选项;再算出点P在OA上时,y的函数表达式,结合选项可得结论.【解题过程】解:如图,∵点A(2,0),点B(0,∴OA=2,OB∴AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,则OM =BM CM =3,∴OC =BC ∴△OBC 是等边三角形,∠BOC =60°,∴点P 在OA 上运动用时2s ,在AB 上运动用时4s ,点Q 在OC 上运动用时2s ,在OC 上运动用时2s ,即点P 和点Q 共运动4s 后停止;由此可排除D 选项.当点P 在线段OA 上运动时,点Q 在线段OC 上运动,过点Q 作QN ⊥x 轴于点N ,由点P ,点Q 的运动可知,OP =t ,OQ ,∴QN =12OQ ==32t,∴PN =52t,∴y =PQ 2=(52t)2+2=7t 2.即当0<t <2时,函数图象为抛物线,结合选项可排除A ,C .故选:B .17.(2022·辽宁·中考真题)如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A.B.C.D.【思路点拨】分三种情形∶①当0<x≤2时,△CDG,②当2<x≤4时,重叠部分为四边形AGDC,③当4<x≤8时,重叠部分为△BEG,分别计算即可.【解题过程】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,BC=2,AM=∴BM=CM=12BC•AM=∴S△ABC=12①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DGCD•DG2;∴S=12②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG4﹣x),×(4﹣x)4﹣x),∴S=S△ABC﹣S△BDG=﹣12∴S=2﹣x﹣4)2③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD =x ,则CE =x ﹣4,DB =x ﹣4,∴BE =x ﹣(x ﹣4)﹣(x ﹣4)=8﹣x ,∴BM =4﹣12x在Rt △BGM 中,GM 4﹣12x ),∴S =12BE •GM =12(8﹣x )4﹣12x ),∴S x ﹣8)2,综上,选项A 的图像符合题意,故选:A .18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒【思路点拨】先由图2中的函数图像得到当t =5时,点Q 到达点C ,即BC =5cm ,然后由5<t <7时,y =10可知△BPQ的面积是定值10cm 2、BE =5cm,ED=2cm ,当t =7时点P 到达点D ,AE ==4cm ,可以判定A ;当0<t ≤5时,根据y =25t 2得到y =2.5cm 2,过点P 作PH ⊥BC 于点H ,根据y =12BQ·PH =12×2.5cm ×PH =2.5cm 2求得PH =2,设QH =x cm ,根勾股定理计算QH =1cm ,可计算PQ =根据AB =CD =4cm ,得到再运动4秒到达C 点即H (11,0),N (7,10),确定直线HN 或475秒;当t =294>284=7时,故点Q 在DC 上,把t =294代入直线HN 的解析式计算BQ PQ =43.【解题过程】解:设抛物线的解析式为y =at 2,当t =5时,y =10,∴10=25a ,解得a =25,∴y =25t 2,由图2中的函数图像得当t =5时,点Q 到达点C ,即BC =BE =5cm ,∵5<t <7时,y =10,∴△BPQ 的面积是定值10cm 2且BE =5cm,ED=2cm ,当t =7时点P 到达点D ,∴AE =5―2==4cm,AD=BC =5cm ,∴AB:AD =4:5,故A 正确,不符合题意;当0<t ≤5时,∵y =25t 2,t =2.5,∴BP =BQ =2.5cm ,y =2.5cm 2,过点P 作PH ⊥BC 于点H ,∴y =12BQ·PH =12×2.5cm ×PH =2.5cm 2解得PH =2,设QH =x cm ,则BH =BQ ―QH =(2.5―x )cm ,∴2.52=22+(2.5―x )2,解得x =1,x =4(舍去),∴QH =1cm ,∴PQ==故B 正确,不符合题意;根据AB =CD =4cm ,∴再运动4秒到达C 点即H (11,0),N (7,10),设直线HN 的解析式为y =kt +b ,根据题意,得11k +b =07k +b =10 ,解得k =―52b =552 ,∴直线HN 的解析式为y =―52t +552,∵△BPQ 的面积为4cm 2,故4=25t 2或4=―52t +552解得t==―t =475,故D 正确,不符合题意;∵t =294>284=7时,故点Q 在DC 上,当t =294时,y =―52×294+552=758,12PQ·BC =758解得PQ=154∴BQ PQ =5154=43.故C错误,符合题意.故选:C.19.(2023·辽宁·中考真题)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【思路点拨】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.【解题过程】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFGH全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠MAD=∠AGE=30°,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,∠EAF=60°,∴EF==,∴S=2;②如图3时,当AE+AF=GE+AF=AF+CF=AC,x=6,解得x=4,则x+12由图2到图3,此时3<x≤4,如图4,记BC,EG的交点为Q,则△EQB是正三角形,∴EQ=EB=BQ=6―x,∴GQ=x―(6―x)=2x―6,而∠PQG=60°,∴PG==2x―6),∴S=S矩形EFHG―S△PQG=2x 2―12×(2x ―6)×2x ―6)=―2― ③如图6时,x =6,由图3到图6,此时4<x ≤6,如图5,同理△EKB 是正三角形,∴EK =KB =EB =6―x ,FC =AC ―AF =6―12x ,EF =, ∴S =S 梯形EKCF=―x +6―12x 2=―2, 因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线, 故选:A .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,现将菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,设平移时间为t (秒),菱形ABCD 位于y 轴右侧部分的面积为S ,则S 关于t 的函数图像大致为( )A .B .C .D .【思路点拨】过点B 作x 轴的垂线,垂足为点E ,如图所示,由菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,分①当0≤t ≤2时;②当2<t <4时;③当4≤t ≤6时;④当t >6时;四种情况,作图求解S 关于t 的函数解析式,作出图像即可得到答案.【解题过程】解:过点B 作x 轴的垂线,垂足为点E ,如图所示:∵菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,∴OE =2,OB =4,∴∠OBE =30°,∴∠BOE =60°,BE =①当0≤t ≤2时,如图(1)所示:S =12OA ⋅OF =12×t ×=2;②当2<t <4时,如图(2)所示:S =S △ABE +S 矩形OEBG =12AE ⋅BE +BE ⋅OE =12×2×t ―2)=―③当4≤t ≤6时,如图(3)所示:∵∠C =60°,OD =OA ―AD =t ―4,∴∠KDO =60°,OK=t ―4),∵HO =BE =∴HK =HO ―OK =―t ―4)=―+∵HB =OE =OA ―AE =t ―2,∴CH =BC ―HB =4―(t ―2)=―t +6,S =S 菱形ABCD ―S △CHK =AD ⋅BE ―12CH ⋅HK =4×―12(―t +6)(―+=―2―+=―2―当t >6时,S =S 菱形ABCD =AD ⋅BE=综上所述S =20≤t ≤2―2<t <4t2+―4≤t ≤6t >6 ,∴第一段二次函数部分,开口向上;第二段一次函数部分;第三段二次函数部分,开后向下;第四段平行于x轴的射线,故选:A.。

浙江省各地中考数学压轴题汇编(钟老师整理)

浙江省各地中考数学压轴题汇编(钟老师整理)

2011 年浙江省各地中考数学压轴题精选1.(2011浙江湖州)如图,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点。

P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D。

⑴求点 D 的坐标(用含m 的代数式表示);⑵当△ APD 是等腰三角形时,求m的值;⑶设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME 的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动。

请直接写出点H所经过的路径长。

(不必写解答过程)2.(2011浙江嘉兴)已知直线y kx 3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P 由原点O 向点 A 运动,速度为每秒 1 个单位长度,过点P 作x 轴的垂线交直线AB 于点C,设运动时间为t 秒.(1)当k 1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P 到达点 A 时两点同时停止运动(如图1).① 直接写出t =1秒时C、Q 两点的坐标;② 若以Q、C、A为顶点的三角形与△ AOB相似,求t的值.(2)当k 3时,设以 C 为顶点的抛物线y (x m)2n与直线AB 的另一交点为D(如图2),4① 求 CD 的长;② 设△COD 的 OC 边上的高为 h ,当 t 为何值时, h 的值最大?3、(2011?丽水)如图,在平面直角坐标系中,点 A ( 10,0),以 OA 为直径在第一象限内作 半圆 C ,点 B 是该半圆周上一动点,连接 OB 、AB ,并延长 AB 至点 D ,使 DB=AB ,过点D 作 x 轴垂线,分别交 x 轴、直线 OB 于点E 、1)当∠ AOB=3°0 时,求弧 AB 的长度;2)当 DE=8 时,求线段 EF 的长;4.(2011浙江宁波)如图,平面直角坐标系 xOy 中,点 A 的坐标为 ( 2,2) ,点B 的坐标为(6,6) , 抛物线经过 A 、O 、B 三点,连结 OA 、OB 、 AB ,线段 AB 交 y 轴于点 E . (1)求点 E 的坐标;(2)求抛物线的函数解析式;(3) 点 F 为线段 OB 上的一个动点(不与点 O 、 B 重合),直线 EF 与抛物线交于M 、N 两 点(点 N 在 y 轴右侧),连结 ON 、 BN ,当点 F 在线段 OB 上运动时,求△ BON 面积 的最大值,并求出此时点 N 的坐标;F ,点 E 为垂足,连接 CF .( 3)在点 B 运动过程中,是否存在以点 E 、C 、 请求出此时点 E 的坐标;若不存在,F 为顶点的三角形与 △ AOB 相似,若存在,(4)连结AN,当△BON面积最大时,在坐标平面内求使得△ BOP与△ OAN相似(点B、5、(2011 浙江衢州)已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y正半轴的点 C 时,恰好有l1⊥l2,经过点A、B、C 的抛物线的对称轴与直线l2 交于点K,如图所示.(1)求点 C 的坐标,并求出抛物线的函数解析式;(2)抛物线的对称轴被直线l 1,抛物线,直线l2 和x 轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK 为等腰三角形的点M ,简述理由,并写出点M 的坐标.6、(2011浙江温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0 ),点B的坐标是(0,b )(b>0).P 是直线AB上的一个动点,作PC⊥x轴,垂足为C。

2021年浙江省金华市中考数学压轴题总复习(附答案解析)

2021年浙江省金华市中考数学压轴题总复习(附答案解析)

2021年浙江省金华市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.
(1)填空:AC=;∠F=.
(2)当BD=DE时,证明:△ABC≌△EAF.
(3)△EAF面积的最小值是.
(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围.
2.定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.
尝试运用
(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.
①证明△ABD是“类直角三角形”;
②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存
在,请求出CE的长;若不存在,请说明理由.
类比拓展
(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.。

2021浙江省中考压轴题集锦(几何解析几何为主)

2021浙江省中考压轴题集锦(几何解析几何为主)

2021浙江省中考压轴题集锦(几何、解析几何为主)12x+1,点C的坐4标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.y (1)写出点M的坐标;1.(浙江省杭州市)在平面直角坐标系xOy中,抛物线的解析式是y=(2)当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1 :2时,求t的值. M B A1P C O 1 2.(浙江省台州市)如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段..AC于点M,K.Q x (1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK_______MK(填“>”,“<”或“=”).②如图4,当∠CDF=30°时,AM+CK_______MK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK_______MK,证明你所得到的结论.(3)如果MK +CK =AM ,请直接写出∠CDF的度数和222MK的值. AMEE F C (F,K) C KM MB B A A D D图1 图2FE C C FK K M B B E A D A D (M)图3 图43.(浙江省台州市)如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.B (1)求证:△DHQ∽△ABC;P (2)求y关于x的函数解析式并求y的最大值;E (3)当x为何值时,△HDE为等腰三角形?DQ C H A 4.(浙江省温州市)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF上AC交射线BB1于F,G是EF中点,连结DG.设点D运动的时间为t 秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值;(3)以DH所在直线为对称轴,线段AC经轴对称变换后F B 的图形为A′C′.B1 3时,连结C′C,设四边形ACC′A′的面积为S, 5求S关于t的函数关系式;②当线段A′C′与射线BB1有公共点时,求t的取值范围(写出答案即可).①当t>H GCD EA5.(浙江省湖州市)如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A,D),连结PC,过点P作PE⊥PC交AB于E.(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ 之间的数量关系;若不存在,请说明理由;(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.P A DEB C6.(浙江省湖州市)如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x 轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值. y E A BDO F C x7.(浙江省衢州市、丽水市、舟山市)△ABC中,∠A=∠B=30°,AB=23.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.6时,求点B的横坐标; 22(2)如果抛物线y=ax+bx+c(a≠0)的对称轴经过点C,请你探究:(1)当点B在第一象限,纵坐标是5351,b=-,c=-时,A,B两点是否都在这条抛物线上?并说明理由;452②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若①当a=存在,直接写出m的值;若不存在,请说明理由.C -1Ay B 1 O -1 1 x 8.(浙江省宁波市)如图1,在平面直角坐标系中,O是坐标原点,□ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,23),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.(1)求∠DCB的度数;(2)当点F的坐标为(-4,0)时,求点G的坐标;(3)连结OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF′,记直线EF′与射线DC的交点为H.①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;②若△EHG的面积为33,请直接写出点F的坐标.y D E F A O (图1)l G C y D G H F′ E F A O (图2)y l C E x A O (备用图)D C B x B B x 9.(浙江省金华市)已知点P的坐标为(m,0),在x轴上存在点Q (不与P点重合),以2的图像上.小明对上述问题进行x了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在..PQ为边作正方形PQMN,使点M落在反比例函数y=-第四象限,另一个正方形的顶点M1在第二象限.2,P点坐标为(1,0),图中已画出一符合x条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;y M1的坐标是____________321Q P-3 -2 -1 O 1 2 3 x-1 N M-2-3(1)如图所示,若反比例函数解析式为y=-(2)请你通过改变P点坐标,对直线M1M的解析式y=kx+b进行探究可得k=________,若点P的坐标为(m,0)时,则b=________;(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.10.(浙江省金华市)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点的坐标分别为(3,0)和(0,33).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的速3(长度单3位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两度分别为1,3,2(长度单位/秒).一直尺的上边缘l从x轴的位置开始以点.设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.请解答下列问题:(1)过A,B两点的直线解析式是___________________;(2)当t=4时,点P的坐标为____________;当t=________,点P与点E重合;(3)①作点P关于直线EF的对称点P′,在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?②当t=2时,是否存在着点Q,使得△FEQ∽△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.yBE O PF A l x 11.(浙江省绍兴市)如图,设抛物线C1:y=a(x+1)-5,C2:y=-a(x-1)+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.(1)求a的值及点B的坐标;(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.①若l过△DHG的顶点G,点D 的坐标为(1,2),求点N的横坐标;②若l与△DHG的边DG相交,求点N的横坐标的取值范围. y y yC1 C1 C1A A A O O O x xB B B C2 C2 C2 备用图1 备用图21212.(浙江省嘉兴市)如图,已知抛物线y=-x+x+4交x轴的正半轴于点A,交y 轴于2点B.(1)求A、B两点的坐标,并求直线AB的解析式;(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值. y y B B22xF Q O P E A x O (备用)A x感谢您的阅读,祝您生活愉快。

