山东大学附属中学2019-2020学年九年级上册数学期中考试试卷及答案解析

合集下载

山东省济南市市中区2019-2020学年第一学期初三期中测试数学卷含答案解析

山东省济南市市中区2019-2020学年第一学期初三期中测试数学卷含答案解析

山东省济南市市中区2019-2020学年第一学期初三期中测试数学卷(时间:60分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分) 1.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6 B .(x -1)2=6 C .(x +2)2=9 D .(x -2)2=9 2.根据下面表格中的对应值:判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是( )A .3<x <3.23B .3.23<x <3.24C .3.24<x <3.25D .3.25<x <3.26 3.下列说法不正确的是( )A .方程x 2=x 有一根为0 B .方程x 2-1=0的两根互为相反数 C .方程(x -1)2-1=0的两根互为相反数 D .方程x 2-x +2=0无实数根 4.如图,l 1∥l 2∥l 3,直线a ,b 与l 1,l 2,l 3分别交于点A ,B ,C 和点D ,E ,F.若AB BC =23,DE =4,则EF 的长是( ) A.83 B.203C .6D .105.下列说法:①凡是正方形都相似;②凡是等腰三角形都相似;③凡是等腰直角三角形都相似;④两个相似多边形的面积比为4∶9,则它们的周长比为16∶81.其中正确的个数是( ) A .5 B .4 C .3 D .26.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A ,B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为12 m ,由此他就知道了A ,B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =24 m B .MN ∥ABC .△CMN ∽△CABD .CM ∶MA =1∶27.如图,在钝角△ABC 中,AB =6 cm ,AC =12 cm ,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1 cm/秒,点E 运动的速度为2 cm/秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( )A .3秒或4.8秒B .3秒C .4.5秒D .4.5秒或4.8秒 8.如果反比例函数y =kx的图象经过点(-3,-4),那么函数的图象应在( ) A. 第一、三象限 B. 第一、二象限 C. 第二、四象限 D. 第三、四象限9. 如果两点P 1(1,y 1)和P 2(2,y 2)都在反比例函数y=-x1的图象上,那么( ) A.y 2<y 1<0 B. y 1<y 2<0 C. y 2>y 1>0 D. y 1>y 2>0 10.如图,直线y =x 与双曲线y =k x(k >0)的一个交点为A ,且OA =2, 则k 的值为( )A.1B.2C.2D.2211.如图,在平面直角坐标系中,Rt△ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90∘,OA 与反比例函数xky =的图象交于点D,且OD=2AD,过点D 作x 轴的垂线交x 轴于点C. 若10=S ABCD 四边形,则k 的值为( )A. 10B. 16C. -10D. -1612.如图,在边长为2的正方形ABCD 中,点E 是边AD 中点, 点F 在边CD 上,且FE⊥BE,设BD 与EF 交于点G ,则△DEG 的面积是( )A .15 B .16 C .17 D .18二、填空题(本大题共6小题,每小题3分,共18分) 13.若x y =43,则x y x +的值为_____.14.如果关于x 的方程062=+-m x x 有两个相等的实数根,那么m = _____.15.点P 既在反比例函数y =-3x (x >0)的图象上,又在一次函数y =-x -2的图象上,则P 点的坐标是 .16.如果反比例函数y =m -2x 的图象在二、四象限,那么实数m 的取值范围是 .第12题图17.如图,在 ABCD中,AC与BD交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC等于____________.18.如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE;②BG=EG;③△MFG为等腰三角形;④DE:AB=1+,其中正确结论的序号为__________。

2020-2021山东大学附属中学初三数学上期中试卷(附答案)

2020-2021山东大学附属中学初三数学上期中试卷(附答案)

2020-2021山东大学附属中学初三数学上期中试卷(附答案)一、选择题1.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不能确定 2.用配方法解方程2410x x -+=,配方后的方程是 ( ) A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x += 3.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( )A .(﹣5,﹣3)B .(﹣2,0)C .(﹣1,﹣3)D .(1,﹣3)4.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动.设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )A .AB .BC .CD .D 5.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +< 6.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-7.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h8.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶39.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18 D .x 2+3x+16=0 10.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2 11.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y xB .2(12)y x =-C .(12)y x x =-D .2(12)y x =-12.如果反比例函数2a y x -=(a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a<0B .a>0C .a<2D .a>2 二、填空题13.如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =1,将菱形OABC 绕原点顺时针旋转105°至OA 'B ′C '的位置,则点B '的坐标为_____.14.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.15.如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为_____.16.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.17.关于x的方程的260x x m-+=有两个相等的实数根,则m的值为________.18.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是.19.如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为_____.20.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D,若OA=2,则阴影部分的面积为 .三、解答题21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.22.如图,AB 是⊙O 的直径,△ABC 内接于⊙O .点D 在⊙O 上,BD 平分∠ABC 交AC 于点E ,DF ⊥BC 交BC 的延长线于点F .(1)求证:FD 是⊙O 的切线;(2)若BD =8,sin ∠DBF =35,求DE 的长.23.如图,已知AB 为⊙O 的直径,点E 在⊙O 上,∠EAB 的平分线交⊙O 于点C ,过点C 作AE 的垂线,垂足为D ,直线DC 与AB 的延长线交于点P .(1)判断直线PC 与⊙O 的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE 的长. 24.如图,在ABC ∆中,67 30AB cm BC cm ABC ==∠=,,, 点P 从A 点出发,以1/cm s 的速度向B 点移动,点Q 从B 点出发,以2/cm s 的速度向C 点移动.如果P Q ,两点同时出发,经过几秒后PBQ ∆的面积等于24cm ?25.如图,Rt△ABC中,∠C=90o,BE是它的角平分线,D在AB边上,以DB为直径的半圆O经过点E.(1)试说明:AC是圆O的切线;(2)若∠A=30o,圆O的半径为4,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】把x1代入方程ax2+2x+c=0得ax12+2x1=-c,作差法比较可得.【详解】∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=-c,则M-N=(ax1+1)2-(2-ac)=a2x12+2ax1+1-2+ac=a(ax12+2x1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N<0,∴M<N.故选C.【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.解析:B【解析】【分析】根据配方法可以解答本题.【详解】x2−4x+1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B.【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.3.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。

2019-2020学年山东省济南市市中区九年级(上)期中数学试卷(解析版)

2019-2020学年山东省济南市市中区九年级(上)期中数学试卷(解析版)

