SVMPPT课件

合集下载

支持向量机SVMPPT课件

支持向量机SVMPPT课件
最后得出原空间中的二次曲线:
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介

支持向量机SVM 简介PPT

支持向量机SVM 简介PPT

计算间隔
M = Margin
我们怎样利用 w与b 计算margin?
Plus-plane = { x : w . x + b = +1 } Minus-plane = { x : w . x + b = -1 } 注: 向量 w 与 Plus Plane 垂直. 为什么?
所以 w 也垂直于Minus Plane 设 u 和 v 是 Plus Plane上的两个向量. 则 w . ( u – v ) 是多少?
f(x,w,b) = sign(w. x - b)
具有最大间隔的线 1 性分类器叫做最大 R(ω ) ≤ Remp (α ) + Φ ( ) m arg in 间隔线性分类器。
支持向量(Support Vectors) :是那些距 离超平面最近的点。
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
现在我们知道: w . x+ + b = +1 w . x- + b = -1 x+ = x- + λ w |x+ - x- | = M 于是很容易由w 和b 得到 M
=> w . x - + b + λ w .w = 1 => -1 + λ w .w = 1
=>
2 λ= w.w
计算间隔
x+ M = Margin Width =
最大间隔
+1 -1
x
f
y
具有最大间隔的线 性分类器叫做最大 间隔线性分类器。
f(x,w,b) = sign(w. x - b)
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)

SVM分类与回归简介ppt课件

SVM分类与回归简介ppt课件
l
f (x) i yi K (xi, x) b i 1
29
其中α可由如下对偶问题求解
l
l
max :W ( )
i
1 2
i j yi y j K (xi , x j )
i 1
i, j 1
l
s.t. i 0, i 1,..., l, and i yi 0 i 1
这样计算的问题就算解决了,避开了直接在高维空 间中进行计算。
常用核函数
K (x1, x2 ) exp(
x1 x2
2 2
2
)
30
SVM本身是针对经典的二分类问题提出的,支持向 量回归机(Support Vector Regression,SVR) 是支持向量在函数回归领域的应用。
SVR与SVM分类有以下不同:SVM回归的样本点只 有一类,所寻求的最优超平面不是使两类样本点分 得“最开”,而是使所有样本点离超平面的“总偏 差”最小。这时样本点都在两条边界线之间,求最 优回归超平面同样等价于求最大间隔。
1 2
w
2
l
i ( yi
(( xi
w) b) 1)
i1
19
Lagrangw
2
l
i ( yi
((xi
w) b) 1)
i1
令其偏导数为0
L(w,b, ) 0 , L(w,b,) 0
b
w
得到
l
ai yi 0
i1
l
w i yi xi i1
20
因此该问题的求解可转化为一个标准的二次优化问 题,通过对该问题的求解即可完成支持向量的求解
l
l
目标函数:min
:
J ( )

大数据十大经典算法SVM-讲解PPT

大数据十大经典算法SVM-讲解PPT
大数据十大经典算法svm-讲解
contents
目录
• 引言 • SVM基本原理 • SVM模型构建与优化 • SVM在大数据处理中的应用 • SVM算法实现与编程实践 • SVM算法性能评估与改进 • 总结与展望
01 引言
算法概述
SVM(Support Vector Machine,支持向量机)是一种监督学习模型,用于数据 分类和回归分析。
性能评估方法
01
准确率评估
通过计算模型在测试集上的准确率来评估SVM算法的性能,准确率越
高,说明模型分类效果越好。
02
混淆矩阵评估
通过构建混淆矩阵,可以计算出精确率、召回率、F1值等指标,更全面
地评估SVM算法的性能。
03
ROC曲线和AUC值评估
通过绘制ROC曲线并计算AUC值,可以评估SVM算法在不同阈值下的
核函数是SVM的重要组成部分 ,可将数据映射到更高维的空 间,使得原本线性不可分的数 据变得线性可分。常见的核函 数有线性核、多项式核、高斯 核等。
SVM的性能受参数影响较大, 如惩罚因子C、核函数参数等 。通过交叉验证、网格搜索等 方法可实现SVM参数的自动调 优,提高模型性能。
SVM在文本分类、图像识别、 生物信息学等领域有广泛应用 。通过具体案例,可深入了解 SVM的实际应用效果。
SVM算法实现步骤
模型选择
选择合适的SVM模型,如CSVM、ν-SVM或One-class SVM等。
模型训练
使用准备好的数据集对SVM模 型进行训练,得到支持向量和 决策边界。
数据准备
准备用于训练的数据集,包括 特征提取和标签分配。
参数设置
设置SVM模型的参数,如惩罚 系数C、核函数类型及其参数 等。

《支持向量机SVM》课件

《支持向量机SVM》课件

多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。

支持向量机原理SVMPPT课件

支持向量机原理SVMPPT课件

回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。

SVM支持向量机PPT

SVM支持向量机PPT
核函数的改进方向可能包括研究新的核函数形式,如高阶核函数、多核函数等,以提高SVM的分类精 度和泛化能力。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。