2021年浙江省杭州市中考数学压轴题总复习(附答案解析)

2021年浙江省杭州市中考数学压轴题总复习(附答案解析)

2021年浙江省杭州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.
(1)如图1,试判断四边形AEDF的形状,并说明理由;
(2)如图2,若AD=4√3,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG 交AD于点M,连接FH交EG于点N.
(i)求EN•EG的值;
(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上
2.已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=4
5,点E在对角线AC上(不
与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;
(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;
(3)当△DFC是等腰三角形时,求AD的长.。

2024杭州中考数学压轴题

2024杭州中考数学压轴题

中考数学试卷一、单项选择题(共12分)1.如图图形中是中心对称图形的为()A.B. C. D.2.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=35.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。

A.B.C.D.6.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d二、填空题(共24分)7.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。

8.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。

9.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.三、解答题(共20分)10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。

(1)求证:△ADE∽△MAB;(2)求DE的长。

11.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。

16.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件。

(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润。

12.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.13.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达多少?(结果保留根号)14.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E。

押浙江卷第23题(二次函数的应用与综合)(解析版)-备战2024年中考数学临考题号押题

押浙江卷第23题(二次函数的应用与综合)(解析版)-备战2024年中考数学临考题号押题

押浙江卷第23题(二次函数的应用与综合)押题方向:二次函数应用及综合问题2023年浙江真题考点命题趋势2023年湖州卷第21题二次函数的应用从近几年浙江各地中考来看,解答题中二次函数考查内容主要是二次函数的实际应用、二次函数综合,其中二次函数的综合题经常以压轴题出现,试题的整体难度比较高,预计2024年浙江卷还将重视二次函数综合问题的考查。