2019-2020学年山东省济南市市中区九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x +=B .2(1)6x -=C .2(2)9x +=D .2(2)9x -=2.(3分)根据下面表格中的对应值:判断方程20(0ax bx c a ++=≠,a ,b ,c 为常数)的一个解x 的范围是( ) A .3 3.23x <<B .3.23 3.24x <<C .3.24 3.25x <<D .3.25 3.26x <<3.(3分)下列说法不正确的是( ) A .方程2x x =有一根为0B .方程210x -=的两根互为相反数C .方程2(1)10x --=的两根互为相反数D .方程220x x -+=无实数根4.(3分)如图,123////l l l ,直线a ,b 与1l 、2l 、3l 分别相交于A 、B 、C 和点D 、E 、F .若23AB BC =,4DE =,则EF 的长是( )A .83B .203C .6D .105.(3分)下列说法正确的个数有( )个 ①凡正方形都相似; ②凡等腰三角形都相似; ③凡等腰直角三角形都相似;④两个相似多边形的面积比为4:9,则周长的比为16:81.A .1B .2C .3D .46.(3分)如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为12m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A .24AB m =B .//MN ABC .CMN CAB ∆∆∽D .:1:2CM MA =7.(3分)如图,在钝角三角形ABC 中,6AB cm =,12AC cm =,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1/cm 秒,点E 运动的速度为2/cm 秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,运动的时间是( )A .3秒或4.8秒B .3秒C .4.5秒D .4.5秒或4.8秒8.(3分)如果反比例函数ky x=的图象经过点(3,4)--,那么函数的图象应在( ) A .第一,三象限B .第一,二象限C .第二,四象限D .第三,四象限9.(3分)如果两点11(1,)P y 和22(2,)P y 都在反比例函数1y x=-的图象上,那么( ) A .210y y << B .120y y << C .210y y >> D .120y y >>10.(3分)(人教版)如图,直线y x =与双曲线(0)ky k x=>的一个交点为A ,且2OA =,则k 的值为( )A .1B .2CD .11.(3分)如图,在平面直角坐标系中,Rt ABO ∆的顶点O 与原点重合,顶点B 在x 轴上,90ABO ∠=︒,OA 与反比例函数ky x=的图象交于点D ,且2O D A D =,过点D 作x 轴的垂线交x 轴于点C .若10ABCD S =四边形,则k 的值为( )A .16-B .16C .15-D .1512.(3分)如图,在边长为2的正方形ABCD 中,点E 是边AD 中点,点F 在边CD 上,且FE BE ⊥,设BD 与EF 交于点G ,则DEG ∆的面积是( )A .15B .16C .17 D .18二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)若34y x =,则x y x +的值为 . 14.(3分)如果关于x 的方程260x x m -+=有两个相等的实数根,那么m = . 15.(3分)点P 既在反比例函数3(0)y x x=->的图象上,又在一次函数2y x =--的图象上,则P 点的坐标是 . 16.(3分)反比例函数2m y x-=的图象在第二、四象限,那么实数m 的取值范围是 . 17.(3分)如图所示,在平行四边形ABCD 中,AC 与BD 相交于O ,E 为OD 的中点,连接AE 并延长交CD 于点F ,则:DF FC 等于 .18.(3分)如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接OH ,FH ,EG 与FH 交于点M ,对于下面四个结论:①GH BE ⊥;②BG EG =;③MFG ∆为等腰三角形;④:1DE AB =, 其中正确结论的序号为 .二、解答题(本大题共66分) 19.(12分)解方程 (1)2410x x --=; (2)2320x x +-=; (3)22330x x ++=20.(10分)已知关于x 的方程22(21)10x k x k +-+-=有两个实数根1x ,2x . (1)求实数k 的取值范围;(2)若1x ,2x 满足22121216x x x x +=+,求实数k 的值. 21.(10分)某服装店出售某品牌的棉衣,进价为100元/件,当售价为150元/件时,平均每天可卖30件;为了尽快减少库存迎接“元旦”的到来,商店决定降价销售,增加利润,经调查每件降价5元,则每天可多卖10件,现要想平均每天获利2000元,且让顾客得到实惠,那么每件棉衣应降价多少元?22.(10分)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG BC ⊥于点G ,AF DE ⊥于点F ,EAF GAC ∠=∠. (1)求证:ADE ABC ∆∆∽;(2)若3AD =,5AB =,求AFAG的值.23.(12分)如图,点(3,2)A 和点(,)M m n 都在反比例函数(0)ky x x=>的图象上.(1)k 的值为 ;(2)当4m =,求直线AM 的解析式;(3)当3m >时,过点M 作MP x ⊥轴,垂足为P ,过点A 作AB y ⊥轴,垂足为B ,直线AM 交x 轴与点Q ,试说明四边形ABPQ 是平行四边形.24.(12分)以四边形ABCD 的边AB 、AD 为底边分别作等腰三角形ABF 和等腰三角形ADE .(1)当四边形ABCD 为正方形时(如图①),以边AB 、AD 为斜边分别向外侧作等腰直角ABF ∆和等腰直角ADE ∆,连接EF 、FD ,线段EB 和FD 的数量关系是 ;(2)当四边形ABCD 为矩形时(如图②),以边AB 、AD 为斜边分别向矩形内侧、外侧作等腰直角ABF ∆和等腰直角ADE ∆,连接EF 、BD ,线段EF 和BD 具有怎样的数量关系?请说明理由;(3)当四边形ABCD为平行四边形时,以边AB、AD为底边分别向平行四边形内侧、外侧作等腰ABF∆与FBA∆的顶角都为α,连接EF、BD,交点为∆,且EAD∆和等腰ADE∠,并说明理由.G.请用α表示出EGD2019-2020学年山东省济南市市中区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x +=B .2(1)6x -=C .2(2)9x +=D .2(2)9x -=【分析】方程常数项移到右边,两边加上1变形即可得到结果. 【解答】解:方程移项得:225x x -=, 配方得:2216x x -+=, 即2(1)6x -=. 故选:B .【点评】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 2.(3分)根据下面表格中的对应值:判断方程20(0ax bx c a ++=≠,a ,b ,c 为常数)的一个解x 的范围是( ) A .3 3.23x <<B .3.23 3.24x <<C .3.24 3.25x <<D .3.25 3.26x <<【分析】根据表中数据得到 3.24x =时,20.02ax bx c ++=-; 3.25x =时,20.01ax bx c ++=,则x 取 2.24到 2.25之间的某一个数时,使20ax bx c ++=,于是可判断关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是3.24 3.25x <<. 【解答】解:3.24x =时,20.02ax bx c ++=-; 3.25x =时,20.01ax bx c ++=,∴关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是3.24 3.25x <<.故选:C .【点评】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.3.(3分)下列说法不正确的是( )A .方程2x x =有一根为0B .方程210x -=的两根互为相反数C .方程2(1)10x --=的两根互为相反数D .方程220x x -+=无实数根【分析】A 、把方程右边的项移动方程左边后,利用因式分解的方法即可求出方程的解;B 、把方程左边的1-移项到方程右边,然后利用直接开平方的方法即可求出方程的解;C 、把方程左边的1-移项到方程右边后,利用直接开平方的方法即可求出方程的解;D 、根据方程找出a ,b 和c 的值,然后求出△24b ac =-,根据△的符号即可判断出方程解的情况.【解答】解:A 、2x x =,移项得:20x x -=,因式分解得:(1)0x x -=, 解得0x =或1x =,所以有一根为0,此选项正确;B 、210x -=,移项得:21x =,直接开方得:1x =或1x =-,所以此方程的两根互为相反数,此选项正确;C 、2(1)10x --=,移项得:2(1)1x -=,直接开方得:11x -=或11x -=-,解得2x =或0x =,两根不互为相反数,此选项错误;D 、220x x -+=,找出1a =,1b =-,2c =,则△1870=-=-<,所以此方程无实数根,此选项正确.所以说法错误的选项是C . 故选:C .【点评】此题考查了一元二次方程的解法,考查了利用根的判别式不解方程判断方程解的情况,是一道基础题.4.(3分)如图,123////l l l ,直线a ,b 与1l 、2l 、3l 分别相交于A 、B 、C 和点D 、E 、F .若23AB BC =,4DE =,则EF 的长是( )A .83B .203C .6D .10【分析】根据平行线分线段成比例可得AB DEBC EF=,代入计算即可解答. 【解答】解:123////l l l ,∴AB DEBC EF =, 即243EF=, 解得:6EF =. 故选:C .【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.5.(3分)下列说法正确的个数有( )个 ①凡正方形都相似; ②凡等腰三角形都相似; ③凡等腰直角三角形都相似;④两个相似多边形的面积比为4:9,则周长的比为16:81. A .1B .2C .3D .4【分析】根据相似图形的概念以及相似多边形面积的比等于相似比的平方,周长的比等于相似比对各小题分析判断即可得解. 【解答】解:①凡正方形都相似,正确;②等腰三角形两腰相等,对应成比例,但顶角不一定相等,所以不一定相似,故本小题错误; ③凡等腰直角三角形都相似,正确;④两个相似多边形的面积比为4:9,则周长的比为2:3,故本小题错误; 所以,说法正确的有①③共2个. 故选:B .【点评】本题考查了相似图形的概念以及性质,是基础题,熟记相似形的判定与性质是解题的关键.6.(3分)如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为12m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A .24AB m =B .//MN ABC .CMN CAB ∆∆∽D .:1:2CM MA =【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得//MN AB ,12MN AB =,再根据相似三角形的判定解答. 【解答】解:M 、N 分别是AC ,BC 的中点, //MN AB ∴,12MN AB =, 221224AB MN m ∴==⨯=, CMN CAB ∆∆∽,M 是AC 的中点,CM MA ∴=, :1:1CM MA ∴=,故描述错误的是D 选项. 故选:D .【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定,熟记定理并准确识图是解题的关键.7.(3分)如图,在钝角三角形ABC 中,6AB cm =,12AC cm =,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1/cm 秒,点E 运动的速度为2/cm 秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,运动的时间是( )A .3秒或4.8秒B .3秒C .4.5秒D .4.5秒或4.8秒【分析】根据相似三角形的性质,由题意可知有两种相似形式,ADE ABC ∆∆∽和ADE ACB ∆∆∽,可求运动的时间是3秒或4.8秒.【解答】解:根据题意得:设当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,运动的时间是x 秒,①若ADE ABC ∆∆∽,则AD AE AB AC =, ∴122612x x -=, 解得:3x =;②若ADE ACB ∆∆∽,则AD AE AC AB =, ∴122126x x -=, 解得: 4.8x =.∴当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,运动的时间是3秒或4.8秒. 故选:A .【点评】此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.8.(3分)如果反比例函数k y x =的图象经过点(3,4)--,那么函数的图象应在( ) A .第一,三象限 B .第一,二象限 C .第二,四象限 D .第三,四象限【分析】首先利用待定系数法确定函数的表达式,再根据k 的正负确定函数图象经过的象限.【解答】解:k y x=,图象过(3,4)--, 所以120k =>,函数图象位于第一,三象限.故选:A .【点评】本题考查了待定系数法求反比例函数的常数k 和考查了反比例函数图象的性质.9.(3分)如果两点11(1,)P y 和22(2,)P y 都在反比例函数1y x=-的图象上,那么( ) A .210y y << B .120y y << C .210y y >> D .120y y >>【分析】把两点11(1,)P y 和22(2,)P y 分别代入反比例函数1y x=-求出2y 、1y 的值即可. 【解答】解:把点11(1,)P y 代入反比例函数1y x=-得,11y =-;点22(2,)P y 代入反比例函数1y x =-得,212y =-; 1102-<-<, 120y y ∴<<.故选:B .【点评】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上点的坐标一定适合此函数的解析式.10.(3分)(人教版)如图,直线y x =与双曲线(0)k y k x=>的一个交点为A ,且2OA=,则k 的值为( )A .1 B.2 CD .【分析】A 在直线y x =上,且2OA=,可求得A点坐标为把已知点的坐标代入解析式可得,2k =.【解答】解:设(,)A x y ,则224y x k y x x y =⎧⎪⎪=⎨⎪+=⎪⎩,解得2k =.故选:B .【点评】此题主要考查一次函数、反比例函数的图象与性质,是数形结合题.11.(3分)如图,在平面直角坐标系中,Rt ABO ∆的顶点O 与原点重合,顶点B 在x 轴上,90ABO ∠=︒,OA 与反比例函数k y x=的图象交于点D ,且2O D A D =,过点D 作x 轴的垂线交x 轴于点C .若10ABCD S =四边形,则k 的值为( )A .16-B .16C .15-D .15【分析】证DCO ABO ∆∆∽,推出23DC OC OD AB OB OA ===,求出224()39ODC OAB S S ∆∆==,求出8ODC S ∆=,根据三角形面积公式得出182OC CD ⨯=,求出16OC CD ⨯=即可. 【解答】解:2OD AD =, ∴23OD OA =, 90ABO ∠=︒,DC OB ⊥,//AB DC ∴,DCO ABO ∴∆∆∽, ∴23DC OC OD AB OB OA ===, ∴224()39ODC OAB S S ∆∆==, 10ABCD S =四边形,8ODC S ∆∴=, ∴182OC CD ⨯=, 16OC CD ⨯=,16k ∴=-,故选:A .【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的性质和判定的应用,解此题的关键是求出ODC ∆的面积.12.