支持向量机PPT课件

支持向量机PPT课件
2023
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VC维:所谓VC维是对函数类的一种度量,可
以简单的理解为问题的复杂程度,VC维越高, 一个问题就越复杂。正是因为SVM关注的是VC 维,后面我们可以看到,SVM解决问题的时候, 和样本的维数是无关的(甚至样本是上万维的 都可以,这使得SVM很适合用来解决像文本分 类这样的问题,当然,有这样的能力也因为引 入了核函数)。
11
SVM简介
置信风险:与两个量有关,一是样本数
量,显然给定的样本数量越大,我们的 学习结果越有可能正确,此时置信风险 越小;二是分类函数的VC维,显然VC维 越大,推广能力越差,置信风险会变大。
12
SVM简介
泛化误差界的公式为:
R(w)≤Remp(w)+Ф(n/h) 公式中R(w)就是真实风险,Remp(w)表示 经验风险,Ф(n/h)表示置信风险。此时 目标就从经验风险最小化变为了寻求经 验风险与置信风险的和最小,即结构风 险最小。
4
SVM简介
支持向量机方法是建立在统计学习理论 的VC 维理论和结构风险最小原理基础上 的,根据有限的样本信息在模型的复杂 性(即对特定训练样本的学习精度, Accuracy)和学习能力(即无错误地识 别任意样本的能力)之间寻求最佳折衷, 以期获得最好的推广能力(或称泛化能 力)。
5
SVM简介
10
SVM简介
泛化误差界:为了解决刚才的问题,统计学
提出了泛化误差界的概念。就是指真实风险应 该由两部分内容刻画,一是经验风险,代表了 分类器在给定样本上的误差;二是置信风险, 代表了我们在多大程度上可以信任分类器在未 知样本上分类的结果。很显然,第二部分是没 有办法精确计算的,因此只能给出一个估计的 区间,也使得整个误差只能计算上界,而无法 计算准确的值(所以叫做泛化误差界,而不叫 泛化误差)。
9
SVM简介
以前的一些机器学习方法把经验风险最小化作为 努力的目标,但后来发现很多分类函数能够在样本集 上轻易达到100%的正确率,在真实分类时却不好(即 所谓的推广能力差,或泛化能力差)。此时的情况是 因为选择了一个足够复杂的分类函数(它的VC维很 高),能够精确的记住每一个样本,但对样本之外的 数据一律分类错误。因为经验风险最小化原则适用的 大前提是经验风险要确实能够逼近真实风险才行。但 实际上不太可能,经验风险最小化原则只在这占很小 比例的样本上做到没有误差,不能保证在更大比例的 真实文本上也没有误差。
20
线性分类器
关于g(x)=wx+b这个表达式要注意三点:
1. 式中的x不是二维坐标系中的横轴,而是样本的向量表 示,例如一个样本点的坐标是(3,8),则xT=(3,8) ,而 不是x=3(一般说向量都是说列向量)。
8
SVM简介
经验风险Remp(w) :我们选择了一个假
设之后(更直观点说,我们得到了一个 分类器以后),真实误差无从得知,但 我们可以用某些可以掌握的量来逼近它。 最直观的想法就是使用分类器在样本数 据上的分类的结果与真实结果(因为样 本是已经标注过的数据,是准确的数据) 之间的差值来表示。这个差值叫做经验 风险Remp(w) 。
6
SVM简介
结构风险最小原理:就是追求“经验 风险”与“置信风险”的和最小 。
7
SVM简介
风险:机器学习本质上就是一种对问题真实
模型的逼近(我们选择一个我们认为比较好的 近似模型,这个近似模型就叫做一个假设), 但毫无疑问,真实模型一定是不知道的。既然 真实模型不知道,那么我们选择的假设与问题 真实解之间究竟有多大差距,我们就没法得知。 这个与问题真实解之间的误差,就叫做风险 (更严格的说,误差的累积叫做风险)。
19
线性分类器
例如我们有一个线性函数 g(x)=wx+b
我们可以取阈值为0,这样当有一个样本xi 需要判别的时候,我们就看g(xi)的值。若 g(xi)>0,就判别为类别C1,若g(xi)<0,则判 别为类别C2(等于的时候我们就拒绝判断)。 此时也等价于给函数g(x)附加一个符号函数 sgn(),即f(x)=sgn [g(x)]是我们真正的判别函 数。
Support Vector Machine 支持向量机
1
整体概述
概述一
点击此处输入
相关文本内容
概述二பைடு நூலகம்
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
内容
SVM简介 线性分类器 核函数 松弛变量 LIBSVM介绍 实验
3
SVM简介
支持向量机(Support Vector Machine)是 Cortes和Vapnik于1995年首先提出的, 它在解决小样本、非线性及高维模式识 别中表现出许多特有的优势,并能够推 广应用到函数拟合等其他机器学习问题 中。
13
SVM简介
小样本:并不是说样本的绝对数量少
(实际上,对任何算法来说,更多的样 本几乎总是能带来更好的效果),而是 说与问题的复杂度比起来,SVM算法要 求的样本数是相对比较少的。
14
SVM简介
非线性:是指SVM擅长应付样本数据线
性不可分的情况,主要通过松弛变量 (也叫惩罚变量)和核函数技术来实现, 这一部分是SVM的核心内容,后面会详 细说明。
15
SVM简介
高维模式识别:是指样本维数很高,
SVM也可以应付。这主要是因为SVM 产 生的分类器很简洁,用到的样本信息很 少(仅仅用到那些称之为“支持向量” 的样本),使得即使样本维数很高,也 不会给存储和计算带来大麻烦。
16
线性分类器
线性分类器:一定意义上,也可以叫做
感知机,是最简单也很有效的分类器形 式。在一个线性分类器中,可以看到 SVM形成的思路,并接触很多SVM的核 心概念。下面举例说明。
17
线性分类器
用一个二维空间里仅有两类样本的分类问题来举例子。 如图所示:C1和C2是要区分的两个类别。中间的直线 就是一个分类函数,它可以将两类样本完全分开。一 般的,如果一个线性函数能够将样本完全正确的分开, 就称这些数据是线性可分的,否则称为非线性可分的。
18
线性分类器
线性函数
在一维空间里就是一个点,在二维 空间里就是一条直线,三维空间里就是 一个平面,可以如此想象下去,如果不 关注空间的维数,这种线性函数还有一 个统一的名称——超平面(Hyper Plane)。
相关文档
最新文档