2023年湖州卷、衢州卷、绍兴卷、舟山、嘉兴卷、丽水卷第23题、杭州卷第22题、金华卷第24题二次函数综合1.(2023•杭州)设二次函数y =ax 2+bx +1(a ≠0,b 是实数).已知函数值y 和自变量x 的部分对应取值如下表所示:x …﹣10123…y…m1n1p…(1)若m =4,①求二次函数的表达式;②写出一个符合条件的x 的取值范围,使得y 随x 的增大而减小.(2)若在m ,n ,p 这三个实数中,只有一个是正数,求a 的取值范围.【思路点拨】(1)①利用待定系数法即可求得;②利用二次函数的性质得出结论;(2)根据题意m ≤0,由﹣=1,得出b =﹣2a ,则二次函数为y =ax 2﹣2ax +1,得出m =a +2a +1≤0,解得a ≤﹣.【解析】解:(1)①由题意得,∴二次函数的表达式是y=x2﹣2x+1;②∵y=x2﹣2x+1=(x﹣1)2,∴抛物线开口向上,对称轴为直线x=1,∴当x<1时,y随x的增大而减小;(2)∵x=0和x=2时的函数值都是1,∴抛物线的对称轴为直线x=﹣=1,∴(1,n)是顶点,(﹣1,m)和(3,p)关于对称轴对称,若在m,n,p这三个实数中,只有一个是正数,则抛物线必须开口向下,且m≤0,∵﹣=1,∴b=﹣2a,∴二次函数为y=ax2﹣2ax+1,∴m=a+2a+1≤0,∴a≤﹣.【点睛】本题考查了二次函数的图象与系数的关系,待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,能够明确题意得出m=a+2a+1<0是解题的关键.2.(2023•丽水)已知点(﹣m,0)和(3m,0)在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图象上.(1)当m=﹣1时,求a和b的值;(2)若二次函数的图象经过点A(n,3)且点A不在坐标轴上,当﹣2<m<﹣1时,求n的取值范围;【思路点拨】(1)当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),用待定系数法可得a的值是﹣1,b的值是﹣2;(2)y=ax2+bx+3图象过点(﹣m,0)和(3m,0),可知抛物线的对称轴为直线x=m,而y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,可得m=,根据﹣2<m<﹣1,即得﹣4<n<﹣2;(3)由抛物线过(﹣m,0),(3m,0),可得﹣=m,b=﹣2am,把(﹣m,0),(3m,0)代入y=ax2+bx+3变形可得am2+1=0,故b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.【解析】(1)解:当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),∴,∴a的值是﹣1,b的值是﹣2;(2)解:∵y=ax2+bx+3图象过点(﹣m,0)和(3m,0),∴抛物线的对称轴为直线x=m,∵y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,∴由图象的对称性得n=2m,∴m=,∵﹣2<m<﹣1,∴﹣2<<﹣1,∴﹣4<n<﹣2;(3)证明:∵抛物线过(﹣m,0),(3m,0),∴抛物线对称轴为直线x==m,∴﹣=m,∴b=﹣2am,把(﹣m,0),(3m,0)代入y=ax2+bx+3得:,①×3+②得:12am2+12=0,∴am2+1=0,∴b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.【点睛】本题考查二次函数图象上点坐标的特征,涉及待定系数法,不等式,方程组等知识,解题的关键是整体思想的应用.3.(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.【思路点拨】(1)用待定系数法求出函数表达式,配成顶点式即可得顶点坐标;(2)求出A关于对称轴的对称点坐标,由图象直接可得答案.【解析】解:(1)把A(1,﹣2)和B(0,﹣5)代入y=x2+bx+c得:,解得,∴二次函数的表达式为y=x2+2x﹣5,∵y=x2+2x﹣5=(x+1)2﹣6,∴顶点坐标为(﹣1,﹣6);(2)如图:∵点A(1,﹣2)关于对称轴直线x=﹣1的对称点C(﹣3,﹣2),∴当y≤﹣2时,x的范围是﹣3≤x≤1.【点睛】本题考查二次函数图象及性质,解题的关键是掌握待定系数法,求出函数表达式.4.(2023•绍兴)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.【思路点拨】(1)先把解析式进行配方,再求顶点;(2)根据函数的增减性求解;(3)根据函数的图象和系数的关系,结合图象求解.【解析】解:(1)①∵b=4,c=3时,∴y=﹣x2+4x+3=﹣(x﹣2)2+7,∴顶点坐标为(2,7).②∵﹣1≤x≤3中含有顶点(2,7),∴当x=2时,y有最大值7,∵2﹣(﹣1)>3﹣2,∴当x=﹣1时,y有最小值为:﹣2,∴当﹣1≤x≤3时,﹣2≤y≤7.(2)∵x≤0时,y的最大值为2;x>0时,y的最大值为3,∴抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线开口向下,x≤0时,y的最大值为2,∴c=2,又∵,∴b=±2,∵b>0,∴b=2.∴二次函数的表达式为y=﹣x2+2x+2.【点睛】本题考查了二次函数的性质,掌握数形结合思想是解题的关键.5.(2023•湖州)某水产经销商以每千克30元的价格购进一批某品种淡水鱼,由销售经验可知,这种淡水鱼的日销售量y(千克)与销售价格x(元/千克)(30≤x<60)存在一次函数关系,部分数据如表所示:销售价格x(元/千克)5040日销售量y(千克)100200(1)试求出y关于x的函数表达式.(2)设该经销商销售这种淡水鱼的日销售利润为W元,如果不考虑其他因素,求当销售价格x为多少时,日销售利润W最大?最大的日销售利润是多少元?【思路点拨】(1)设y与x之间的函数关系式为y=kx+b,由表中数据即可得出结论;(2)根据每日总利润=每千克利润×销售量列出函数解析式,根据函数的性质求最值即可.【解析】解:(1)设y关于x的函数表达式为y=kx+b(k≠0).将x=50,y=100和x=40,y=200分别代入,得:,解得:,∴y关于x的函数表达式是:y=﹣10x+600.(2)W=(x﹣30)(﹣10x+600)=﹣10x2+900x﹣18000.当x=﹣=45时,在30≤x<60的范围内,W取到最大值,最大值是2250.答:销售价格为每千克45元时,日销售利润最大,最大日销售利润是2250元.【点睛】本题考查一次函数、二次函数的应用,关键是根据等量关系写出函数解析式.6.(2023•温州)一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?【思路点拨】(1)求出抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,用待定系数法可得y=﹣(x﹣2)2+3;当x=0时,y=﹣×4+3=>2.44,知球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=﹣(x﹣2﹣m)2+3,把点(0,2.25)代入得m=﹣5(舍去)或m=1,即知当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.【解析】解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a=﹣,∴抛物线的函数表达式为y=﹣(x﹣2)2+3;当x=0时,y=﹣×4+3=>2.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=﹣(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25=﹣(0﹣2﹣m)2+3,解得m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题解决.7.(2023•湖州)如图1,在平面直角坐标系xOy中,二次函数y=x2﹣4x+c的图象与y轴的交点坐标为(0,5),图象的顶点为M.矩形ABCD的顶点D与原点O重合,顶点A,C分别在x轴,y轴上,顶点B的坐标为(1,5).(1)求c的值及顶点M的坐标.(2)如图2,将矩形ABCD沿x轴正方向平移t个单位(0<t<3)得到对应的矩形A′B′C′D′.已知边C′D′,A′B′分别与函数y=x2﹣4x+c的图象交于点P,Q,连接PQ,过点P作PG⊥A′B′于点G.①当t=2时,求QG的长;②当点G与点Q不重合时,是否存在这样的t,使得△PGQ的面积为1?若存在,求出此时t的值;若不存在,请说明理由.【思路点拨】(1)运用待定系数法将(0,5)代入y=x2﹣4x+c,即可求得c的值,再利用配方法将抛物线的解析式化为顶点式或运用顶点公式即可求得答案;(2)①当t=2时,D′,A′的坐标分别是(2,0),(3,0).进而可求得点P、Q的纵坐标,利用QG =y Q﹣y G,即可求得答案;②根据题意,得:P(t,t2﹣4t+5),Q(t+1,t2﹣2t+2),G(t+1,t2﹣4t+5),分两种情况:当点G在点Q的上方时,当点G在点Q的下方时,分别求得t的值即可.【解析】解(1)∵二次函数y=x2﹣4x+c的图象与y轴的交点坐标为(0,5),∴c=5,∴y=x2﹣4x+5=(x﹣2)2+1,∴顶点M的坐标是(2,1).(2)①如图1,∵A在x轴上,B的坐标为(1,5),∴点A的坐标是(1,0).当t=2时,D′,A′的坐标分别是(2,0),(3,0).当x=3时,y=32﹣4×3+5=2,即点Q的纵坐标是2.当x=2时,y=1,即点P的纵坐标是1.∵PG⊥A′B′,∴点G的纵坐标是1,∴QG=2﹣1=1.②存在.理由如下:∵△PGQ的面积为1,PG=1,∴QG=2.根据题意,得:P(t,t2﹣4t+5),Q(t+1,t2﹣2t+2),∴G(t+1,t2﹣4t+5),如图2,当点G在点Q的上方时,QG=t2﹣4t+5﹣(t2﹣2t+2)=3﹣2t=2,此时(在0<t<3的范围内).如图3,当点G在点Q的下方时,QG=t2﹣2t+2﹣(t2﹣4t+5)=2t﹣3=2,此时(在0<t<3的范围内).综上所述,存在t,使得△PGQ的面积为1,此时t的值为或.【点睛】本题是二次函数综合题,考查了待定系数法,抛物线的顶点,平移变换的性质,三角形面积等,运用数形结合思想和分类讨论思想是解题关键.8.(2023•金华)如图,直线y=与x轴,y轴分别交于点A,B,抛物线的顶点P在直线AB上,与x轴的交点为C,D,其中点C的坐标为(2,0),直线BC与直线PD相交于点E.(1)如图2,若抛物线经过原点O.①求该抛物线的函数表达式;②求的值.(2)连结PC,∠CPE与∠BAO能否相等?若能,求符合条件的点P的横坐标;若不能,试说明理由.【思路点拨】(1)①由抛物线经过原点O(0,0)、C(2,0),可得抛物线的顶点P(1,),利用待定系数法可得抛物线的函数表达式为y=﹣x2+3x;②先求出A(﹣2,0),B(0,),运用待定系数法可得直线OP的解析式为y=x,过点B作BF∥x轴交OP于点F,F(,),可得BF=,再由BF∥OC,得出△BEF∽△CEO,进而可得===;(2)分四种情形,分别作出图形求解即可.【解析】解:(1)①∵抛物线经过原点O (0,0)、C (2,0),∴对称轴为直线x =1,当x =1时,y =×1+=,∴抛物线的顶点P (1,),设抛物线的解析式为y =a (x ﹣1)2+,把C (2,0)代入,得a +=0,解得:a =﹣,∴y =﹣(x ﹣1)2+=﹣x 2+3x ,∴该抛物线的函数表达式为y =﹣x 2+3x ;②∵直线y =与x 轴,y 轴分别交于点A ,B ,∴A (﹣2,0),B (0,),设直线OP 的解析式为y =kx ,把P (1,)代入,得:k =,∴直线OP 的解析式为y =x ,如图,过点B 作BF ∥x 轴交OP 于点F ,则点F 的纵坐标与点B 的纵坐标相同,∴=x ,解得:x =,∴F (,),∴BF=,∵BF∥OC,∴△BEF∽△CEO,∴===,∴的值为.(2)设点P的横坐标为t,①如图2﹣1,当t>2,存在∠CPE=∠BAO,设∠CPE=∠BAO=α,∠APC=β,则∠APD=α+β,∵∠PCD=∠PAO+∠APC=α+β,∵PC=PD,∴∠PDC=∠PCD=∠APD,∴AP=AD=2t,过点P作PF⊥x轴于点F,则AF=t+2,在Rt△APF中,cos∠BAO==,∴=,∴t=6.②如图2﹣2中,当0<t≤2时,存在∠CPE=∠BAO.过点P作PF⊥x轴于点F,同法cos∠BAO==,∴=,∴t=.③如图2﹣3中,当﹣2<t≤0时,存在∠CPE=∠BAO=α,∵PC=PD,∴∠CPE=α,∴∠BAO﹣∠PDC=α,∴∠APD=∠PDA,∴AD=AP=﹣2t,同法cos∠BAO==,∴=,∴t=﹣.④当t≤﹣2时,同法cos∠BAO==,=,∴t=﹣【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,一次函数与二次函数综合运用,勾股定理,等腰三角形性质,相似三角形的判定和性质等,添加辅助线构造相似三角形是解题关键.9.(2023•浙江)在二次函数y=x2﹣2tx+3(t>0)中.(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为﹣2,求出t的值;(3)如果A(m﹣2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3.求m的取值范围.(2)抛物线y=x2﹣2tx+3对称轴为x=t.若0<t≤3,有t2﹣2t2+3=﹣2,若t>3,有9﹣6t+3=﹣2,解方程并检验可得t的值为;(3)根据A(m﹣2,a),C(m,a)都在这个二次函数的图象上,可得二次函数y=x2﹣2tx+3的对称轴直线x=t即为直线x==m﹣1,由t>0,得m>1,因m﹣2<m,知A在对称轴左侧,C在对称轴右侧,抛物线y=x2﹣2tx+3与y轴交点为(0,3),其关于对称轴直线x=m﹣1的对称点为(2m﹣2,3),由b<3,知4<2m﹣2,m>3;①当A(m﹣2,a),B(4,b)都在对称轴左侧时,y随x的增大而减小,有4<m﹣2,可得m满足的条件为m>6;②当A(m﹣2,a)在对称轴左侧,B(4,b)在对称轴右侧时,B(4,b)到对称轴直线x=m﹣1距离大于A(m﹣2,a)到对称轴直线x=m﹣1的距离,故4﹣(m﹣1)>m﹣1﹣(m﹣2),得:m<4,m满足的条件是3<m<4.【解析】解:(1)将(2,1)代入y=x2﹣2tx+3得:1=4﹣4t+3,(2)抛物线y=x2﹣2tx+3对称轴为x=t.若0<t≤3,当x=t时函数取最小值,∴t2﹣2t2+3=﹣2,解得t=;若t>3,当x=3时函数取最小值,∴9﹣6t+3=﹣2,解得(不符合题意,舍去);综上所述,t的值为;(3)∵A(m﹣2,a),C(m,a)都在这个二次函数的图象上,∴二次函数y=x2﹣2tx+3的对称轴直线x=t即为直线x==m﹣1,∴t=m﹣1,∵t>0,∴m﹣1>0,解得m>1,∵m﹣2<m,∴A在对称轴左侧,C在对称轴右侧,在y=x2﹣2tx+3中,令x=0得y=3,∴抛物线y=x2﹣2tx+3与y轴交点为(0,3),∴(0,3)关于对称轴直线x=m﹣1的对称点为(2m﹣2,3),∵b<3,∴4<2m﹣2,解得m>3;①当A(m﹣2,a),B(4,b)都在对称轴左侧时,∵y随x的增大而减小,且a<b,∴4<m﹣2,解得m>6,此时m满足的条件为m>6;②当A(m﹣2,a)在对称轴左侧,B(4,b)在对称轴右侧时,∵a<b,∴B(4,b)到对称轴直线x=m﹣1距离大于A(m﹣2,a)到对称轴直线x=m﹣1的距离,∴4﹣(m﹣1)>m﹣1﹣(m﹣2),解得:m<4,此时m满足的条件是3<m<4,综上所述,3<m<4或m>6.【点睛】本题考查二次函数的综合应用,涉及函数图象上点坐标的特征,解题的关键是分类讨论思想的应用.10.(2023•衢州)某龙舟队进行500米直道训练,全程分为启航,途中和冲刺三个阶段.图1,图2分别表示启航阶段和途中阶段龙舟划行总路程s(m)与时间t(s)的近似函数图象.启航阶段的函数表达式为s=kt2(k≠0);途中阶段匀速划行,函数图象为线段;在冲刺阶段,龙舟先加速后匀速划行,加速期龙舟划行总路程s(m)与时间t(s)的函数表达式为s=k(t﹣70)2+h(k≠0).(1)求出启航阶段s(m)关于t(s)的函数表达式(写出自变量的取值范围).(2)已知途中阶段龙舟速度为5m/s.①当t=90s时,求出此时龙舟划行的总路程.②在距离终点125米处设置计时点,龙舟到达时,t≤85.20s视为达标.请说明该龙舟队能否达标.(3)冲刺阶段,加速期龙舟用时1s将速度从5m/s提高到5.25m/s,之后保持匀速划行至终点.求该龙舟队完成训练所需时间(精确到0.01s).【思路点拨】(1)把A(20,50)代入s=kt2得出k的值,则可得出答案;(2)①设s=5t+b,把(20,50)代入,得出50=5×20+b,求得b=﹣50,当t=90时,求出s=400,则可得出答案;②把s=375代入s=5t﹣50,求得t=85,则可得出答案;(3)由(1)可知k=,把(90,400)代入s=,求得h=350.求出s=405.125,则可得出答案.【解析】解:(1)把A(20,50)代入s=kt2得50=400k,解得,∴启航阶段总路程s关于时间t的函数表达式为s=(0<t≤20);(2)①设s=5t+b,把(20,50)代入,得50=5×20+b,解得b=﹣50,∴s=5t﹣50.当t=90时,s=450﹣50=400.∴当t=90s时,龙舟划行的总路程为400m.②500﹣125=375,把s=375代入s=5t﹣50,得t=85.∵85<85.20,∴该龙舟队能达标.(3)加速期:由(1)可知k=,把(90,400)代入s=,得h=350.∴函数表达式为s=,把t=91代入s=,解得s=405.125.∴(500﹣405.125)÷5.25≈18.07(s),∴90+1+18.07=109.07(s).答:该龙舟队完成训练所需时间为109,07s.【点睛】本题是二次函数综合题,考查了二次函数的应用,一次函数的性质,二次函数图象上点的坐标特征,待定系数法,根据条件准确得到表达式是解题关键.11.(2024•嘉善县一模)已知二次函数y=ax2+bx+c(a≠0),且a>b>c,a+b+c=0.(1)当b=0时,求方程ax2+bx+c=0的根;(2)已知该二次函数的对称轴为x=m,求证:;(3)已知该二次函数的图象与x轴,y轴分别交于A(x1,0),B(x2,0),C(0,c)三点(A在B的左侧),且x1+4x2=0,若△ABC为直角三角形,求该二次函数表达式.【思路点拨】(1)当b=0时,方程为:ax2+c=0,即可求解;(2)证明a>0且c<0,即可求解;(3)若△ABC为直角三角形,则只存在∠ACB为直角,即可求解.