(3分)如图,在边长为2的正方形ABCD 中,点E 是边AD 中点,点F 在边CD 上,且FE BE ⊥,设BD 与EF 交于点G ,则DEG ∆的面积是( )A .15B .16C .17D .18【分析】过点G 作GM AD ⊥于M ,如图,先证明ABE DEF ∆∆∽,利用相似比计算出12DF =,再利用正方形的性质判断DGM ∆为等腰直角三角形得到DM MG =,设DM x =,则MG x =,1EM x =-,然后证明EMG EDF ∆∆∽,则利用相似比可计算出GM ,再利用三角形面积公式计算DEG S ∆即可.【解答】解:过点G 作GM AD ⊥于M ,如图,FE BE ⊥,90AEB DEF ∴∠+∠=︒,而90AEB ABE ∠+∠=︒,ABE DEF ∴∠=∠,而A EDF ∠=∠,ABE DEF ∴∆∆∽,::AB DE AE DF ∴=,即2:11:DF =,12DF ∴=, 四边形ABCD 为正方形,45ADB ∴∠=︒,DGM ∴∆为等腰直角三角形,DM MG ∴=,设DM x =,则MG x =,1EM x =-,//MG DF ,EMG EDF ∴∆∆∽,::MG DF EM ED ∴=,即1:(1):12x x =-,解得13x =, 1111236DEG S ∆∴=⨯⨯=.故选:B .【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.熟练运用相似比计算线段的长.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若34y x =,则x y x +的值为 74 . 【分析】根据合比性质,可得答案.【解答】解:由合比性质,得34744x y x ++==. 故答案为:74. 【点评】本题考查了比例的性质,利用合比性质是解题关键,合比性质:a cb d =⇒a bcd b d++=. 14.(3分)如果关于x 的方程260x x m -+=有两个相等的实数根,那么m = 9 .【分析】因为一元二次方程有两个相等的实数根,所以△240b ac =-=,根据判别式列出方程求解即可.【解答】解:关于x 的方程260x x m -+=有两个相等的实数根,∴△240b ac =-=,即2(6)410m --⨯⨯=,解得9m =故答案为:9【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.15.(3分)点P 既在反比例函数3(0)y x x=->的图象上,又在一次函数2y x =--的图象上,则P 点的坐标是 (1,3)- .【分析】点P 既在反比例函数3(0)y x x=->的图象上,又在一次函数2y x =--的图象上,则点P 的坐标是这两个函数的解.两个函数组成方程组,解这个方程组即可.【解答】解:根据题意可得:32x x-=--,则2230x x +-=, 即(1)(3)0x x -+=,解得:1x =或3x =-,因为0x >,所以1x =,此时3y =-,所以P 点的坐标是(1,3)-.故答案为:(1,3)-.【点评】本题考查了函数图象上点的坐标特征,关键是列出一元二次方程,并求解,注意要符合题意.16.(3分)反比例函数2m y x-=的图象在第二、四象限,那么实数m 的取值范围是 2m < . 【分析】由于反比例函数2m y x-=的图象在二、四限内,则120m -<,解得m 的取值范围即可. 【解答】解:由题意得,反比例函数2m y x-=的图象在二、四象限内, 则20m -<,解得2m <.故答案为:2m <. 【点评】本题考查了反比例函数的性质,重点是注意(0)k y k x=≠中k 的取值,①当0k >时,反比例函数的图象位于一、三象限;②当0k <时,反比例函数的图象位于二、四象限.17.(3分)如图所示,在平行四边形ABCD 中,AC 与BD 相交于O ,E 为OD 的中点,连接AE 并延长交CD 于点F ,则:DF FC 等于 1:2 .【分析】先证明DEF BEA ∆∆∽,得出13DF AB =,即可得出结论. 【解答】解:四边形ABCD 是平行四边形,//AB CD ∴,AB CD =,OD OB =,DEF BEA ∴∆∆∽, ∴DF DE BA BE=, E 为OD 的中点,3BE DE ∴=, ∴13DF BA =, 3AB DF ∴=,:1:3DF CD ∴=,:1:2DF FC ∴=.故答案为:1:2.【点评】本题考查了平行四边形的性质和相似三角形的判定与性质;熟练掌握相似三角形的性质是关键.18.(3分)如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接OH ,FH ,EG 与FH 交于点M ,对于下面四个结论:①GH BE ⊥;②BG EG =;③MFG ∆为等腰三角形;④:1DE AB =,其中正确结论的序号为 ①②③ .【分析】证明BCE DCG ∆≅∆,即可证得BEC DGC ∠=∠,然后根据三角形的内角和定理证得90EHG ∠=︒,则H G B E ⊥,然后证明BGH EGH ∆≅∆,则H 是BE 的中点,则OH 是BGE ∆的中位线,根据三角形的中位线定理即可得到12HO BG =,//HO BG ,以及45MOH EGC ∠=∠=︒,再根据等腰直角三角形的性质,得出12OF EG =,45OFG ∠=︒,以及OH OF =,根据MHO HOM OFH OFG ∠+∠=∠+∠,即可得出FMG MFG ∠=∠,最后根据等腰直角三角形的边角关系,得出:DB AB ,即可得到:DE AB =.【解答】解:正方形ABCD 的边CD 在正方形ECGF 的边CE 上,90BCE DCG ∴∠=∠=︒,BC DC =,EC GC =,()BCE DCG SAS ∴∆≅∆,CGD CEB ∴∠=∠,又CDG HDE ∠=∠,90EHD GCD ∴∠=∠=︒,GH BE ∴⊥,故①正确;EGC ∠的平分线GH 过点D ,BGH EGH ∴∠=∠,GH BE ⊥,90BHG EHG ∴∠=∠=︒,()BGH EGH ASA ∴∆≅∆,BG EG ∴=,故②正确;BG EG =,GH BE ⊥,H ∴为BE 的中点,又O 是EG 的中点,HO ∴是BEG ∆的中位线,12HO BG ∴=,//HO BG , 45MOH EGC ∴∠=∠=︒,如图,连接FO , O 是EG 的中点,∴等腰Rt EFG ∆中,12OF EG =,45OFG ∠=︒, OH OF ∴=,OHF OFH ∴∠=∠,MHO HOM OFH OFG ∴∠+∠=∠+∠,即FMG MFG ∠=∠,FG MG ∴=,即MFG ∆是等腰三角形,故③正确;如图,连接BD , HG 垂直平分BE ,DE DB ∴=,Rt ABD ∆中,:DB AB ,:DE AB ∴=,故④错误;故答案为:①②③【点评】本题主要考查了四边形的综合应用,解题时需要综合运用正方形的性质,三角形中位线定理,全等三角形的判定与性质,等腰直角三角形的性质以及等腰三角形的判定等,解题的关键是作辅助线构造等腰三角形和等腰直角三角形,灵活利用直角三角形的边角关系来计算.二、解答题(本大题共66分)19.(12分)解方程(1)2410x x --=;(2)2320x x +-=;(3)22330x x ++=【分析】(1)根据配方法即可求出答案;(2)根据公式法即可求出答案;(3)根据公式法即可求出答案.【解答】解:(1)2410x x --=,241x x ∴-=,2445x x ∴-+=, 2(2)5x ∴-=,2x ∴=(2)2320x x +-=,1a ∴=,3b =,2c =-,∴△9817=+=,x ∴= (3)22330x x ++=,2a ∴=,3b =,3c =,∴△924150=-=-<,故原方程无解【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20.(10分)已知关于x 的方程22(21)10x k x k +-+-=有两个实数根1x ,2x .(1)求实数k 的取值范围;(2)若1x ,2x 满足22121216x x x x +=+,求实数k 的值. 【分析】(1)根据方程的系数结合根的判别式,即可得出△450k =-+…,解之即可得出实数k 的取值范围;(2)由根与系数的关系可得1212x x k +=-、2121x x k =-,将其代入22212121212()216x x x x x x x x +=+-=+中,解之即可得出k 的值. 【解答】解:(1)关于x 的方程22(21)10x k x k +-+-=有两个实数根1x ,2x ,∴△22(21)4(1)450k k k =---=-+…, 解得:54k …,∴实数k 的取值范围为54k …. (2)关于x 的方程22(21)10x k x k +-+-=有两个实数根1x ,2x ,1212x x k ∴+=-,2121x x k =-.22212121212()216x x x x x x x x +=+-=+,222(12)2(1)16(1)k k k ∴--⨯-=+-,即24120k k --=,解得:2k =-或6k =(不符合题意,舍去).∴实数k 的值为2-.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△450k =-+…;(2)根据根与系数的关系结合22121216x x x x +=+,找出关于k 的一元二次方程. 21.(10分)某服装店出售某品牌的棉衣,进价为100元/件,当售价为150元/件时,平均每天可卖30件;为了尽快减少库存迎接“元旦”的到来,商店决定降价销售,增加利润,经调查每件降价5元,则每天可多卖10件,现要想平均每天获利2000元,且让顾客得到实惠,那么每件棉衣应降价多少元?【分析】设每件棉衣应降价x 元,根据平均每天获利2000元,即可得出关于x 的一元二次方程,解方程即可得出x 的值,取其中较大的值,此题得解.【解答】解:设每件棉衣应降价x 元,由题意得:(150100)(3010)20005x x --+⨯=, 整理得:2352500x x -+=,解得:110x =,225x =,2510>,x ∴的值选25.答:每件棉衣应降价25元.【点评】本题考查了一元二次方程的应用,根据数量关系列出关系x 的一元二次方程是解题的关键.22.(10分)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG BC ⊥于点G ,AF DE ⊥于点F ,EAF GAC ∠=∠.(1)求证:ADE ABC ∆∆∽;(2)若3AD =,5AB =,求AF AG的值.【分析】(1)由于AG BC ⊥,AF DE ⊥,所以90AFE AGC ∠=∠=︒,从而可证明AED ACB ∠=∠,进而可证明ADE ABC ∆∆∽;(2)ADE ABC ∆∆∽,AD AE AB AC =,又易证EAF CAG ∆∆∽,所以AF AE AG AC=,从而可知AF AD AG AB =. 【解答】解:(1)AG BC ⊥,AF DE ⊥,90AFE AGC ∴∠=∠=︒,EAF GAC ∠=∠,AED ACB ∴∠=∠,EAD BAC ∠=∠,ADE ABC ∴∆∆∽,(2)由(1)可知:ADE ABC ∆∆∽, ∴35AD AE AB AC == 由(1)可知:90AFE AGC ∠=∠=︒,EAF GAC ∴∠=∠,EAF CAG ∴∆∆∽, ∴AF AE AG AC =, ∴35AF AG =另解:AG BC ⊥,AF DE ⊥,ADE ABC ∆∆∽,∴35AF AD AG AB == 【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.23.(12分)如图,点(3,2)A 和点(,)M m n 都在反比例函数(0)k y x x=>的图象上. (1)k 的值为 6 ;(2)当4m =,求直线AM 的解析式;(3)当3m >时,过点M 作MP x ⊥轴,垂足为P ,过点A 作AB y ⊥轴,垂足为B ,直线AM 交x 轴与点Q ,试说明四边形ABPQ 是平行四边形.【分析】(1)将A 坐标代入反比例解析式求出k 的值即可;(2)由k 的值确定出反比例解析式,将3x =代入反比例解析式求出y 的值,确定出M 坐标,设直线AM 解析式为y ax b =+,将A 与M 坐标代入求出a 与b 的值,即可确定出直线AM 解析式;(3)由MP 垂直于x 轴,AB 垂直于y 轴,得到M 与P 横坐标相同,P 与Q 纵坐标相同,表示出P 与Q 坐标于是得到结论.【解答】解:(1)将(3,2)A 代入反比例解析式得:6k =;故答案为:6;(2)将4x =代入反比例解析式6y x =得:32y =,即3(4,)2M , 设直线AM 解析式为y ax b =+,把A 与M 代入得:32342a b a b +=⎧⎪⎨+=⎪⎩, 解得:12a =-,72b =,∴直线AM 解析式为1722y x =-+;(3)把(,)M m n 代入6y x =得6m n=, 6(M n ∴,)n 把M ,A 点坐标代入y kx b =+得3n k =-,2b n =+, ∴直线AM 解析式为23ny x n =-++, 6(3Q n ∴+,0), MP x ⊥轴,6(P n∴,0) 3PQ OQ OP ∴=-=,AB y ⊥轴,//AB PQ ∴,3AB =,AB PQ ∴=,∴四边形ABPQ 是平行四边形.【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,以及两直线平行与斜率之间的关系,熟练掌握待定系数法是解本题第二问的关键.24.(12分)以四边形ABCD 的边AB 、AD 为底边分别作等腰三角形ABF 和等腰三角形ADE .(1)当四边形ABCD 为正方形时(如图①),以边AB 、AD 为斜边分别向外侧作等腰直角ABF ∆和等腰直角ADE ∆,连接EF 、FD ,线段EB 和FD 的数量关系是 BE DF = ;(2)当四边形ABCD 为矩形时(如图②),以边AB 、AD 为斜边分别向矩形内侧、外侧作等腰直角ABF ∆和等腰直角ADE ∆,连接EF 、BD ,线段EF 和BD 具有怎样的数量关系?请说明理由;(3)当四边形ABCD 为平行四边形时,以边AB 、AD 为底边分别向平行四边形内侧、外侧作等腰ABF ∆和等腰ADE ∆,且EAD ∆与FBA ∆的顶角都为α,连接EF 、BD ,交点为G .请用α表示出EGD ∠,并说明理由.【分析】(1)先证明ABF ADE ∆≅∆,再证明F 、A 、E 共线,得四边形BFED 是矩形,根据矩形的对角线相等得:BE DF =可得结论;(2)证明~EAF DAB ∆∆,列比例式,根据等腰直角三角形斜边与直角边的比可得结论;(3)设EF 与AD 的交点为P 点,证明EAD FAB ∆∆∽,再证明~EAF DAB ∆∆,最后证明~PAE PGD ∆∆,得1902EGD EAD α∠=∠=︒-. 【解答】解:(1)如图①,连接BD ,四边形ABCD 是正方形,AB AD ∴=,90BAD ∠=︒,等腰直角三角形ABF 和ADE ,45BAF ABF DAE ADE ∴∠=∠=∠=∠=︒,180FAB BAD DAE ∴∠+∠+∠=︒,()ABF ADE ASA ∆≅∆,F ∴、A 、E 共线,BF DE =,9090180AFB AED ∠+∠=︒+︒=︒,//DE BF ∴,∴四边形BFED 是矩形,BE DF ∴=.故答案为BE DF =.(2)结论:BD =.证明:如图②中,ABF ∆和ADE ∆是等腰直角三角形,∴AD AB AE AF==45EAD ∠=︒,45BAF ∠=︒, 四边形ABCD 是矩形,90BAD ∴∠=︒,45FAD BAD BAF ∴∠=∠-∠=︒,90EAF FAD EAD ∴∠=∠+∠=︒,90EAF BAD ∴∠=∠=︒,~EAF DAB ∴∆∆,∴BD AD EF AE=BD ∴=.(3)如图③,设EF 与AD 的交点为P 点,等腰三角形ABF 和ADE 的顶角AED AFB α∠=∠=,1902EAD EDA FAB FBA α∴∠=∠=∠=∠=︒-, ~EAD FAB ∴∆∆,∴EA AD AF AB =, ∴EA AF AD AB=, EAD DAF FAB DAF ∠+∠=∠+∠,即:EAF DAB ∠=∠,~EAF DAB ∴∆∆,AEF ADB ∴∠=∠,又APE GPD ∠=∠,~PAE PGD ∴∆∆,1902EGD EAD α∴∠=∠=︒-. 【点评】本题属于四边形综合题,主要考查了正方形,平行四边形的性质,矩形的性质和判定,等腰直角三角形的性质,全等和相似三角形的性质和判定,平行线的判定等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.。

山东省部分联考2019-2020学年度第一学期九年级 数学期中试卷

山东省部分联考2019-2020学年度第一学期九年级 数学期中试卷

密 封 线 内请 勿 答 题班级学校姓名考号2019-2020学年第一学期九年级期中评价数学试题注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试 时间120分钟. 第Ⅰ卷(选择题 共48分)一、 选择题:(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项填在后面的表格中...) 1.下面四个立体图形中,主视图是三角形的是( ) A . B . C . D . 2.已知反比例函数y =xk的图象经过点(1,-2),则k 的值为( )A .2B.-12C .1D .-23.若=,则下列变形错误的是( )A .2a =3bB .=C .3a =2bD .=4.下列各组中的四条线段成比例的是( )A.a =1,b =6,c =2,d =4 B .a =2,b =3,c =6,d =4 C .a =4,b =6,c =5,d =10 D .a =2,b =3,c =4,d =15.如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面朝上.B .从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球.C .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃 .D .掷一枚均匀的正六面体骰子,出现3点朝上.6.正方形网格中,∠AOB 如图放置,则tan ∠AOB=( )A .B .C .D .27. 如图,已知直线l 1,l 2,l 3分别交直线l 4于点A ,B,C ,交直线l 5于点D ,E,F ,且l 1∥l 2∥l 3,若AB =4,AC =6,DF =9,则DE =( ) A .5B .6C .7D .88.下列四个三角形,与左图中的三角形相似的是( )A .B .C .D .9.已知点),,2(1y A -),1(2y B -,),3(3y C 都在反比例函数xy 4=的图象上,则( ) A .2y <1y <3y B .3y <2y <1y C .3y <1y <2y D .1y <2y <3y 10.在△ABC 中,若|sinA ﹣22|+(cosB ﹣)2=0,则∠C 的度数是( )A .30°B .45°C .75°D .90°11.反比例函数y =与一次函数y =﹣mx+m (m≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .第6题图第7题图 第5题图密封 线 内 请 勿 答 题12.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y =(x >0)的图象上.则y 1+y 2+…+y 8的值为( )A .2B .6C .4D .2第Ⅱ卷(非选择题,共102分)二、填空题(本大题共6小题,每小题4分,共24分,把答案填写在题中横线上) 13.若,则= .14.在一个不透明的口袋中,装有4个红球和若干个白球,这些球除颜色外其余都相同,如果摸到红球的概率是31,那么口袋中有白球 个.15.已知反比例函数x3-m y =的图象如图所示,则实数m 的取值范围是______________.16.如图,2m 长的竹竿竖直放置,使竹竿顶端的影子与树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距5m ,与树相距10m ,则树的高度为 米. 17.在△ABC 中,∠C =90°,tan A =43,AB =20,则AC =________. 18.在矩形ABCD 中,点E 为AD 的中点,连接BE 、AC ,AC ⊥BE 于点F ,连接DF , 对于结论①CF=2AF ②△AEF ∽△CAB ③DF=DC ④tan ∠CAD=23. 正确的有 .三、解答题(本大题共9小题,共78分,解答应写出文字说明和运算步骤) 19.(本小题6分)(1)计算:2sin30°-tan45°+2cos30°(2)若==,且3a ﹣2b +c =18,求2a +b ﹣c 的值.20.(本小题6分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=7m ,某一时刻AB 在太阳光下的投影BC=4m .(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为8m ,计算DE 的长.21.(本题6分)已知:如图,AB ∥CD(1)证明:△AOB ∽△DOC ;(2)已知,3,5,4===OB OC OA 求OD 的长。

山东省潍坊市2019-2020学年九年级上期中数学试题及答案

山东省潍坊市2019-2020学年九年级上期中数学试题及答案

山东省潍坊市2019-2020学年九年级上期中数学试题及答案初三数学试题同学们,学期已经过半,相信你又学到了好多新的知识。

下面的题目都是大家平时接触过的,只要做题时你能放松自己,平心静气,相信你会越做越有信心。

温馨提示: 1.本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为选择题;请把选择题答案填入答案卡内。

第Ⅱ卷为非选择题。

一、 选择题。

(本题共12个小题,在每小题所列四个选项中,只有一个选项符合题意,把符合题意的选项写在答题卡中)1.在一次游戏当中,小明将下面四张扑克牌中的三张旋转了180°,得到的图案和原来的一模一样.小芳看了后,很快知道没有旋转的那张扑克牌是( )A .黑桃QB .梅花2C .梅花6D .方块92.下列说法:①三角形的外心到三角形各顶点的距离相等②经过三个点一定可以作圆 ③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧。

正确的命题有( )A.1个B.2个C.3个D.4个 3.把二次函数2114y x x =+-化为y =a (x -h)2+k 的形式是( ) A .21(1)24y x =++ B .21(2)24y x =+- C .21(2)24y x =-+ D .21(2)24y x =-- 4.某种商品零售价经过两次降价后,每件的价格由原来的800元降为现在的578元,则平均每次降价的百分率为( ) A .10% B .12% C .15% D .17%5.已知二次函数y =ax 2+bx -1(a ≠0)的图象经过点(1,1),则代数式1-a -b 的值为( )A .-3B .-1C .2D .56.如图所示,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为D,CD 与AB 的延长线交于点C ,∠A=,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()。

A.3B.2C.1D.07. 下列方程中有实数根的是()A.x2-3x+4=0 B.x2+2x+3=0 C.x2+x+1=0 D.x2+x-1=0 8.点A的坐标为(-2,3),点B与点A关于原点对称,则点B的坐标为( )A.(-3,2) B.(-2,-3) C.(3,-2) D.(2,-3)9.二次函数y=a x2+bx+c(a≠0)的图象如图,下列结论正确的是()A.a<0 B.b2-4ac<0C.当-1<x<3时,y>0 D .=110、圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()。

2019-2020学年九年级数学上学期期中原创卷A卷(山东)(全解全析)