【解析】(1)解:∵a>b>c,a+b+c=0,则a>0且c<0,当b=0时,方程为:ax2+c=0,解得:x=±;(2)证明:由(1)知,a>0且c<0,则a+b=﹣c>0,即a+b>0,则﹣<1,即﹣<,∴;(3)解:∵a>0且c<0,且x1+4x2=0,解:由(1)知,抛物线的表达式为:y=ax2+bx+(﹣a﹣b),则x1+x2=﹣且x1x2=﹣,将x1+4x2=0代入上式两式得:4x2==1+=1+3x2,解得:x2=1,则x1=﹣4,即点A、B的坐标分别为:(﹣4,0)、(1,0),则可大致画出函数的图象如下:若△ABC为直角三角形,则只存在∠ACB为直角,则∵∠ACO+∠OCB=90°,∠OCB+∠OBC=90°,∴∠ACO=∠OBC,∴tan∠ACO=tan∠OBC,则OC2=OA×OB,即CO2=1×4=4,解得:CO=2,则点C(0,﹣2),由题意得,抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),则﹣4a=﹣2,解得:a=,则抛物线的表达式为:y=x2﹣x﹣2.【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、直角三角形的性质等熟悉二次函数的图象和性质是解题的关键.1.二次函数的应用:应用待定系数法,根据条件准确得到表达式是解题关键.2.二次函数的综合问题:熟练掌握待定系数法求函数的解析式,一次函数的图象与性质,二次函数的图象与性质,函数图象上点的特征是解题的关键.3.要重视数形结合在解决二次函数综合问题中的作用.1.在平面直角坐标系中,设二次函数y=ax2+bx﹣4a(a,b是常数,a≠0).(1)判断该函数图象与x轴的交点个数,并说明理由;(2)若该函数图象的对称轴为直线x=2,A(x1,m),B(x2,m)为该函数图象上的任意两点,其中x1<x2,求当x1,x2为何值时,m=8a;(3)若该函数图象的顶点在第二象限,且过点(1,2),当a<b时求3a+b的取值范围.【思路点拨】(1)依据题意,求出Δ=b2﹣4a(﹣4a)=b2+16a2,进而结合a≠0可以判断Δ>0,即可求解;(2)依据题意,也有对称轴为直线x=2,可得b=﹣4a,从而y=ax2+bx﹣4a=ax2﹣4ax﹣4a,当y1=y2=8a时,即y=ax2﹣4ax﹣4a=8a,然后计算即可求解;(3)依据题意,由(1)知,函数图象与x轴的交点个数为2且图象的顶点在第二象限,则抛物线开口向下,即a<0,进而求解.【解析】解:(1)由题意得,Δ=b2﹣4a(﹣4a)=b2+16a2,又a≠0,∴a2>0.∴16a2>0.又对于任意的b都有b2≥0,∴Δ=b2+16a2>0.∴函数图象与x轴的交点个数为2.(2)∵x=2=﹣,∴b=﹣4a.∴抛物线表达式为y=ax2+bx﹣4a=ax2﹣4ax﹣4a,当y1=y2=8a时,即y=ax2﹣4ax﹣4a=8a,解得x=6或﹣2,则x1=﹣2,x2=6.(3)将(1,2)代入抛物线表达式得:2=a+b﹣4a,则b=3a+2,∵a<b,故a<3a+2,∴解得a>﹣1.∴抛物线的表达式为y=ax2+(3a+2)x﹣4a,由(1)知,函数图象与x轴的交点个数为2且图象的顶点在第二象限,∴抛物线开口向下,即a<0.∴函数的对称轴x=﹣=﹣﹣<0,解得a<﹣,∴﹣1<a<﹣.∴﹣3<3a<﹣2.故﹣1<3a+2<0,即﹣1<b<0.∴﹣4<3a+b<﹣2.∴3a+b的取值范围:﹣4<3a+b<﹣2.【点睛】本题主要考查的是抛物线与x轴的交点、函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.2.在二次函数y=﹣x2+ax+1中(a≠0).(1)当a=2时,①求该二次函数图象的顶点坐标;②当0≤x≤3时,求y的取值范围;(2)若A(a﹣2,b),B(a,c)两点都在这个二次函数的图象上,且b<c,求a的取值范围.【思路点拨】(1)①把解析式化成顶点式即可求得;②根据二次函数的性质,可以得到当0<x<3时,y的取值范围;(2)根据抛物线的对称性及增减性即可解决问题.【解析】解:(1)①把a=2代入得y=﹣x2+2x+1=﹣(x﹣1)2+2,∴抛物线的顶点坐标为(1,2);②∵y=﹣x2+2x+1的开口向下,对称轴为直线x=1,∴当0≤x≤1时,y随x的增大而增大,当1≤x≤3时,y随x的增大而减小,∴当x=1时,y有最大值2.∵当x=0时,y=1;当x=3时,y=﹣2∴当0≤x≤3时,﹣2≤y≤2;(2)抛物线的对称轴为直线,①当,即0≤a≤4时,点B到对称轴的距离小于点A到对称轴的距离,∴,解得a<2,∴0≤a<2②当,即a<0时,点B到对称轴的距离小于点A到对称轴的距离,∴成立,∴a<0③对称轴在点A左侧不合题意,舍去,综上所述,a<2.【点睛】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征及二次函数的性质,熟知二次函数的图象和性质及巧用分类讨论的数学思想是解题的关键.3.已知二次函数y=x2﹣2kx+k﹣2的图象过点(5,5).(1)求二次函数的表达式.(2)若A(x1,y1)和B(x2,y2)都是二次函数图象上的点,且x1+2x2=2,求y1+y2的最小值.(3)若点P(a,n)和Q(b,n+2)都在二次函数的图象上,且a<b.对于某一个实数n,若b﹣a的最小值为1,则b﹣a的最大值为多少?【思路点拨】(1)利用待定系数法即可求解;(2)根据图象上点的坐标特征得出y1+y2=﹣4x1+﹣4x2,由x1+2x2=2可知x1=2﹣2x2,即可求得y1+y2=﹣4x1+﹣4x2=5(x2﹣)2﹣,利用二次函数的性质即可求得最小值;(3)由题意可知当点P(a,n)和Q(b,n+2)在对称轴的同侧时b﹣a的值最小,当点P(a,n)和Q (b,n+2)在异侧是b﹣a的值最大,据此求解即可.【解析】解:(1)∵二次函数y=x2﹣2kx+k﹣2的图象过点(5,5),∴5=25﹣10k+k﹣2,∴k=2,∴二次函数的表达式为y=x2﹣4x;(2)∵A(x1,y1)和B(x2,y2)都是二次函数图象上的点,∴y1=﹣4x1,y2=﹣4x2,∴y1+y2=﹣4x1+﹣4x2,∵x1+2x2=2,∴x1=2﹣2x2,∴y1+y2=﹣4x1+﹣4x2=(2﹣2x2)2﹣4(2﹣2x2)+﹣4x2=5﹣4x2﹣4=5(x2﹣)2﹣,∵5>0,∴y1+y2的最小值是﹣;(3)∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴t图象开口向上,对称轴为直线x=2,∵点P(a,n)和Q(b,n+2)都在二次函数的图象上,且a<b.对于某一个实数n,若b﹣a的最小值为1,∴点P(a,n)和Q(b,n+2)在对称轴的右侧,此时b﹣a=1,则b=a+1,∴a2﹣4a=n①,(a+1)2﹣4(a+1)=n+2②,②﹣①得a=,∴b=a+1=,∴此时点P(,n)和Q(,n+2),当点P是点(,n)的对称点时,则b﹣a的值最大,∵对称轴为直线x=2,∴点(,n)的对称点为(,n),∴此时a=,∴b﹣a的最大值为:﹣=2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数的最值,掌握二次函数的性质是解题的关键.4.定义:对于y关于x的函数,函数在x1≤x≤x2(x1<x2)范围内的最大值,记作M[x1,x2].如函数y=2x,在﹣1≤x≤3范围内,该函数的最大值是6,即M[﹣1,3]=6.请根据以上信息,完成以下问题:已知函数y=(a﹣1)x2﹣4x+a2﹣1(a为常数).(1)若a=2.①直接写出该函数的表达式,并求M[1,4]的值;②已知,求p的值.(2)若该函数的图象经过点(0,0),且M[﹣3,k]=k,求k的值.【思路点拨】(1)①将a值代入运算即可,利用新定义的规定计算即可;②令y=3,求得x值,再利用新定义的规定解答即可;(2)利用待定系数法求得a值,再利用分类讨论的方法,依据新定义的规定列出关于k的方程解答即可.【解析】解:(1)①∵a=2,∴y=x2﹣4x+3.∵[1,4],∴1≤x≤4.∴当x=4时,y=x2﹣4x+3=3,取得最大值,∴M[1,4]=3;②∵,∴当p≤x≤时,函数y取得最大值3,令y=3,则x2﹣4x+3=3,∴x=0或x=4.∴p=0.(2)∵该函数的图象经过点(0,0),∴a2﹣1=0,∴a=±1.当a=1时,y=﹣4x,∵M[﹣3,k]=k,∴k=﹣4×(﹣3)=12,∴k=12.当a=﹣1时,y=﹣2x2﹣4x.∵y=﹣2(x+1)2+2,∴当x=﹣1时,y取得最大值为2,∵M[﹣3,k]=k,∴﹣2k2﹣4k=k,∴k=0(不合题意,舍去)或k=﹣.∵当a=﹣1时,y=﹣2x2﹣4x.∵y=﹣2(x+1)2+2,∴当x=﹣1时,y取得最大值为2,∴k=2.当﹣3≤x≤2时,函数的最大值为2,∴k=2.综上,k的值为12或k=﹣或k=2.【点睛】本题主要考查了二次函数的解析式,一次函数的性质,待定系数法,二次函数图象的性质,本题是新定义型,正确理解新定义的规定并熟练运用是解题的关键.5.设二次函数y=ax2+bx+1(a≠0,b是常数),已知函数值y和自变量x的部分对应取值如表所示:x…﹣10123…y…m1n1p…(1)若m=0时,求二次函数的表达式;(2)当﹣1≤x≤3时,y有最小值为,求a的值;(3)若a<﹣3,求证:n﹣m﹣p>20.【思路点拨】(1)利用待定系数法解答即可;(2)利用抛物线的对称性得出抛物线的对称轴为直线x=1,利用二次函数的性质得到当x=1时,函数y取得最小值,再利用待定系数法解答即可;(3)利用抛物线的对称轴为直线x=1,得到b=﹣2a,则y=ax2﹣2ax+1,利用表格求得m,np的值,并计算出n﹣m﹣p=﹣7a﹣1,再利用不等式的性质解答即可得出结论.【解析】(1)解:当m=0时,抛物线y=ax2+bx+1经过(﹣1,0),(0,1),(2,1)三点,∴,∴,∴二次函数的表达式为y=﹣x+1;(2)解:∵抛物线y=ax2+bx+1经过(0,1),(2,1)两点,∴当x=0或x=2时,y=1,∴抛物线的对称轴为直线x=1,∴y=ax2﹣2ax+1,∵当﹣1≤x≤3时,y有最小值为,∴如果a>0,当x=1时,函数y取得最小值,∴,∴.∴a的值为;如果a<0,则x=﹣1或x=3时,函数y取得最小值,∴a×(﹣1)2﹣2a×(﹣1)+1=,∴a=﹣.综上,a的值为或﹣.(3)证明:由(2)知:抛物线的对称轴为直线x=1,∴=1,∴b=﹣2a.∴y=ax2﹣2ax+1,∴m=a×(﹣1)2﹣2a×(﹣1)+1=3a+1,n=a﹣2a+1=﹣a+1,p=m=3a+1,∴n﹣m﹣p=﹣a+1﹣(3a+1)﹣(3a+1)=﹣7a﹣1.∵a<﹣3,∴﹣7a>21,∴﹣7a﹣1>20.即:n﹣m﹣p>20.【点睛】本题主要考查了二次函数的性质,待定系数法,抛物线上点的坐标的特征,二次函数的极值,熟练掌握二次函数的性质和待定系数法是解题的关键.6.(2024•浙江模拟)已知点A(m,p),B(3,q),C(m+2,p)都在二次函数y=2x2+bx+4的图象上.(1)若m=1,求该二次函数的表达式;(2)求p+q的最大值;(3)若p<q<4,求m的取值范围.【思路点拨】(1)当m=1时,根据二次函数的对称轴为直线x=﹣==m+1求出b即可;(2)根据﹣=m+1得出b=﹣4(m+1),然后求出p+q关于m的二次函数解析式,根据函数的性质求最值;(3)根据p<q<4以及二次函数的性质求出m的取值范围.【解析】解:(1)根据题意得,二次函数的对称轴为直线x=﹣==m+1,当m=1时,﹣=2,∴b=﹣8,∴二次函数的表达式为y=2x2﹣8x+4;(2)∵﹣=m+1,∴b=﹣4(m+1),把A,B坐标分别代入y=2x2+bx+4得,p=2m2﹣4(m+1)m+4=﹣2m2﹣4m+4,q=18﹣4(m+1)×3+4=﹣12m+10,∴p+q=﹣2m2﹣4m+4﹣12m+10=﹣2m2﹣16m+14=﹣2(m﹣4)2+46,∵﹣2<0,∴m=4时,p+q最大值为46;(3)∵p<q,∴m>3或m+2<3,∵q<4,∴﹣12m+10<4,解得m>,∴m的取值范围为<m<1或m>3.【点睛】本题考查待定系数法求函数解析式、二次函数的最值以及二次函数的性质,关键是利用二次函数的性质解答.7.已知二次函数y1=ax(x+b)(a≠0)和一次函数y2=ax+m.(1)若二次函数y1的图象过点(1,0)和(2,2),求二次函数的表达式.(2)若一次函数y2与二次函数y1的图象交于x轴上同一点A,且A不是原点.①求证:m=ab;②若二次函数y1与一次函数y2的另一个交点B为y1的顶点,求b的值.【思路点拨】(1)利用待定系数法解答即可;(2)①令y=0,分别求得两个函数的图象与x轴的交点,依据已知条件列出关于a,b,m的等式,整理即可得出结论;②利用配方法求得抛物线的顶点坐标,将坐标代入一次函数的解析式,再利用①的结论得到关于b的方程,解方程即可得出结论.【解析】(1)解:∵二次函数y1的图象过(1,0),(2,2)点,∴,解得:,∴二次函数的表达式为y=x2﹣x;(2)①证明:令y1=0,则ax(x+b)=0,解得:x=0或x=﹣b.∴抛物线y1=ax(x+b)与x轴交于(0,0)(﹣b,0).令y2=0,则ax+m=0,∴x=﹣.∴直线y2=ax+m与x轴交于(﹣,0),∵若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点,∴﹣=﹣b,∴m=ab;②解:∵y1=ax(x+b)=ax2+abx=a(x+)2﹣,∴二次函数的顶点为(﹣,﹣).∵两个函数图象的另一个交点为二次函数的顶点,∴a•(﹣)+m=﹣.由①知:m=ab,∴﹣+ab=﹣,解得:b=0(不合题意,舍去)或b=﹣2.∴若两个函数图象的另一个交点为二次函数的顶点,b的值为﹣2.【点睛】本题主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,函数图象的交点,抛物线上点的坐标的特征,一次函数图象上点的坐标的特征,熟练掌握待定系数法是解题的关键.8.(2024•宁波模拟)设一次函数y1=a(x+m)的图象与x轴交于点A,二次函数的图象与x轴交于A,B两个不同的点,设函数y=y1+y2.(1)设点Q(0,q)在函数y的图象上,若q>c,求证:am>0.(2)若函数y2,y的图象在x轴上截得的线段长分别为d1,d2,求d1,d2的数量关系式.(3)若函数y1的图象分别与函数y2的图象、函数y的图象交于点E(x1,e),F(x2,f),且点E,F不同于点A,求x1﹣x2的值.【思路点拨】(1)把y1与y2相加得y=ax2+(a+b)x+am+c,把点Q代入y,再计算即可.(2)设A(t,0),代入y1得y1=a(x﹣t).设B(k,0),又A(t,0)得y2=ax2﹣(at+ak)x+atk,故y=ax2+(a﹣at﹣ak)x+atk﹣at,设y2=ax2﹣(at+ak)x+atk两根为p、q,再计算即可.(3)由(2)知y1=a(x﹣t),y2=a(x﹣t)(x﹣k),得a(x﹣t)=a(x﹣t)(x﹣k),计算得x1=k+1.由y1=a(x﹣t),y=a(x﹣t)+ax2﹣(at+ak)x+atk,得a(x﹣t)=a(x﹣t)+ax2﹣(at+ak)x+atk,计算得x2=k.故x1﹣x2=k+1﹣k=1.【解析】解:(1)∵y1=a(x+m),,∴y=y1+y2=a(x+m)+ax2+bx+c=ax2+(a+b)x+am+c,∵点Q(0,q)在函数y的图象上,∴q=am+c,即q﹣c=am,∵q>c,∴am>0.(2)设A(t,0),代入y1=a(x+m)得:0=a(t+m),∵a≠0,∴t+m=0,∴m=﹣t,y1=a(x﹣t).设B(k,0),又A(t,0),∴y2=a(x﹣t)(x﹣k)=ax2﹣(at+ak)x+atk,∴y=a(x﹣t)+ax2﹣(at+ak)x+atk=ax2+(a﹣at﹣ak)x+atk﹣at,设y2=ax2﹣(at+ak)x+atk两根为p、q,∴p+q==t+k,pq==tk,∴=(p﹣q)2=(p+q)2﹣4pq=(t+k)2﹣4tk=t2+k2﹣2tk,即=t2+k2﹣2tk=(t﹣k)2,∴d1=,设y=ax2+(a﹣at﹣ak)x+atk﹣at两根为r、s,∴r+s==k+t﹣1,rs==kt﹣t,∴=(r﹣s)2=(r+s)2﹣4rs=(k+t﹣1)2﹣4(kt﹣t)=k2+t2﹣2tk﹣2k+2t+1,∴﹣=|(t2+k2﹣2tk)﹣(k2+t2﹣2tk﹣2k+2t+1)|=|2(k﹣t)﹣1|=±2d1﹣1,答:d1,d2的数量关系式是:﹣=±2d1﹣1.(3)由(2)知y1=a(x﹣t),y2=a(x﹣t)(x﹣k),得a(x﹣t)=a(x﹣t)(x﹣k),∴a(x﹣t)(x﹣k)﹣a(x﹣t)=0,∴a(x﹣t)(x﹣k﹣1)=0,∴x=t,x=k+1,即A(t,0),x1=k+1.由y1=a(x﹣t),y=a(x﹣t)+ax2﹣(at+ak)x+atk,得a(x﹣t)=a(x﹣t)+ax2﹣(at+ak)x+atk,∴ax2﹣(at+ak)x+atk=0,∴x2﹣(t+k)x+tk=0,∴(x﹣t)(x﹣k)=0,∴x=t,x=k,即A(t,0),x2=k.∴x1﹣x2=k+1﹣k=1.【点睛】本题考查了抛物线的知识,掌握抛物线的性质是解题关键.9.如图,小车从点A出发,沿与水平面成30°角光滑斜坡AB下滑,在下滑过程中小车速度逐渐增加,设小车出发点A离水平地面BE的高度为h,小车从点A滑行到最低点B所用的时间为t(秒),小车滑行到点B时的速度为v(厘米/秒).速度v与时间t满足关系:v=10t,高度h与时间t满足关系:(g≠0,g是常数),当小车出发点小车出发点A离水平地面BE的高度为20(厘米)时,小车从点A滑到最低点B需要2秒.(1)当小车出发点A离水平地面BE的高度为45(厘米)时,小车滑到最低点B需要几秒钟?此时小车到达B点时的速度是多少?(2)小车继续在粗糙的水平地面BE上滑行,设滑行的距离为s(厘米),小车从斜坡滑行到点B时速度为v(厘米/秒),小车在水平地面BE上滑行的时间为T(秒),若s与v,T之间满足以下关系:+vT (a≠0,a是常数),当v=20(厘米/秒)时,s=50(厘米),T=5(秒).如果把小车出发点A离水平地面BE的距离h提高到125厘米,那么当滑行到时间T=4秒时,小车在水平地面BE上滑行的距离为多少?【思路点拨】(1)先根据已知条件求出g的值,求出高度h与时间t的函数解析式,再把h=45代入解析式求出t,再把t的值代入y=10t求出速度v;(2)先把v=20,s=50,T=5代入+vT求出a的值,再根据h=125求出t,再求出v,然后求出s即可.【解析】解:(1)当t=2,h=20时,20=g×22,解得g=10,∴h=×10t2=5t2;∴当h=45时,5t2=45,解得t=3或t=﹣3(舍去),此时v=10×3=30(cm/s),答:当小车出发点A离水平地面BE的高度为45(厘米)时,小车滑到最低点B需要3秒钟,此时小车到达B点时的速度是30厘米/秒;(2)把v=20,s=50,T=5代入+vT,则50=﹣a×52+20×5,解得a=4,∴s=﹣2T2+vT,当h=125时,5t2=125,。