2019-2020学年九年级数学上学期期中原创卷A卷(山东)(全解全析)

2019-2020学年上学期期中原创卷A卷九年级数学·全解全析123456789101112C A BD A B A C C D B C 1.【答案】C【解析】A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.2.【答案】A【解析】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故选A.3.【答案】B【解析】A.“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C.“概率为0.0001的事件”是随机事件,选项错误;D.任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.4.【答案】D【解析】(x+4)(x–3)=0,x+4=0或x–3=0,所以x1=–4,x2=3.故选D.5.【答案】A【解析】把△AOB绕点O顺时针旋转得到△COD,旋转角是∠AOC或∠BOD.故选A.6.【答案】B【解析】∵OA=OB,∴∠BAO=∠ABO=40°,∴∠O=180°–40°–40°=100°,∴111005022C O∠=∠=⨯= .故选B.7.【答案】A【解析】仰卧起坐次数在15~20次的频率为:301012530---=0.1,故选A.8.【答案】C【解析】所有出现的情况如下,共有16种情况,积为奇数的有4种情况,积123411234224683369124481216所以在该游戏中甲获胜的概率是416=14.乙获胜的概率为1216=34.故选C .9.【答案】C【解析】由图象可知,0,0,0a b c <<>,则c Q a b ⎛⎫ ⎪⎝⎭,在第三象限.故选C .10.【答案】D【解析】当y =5时,则21520x =,解之得10x =(负值舍去),故选D .11.【答案】B【解析】如图,连接AD ,∵BC 为⊙A 的切线,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×2=4,∵∠EAF =80°,∴S 扇形AEF =2802360π⨯=89π,∴S 阴影=S △ABC –S 扇形AEF =4–89π,故选B .12.【答案】C【解析】∵二次函数y =ax 2+bx +c (a ≠0)的部分图象与x 轴交于点A (–1,0),与y 轴交于点B ,且对称轴为x =1,∴图象与x 轴的另一个交点为:(3,0),故当–1<x <3时,y >0;故①错误;一元二次方程ax 2+bx +c =0的两根为x 1=–1,x 2=3,②正确;当y <0时,x <–1或x >3;故③错误;抛物线上两点(x 1,y 1),(x 2,y 2).当x 1>x 2>2时,两点都在对称轴右侧,y 随x 的增大而减小,故y 1<y 2,故④错误.故选C .13.【答案】(–1,–2)【解析】点M (1,2)关于原点的对称点的坐标为(–1,–2).故答案为:(–1,–2).14.【答案】1【解析】∵方程x 2–x –2=0的两根分别为x 1、x 2,∴x 1+x 2=1.故答案为:1.15.【答案】y =x 2–2【解析】抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1–3,即y =x 2–2.故答案为:y =x 2–2.16.【答案】25【解析】确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P =25.故答案为:25.17.【答案】132y y y >>【解析】26y x x c =-+可整理为()239y x c =-+-,根据函数解析式的特点可知当x =3时y 最小,函数图象关于x =3对称,图象开口向上,当x <3时,y 随x 的增大而减小,对比A 、B 横坐标都比3小,且–1<2,则12y y >,根据图象的对称性,横坐标距离对称轴x =3越远的点其y 值越大,则A 、B 、C 点横坐标离x =3的距离分别为:134-+=、231-=、33+-=41>>,则132y y y >>.故答案为:132y y y >>.18.【答案】2【解析】M (p ,q )在抛物线y =x 2–1上,故有q =p 2–1,即p 2–q =1;设A ,B 两点的横坐标分别为m 、n ;因为A 、B 两点的横坐标是关于x 的方程x 2–2px +q =0的两根,所以m +n =2p ,mn =q ;而弦AB 的长的等于|m –n |,故|m –n |2=(m +n )2–4mn =4p 2–4q =4(p 2–q )=4.∴|m –n |=2,故答案为:2.19.【解析】1()方程整理,得23110x x x ---=()(),因式分解,得[]1310x x x ---=()(),于是,得10x -=或230x -=,解得11x =,232x =;(3分)2()方程整理,得2310x x -+=,1a = ,3b =-,1c =,224341150b ac ∴=-=--⨯⨯=>(),43522b b ac x a -±∴==,即1352x +=,2352x =.(6分)20.【解析】(1)根据题意得:△=(–2)2–4(m –2)≥0,解得m ≤3;(3分)(2)根据题意得:x 1+x 2=2,x 1x 2=m –2,∴3x 1+3x 2–x 1x 2=6–(m –2)=–m +8,而m ≤3,所以当m =3时,3x 1+3x 2–x 1x 2的值最小,最小值为:–3+8=5.(6分)21.【解析】∵AB AC =,∴AB =AC ,∴△ABC 为等腰三角形(相等的弧所对的弦相等),(3分)∵∠ACB =60°,∴△ABC 为等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠COA (相等的弦所对的圆心角相等).(6分)22.【解析】(1)设这两年该校植树棵数的年平均增长率为x ,根据题意得:500(1+x )2=720,(4分)解得x 1=0.2=20%,x 2=–2.2(不合题意,舍去).答:这两年该校植树棵数的年平均增长率为20%.(6分)(2)720×(1+20%)=864(棵).答:该校第四年植树864棵.(8分)23.【解析】(1)黄球个数:100.44⨯=(个),白球个数:()4232+÷=(个),红球个数:10424--=(个),即袋中红、黄、白三种颜色的球的个数分别是4个、4个、2个;(3分)(2)设放入红球x 个,则()4100.7x x +=+⨯,解得10x =,即向袋中放入10个红球;(6分)(3)()20.11010P ==+摸出一个球是白球,即摸出一个球是白球的概率是0.1.(8分)24.【解析】(1)如图,△A 1B 1C 1为所作;(4分)(2)如图,△A2B2C2为所作,点C2的坐标为(–3,1);(7分)(3)若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为(–n,m).故答案为:(–3,1),(–n,m).(10分)25.【解析】(1)根据题意得,y=200+(80–x)×20=–20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=–20x+1800(60≤x≤80);(3分)(2)W=(x–60)y=(x–60)(–20x+1800)=–20x2+3000x–108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=–20x2+3000x–108000;(5分)(3)根据题意得,–20x+1800≥240,解得x≤78,∴76≤x≤78,W=–20x2+3000x–108000,对称轴为x=–30002(20)⨯-=75,∵a=–20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76–60)(–20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.(10分)26.【解析】(1)如图,连接OA,由题意得:AD=12AB=30,OD=r–18,(3分)在Rt△ADO中,由勾股定理得:r2=302+(r–18)2,解得r=34;(5分)(2)如图,连接OA ′,∵OE =OP –PE =30,(6分)在Rt △A ′EO 中,由勾股定理得:A ′E 2=A ′O 2–OE 2,即:A ′E 2=342–302,(8分)解得A ′E =16.∴A ′B ′=32.∵A ′B ′=32>30,∴不需要采取紧急措施.(12分)27.【解析】(1)∵抛物线与x 轴的交点A (–3,0),对称轴为直线x =–1,∴抛物线与x 的轴交点B 的坐标为(1,0),设抛物线解析式为y =a (x +3)(x –1),将点C (0,–3)代入,得:–3a =–3,解得a =1,则抛物线解析式为y =(x +3)(x –1)=x 2+2x –3;(4分)(2)设点P 的坐标为(a ,a 2+2a –3),则点P 到OC 的距离为|a |.∵S △POC =4S △BOC ,∴12•OC •|a |=12OC •OB ,即12×3×|a |=4×12×3×1,解得a =±4.当a =4时,点P 的坐标为(4,21);当a =–4时,点P 的坐标为(–4,5).∴点P 的坐标为(4,21)或(–4,5).(8分)(3)如图所示:设AC 的解析式为y =kx –3,将点A 的坐标代入得:–3k –3=0,解得k =–1,∴直线AC 的解析式为y =–x –3.设点D 的坐标为(x ,x 2+2x –3),则点Q 的坐标为(x ,–x –3).∴QD =–x –3–(x 2+2x –3)=–x –3–x 2–2x +3=–x 2–3x =–(x 2+3x +94–94)=–(x +32)2+94,∴当x =–32时,QD 有最大值,QD 的最大值为94.(12分)。

2019-2020学年山东省济南市章丘区九年级(上)期中数学试卷(解析版)

2019-2020学年山东省济南市章丘区九年级(上)期中数学试卷(解析版)

2019-2020学年山东省济南市章丘区九年级(上)期中数学试卷一、单选题第I 卷(选择题)1.(3分)如图所示某几何体的三视图,则这个几何体是( )A .三棱锥B .圆柱C .球D .圆锥2.(3分)下列方程一定是一元二次方程的是( )A .20ax bx c ++=B 235x =C .25(1)512x x x +=-D .21132x x -=--3.(3分)两个人的影子在两个相反的方向,这说明( ) A .他们站在阳光下 B .他们站在路灯下 C .他们站在路灯的两侧 D .他们站在月光下4.(3分)若234a b c ==,则a bb c+-的值为( ) A .5B .15C .5-D .15-5.(3分)若2240x x c -+=的一个根,则c 的值是( )A .1B .3C .1+D .26.(3分)如图,下列四个三角形中,与ABC ∆相似的是( )A .B .C .D .7.(3分)用配方法解下列方程时,配方错误的是( ) A .22990x x +-=化为2(1)100x += B .22740x x --=化为2781()416x -=C .2890x x ++=化为2(4)25x +=D .23420x x --=化为2210()39x -=8.(3分)在同一直角坐标平面内,如果1y k x =与2k y x=没有交点,那么1k 和2k 的关系一定是( ) A .10k <,20k >B .10k >,20k <C .1k 、2k 同号D .1k 、2k 异号9.(3分)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .10080100807644x x ⨯--=B .2(100)(80)7644x x x --+=C .(100)(80)7644x x --=D .10080356x x +=10.(3分)如图,Rt ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,2BC cm =,D 为BC 的中点,若动点E 以1/cm s 的速度从A 点出发,沿着A B →的方向运动,设E 点的运动时间为t 秒(04)t <…,连接DE ,当以B 、D 、E 为顶点的三角形与ABC ∆相似时,t 的值为()A .2B .2.5或3.5C .2或3.5D .2或2.511.(3分)如图,在ABC ∆中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①12DE BC =;②12DOE COB S S ∆∆=;③AD OEAB OB=;④13ODE ADE S S ∆∆= 其中正确的个数有( )A .1个B .2个C .3个D .4个12.(3分)如图,在x 轴正半轴上依次截取112231(n n OA A A A A A A n -===⋯=为正整数),过点1A 、2A 、3A 、⋯、n A 分别作x 轴的垂线,与反比例函数2(0)y x x =>交于点1P 、2P 、3P 、⋯、n P ,连接12P P 、23P P 、⋯、1n n P P -,过点2P 、3P 、⋯、n P 分别向11PA 、22P A 、⋯、11n n P A --作垂线段,构成的一系列直角三角形(见图中阴影部分)的面积和是( )A .1n n- B .1n n + C .12nD .14n二、填空题13.(3分)方程(2)2(2)x x x +=+的根是 .14.(3分)在一个不透明的盒子里装有除颜色外其余均相同的2个黄色兵乓球和若干个白色兵乓球,从盒子里随机摸出一个兵乓球,摸到黄色兵乓球的概率为13,那么盒子内白色兵乓球的个数为 .15.(3分)如图,在ABC ∆中,:2:3AD DB =,E 为CD 的中点,AE 的延长线交BC 于点F ,则:BF FC = .16.(3分)一个几何体的三视图如图所示,这个几何体的侧面积为 .17.(3分)如图,ABC ∆中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(1,0)-.以点C 为位似中心,在x 轴的下方作ABC ∆的位似图形△A B C '',并把ABC ∆放大到原来的2倍.设点B 的对应点B '的横坐标是a ,则点B 的横坐标是 .18.(3分)如图,已知点A 是一次函数1(0)2y x x =…图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数(0)ky x x=>的图象过点B ,C ,若O A B ∆的面积为6,则ABC ∆的面积是 .三、解答题 19.解方程:(1)2(3)2(3)0x x x -+-=; (2)24810x x --=(用配方法解).20.如图,BD ,CE 是ABC ∆的高.求证:BA AE AC AD =.21.已知关于x 的一元二次方程2(1)10mx m x -++=. (1)求证:此方程总有两个实数根;(2)若m 为整数,当此方程的两个实数根都是整数时,求m 的值.22.已知,如图在Rt ABC ∆中,90B ∠=︒,6AB cm =,8BC cm =,点P 由点A 出发沿AB 方向向终点点B 匀速移动,速度为1/cm s ,点Q 由点B 出发沿BC 方向向终点点C 匀速移动,速度为2/cm s .如果动点P ,Q 同时从A ,B 出发,当P 或Q 到达终点时运动停止.几秒后,以Q ,B ,P 为顶点的三角形与ABC ∆相似?23.某商场销售某种冰箱,每台进货价为2500元,标价为3000,(1)若商场连续两次降价,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为2900元时,平均每天能售出8台,当每台售价每降50元时,平均每天就能多售出4台,若商场要想使这种冰箱的销售利润平均每天达到5000元,则每台冰箱的定价应为多少元?24.如图所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的ABC ∆是格点三角形.在建立平面直角坐标系后,点B 的坐标为(1,1)--.(1)把ABC ∆向下平移5格后得到△111A B C ,写出点1A ,1B ,1C 的坐标,并画出△111A B C ; (2)把ABC ∆绕点O 按顺时针方向旋转180︒后得到△222A B C ,写出点2A ,2B ,2C 的坐标,并画出△222A B C ;(3)把ABC ∆以点O 为位似中心放大得到△333A B C ,使放大前后对应线段的比为1:2,写出点3A ,3B ,3C 的坐标,并画出△333A B C .25.某中学为了解学生对新闻、 体育、 娱乐、 动画四类电视节目的喜爱情况, 进行了统计调查 . 随机调查了某班所有同学最喜欢的节目 (每 名学生必选且只能选择四类节目中的一类) 并将调查结果绘成如下不完整的统计图 . 根据两图提供的信息, 回答下列问题: (1) 最喜欢娱乐类节目的有 人, 图中x = ; (2) 请补全条形统计图;(3) 根据抽样调查结果, 若该校有 1800 名学生, 请你估计该校有多少名学生最喜欢娱乐类节目;(4) 在全班同学中, 有甲、 乙、 丙、 丁等同学最喜欢体育类节目, 班主任打算从甲、 乙、 丙、 丁 4 名同学中选取 2 人参加学校组织的体育知识竞赛, 请用列表法或树状图求同时选中甲、 乙两同学的概率 .26.【提出问题】(1)如图1,在等边ABC ∆中,点M 是BC 上的任意一点(不含端点B 、)C ,连结AM ,以AM 为边作等边AMN ∆,连结CN .求证:ABC ACN ∠=∠. 【类比探究】(2)如图2,在等边ABC ∆中,点M 是BC 延长线上的任意一点(不含端点)C ,其它条件不变,(1)中结论ABC ACN ∠=∠还成立吗?请说明理由. 【拓展延伸】(3)如图3,在等腰ABC ∆中,BA BC =,点M 是BC 上的任意一点(不含端点B 、)C ,连结AM ,以AM 为边作等腰AMN ∆,使顶角AMN ABC ∠=∠.连结CN .试探究ABC ∠与ACN ∠的数量关系,并说明理由.27.如图1,已知直线3y x =分别与双曲线12y x =、(0)ky x x=>交于P 、Q 两点,且2OP OQ =.(1)求k 的值.(2)如图2,若点A 是双曲线12y x=上的动点,//AB x 轴,//AC y 轴,分别交双曲线(0)ky x x=>于点B 、C ,连接BC .请你探索在点A 运动过程中,ABC ∆的面积是否变化?若不变,请求出ABC ∆的面积;若改变,请说明理由;(3)如图3,若点D 是直线3y x =上的一点,请你进一步探索在点A 运动过程中,以点A 、B 、C 、D 为顶点的四边形能否为平行四边形?若能,求出此时点A 的坐标;若不能,请说明理由.2019-2020学年山东省济南市章丘区九年级(上)期中数学试卷参考答案与试题解析一、单选题第I 卷(选择题)1.(3分)如图所示某几何体的三视图,则这个几何体是( )A .三棱锥B .圆柱C .球D .圆锥【分析】根据一个空间几何体的主视图和俯视图都是三角形,可判断该几何体是锥体,再根据左视图的形状,即可得出答案.【解答】解:几何体的主视图和俯视图都是三角形,∴该几何体是一个锥体,俯视图是一个圆,∴该几何体是一个圆锥;故选:D .【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定. 2.(3分)下列方程一定是一元二次方程的是( )A .20ax bx c ++=B 235x =C .25(1)512x x x +=-D .21132x x -=--【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案. 【解答】解:A 、20ax bx c ++=,0a =时不是一元二次方程,故选项A 不合题意;B 235x =不是一元二次方程,故选项B 不合题意;C 、25(1)512x x x +=-化简为5120x +=,是一元一次方程,故选项C 不合题意;D 、21132x x -=--是一元二次方程,故选项D 符合题意; 故选:D .【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2. 3.(3分)两个人的影子在两个相反的方向,这说明( ) A .他们站在阳光下 B .他们站在路灯下 C .他们站在路灯的两侧D .他们站在月光下【分析】本题考查中心投影的特点.【解答】解:根据两个人的影子在两个相反的方向,则一定是中心投影;且两人同在光源两侧.故选C .【点评】本题考查中心投影的特点:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短. 4.(3分)若234a b c ==,则a bb c+-的值为( ) A .5 B .15C .5-D .15-【分析】设234a b ck ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【解答】解:设234a b ck ===, 则2a k =,3b k =,4c k =, 235534a b k k kb c k k k++===----, 故选:C .【点评】本题考查了比例的性质,正确理解比例的性质是解题的关键.5.(3分)若2240x x c -+=的一个根,则c 的值是( )A .1B .3C .1+D .2【分析】把2代入方程240x x c -+=就得到关于c 的方程,就可以解得c 的值.【解答】解:把2240x x c -+=,得2(24(20c +-++=, 解得1c =; 故选:A .【点评】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. 6.(3分)如图,下列四个三角形中,与ABC ∆相似的是( )A .B .C .D .【分析】ABC ∆是等腰三角形,底角是75︒,则顶角是30︒,结合各选项是否符合相似的条件即可.【解答】解:由图可知,6AB AC ==,75B ∠=︒, 75C ∴∠=︒,30A ∠=︒,A 、三角形各角的度数分别为75︒,52.5︒,52.5︒,B 、三角形各角的度数都是60︒,C 、三角形各角的度数分别为75︒,30︒,75︒,D 、三角形各角的度数分别为40︒,70︒,70︒,∴只有C 选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C .【点评】此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,此题难度不大,但综合性较强.7.(3分)用配方法解下列方程时,配方错误的是( ) A .22990x x +-=化为2(1)100x += B .22740x x --=化为2781()416x -=C .2890x x ++=化为2(4)25x +=D .23420x x --=化为2210()39x -=【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【解答】解:A 、由原方程,得2299x x +=, 等式的两边同时加上一次项系数2的一半的平方1,得2(1)100x +=; 故本选项正确;B 、由原方程,得2274x x -=,等式的两边同时加上一次项系数7-的一半的平方,得, 2781()416x -=,故本选项正确; C 、由原方程,得289x x +=-,等式的两边同时加上一次项系数8的一半的平方16,得2(4)7x +=; 故本选项错误;D 、由原方程,得2342x x -=,化二次项系数为1,得 24233x x -=等式的两边同时加上一次项系数43-的一半的平方169,得2210()39x -=;故本选项正确. 故选:C .【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 8.(3分)在同一直角坐标平面内,如果1y k x =与2k y x=没有交点,那么1k 和2k 的关系一定是( ) A .10k <,20k >B .10k >,20k <C .1k 、2k 同号D .1k 、2k 异号【分析】如果直线1y k x =与双曲线2k y x =没有交点,则21kk x x =无解,即210k k <.【解答】解:直线1y k x =与双曲线2k y x=没有交点, 21k k x x ∴=无解, 221kx k ∴=无解,∴210k k <.即1k 和2k 异号. 故选:D .【点评】本题综合考查反比例函数与方程组的相关知识点,以及不等式的有关内容. 9.(3分)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .10080100807644x x ⨯--=B .2(100)(80)7644x x x --+=C .(100)(80)7644x x --=D .10080356x x +=【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x 米,由题意有 (100)(80)7644x x --=,故选:C .【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.10.(3分)如图,Rt ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,2BC cm =,D 为BC 的中点,若动点E 以1/cm s 的速度从A 点出发,沿着A B →的方向运动,设E 点的运动时间为t 秒(04)t <…,连接DE ,当以B 、D 、E 为顶点的三角形与ABC ∆相似时,t 的值为()A .2B .2.5或3.5C .2或3.5D .2或2.5【分析】求出24AB BC cm ==,分两种情况:①当90EDB ACB ∠=∠=︒时,//DE AC ,EBD ABC ∆∆∽,得出122AE BE AB cm ===,即可得出2t s =;②当90DEB ACB ∠=∠=︒时,证出D B E A B C ∆∆∽,得出30BDE A ∠=∠=︒,因此1122BE BD cm ==,得出3.5AE cm =, 3.5t s =;即可得出结果.【解答】解:,90ACB ∠=︒,60ABC ∠=︒, 30A ∴∠=︒, 24AB BC cm ∴==,分两种情况:①当90EDB ACB ∠=∠=︒时, //DE AC ,EBD ABC ∆∆∽,D 为BC 的中点,112BD CD BC cm ∴===,E 为AB 的中点,122AE BE AB cm ===, 2t s ∴=;②当90DEB ACB ∠=∠=︒时,B B ∠=∠,DBE ABC ∴∆∆∽, 30BDE A ∴∠=∠=︒, 1122BE BD cm ∴==, 3.5AE cm ∴=, 3.5t s ∴=;综上所述:当以B 、D 、E 为顶点的三角形与ABC ∆相似时,t 的值为2或3.5; 故选:C .【点评】本题考查了相似三角形的判定、平行线的性质、含30︒角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.11.(3分)如图,在ABC ∆中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①12DE BC =;②12DOE COB S S ∆∆=;③AD OEAB OB=;④13ODE ADE S S ∆∆= 其中正确的个数有( )A .1个B .2个C .3个D .4个【分析】①DE 是ABC ∆的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角形面积的比等于相似比的平方可判定.【解答】解:①BE 、CD 是ABC ∆的中线,即D 、E 是AB 和AC 的中点,DE ∴是ABC ∆的中位线,12DE BC ∴=,即12DE BC =, 故①正确;②DE 是ABC ∆的中位线, //DE BC ∴, DOE COB ∴∆∆∽,∴2211()()24DOE COB S DE S BC ∆∆===, 故②错误; ③//DE BCAD DEADE ABC AB BC∴∆∆∴=∽ OE DEDOE COB OB BC∆∆∴=∽ ∴AD OEAB OB=, 故③正确;④ABC ∆的中线BE 与CD 交于点O .