浙江省衢州市,2020~2021年中考数学压轴题精选解析

浙江省衢州市,2020~2021年中考数学压轴题精选解析

浙江省衢州市,2020~2021年中考数学压轴题精选解析浙江省衢州市中考数学压轴题精选~~第1题~~(2020衢州.中考模拟) 建立模型:如图1,已知△ABC ,AC=BC ,∠C=90°,顶点C 在直线l 上.(1) 实践操作:过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于点E ,求证:△CAD ≌△BCE.(2) 模型应用:Ⅰ.如图2,在直角坐标系中,直线l :y= x+4与y 轴交于点A ,与x 轴交于点B ,将直线l 绕着点A 顺时针旋转45°得到l .求l 的函数表达式.Ⅱ.如图3,在直角坐标系中,点B (8,6),作BA ⊥y 轴于点A ,作BC ⊥x 轴于点C ,P 是线段BC 上的一个动点,点Q (a ,2a ﹣6)位于第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a 的值,若不能,请说明理由.~~第2题~~(2020衢州.中考模拟) 如图菱形ABCD 中,∠ADC=60°,M 、N 分别为线段AB ,BC 上两点,且BM=CN ,且AN ,CM 所在直线相交于E.(1) 证明△BCM ≌△CAN ;(2) ∠AEM=°;(3) 求证DE 平分∠AEC ;(4) 试猜想AE ,CE ,DE 之间的数量关系并证明.~~第3题~~(2020衢江.中考模拟) 在△ABC 中,∠ACB =90°,AC =8,BC =6,点D 是射线CB 上一动点,以每秒2个单位长度的速度从C 出发向B 运动,以CA ,CD 为边作矩形ACDE ,直线AB 与直线CE 、DE 的交点分别为F ,G.设点D 运动的时间为t (s ).1122(1) ________(用含t的代数式表示).(2)当四边形是正方形时,求的长.(3)当t为何值时,为等腰三角形?~~第4题~~(2020常山.中考模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,DE是△ABC的中位线,点F是BC边上的一个动点,连结AF交BD于点H,交DE于点G。

浙江省中考数学一轮复习 专题练习10 压轴题(1) 浙教版-浙教版初中九年级全册数学试题

浙江省中考数学一轮复习 专题练习10 压轴题(1) 浙教版-浙教版初中九年级全册数学试题

压轴题(1)班级某某学号一、选择题1.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或102.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.44.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( ) A.4个 B .3个 C .2个 D .1个第10题图FEDB CA7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .88.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:99.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3; ③3a +c >0④当y >0时,x 的取值X 围是﹣1≤x <3 ⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EOBCD12.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是_____________.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是.15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为.三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.24.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.答案详解一、选择题【考点】一元二次方程的解.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1,故选A.4.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.5.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定【考点】抛物线与x 轴的交点.【分析】设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,由二次函数的图象可知x 1+x 2>0,a >0,设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b 再根据根与系数的关系即可得出结论.【解答】解:设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,∵由二次函数的图象可知x 1+x 2>0,a >0,∴﹣>0.设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b ,则a +b =﹣=﹣+,∵a >0,∴>0, ∴a +b >0.故选C .6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( )A.4个 B .3个 C .2个 D .1个第10题图F D B A【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法【答案】B. 【解析】∵矩形ABCD 中,∴AD ∥BC .∴△AEF ∽△CAB ….......................①正确;∵△AEF ∽△CAB ,∴AF CF =AE BC =12,∴CF =2AF ……………………………②正确;过点D 作DH ⊥AC 于点H .易证△ABF ≌△CDH (AAS ).∴AF =CH .∵EF ∥DH ,∴AF FH =AEED =1.∴AF =FH .∴FH =CH .∴DH 垂直平分CF .∴DF =DC . ……………………………………………③正确;第10题答案图G HF E D ACB设EF =1,则BF =2.∵△ABF ∽△EAF .∴AF EF =BFAF .∴AF =EF •BF =1×2= 2.∴tan∠ABF =AF BF =22.∵∠CAD =∠ABF ,∴tan∠CAD =tan∠ABF =22.…………④错误. 故选择B.7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .8【分析】先根据S △ABO =4,tan ∠BAO =2求出AO 、BO 的长度,再根据点C 为斜边A ′B 的中点,求出点C 的坐标,点C 的横纵坐标之积即为k 值.【解答】解:设点C 坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D ,∵tan ∠BAO =2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故选C..8.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3X;第2个图案中白色纸片有7=1+2×3X;第3个图案中白色纸片有10=1+3×3X;…∴第n个图案中白色纸片有1+n×3=3n+1(X),根据题意得:3n+1=2017,解得:n=672,故选:B.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的X围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣=1,即b =﹣2a ,而x =﹣1时,y <0,即a ﹣b +c <0,∴a +2a +c <0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B .二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EO B A CD【知识点】直线射线和线段——垂线段最短、图形的相似——平行线分线段成比例定理、平行四边形——平行四边形的性质、【答案】4.【解析】根据“垂线段最短”,可知:当OD ⊥BC 时,OD 最短,DE 的值最小.当OD ⊥BC 时,OD ∥AB .∴CD BD =CO OA =1.∴OD 是△ABC 的中位线.∴OD =12AB =2.∴DE 的最小值=2OD =4.第14题答案图EOCABD12.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.【知识点】一次函数——一次函数与一元一次不等式【答案】x>3.【解析】由图象得到直线y=x+b与直线y=kx+6的交点P(3,5),在点P(3,5)的右侧,直线y =x+b落在直线y=kx+6的上方,该部分对应的x的取值X围为x>3,即不等式x+b>kx+6的解集是x>3.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为(﹣,).【考点】位似变换;坐标与图形性质;矩形的性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OB n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【专题】计算题;与圆有关的位置关系.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA 为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【考点】一次函数的应用;分式方程的应用.【分析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【解答】解:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB 的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB 相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.【解答】解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【知识点】平行四边形——平行四边形的性质、旋转——旋转的性质、二次函数——确定二次函数的表达式(待定系数法)、函数与几何动态——运动产生的面积问题及运动产生的特殊四边形问题、分类讨论思想、实际问题与数学建模——函数模型【思路分析】(1)先由OA ′=OA 得到点A ′的坐标,再用点C 、A 、A ′的坐标即可求此抛物线的解析式;(2)连接AA ′, 过点M 作MN ⊥x 轴,交AA ′于点N ,把△AMA ′分割为△AMN 和△A ′MN , △AMA ′的面积=△AMA ′的面积+△AMN 的面积=12OA ′•MN ,设点M 的横坐标为x ,借助抛物线的解析式和AA ′的解析式,建立MN 的长关于x 的函数关系式,再据此建立△AMA ′的面积关于x 的二次函数关系式,再求△AMA ′面积的最大值以及此时M 的坐标;(3)在P 、N 、B 、Q 这四个点中,B 、Q 这两个点是固定点,因此可以考虑将BQ 作为边、将BQ 作为对角线分别构造符合题意的图形,再求解.【解答】解:(1)∵ ABOC 绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′,点A 的坐标是(0,4),∴点A ′的坐标为(4,0),点B 的坐标为(1,4).∵抛物线过点C ,A ,A ′,设抛物线的函数解析式为y =ax 2+bx +c (a ≠0),可得: ⎩⎪⎨⎪⎧a -b +c =0c =416a + 4b +c =0. 解得:⎩⎪⎨⎪⎧a =-1b =3c =4.∴抛物线的函数解析式为y =-x 2+3x +4.(2)连接AA ′,设直线AA ′的函数解析式为y =kx +b ,可得⎩⎨⎧0+b =414k +b =0.解得:⎩⎨⎧k =-1b =4.∴直线AA '的函数解析式是y =-x +4.设M (x ,-x 2+3x +4),S △AMA ′=12×4×[-x 2+3x +4一(一x +4)]=一2x 2+8x =一2(x -2)2+8.∴x =2时,△AMA ′的面积最大S △AMA ′=8.∴M (2,6).(3)设P 点的坐标为(x ,-x 2+3x +4),当P 、N 、B 、Q 构成平行四边形时,①当BQ 为边时,PN ∥BQ 且PN =BQ ,∵BQ =4,∴一x 2+3x +4=±4.当一x 2+3x +4=4时,x 1=0,x 2=3,即P 1(0,4),P 2(3,4);当一x 2+3x +4=一4时,x 3=3+412,x 4=3-412,即P 3(3+412,-4),P 4(3-412,-4); ②当BQ 为对角线时,PB ∥x 轴,即P 1(0,4),P 2(3,4);当这个平行四边形为矩形时,即P l (0,4),P 2(3,4)时,N 1(0,0),N 2(3,0).综上所述,当P 1(0,4),P 2(3,4),P 3(3+412,-4),P 4(3-412,-4)时,P 、N 、B 、Q 构成平行四边形;当这个平行四边形为矩形时,N 1(0,0),N 2(3,0).24.如图1,△ABC 是等腰直角三角形,∠BAC = 90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请。

新课标九年级数学中考复习强效提升分数精华版中考数学压轴题精选精析

新课标九年级数学中考复习强效提升分数精华版中考数学压轴题精选精析

中考数学压轴题精选精析19.(浙江温州·模拟9)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:实际售价x(元/千克)…150 160 168 180月销售量y(千克)…500 480 464 440 …①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?第24题20.(浙江温州·模拟10)如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边),试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.DA O xyCB .(第24题图)直线x=1交x 轴于点B 。

P 为线段AB 上一动点,作直线PC ⊥PO ,交直线x=1于点C 。

过P 点作直线MN 平行于x 轴,交y 轴于点M ,交直线x=1于点N 。

(1)当点C 在第一象限时,求证:△OPM ≌△PCN ;(2)当点C 在第一象限时,设AP 长为m ,四边形POBC 的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段AB 上移动时,点C 也随之在直线x=1上移动,△PBC 是否可能成为等腰三角形?如果可能,求出所有能使△PBC 成为等腰直角三角形的点P 的坐标;如果不可能,请说明理由。

2024年浙江中考数学最后一卷终极押题卷及答案

2024年浙江中考数学最后一卷终极押题卷及答案

2024年浙江中考最后一卷数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。

一、单选题(本大题共有10小题,每小题3分,共30分)1.下列各数中最大的数是()A.5−B.0 C.1−D2.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x63.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.8×80.16108.01610×B.9C.10×80.1610×D.100.8016104.下列立体图形中,主视图是三角形的是()A.B.C.D.5.在数轴上表示不等式x﹣2≤0的解集,正确的是()A.B.C .D .6.随着自动驾驶技术的不断发展,某知名汽车制造公司近期对研发的自动驾驶汽车进行了一次大规模的路测,有45辆自动驾驶汽车参与了这次测试.测试结束后,技术部门对每辆汽车的性能进行评估(车辆的自动驾驶技术、安全性、反应速度等综合表现),得分如下:得分(分) 75 80 85 90车辆(辆) 5 16 14 10得分的中位数和众数分别是( )A .80,80B .82.5,80C .80,85D .85,807.如图,线段CD 是O 的直径,CD AB ⊥于点E ,若8AB =,3OE =,则CE 的长是( )A .8B .7C .6D .58.《九章算术》中曾记载:“今有牛五羊二,直金十两;牛二羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?若设每头牛值金x 两,每只羊值金y 两,则可列方程组为( )A .5210258x y x y += +=B .2510528x y x y += +=C .51058x y x y += +=D .21028x y x y += +=9.二次函数2y =的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B ,C 在函数图象上,四边形OBAC 为菱形,且120ABO ∠=°,则点C 的坐标为( )A .14 −B .14 −C . −D .(− 10.如图,四边形ABCD 是一张矩形纸片.折叠该矩形纸片,使AB 边落在AD 边上,点B 的对应点为点F ,折痕为AE ,展平后连接EF ;继续折叠该纸片,使FD 落在FE 上,点D 的对应点为点H ,折痕为FG ,展平后连接HG .若矩形HECG ∽矩形ABCD ,1AD =,则CD 的长为( ).A .0.5B 1−C D二、填空题(本大题共有6小题,每小题4分,共24分)11.因式分解: 34t t −=12.实现中国梦,必须弘扬中国精神.在如图所示除正面图案不同外,其余无差别的四张不透明卡片上分别写有“红船精神”、“长征精神”、“延安精神”、“特区精神”,将卡片置于暗箱摇匀后随机抽取一张,则所抽取卡片为“特区精神”的概率为 .13x 的值可以是 .(写出一个即可) 14.如图,《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕塑,掷铁饼者张开的双臂与肩宽可以近似看像一张拉满弦的弓,若弧长为2π3米,“弓”所在圆的半径1.2米,则“弓”所对的圆心角θ的度数为 .15.如图,点A 为反比例函数(0,0)k y k x x=<<的图象上一点,AB x ⊥轴于点B ,点C 是y 轴正半轴上一点,连接BC ,AD BC ∥交y 轴于点D ,若0.5ABCD S =四边形,则k 的值为 .16.如图,正方形ABCD 的边长为2,以AB 边上的动点O 为圆心,OB 为半径作圆,将AOD △沿OD 翻折至A OD ′ ,若O 过A OD ′ 一边上的中点,则O 的半径为 .三、解答题(本大题共有8小题,共66分)(共66分)17.(本题6分)计算或化简:(1)()201253π− +−−+−; (2)()()()2m n n m m n +−−−.18.(本题6分)如图,在平面直角坐标系中,ABC 的顶点坐标分别为()2,4A ,()3,1B ,()5,3C .(1)作ABC 关于y 轴对称的111A B C △;(2)将ABC 绕原点O 顺时针旋转90°,得到222A B C △,作出222A B C △并求点C 旋转到点2C 所经过的路径长.19.(本题6分)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓.引导学生爱该书.读好书,善读书,贵阳市某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查.将调查结果的数据分成A 、B 、C 、D 、E 五个等级并绘制成表格和扇形统计图如下.等级 周平均读书时间t (单位:小时) 人数A01t ≤< 4 B12t ≤< a C23t ≤< 20 D34t ≤< 15 E 4t ≥5 每个等级人数扇形统计图(1)求统计图表中=a ______,m =______.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为______.(3)请写出一条你对读书的建议.20.(本题8分)我国是世界上最早发明历法的国家之一,《周礼》中记载:垒土为圭,立木为表,测日影,正地中,定四时,如图1,圭是地面上一根水平标尺,指向正北,表是一根垂直于地面的杆,正午,表的日影(即表影)落在圭上,根据表影的长度可以测定节气.在一次数学活动课上,要制作一个圭表模型,如图2,地面上放置一根长2米的杆AB ,向正北方向画一条射线BC ,在BC 上取点D ,测得 1.5m BD =, 2.5m AD =.(1)判断:这个模型中AB 与BC 是否垂直.答:______(填“是”或“否”);你的理由是:______.(2)利用这个圭表模型,测定某市冬至正午阳光与日影夹角30°,夏至正午阳光与日影夹角为60°,请求出这个模型中该市冬至与夏至的日影的长度差(结果保留根号).21.(本题8分)如图,在矩形ABCD 中,沿EF 将矩形折叠,使A 、C 重合,AC 与EF 交于点H .(1)求证:AE =AF ;(2)若AB =4,BC =8,求△ABE 的面积.22.(本题10分)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据下表组织的信息,解答以下问题.脐橙品种A B C 每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元) 1200 1600 1000(1)设转运A 种脐橙的车辆数为x ,转运B 种脐橙的车辆数为y ,求y 与x 的函数表达式;(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.23.(本题10分)定义:平面直角坐标系xOy 中,当点N 在图形M 的内部,或在图形M 上,且点N 的横坐标和纵坐标相等时,则称点N 为图形M 的“梦之点”.(1)如图①,矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,在点1(2,2)P −−,2(0,0)P ,3(1,1)P ,4(2,2)P 中,是矩形ABCD “梦之点”的是________;(2)如图②,已知A 、B 是抛物线21922y x x =−++上的“梦之点”,点C 是抛物线的顶点: ①求出AC ,AB ,BC 三条线段的长度;②判断ABC 的形状,并说明理由.24.(本题12分)如图,ABC 内接于圆O ,AD 是ABC 的高线,9AD =,12CD =,tan 3ABD ∠=,连接OC .(1)求证:ABC 是等腰三角形;(2)求证:BCO BAD ∠=∠;(3)若点E 是OC 上一动点,EF AB ∥交BC 于点F .①若OEF 与ABD △相似,求EF 的长;②当OEF 的面积与CEF △的面积差最大时,直接写出此时CF 的长.2024年浙江中考最后一卷数学解析及参考答案一、单选题1.D【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵510−<−<<故选:D .2.D【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a ﹣2a =a ,故选项A 错误;∵2a 2+4a 2=6a 2,故选项B 错误;∵(x 3)2=x 6,故选项C 错误;∵x 8÷x 2=x 6,故选项D 正确;故选D .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.3.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:80.16亿98.01610×,故选:B .4.B【分析】本题考查立体几何的三视图.根据题意,逐项判断即可.【详解】解:A.主视图为长方形,此项不符合题意;B.主视图为三角形,此项符合题意;C.主视图为圆,此项不符合题意;D.主视图为长方形,此项不符合题意.故选:B .5.C【分析】先解不等式,求出解集,然后在数轴上表示出来.【详解】解:不等式x ﹣2≤0,得:2x ≤ ,把不等式的解集在数轴上表示出来为:.故选:C【点睛】本题主要考查了解不等式,并在数轴上表示解集,解题的关键是熟练掌握解不等式的步骤,不等式的解集在数轴表示时空心圈不包含该点,实心圈包含该点.6.D【分析】本题为统计题,考查众数与中位数的意义,根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】有45辆自动驾驶汽车参与了这次测试,45个分数,按大小顺序排列最中间的数据是第23个数:85,故得分的中位数是85(分),得80分的人数最多,有16人,故众数为80,故选D .7.A【分析】本题考查了垂径定理和勾股定理的应用,根据垂径定理求出AE 的长是解此题的关键.连接OA ,根据垂径定理求出AE ,再根据勾股定理求出OA ,最后根据线段的和差求解即可.【详解】解:如图,连接OA ,线段CD 是O 的直径,CD AB ⊥于点E ,∴12AE AB =,8AB =, ∴4AE =,3OE =,∴5OA ,∴5OC OA ==,∴8CE OC OE =+=,故选:A .8.A【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是设每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】解:设每头牛值金x 两,每只羊值金y 两,则可列方程组为5210258x y x y += +=, 故选A .9.B【分析】本题考查了菱形的性质、二次函数图象上点的坐标特征,根据二次函数图象上点的坐标性质得出BD 的长是解题关键.连接BC 交OA 于D ,如图,根据菱形的性质得BC OA ⊥,60OBD ∠=°,利用含30度的直角三角形三边的关系得OD =,设BD t =,则OD =,()B t ,利用二次函数图象上点的坐标特征得2=,得出14BD =,OD =C 点坐标. 【详解】解:连接BC 交OA 于D ,如图,四边形OBAC 为菱形,BC OA ,120ABO ∠=° ,60OBD ∴∠=°,OD ∴,设BD t =,则OD =,()B t ∴,把()B t 代入2y =,得2=,解得10t =(舍去), 214t =,14BD ∴=,OD =故C 点坐标为:14 − .故答案为:B .10.C【分析】本题考查的是矩形的性质、翻折的性质及相似多边形性质,熟练应用矩形和相似多边形性质是解题关键,设CD x =,则()1,1EC x CG x x =-=--,根据两矩形相似求出即可.【详解】解:在矩形ABCD 中,设CD x =,则ABCD x ==,1AD BC ==, 由翻折得,90AB AF x AFE B BAF ==∠=∠=∠=︒,∴四边形ABEF 是正方形,同理,四边形DFHG 是正方形,,1BE AB x DF DG x ∴====-,()1,121CE x CG x x x ∴=-=--=-,矩形HECG ∽矩形ABCD ,EC CG BC CD∴=,即1211x x x --=,解得:x =,经检验,xCD ∴ 故选:C .二、填空题11.()()22t t t +−【分析】本题考查了因式分解,先提取公因式,再利用公式法即可求解,熟练掌握提公因式法及公式法分解因式是解题的关键.【详解】解:()()()324422t t t t t t t −=−=+−,故答案为:()()22t t t +−.12.14/0.25 【分析】本题考查了概率公式的应用,用到的知识点为:概率所求情况数与总情况数之比.全部情况的总数是四种,符合条件的情况的是一种,二者的比值就是其发生的概率.【详解】由于概率为所求情况数与总情况数之比,而抽取卡片为“特区精神”的情况数只有一种,从暗箱随机抽取一张的情况数为四种,故抽取卡片为“特区精神”的概率为14, 故答案为14. 13.0(答案不唯一)【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件,根据二次根式有意义的条件的条件是被开方数大于等于0,分式有意义的条件是分母不为0进行求解即可.∴10x −>,解得1x <.∴x 的值可以是0,故答案为:0(答案不唯一).14.100°/100度【分析】本题考查的是已知弧长与半径求解弧所对的圆心角,熟记弧长公式是解本题的关键.直接利用弧长公式计算即可.【详解】解: 设“弓”所在的圆的弧长圆心角度数是n °, 则1.2π2π1803n =, 解得:100n =,故答案为:100°.15.0.5−【分析】本题考查了反比例函数k 值的几何意义,熟练掌握k 值的几何意义是解答本题的关键.根据反比例函数k 值的几何意义进行解答即可.【详解】AB x ⊥ 轴于点B ,CD x ⊥轴,∴AB CD ,又 AD BC ,∴四边形ABCD 是平行四边形,过点作AM y ⊥轴,则四边形ABOM 是矩形, ∴0.5,ABOMABCD S S k ===矩形平行四边形∵反比例函数图象在第二象限,0.5k ∴=−,故答案为:0.5−.16.23、54【分析】本题考查了折叠的性质,正方形的性质,勾股定理,圆的定义;分三种情况讨论,设O 的半径为r ,分别根据勾股定理,即可求解.【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =,当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−, 在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23、54 三、解答题17.(1)5(2)222m mn −+【分析】此题考查了实数的运算以及整式的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、绝对值的代数意义以及负整数指数幂法则计算即可求出值;(2)根据平方差公式和完全平方公式化简,再合并同类项即可.【详解】(1)解:原式159=-+5=;(2)原式()22222n m m mn n =−−−+22222n m m mn n =−−+−222m mn =−+18.(1)图见解析(2)【分析】本题考查作图-轴对称变换,旋转变换,以及求弧长,熟练掌握相关作图方法是解题关键; (1)根据点关于y 轴对称的性质分别找到对应的点1A ,1B ,1C ,然后进一步连接即可;(2)利用旋转变换的性质分别作出A ,B ,C 的对应点2A ,2B ,2C ,再顺次连接即可,利用弧长公式求得点C 经过的路径长.【详解】(1)解:如图,111A B C △即为所求;(2)如图,222A B C △即为所求,由题意可知,OC∴点C 旋转到点2C =. 19.(1)6,40(2)1120(3)全校学生一周内平均读书时间23t ≤<(答案不唯一)【分析】本题考查了扇形统计图,样本估计总体等知识.(1)由等级得到学生总数,即可得出a ,再求C 等级的占比即可;(2)用样本估计总体即可得出结果;(3)根据表格可题建议合理即可.【详解】(1)解:由等级D 得到学生总数1530%50÷=人, ∴504201556a −−−−,()%2050100%40%m =÷×=,40m =,故答案为:6,40.(2)1552800112050+×=人, 故该校2800名学生每周读书时间至少3小时的人数为1120人.故答案为:1120.(3)根据表格可建议:全校学生一周内平均读书时间23t ≤<.20.(1)是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2).【分析】本题考查的勾股定理的逆定理的应用,解直角三角形的应用,理解题意是解本题的关键. (1)利用勾股定理的逆定理判断即可;(2)先画图,利用三角函数再计算BE=BF =,从而可得答案. 【详解】(1)解:是, 理由:由测量结果可知得 1.5m BD =, 2.5m AD =,而2m AB =,∴2226.25AB BD AD +==,∴90ABD ,∴AB BC ⊥.故答案是:是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2)如图,由题意可得:90ABC ∠=°,2AB =,30AFB ∠=°,60AEB ∠=°,∴tan tan 60AB AEB BE∠=°=,∴BE =, 同理:tan tan 30AB AFBBF ∠=°=,∴BF =,∴FE BF BE =−==. 21.(1)证明见解析(2)6【分析】(1)依据平行线的性质以及矩形的性质,即可得到∠AFE =∠AEF ,进而得出AE =AF .(2)设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得方程,即可得到BE 的长,再根据三角形面积计算公式求解.【详解】(1)证明:∵四边形ABCD 矩形,∴AD ∥BC ,∴∠AFE =∠FEC ,由折叠的性质得:∠AEF =∠FEC ,∴∠AFE =∠AEF ,∴AE =AF .(2)解:根据折叠的性质可得AE =EC ,设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得:222AB BE AE +=,即()22248x x +=−,解得:x =3,∴BE =3,∴ABE S = 12AB •BE =12×4×3=6. 【点睛】本题主要考查了折叠问题以及矩形的性质的运用,解题的方法是设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.22.(1)220y x =−+ (2)5种(3)当转运A 种脐橙的车4辆,转运B 种脐橙的车12辆,转运C 种脐橙的车4辆时,利润最大为140800元【分析】(1)根据题意列式:()20651040x x y y −−=++,整理后即可得到220y x =−+; (2)根据装运每种水果的车辆数都不少于4辆,4x ≥,2204x −+≥,解不等式组即可;(3)设利润为W 元,则()480016000048W x x =−+≤≤,根据一次函数的增减性求解即可. 【详解】(1)根据题意,装运A 种水果的车辆数为x ,装运B 种水果的车辆数为y ,∴装运C 种水果的车辆数为()20x y −−,∴()20651040x x y y −−=++, 整理得220y x =−+. (2)由(1)知,装运A ,B ,C 三种水果的车辆数分别为x ,220x −+,x ,由题意得2204x −+≥,解得8x ≤,∵4x ≥,∴48x ≤≤.∵x 为整数,∴x 的值为4,5,6,7,8,∴安排方案共有5种.(3)设利润为W 元,∴()612005220160041000W x x x =×+−+×+× 4800160000x =−+,因为48000−<,且x 的值为4,5,6,7,8,∴W 的值随x 的增大而减小,∴当4x =时,销售利润最大.当装运A 种水果4车,B 种水果12车,C 种水果4车,销售获利最大.最大利润48004160000140800W =−×+=(元).【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.(1)2(0,0)P ,3(1,1)P ,4(2,2)P(2)①AC =BC =AB =ABC 是直角三角形,理由见解析【分析】本题考查了二次函数的图象与性质、勾股定理以及勾股定理逆定理:(1)根据“梦之点”的定义判断这几个点是否在矩形的内部或者边上即可得到答案;(2)①根据“梦之点”的定义求出A ,B 的坐标,再求出顶点的坐标,计算出AC ,AB ,BC 的长; ②根据勾股定理逆定理,即可求解.【详解】(1)解:∵矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,∴矩形ABCD 的“梦之点”(),x y 满足2,131x y −−≤≤≤≤,∴点2(0,0)P ,3(1,1)P ,4(2,2)P 是矩形ABCD 的“梦之点”,1(2,2)P −−不是矩形的“梦之点”.故答案为:2(0,0)P ,3(1,1)P ,4(2,2)P(2)解:①A 、B 是抛物线21922y x x =−++上的“梦之点”, ∴21922x x x =−++, 解得:123,3x x ==−,当3x =时,3y =,当3x =−时,=3y −,∴()()3,3,3,3A B −−, ∵()2219115222y x x x =−++=−−+, ∴顶点坐标为()1,5C ,∴AC =BC =AB =; ②ABC 是直角三角形,理由如下:∵AC =BC =AB =∴((2222280AB AC BC +=+==,∴ABC 是直角三角形.24.(1)证明见解析(2)证明见解析(3)①EF =253CF =【分析】本题考查了圆的性质,等腰三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,掌握相关知识是解题的关键.(1)利用勾股和锐角三角函数求得AC BC =即可证明;(2)连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,先证明CO 是ACB ∠的角平分线,再证明ANM CDM ∽即可得出结论;(3)①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,先证明CHO CFB ∽,设EF x =3x =即可求解,②要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,当E 点与O 点重合时,EF 最大,CE OE OC −=最大,先求得EF =即可求出CF . 【详解】(1)证明:∵AD 是ABC 的高线,∴90ADC ADB ∠=∠=°, ∵9AD =,12CD =,∴15AC ===,∵tan 3ABD ∠=, ∴tan 3AD ABD BD∠==, ∴3BD =,∴31215BC BD CD =+=+=, ∴AC BC =,∴ABC 是等腰三角形.(2)证明:连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,如图:∵AC BC =,∴CAB CBA ∠=∠, ∵OA OB =,∴OAB OBA ∠=∠, ∴CAO CBO ∠=∠, ∵OA OC =,∴CAO ACO ∠=∠, ∵OB OC =,∴BCO CBO ∠=∠, ∴ACO BCO ∠=∠, ∴CO 是ACB ∠的角平分线, 又∵ AC BC =,∴CN AB ⊥,∴90ANC BNC ∠=∠=°, ∴90MDC ANE ∠=∠=°, 又∵AMN CMD ∠=∠, ∴ANM CDM ∽,∴DCM NAM ∠=∠, ∴BCO BAD ∠=∠. (3)解:①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,如图:∵,,15OB OC OH BC BC =⊥=, ∴17.52CH BC ==,90CHO CFB ∠=∠=°, ∴CHO CFB ∽,∴COH CBF ∠=∠, ∵tan 3ABD ∠=, ∴tan tan 3CH COH CBF OH∠=∠==, ∴ 2.5OH =,∴OC =, ∵EF AB ∥,90BNC ∠=°, ∴CEF CNB ∽,∴90CEF CNB ∠=∠=°, 设EF x =,∴tan tan 3CE CE CFE CBN EF x∠=∠===, ∴3CE x =,∵OEF ADB ∽,∴OE EF AD BD=, ∵OEOC CE =−, 3x =, 解得:x =∴EF ②∵90CEF ∠=°,即EF OC ⊥, ∴12CEF S CE EF =⋅ ,12OEF S OE EF =⋅ , ∴()111222CEF OEF S S CE EF OE EF EF CE OE −=⋅−⋅=⋅− , 由题知,要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,∴当E 点与O 点重合时,EF 最大,CE OE OC −=最大,如图:∵EF AB ∥,∴CEF CNB ∽,∴CFE CBN ∠=∠,CE OC ==,∴tan tan 3CE CFE CBN EF ∠=∠==,∴EF∴253CF =.。