∴点O 是ABC ∆的重心,根据重心性质,2BO OE =,ABC ∆的高3BOC =∆的高, 且ABC ∆与BOC ∆同底()BC 3ABC BOC S S ∆∆∴=,由②和③知,14ODE COB S S ∆∆=,14ADE BOC S S ∆∆=, ∴13ODE ADE S S ∆∆=. 故④正确. 综上,①③④正确. 故选:C .【点评】本题考查了三角形中位线定理,相似三角形的判定与性质,要熟知:三角形的中位线平行于第三边且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 12.(3分)如图,在x 轴正半轴上依次截取112231(n n OA A A A A A A n -===⋯=为正整数),过点1A 、2A 、3A 、⋯、n A 分别作x 轴的垂线,与反比例函数2(0)y x x =>交于点1P 、2P 、3P 、⋯、n P ,连接12P P 、23P P 、⋯、1n n P P -,过点2P 、3P 、⋯、n P 分别向11PA 、22P A 、⋯、11n n P A --作垂线段,构成的一系列直角三角形(见图中阴影部分)的面积和是( )A .1n n- B .1n n + C .12n D .14n 【分析】由1122311n n OA A A A A A A -===⋯==可知1P 点的坐标为1(1,)y ,2P 点的坐标为2(2,)y ,3P 点的坐标为3(3,)n y P ⋯点的坐标为(,)n n y ,把1x =,2x =,3x =代入反比例函数的解析式即可求出1y 、2y 、3y 的值,再由三角形的面积公式可得出1S 、2S 、31n S S -⋯的值,故可得出结论.【解答】解:(1)设1122311n n OA A A A A A A -===⋯==,∴设11(1,)P y ,22(2,)P y ,33(3,)P y ,4(,)n P n y ⋯,1P ,2P ,3P Bn ⋯在反比例函数2(0)y x x =>的图象上, 12y ∴=,21y =,3223n y y n =⋯=,1121111()11222S y y ∴=⨯⨯-=⨯⨯=;112S ∴=;(3)11211211()1(2)12222S y y =⨯⨯-=⨯⨯-=-;2231111()223S y y ∴=⨯⨯-=-;3341122111()()223434S y y =⨯⨯-=⨯-=-;⋯1111n S n n-∴=--, 1231111111111223341n n S S S S n n n--∴+++⋯+==-+-+-+⋯-=-. 故选:A .【点评】本题考查的是反比例函数综合题,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 二、填空题13.(3分)方程(2)2(2)x x x +=+的根是 12x =-,22x = .【分析】利用提取公因式法,将原式因式分解为(2)(2)0x x -+=,求出即可.【解答】解:(2)2(2)x x x+=+,(2)(2)0x x-+=,20x-=或20x+=,12x∴=,22x=-;故答案为:12x=-,22x=.【点评】此题主要考查了因式分解法解方程,熟练利用因式分解法将原式分解为(2)(2)0x x-+=是解题关键.14.(3分)在一个不透明的盒子里装有除颜色外其余均相同的2个黄色兵乓球和若干个白色兵乓球,从盒子里随机摸出一个兵乓球,摸到黄色兵乓球的概率为13,那么盒子内白色兵乓球的个数为4.【分析】先求出盒子内乒乓球的总个数为,然后用总个数减去黄球个数得到据摸到白色乒乓球的个数.【解答】解:盒子内乒乓球的个数为1263÷=(个),白色兵乓球的个数624-=(个)故答案为4.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.15.(3分)如图,在ABC∆中,:2:3AD DB=,E为CD的中点,AE的延长线交BC于点F,则:BF FC=52.【分析】根据题意作辅助线,根据已知条件可证明DGE CFE∆≅∆,所以DG FC=,根据比例关系得知//DG FC,最后根据三角形平行线段成比例关系即可得出答案.【解答】解:在AE上取点G,使EG EF=,E为CD的中点,DE CE∴=,又EG EF=,DEG CEF∠=∠,DGE CFE ∴∆≅∆, DG FC ∴=,根据比例关系可知://DG FC , :2:3AD DB =,∴52BF BF AB FC DG AD ===. 故答案为52.【点评】本题主要考查了全等三角形的证明及性质、平行线分线段成比例关系,难度适中. 16.(3分)一个几何体的三视图如图所示,这个几何体的侧面积为 24cm π .【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长⨯母线长2÷. 【解答】解:此几何体为圆锥; 直径为2cm ,母线长为4cm ,∴侧面积22424()cm ππ=⨯÷=.故答案为24cm π.【点评】本题考查了由三视图判断几何体,圆锥的有关计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键;本题体现了数形结合的数学思想,熟记圆锥的侧面积公式是解题的关键.17.(3分)如图,ABC ∆中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(1,0)-.以点C 为位似中心,在x 轴的下方作ABC ∆的位似图形△A B C '',并把ABC ∆放大到原来的2倍.设点B 的对应点B '的横坐标是a ,则点B 的横坐标是 1(3)2a -+ .【分析】设点B 的横坐标为x ,然后表示出BC 、B C '的横坐标的距离,再根据位似比列式计算即可得解.【解答】解:设点B 的横坐标为x ,则B 、C 间的横坐标的长度为1x --,B '、C 间的横坐标的长度为1a +, ABC ∆放大到原来的2倍得到△A B C '',2(1)1x a ∴--=+, 解得1(3)2x a =-+.故答案为:1(3)2a -+.【点评】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.18.(3分)如图,已知点A 是一次函数1(0)2y x x =…图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数(0)ky x x=>的图象过点B ,C ,若O A B ∆的面积为6,则ABC ∆的面积是 3 .【分析】本题介绍两种解法:解法一:设(,)2t A t 、(,)k B t t ,根据反比例函数关于y x =对称可得(kC t,)t ,得:2tCE =,则2DE t CE ==,则发现ABC ∆和ABO ∆两个三角形是同底边,根据高的倍数可得:2ABO ABC S S ∆∆=,可得结论;解法二:作辅助线,构建直角三角形,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1(,)2A x x ,则1(,2)2B x x a +,1(,)2C x a x a ++,因为B 、C 都在反比例函数的图象上,列方程可得结论.【解答】解:解法一:设(,)2t A t 、(,)kB t t,ABC ∆是等腰直角三角形,且AB x ⊥轴,∴直线BC 与y 轴夹角为45度角,所以根据双曲线的对称性可得,(kC t,)t ,过C 作CE 垂直AB 于E ,交y 轴于D ,1122C A AE y y t t t ∴=-=-=,AEC ∆是等腰直角三角形,2tCE AE ∴==,则2DE t CE ==, 则2ABO ABC S S ∆∆=,OAB ∆的面积为6,3ABC S ∆∴=;解法二:如图,过C 作CD y ⊥轴于D ,交AB 于E ,AB x ⊥轴, CD AB ∴⊥,ABC ∆是等腰直角三角形, BE AE CE ∴==,设2AB a =,则BE AE CE a ===,设1(,)2A x x ,则1(,2)2B x x a +,1(,)2C x a x a ++,B ,C 在反比例函数的图象上,11(2)()()22x x a x a x a ∴+=++,2x a =,112622OAB S AB DE a x ∆===, 6ax ∴=,226a ∴=,23a =,2112322ABC S AB CE a a a ∆====. 故答案为:3.【点评】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.三、解答题 19.解方程:(1)2(3)2(3)0x x x -+-=; (2)24810x x --=(用配方法解). 【分析】(1)因式分解法求解可得; (2)配方法求解可得.【解答】解:(1)(3)(32)0x x x --+=, 即(3)(33)0x x --=, 30x ∴-=或330x -=,解得:3x =或1x =;(2)2481x x -=,2124x x -=, 212114x x -+=+,即25(1)4x -=,1x ∴-=,1x ∴=. 【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 20.如图,BD ,CE 是ABC ∆的高.求证:BA AE AC AD =.【分析】根据有两个角相等的三角形是相似三角形,判定ADB AEC ∆∆∽,再根据相似三角形的性质得出比例式,再将比例式写成乘积形式即可得证. 【解答】解:BD ,CE 是ABC ∆的高 90ADB AEC ∴∠=∠=︒又A A ∠=∠ ADB AEC ∴∆∆∽∴AD ABAE AC=AD AC AE AB ∴=即BA AE AC AD =.【点评】本题考查了相似三角形的判定与性质,明确相似三角形的判定方法及其性质,是解题的关键.21.已知关于x 的一元二次方程2(1)10mx m x -++=. (1)求证:此方程总有两个实数根;(2)若m 为整数,当此方程的两个实数根都是整数时,求m 的值.【分析】(1)表示出一元二次方程根的判别式,利用配方化成完全平方式,可判定其不小于0,可得出结论;(2)可先用求根公式表示出两根,再根据方程的根都是整数,可求得m 的值. 【解答】(1)证明:△22[(1)]4(1)m m m =-+-=-.2(1)0m -…,∴△0….∴该方程总有两个实数根;(2)解:x11x ∴=,21x m=. 当m 为整数1或1-时,2x 为整数,即该方程的两个实数根都是整数, m ∴的值为1或1-.【点评】本题主要考查一元二次方程根的判别式,掌握一元二次方程根的判别式与一元二次方程根的情况是解题的关键,即△0>⇔方程有两个不相等的实数根,△0=⇔方程有两个相等的实数根,△0<⇔方程无实数根.22.已知,如图在Rt ABC ∆中,90B ∠=︒,6AB cm =,8BC cm =,点P 由点A 出发沿AB 方向向终点点B 匀速移动,速度为1/cm s ,点Q 由点B 出发沿BC 方向向终点点C 匀速移动,速度为2/cm s .如果动点P ,Q 同时从A ,B 出发,当P 或Q 到达终点时运动停止.几秒后,以Q ,B ,P 为顶点的三角形与ABC ∆相似?【分析】设t 秒后,以Q ,B ,P 为顶点的三角形与ABC ∆相似;则(6)PB t cm =-,2BQ tcm =,分两种情况:①当PB BQ AB BC =时;②当PB BQBC AB=时;分别解方程即可得出结果. 【解答】解:设t 秒后,以Q ,B ,P 为顶点的三角形与ABC ∆相似; 则(6)PB t cm =-,2BQ tcm =, 90B ∠=︒,∴分两种情况:①当PB BQAB BC=时, 即6268t t-=, 解得: 2.4t =; ②当PB BQBC AB=时, 即6286t t-=, 解得:1811t =; 综上所述:2.4秒或1811秒时,以Q ,B ,P 为顶点的三角形与ABC ∆相似. 【点评】本题考查了相似三角形的判定方法、解方程;熟练掌握相似三角形的判定方法,分两种情况进行讨论是解决问题的关键.23.某商场销售某种冰箱,每台进货价为2500元,标价为3000,(1)若商场连续两次降价,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为2900元时,平均每天能售出8台,当每台售价每降50元时,平均每天就能多售出4台,若商场要想使这种冰箱的销售利润平均每天达到5000元,则每台冰箱的定价应为多少元?【分析】(1)设每次降价的百分率为x ,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是60(1)x -元,第二次后的价格是260(1)x -元,据此即可列方程求解;(2)假设下调a 个50元,销售利润=一台冰箱的利润⨯销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每台的盈利⨯销售的件数5000=元,即可列方程求解.【解答】解:(1)设每次降价的百分率为x , 依题意得:2300(1)2430x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去) 答:每次降价的百分率是10%;(2)假设下调a 个50元,依题意得:5000(40050)(84)a a =-+. 解得3a =.所以下调150元,因此定价为2750元.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的ABC ∆是格点三角形.在建立平面直角坐标系后,点B 的坐标为(1,1)--.(1)把ABC ∆向下平移5格后得到△111A B C ,写出点1A ,1B ,1C 的坐标,并画出△111A B C ; (2)把ABC ∆绕点O 按顺时针方向旋转180︒后得到△222A B C ,写出点2A ,2B ,2C 的坐标,并画出△222A B C ;(3)把ABC ∆以点O 为位似中心放大得到△333A B C ,使放大前后对应线段的比为1:2,写出点3A ,3B ,3C 的坐标,并画出△333A B C .【分析】(1)直接利用平移的性质得出对应点位置进而得出答案; (2)直接利用旋转的性质得出对应点位置进而得出答案; (3)直接利用位似图形的性质得出对应点位置进而得出答案. 【解答】解:(1)如图所示,△111A B C 即为所求: 点1A ,1B ,1C 的坐标分别为(3,-,(1,6)--,(5,6)-(2)如图所示△222A B C 即为所求:点2A ,2B ,2C 的坐标分别为(3,3)--,(1,1),(5,1)-; (3)如图所示△333A B C 即为所求:点3A ,3B ,3C 的坐标分别为(6,6),(2,2)--,(10,2)-或(6,6)--,(2,2),(10,2)-. 【点评】此题主要考查了平移变换以及位似变换,正确得出对应点位置是解题关键.25.某中学为了解学生对新闻、 体育、 娱乐、 动画四类电视节目的喜爱情况, 进行了统计调查 . 随机调查了某班所有同学最喜欢的节目 (每 名学生必选且只能选择四类节目中的一类) 并将调查结果绘成如下不完整的统计图 . 根据两图提供的信息, 回答下列问题:(1) 最喜欢娱乐类节目的有 20 人, 图中x = ; (2) 请补全条形统计图;(3) 根据抽样调查结果, 若该校有 1800 名学生, 请你估计该校有多少名学生最喜欢娱乐类节目;(4) 在全班同学中, 有甲、 乙、 丙、 丁等同学最喜欢体育类节目, 班主任打算从甲、 乙、 丙、 丁 4 名同学中选取 2 人参加学校组织的体育知识竞赛, 请用列表法或树状图求同时选中甲、 乙两同学的概率 .【分析】(1) 先根据“新闻”类人数及其所占百分比求得总人数, 再用总人数减去其他三个类型人数即可求得“娱乐”类人数, 用“动画”类人数除以总人数可得x 的值;(2) 根据 (1) 中所求结果即可补全条形图; (3) 总人数乘以样本中“娱乐”类节目人数所占比例;(4) 首先根据题意画出树状图, 然后由树状图求得所有等可能的结果与恰好同时选中甲、 乙两位同学的情况, 然后利用概率公式求解即可求得答案 . 【解答】解: (1)被调查的总人数为612%50÷=人,∴最喜欢娱乐类节目的有50(6159)20-++=,9%100%18%50x =⨯=,即18x =, 故答案为: 20 、 18 ;(2) 补全条形图如下:(3) 估计该校最喜欢娱乐类节目的学生有20180072050⨯=人;(4) 画树状图得:共有12 种等可能的结果,恰好同时选中甲、乙两位同学的有 2 种情况,∴恰好同时选中甲、乙两位同学的概率为21 126=.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.26.【提出问题】(1)如图1,在等边ABC∆中,点M是BC上的任意一点(不含端点B、)C,连结AM,以AM为边作等边AMN∆,连结CN.求证:ABC ACN∠=∠.【类比探究】(2)如图2,在等边ABC∆中,点M是BC延长线上的任意一点(不含端点)C,其它条件不变,(1)中结论ABC ACN∠=∠还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰ABC∆中,BA BC=,点M是BC上的任意一点(不含端点B、)C,连结AM,以AM为边作等腰AMN∆,使顶角AMN ABC∠=∠.连结CN.试探究ABC∠与ACN∠的数量关系,并说明理由.【分析】(1)利用SAS可证明BAM CAN∆≅∆,继而得出结论;(2)也可以通过证明BAM CAN∆≅∆,得出结论,和(1)的思路完全一样.(3)首先得出BAC MAN∠=∠,从而判定ABC AMN∆∆∽,得到A B A CA M A N=,根据BAM BAC MAC∠=∠-∠,CAN MAN MAC∠=∠-∠,得到BAM CAN∠=∠,从而判定。