浙江省2021年中考真题汇编专题1:选择填空压轴题(含解析)

浙江省2021年中考真题汇编专题1:选择填空压轴题(含解析)

2021年浙江省中考真题汇编专题1:选择填空压轴题1.(2021·绍兴)如图,中,,,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使,连结CE,则的值为()A. B. C. D. 22.(2021·绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A. 用3个相同的菱形放置,最多能得到6个菱形B. 用4个相同的菱形放置,最多能得到15个菱形C. 用5个相同的菱形放置,最多能得到27个菱形D. 用6个相同的菱形放置,最多能得到41个菱形3.(2021·金华)如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A. B. C. D.4.(2021·杭州)已知和均是以为自变量的函数,当时,函数值分别是和,若存在实数,使得,则称函数和具有性质P。

以下函数和具有性质P的是()A. 和B. 和C. 和D. 和5.(2021·嘉兴)已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是()A. ≤B. ≥C. ≥D. ≤6.(2021·宁波)如图是一个由5张纸片拼成的,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为,另两张直角三角形纸片的面积都为,中间一张矩形纸片的面积为,与相交于点O.当的面积相等时,下列结论一定成立的是()A. B. C. D.7.(2021·温州)由四个全等的直角三角形和一个小正方形组成的大正方形如图所示.过点作的垂线交小正方形对角线的延长线于点,连结,延长交于点.若,则的值为()A. B. C. D.8.(2021·湖州)已知抛物线与轴的交点为A(1,0)和B(3,0),点P1(,),P2(,)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,。

浙江省温州市中考数学压轴题总复习含答案解析

浙江省温州市中考数学压轴题总复习含答案解析

2021年浙江省温州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图,抛物线y=−12x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,PQAP是否存在最大值?若存在,求出最大值;若不存在,请说明理由.2.如图,在平面直角坐标系中抛物线y=ax2+bx+c经过原点,且与直线y=﹣kx+6交于则A (6,3)、B(﹣4,8)两点.(1)求直线和抛物线的解析式;(2)点P在抛物线上,解决下列问题:①在直线AB下方的抛物线上求点P,使得△P AB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.3.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.(1)求M点坐标;(2)如图1,若⊙P经过点M.①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.4.如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB ﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为锐角三角形时,求t的取值范围.(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.5.[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.6.阅读材料:若a,b都是非负实数,则a+b≥2√ab.当且仅当a=b时,“=”成立.证明:∵(√a−√b)2≥0,∴a−2√ab+b≥0.∴a+b≥2√ab.当且仅当a=b时,“=”成立.举例应用:已知x>0,求函数y=2x+2x的最小值.解:y=2x+2x≥2√2x⋅2x=4.当且仅当2x=2x,即x=1时,“=”成立.当x=1时,函数取得最小值,y最小=4.问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(118+450x2)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).7.如图,二次函数y=14x2+bx+c的图象过点A(4,﹣4),B(﹣2,m),交y轴于点C(0,﹣4).直线BO与抛物线相交于另一点D,连接AB,AD,点E是线段AB上的一动点,过点E作EF∥BD交AD于点F.(1)求二次函数y=14x2+bx+c的表达式;(2)判断△ABD的形状,并说明理由;(3)在点E的运动过程中,直线BD上存在一点G,使得四边形AFGE为矩形,请判断此时AG与BD的数量关系,并求出点E的坐标;(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得∠EPF=90°的点,在抛物线的对称轴上,是否存在点Q,使得△HPQ是以∠PQH为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.8.已知:菱形ABCD和菱形A′B′C′D′,∠BAD=∠B′A′D′,起始位置点A在边A′B′上,点B在A′B′所在直线上,点B在点A的右侧,点B′在点A′的右侧,连接AC和A′C′,将菱形ABCD以A为旋转中心逆时针旋转α角(0°<α<180°).(1)如图1,若点A与A′重合,且∠BAD=∠B′A′D′=90°,求证:BB′=DD′.(2)若点A与A′不重合,M是A′C′上一点,当MA′=MA时,连接BM和A′C,BM和A′C所在直线相交于点P.①如图2,当∠BAD=∠B′A′D′=90°时,请猜想线段BM和线段A′C的数量关系及∠BPC的度数.②如图3,当∠BAD=∠B′A′D′=60°时,请求出线段BM和线段A′C的数量关系及∠BPC的度数.③在②的条件下,若点A与A′B′的中点重合,A′B′=4,AB=2,在整个旋转过程中,当点P与点M重合时,请直接写出线段BM的长.9.【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设AEBE=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.10.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.11.已知:在△ABC 外分别以AB ,AC 为边作△AEB 与△AFC .(1)如图1,△AEB 与△AFC 分别是以AB ,AC 为斜边的等腰直角三角形,连接EF .以EF 为直角边构造Rt △EFG ,且EF =FG ,连接BG ,CG ,EC . 求证:①△AEF ≌△CGF . ②四边形BGCE 是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC 外分别以AB ,AC 为斜边作Rt △AEB 与Rt △AFC ,并使∠F AC =∠EAB =30°,取BC 的中点D ,连接DE ,EF 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出ED EF的值及∠DEF 的度数.(3)小颖受到启发也做了探究:如图3,在△ABC 外分别以AB ,AC 为底边作等腰三角形AEB 和等腰三角形AFC ,并使∠CAF +∠EAB =90°,取BC 的中点D ,连接DE ,EF 后发现,当给定∠EAB =α时,两者间也存在一定的数量关系且夹角度数一定,若AE =m ,AB =n ,请你帮助小颖用含m ,n 的代数式直接写出ED EF的值,并用含α的代数式直接表示∠DEF 的度数.12.如图1,直线y =x ﹣4与x 轴交于点B ,与y 轴交于点A ,抛物线y =−12x 2+bx +c 经过点B 和点C (0,4),△ABO 沿射线AB 方向以每秒√2个单位长度的速度平移,平移后的三角形记为△DEF (点A ,B ,O 的对应点分别为点D ,E ,F ),平移时间为t (0<t <4)秒,射线DF 交x 轴于点G ,交抛物线于点M ,连接ME .(1)求抛物线的解析式;(2)当tan ∠EMF =43时,请直接写出t 的值;(3)如图2,点N 在抛物线上,点N 的横坐标是点M 的横坐标的12,连接OM ,NF ,OM 与NF 相交于点P ,当NP =FP 时,求t 的值.13.在平面直角坐标系中,二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,P A,PC,若S△P AC=152,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.14.在平面直角坐标系中,抛物线y=−13x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)如图,直线y=34x+94与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当点F在直线AD上方的抛物线上,且S△EFG=59S△OEG时,求m的值;②在平面内是否在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.15.已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α. (1)如图1,若α=60°, ①直接写出DF DC的值为 ;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 ; (2)如图2,若α<60°,且DF DC=23,DE =4,求BE 的长.16.问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.17.如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3<x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.18.根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;( 命题) ②三个角分别相等的两个凸四边形相似;( 命题) ③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,AB A 1B 1=BC B 1C 1=CD C 1D 1.求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求S 2S 1的值.19.探究(1)如图①,在等腰直角三角形ABC中,∠ACB=90°,作CM平分∠ACB交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD、BE填空:①线段BD、BE的数量关系为.②线段BC、DE的位置关系为.推广:(2)如图②,在等腰三角形ABC中,顶角∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE、BD、BE请判断(1)中的结论是否成立,并说明理由.应用:(3)如图③,在等边三角形ABC中,AB=4.作BM平分∠ABC交AC于点M,点D 为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD、AE.当以A、D、M为顶点的三角形与△AEF全等时,请直接写出DE的值.20.(1)【操作发现】如图1,将△ABC绕点A顺时针旋转60°,得到△ADE,连接BD,则∠ABD=度.(2)【类比探究】如图2,在等边三角形ABC内任取一点P,连接P A,PB,PC,求证:以P A,PB,PC 的长为三边必能组成三角形.(3)【解决问题】如图3,在边长为√7的等边三角形ABC内有一点P,∠APC=90°,∠BPC=120°,求△APC的面积.(4)【拓展应用】如图4是A,B,C三个村子位置的平面图,经测量AC=4,BC=5,∠ACB=30°,P 为△ABC内的一个动点,连接P A,PB,PC.求P A+PB+PC的最小值.21.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=12x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=23S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE 绕点B逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2√3时,请直接写出点G的坐标为.22.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)23.如图1,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于A,B两点,A点坐标为(﹣2,0),与y轴交于点C(0,4),直线y=−12x+m与抛物线交于B,D两点.(1)求抛物线的函数表达式.(2)求m的值和D点坐标.(3)点P是直线BD上方抛物线上的动点,过点P作x轴的垂线,垂足为H,交直线BD于点F,过点D作x轴的平行线,交PH于点N,当N是线段PF的三等分点时,求P点坐标.(4)如图2,Q是x轴上一点,其坐标为(−45,0).动点M从A出发,沿x轴正方向以每秒5个单位的速度运动,设M的运动时间为t(t>0),连接AD,过M作MG⊥AD 于点G,以MG所在直线为对称轴,线段AQ经轴对称变换后的图形为A′Q′,点M在运动过程中,线段A′Q′的位置也随之变化,请直接写出运动过程中线段A′Q′与抛物线有公共点时t的取值范围.24.已知函数y1=x+2m﹣1,y2=(2m+1)x+1均为一次函数,m为常数.(1)如图1,将直线AO绕点A(﹣1,0)逆时针旋转45°得到直线l,直线l交y轴于点B.若直线l恰好是y1=x+2m﹣1,y2=(2m+1)x+1中某个函数的图象,请直接写出点B坐标以及m可能的值;(2)若存在实数b,使得|m|﹣(b﹣1)√1−b=0成立,求函数y1=x+2m﹣1,y2=(2m+1)x+1图象间的距离;(3)当m>1时,函数y1=x+2m﹣1图象分别交x轴,y轴于C,E两点,y2=(2m+1)x+1图象交x轴于D点,将函数y=y1•y2的图象最低点F向上平移562m+1个单位后刚好落在一次函数y1=x+2m﹣1图象上.设y=y1•y2的图象,线段OD,线段OE围成的图形面积为S,试利用初中知识,探究S的一个近似取值范围.(要求:说出一种得到S的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)25.如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C .已知直线y =kx +n 过B ,C 两点. (1)求抛物线和直线BC 的表达式; (2)点P 是抛物线上的一个动点.①如图1,若点P 在第一象限内,连接P A ,交直线BC 于点D .设△PDC 的面积为S 1,△ADC 的面积为S 2,求S 1S 2的最大值;②如图2,抛物线的对称轴l 与x 轴交于点E ,过点E 作EF ⊥BC ,垂足为F .点Q 是对称轴l 上的一个动点,是否存在以点E ,F ,P ,Q 为顶点的四边形是平行四边形?若存在,求出点P ,Q 的坐标;若不存在,请说明理由.26.如图,抛物线y=12x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=12x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.27.如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.28.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2=13时,求ADAB的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.29.问题提出(1)如图①,已知直线l及l外一点A,试在直线l上确定B、C两点,使∠BAC=90°,并画出这个Rt△ABC.问题探究(2)如图②,O是边长为28的正方形ABCD的对称中心,M是BC边上的中点,连接OM.试在正方形ABCD的边上确定点N,使线段ON和OM将正方形ABCD分割成面积之比为1:6的两部分.求点N到点M的距离.问题解决(3)如图③,有一个矩形花园ABCD,AB=30m,BC=40m.根据设计要求,点E、F 在对角线BD上,且∠EAF=60°,并在四边形区域AECF内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:√2≈1.4,√3≈1.7)30.如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5√3,CD=5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.31.【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F . (1)若AB =6,AE =4,BD =2,则CF = ; (2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BD BC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为 (用含α的表达式表示).32.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.33.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E 作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当AFBF =25,CE=4时,直接写出CG的长.34.如图所示:⊙O与△ABC的边BC相切于点C,与AC、AB分别交于点D、E,DE∥OB.DC 是⊙O的直径.连接OE,过C作CG∥OE交⊙O于G,连接DG、EC,DG与EC交于点F.(1)求证:直线AB与⊙O相切;(2)求证:AE•ED=AC•EF;(3)若EF=3,tan∠ACE=12时,过A作AN∥CE交⊙O于M、N两点(M在线段AN上),求AN的长.35.(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD 的面积(用含S1、S2的代数式表示);(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD̂围成的封闭图形的面积为S1,P A、PD、AD̂围成的封闭图形的面积上),设PB、PC、BC为S2,△PBD的面积为S3,△P AC的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).36.定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.37.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究̂上一点,且PB̂=2PÂ,连接AP,BP.∠(2)如图2,AB是半圆O的直径,AB=8.P是ABAPB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.38.已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.̂=AF̂时,tan∠AEF的值(1)填空:点A(填“在”或“不在”)⊙O上;当AE是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.39.问题提出(1)如图①,在△ABC中,AB=4,∠A=135°,点B关于AC所在直线的对称点为B′,则BB′的长度为.问题探究̂的中点,点D在BĈ上,且CD̂=2BD̂,P (2)如图②,半圆O的直径AB=10,C是AB是AB上的动点,试求PC+PD的最小值.问题解决̂上(3)如图③,扇形花坛AOB的半径为20m,∠AOB=45°.根据工程需要.现想在AB选点P,在边OA上选点E,在边OB上选点F,用装饰灯带在花坛内的地面上围成一个△PEF,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带PE+EF+FP的长度最短,并且用长度最短的灯带围成的△PEF为等腰三角形.试求PE+EF+FP的值最小时的等腰△PEF的面积.(安装损耗忽略不计)40.已知:⊙O 是正方形ABCD 的外接圆,点E 在AB̂上,连接BE 、DE ,点F 在AD ̂上连接BF 、DF ,BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF . (1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK ∥BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为74,求线段BR 的长.41.如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O 的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为6√3,△ABD与△ABC的面积比为2:9,求CD的长.42.如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.43.如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2−154x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.(1)求抛物线的解析式;(2)求点D的坐标;(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N 为顶点的三角形相似,求t的值;(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.。

(完整版)浙江中考数学压轴题汇编

(完整版)浙江中考数学压轴题汇编

压轴汇编1。

某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k ≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2。

6]=2,[0.2]=0。

按此方案,第2009棵树种植点的坐标为A 。

(5,2009) B.(6,2010) C 。

(3,401) D(4,402) 2。

以正方形ABCD 的BC 边为直径作半圆O , 过点D 作直线切半圆于点F , 交AB 边于点E . 则三角形ADE 和直角梯形EBCD 周长之比为(A) 3:4 (B) 4:5 (C) 5:6 (D ) 6:73。

设1x ,2x 是关于x 的方程02=++q px x 的两根,11+x ,12+x 是关于x 的方程02=++p qx x 的两根,则p ,q 的值分别等于( )(A )1,—3 (B )1,3 (C )—1,—3 (D )-1,34. 如图,在Rt ΔABC 中,AF 是斜边上的高线,且BD=DC=FC=1,则AC 的长为 (A )32 (B )3 (C )2 (D)334 4 55。

如图,在等腰Rt ABC 中,AC=BC,以斜边AB 为一边作等边ABD ,使点C,D 在AB 的同侧;再以CD 为一边作等边CDE ,使点C ,E 落在AD 的异侧.若AE=1,则CD 的长为 ( )(A)31- (B)312- (C)62- (D )622-填空1。

如图,矩形ABCD (AD >AB )中,AB =a ,∠BDA =θ,作AE 交BD 于E ,且AE =AB ,试用a 与θ表示:AD =______,BE =_______.2。

根据指令[s,A](s ≥0,0º〈A<180º),机器人在平面上能完成下列动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s.现机器人在直角坐标系的坐标原点,且面对x 轴正方向。

历年浙教版杭州地区初三数学中考压轴题精选及答案

历年浙教版杭州地区初三数学中考压轴题精选及答案

杭州地区中考数学压轴题精选25.(本小题满分10分)为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为2y x c =-+,正方形ABCD 的边长和正方形EFGH 的边长之比为5:1,求:(1)抛物线解析式中常数c 的值;(2)正方形MNPQ 的边长.26.(本小题满分12分)在三角形ABC 中,60,24,16O B BA cm BC cm ∠===.现有动点P 从点A 出发,沿射线AB 向点B 方向运动;动点Q 从点C 出发,沿射线CB 也向点B 方向运动.如果点P 的速度是4cm /秒,点Q 的速度是2cm /秒,它们同时出发,求:(1)几秒钟后,ΔPBQ 的面积是ΔABC 的面积的一半?(2)在第(1)问的前提下,P,Q 两点之间的距离是多少?24、(本题12分)如图,在矩形ABCD 中,AD=8,点E 是AB 边上的一点,AE=22,过D,E 两点作直线PQ ,与BC 边所在的直线MN 相交于点F 。

(1)求tan ∠ADE 的值;(2)点G 是线段AD 上的一个动点(不运动至点A,D ),GH ⊥DE 垂足为H ,设DG 为x ,四边形AEHG 的面积为y ,请求出y 与x 之间的函数关系式;(3)如果AE=2EB ,点O 是直线MN 上的一个动点,以O 为圆心作圆,使⊙O 与直线PQ相切,同时又与矩形ABCD 的某一边相切。

问满足条件的⊙O 有几个?并求出其中一个圆的半径。

25(本题14分)如图,抛物线2y ax bx c =++经过点O(0,0),A(4,0),B(5,5),点C 是y 轴负半轴上一点,直线l 经过B,C 两点,且5tan 9OCB ∠=(1)求抛物线的解析式;(2)求直线l 的解析式;(3)过O,B 两点作直线,如果P 是直线OB 上的一个动点,过点P 作直线PQ 平行于y轴,交抛物线于点Q 。

(完整word版)中考数学压轴题旋转问题带答案

(完整word版)中考数学压轴题旋转问题带答案

旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。

旋转性质-—-—对应线段、对应角的大小不变,对应线段的夹角等于旋转角。

注意旋转过程中三角形与整个图形的特殊位置. 一、直线的旋转1、(2009年浙江省嘉兴市)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?2、(2009年河南)如图,在Rt △ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D 。

过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.C(第1题)解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°,根据三角形的外角性质,得α=∠EDB—∠A=30,此时,AD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC‖ED,∵CE‖AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30度,∴AB=4,AC=2 ,∴AO= = .在Rt△AOD中,∠A=30°,∴AD=2,∴BD=2,∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形.3、(2009年北京市)在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90得到线段EC2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∵ A, B 在抛物线上, y 轴是抛物线的对称轴,∴ A, B 的横坐标分别是 2 和- 2
代入 y= 1 x2+ 1,得 A( 2, 2), B(- 2, 2) 4
∴ M ( 0, 2) ·················································2 分
y
( 2)①过点 Q 作 QH ⊥ x 轴于 H,连接 CM
E A
G FC
K
M
D
B
∴∠ ADM = ∠ GDM . ·············································································9 分
又∵ DM = DM ,∴△ ADM ≌△ GDM ,∴ GM = AM
∵ GM + GK > MK ,∴ AM+ CK> MK . ······················································10 分 ( 3)∠ CDF =15°, MK = 3 . ····························································12 分
4
当 x=- 2 3 时,得 t= - 1 × ( - 2 3 ) 2- 2 3 - 2=- 8- 2 3 2
Q Hx
当 x= 2 3 时,得 t =- 1 ×( 2 3 ) 2+ 2 3 -2= 2 3 -8 ································12 分 2
2.(浙江省台州市)如图 1, Rt△ ABC≌ Rt △EDF ,∠ ACB=∠ F= 90°,∠ A= ∠ E= 30°.△ EDF 绕着边 AB 的中点 D 旋转, DE, DF 分别交线.段. AC 于点 M , K. ( 1)观察:①如图 2、图 3,当∠ CDF = 0°或 60°时, AM + CK _______MK (填“>” ,“<”或“ = ”).
0)在 x 轴上.
( 1)写出点 M 的坐标;
y
( 2)当四边形 CMQP 是以 MQ , PC 为腰的梯形时.
Q
①求 t 关于 x 的函数解析式和自变量 x 的取值范围;
②当梯形 CMQP 的两底的长度之比为 1 : 2 时,求 t 的值.
B
M
A
1
P
C
O1
x
1.解:
( 1)∵ OABC 是平行四边形,∴ AB∥ OC,且 AB =OC= 4
AM
E
FC K
E C( F, K)
M
A
D
B
图1
M
A
D
B
图2
F
C
E
FC
E
2.解: ( 1)① =
K
A( M) D
B
图3
K
M
ADΒιβλιοθήκη B图4②> ·················································································4 分
ⅱ)当 CM <PQ 时,则点 P 在 OC 的延长线上
∵ CM ∥ PQ, CM = 1 PQ,∴点 Q 纵坐标为点 M 纵坐标的 2 倍 2

1
2
x + 1= 2× 2,解得:
x=±
2
3
·························································10 分
AM 2
3.(浙江省台州市)如图, Rt△ABC 中,∠ C= 90°, BC= 6,AC= 8.点 P,Q 都是斜边 AB 上的动点,点 P 从 B 向 A 运动(不与点 B 重合),点 Q 从 A 向 B 运动, BP =AQ.点 D ,E 分别是点 A, B 以 Q, P 为对
1
C
O1
当点 P 与点 C 重合时,梯形不存在,此时, t= -4,解得 x= 1± 5
当 Q 与 B 或 A 重合时,四边形为平行四边形,此时, x= ± 2
∴ x 的取值范围是 x≠ 1± 5 且 x≠± 2 的所有实数 ········································6 分
②分两种情况讨论:
ⅰ)当 CM >PQ 时,则点 P 在线段 OC 上
∵ CM ∥ PQ, CM = 2PQ,∴点 M 纵坐标为点 Q 纵坐标的 2 倍
即 2= 2(
1
2
x + 1)
,解得
x=0
4
∴ t= - 1 ×02+ 0- 2= - 2 ········································································8 分 2
( 2)> ·······························································································6 分
证明:作点 C 关于 FD 的对称点 G,连接 GK 、 GM 、 GD
则 GD= CD , GK= CK,∠ GDK = ∠ CDK ∵ D 是 AB 的中点,∴ AD =CD = GD ∵∠ A= 30°,∴∠ CDA =120° ∵∠ EDF = 60°,∴∠ GDM + ∠GDK = 60° ∠ ADM +∠ CDK =60°
则 QH= y, PH = x-t
由△ PHQ ∽△ COM ,得:
yx =
t ,即 t=x- 2y
24
∵ Q( x,y)在抛物线 y= 1 x 2+ 1 上
4
P
∴ t= - 1 x 2+ x- 2···········································4 分 2
B
M
A
2014 年中考数学压轴题精编 — 浙江篇
1.(浙江省杭州市)在平面直角坐标系
xOy 中,抛物线的解析式是 y= 1 x 2+ 1,点 C 的坐标为( - 4, 0), 4
平行四边形 OABC 的顶点 A,B 在抛物线上, AB 与 y 轴交于点 M ,已知点 Q( x,y)在抛物线上,点 P( t,
②如图 4,当∠ CDF = 30°时, AM+ CK_______MK (只填“>”或“<” ). ( 2)猜想:如图 1,当 0°<∠ CDF < 60°时, AM+ CK_______MK ,证明你所得到的结论.
2
2
2
( 3)如果 MK + CK = AM ,请直接写出∠
CDF 的度数和
MK 的值.
相关文档
最新文档