2019届山东省九年级上学期期中考试数学试卷【含答案及解析】(2)

2019届山东省九年级上学期期中考试数学试卷【含答案及解析】(2)

2019届山东省九年级上学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长2. 下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()3. 关于x的一元二次方程有一个根为0,则a的值是()A.±1 B.-1 C.1 D.04. 不能判定四边形ABCD是平行四边形的条件是()A.∠A=∠C ∠B=∠DB.AB∥CD AD=BCC.AB∥CD ∠A=∠CD.AB∥CD AB=CD5. 三角形两边长分别为3和6,第三边是方程的解,则这个三角形的周长是()A.11 B.13 C.11或13 D.不能确定6. 如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△MAB≌△NCD.()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN7. 顺次连结等腰梯形各边中点得到的四边形是()A、矩形B、菱形C、正方形D、平行四边形8. 用配方法解方程2x 2+3=7x时,方程可变形为()A.(x-)2=B.(x-)2=C.(x-)2=D.(x-)2=9. 摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是()A.x(x+1)=182B.x(x-1)=182C.2x(x+1)=182D.0.5x(x-1)=18210. 如图∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA垂足为D,若PC=4,则PD=()A.4 B.3 C.2 D.111. 如图,在正方形ABCD中,E为DC边上的点,连接BE,将ΔBCE绕点C顺时针方向旋转90°得到ΔDCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10° B.15° C.20° D.25°12. 如图,在Rt⊿ABC中,∠C=90°,∠B=22.5°,DE 垂直平分AB交BC于E,若BE=,则AC=()A.1 B.2 C.3 D.413. 设a和b是方程x2+x-2009的两个实数根,则的值为()A.2006 B.2007 C.2008 D.200914. 如图,在等腰梯形ABCD中,AB∥CD,AD=BC=acm,∠A=60°,BD平分∠ABC,则这个梯形的周长是()A.4acm B.5acm C.6acm D.7acm15. 小红按某种规律写出4个方程:①;②;③;④.按此规律,第五个方程的两个根为()A.-2、3 B.2、-3 C.-2、-3 D.2、3二、解答题16. 画右边几何体的三种视图(注意符合三视图原则)17. 已知,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长。

2019-2020学年九年级数学上学期期中原创卷A卷(山东)(参考答案)

2019-2020学年九年级数学上学期期中原创卷A卷(山东)(参考答案)

-b 3 ± 5 x 2019-2020 学年上学期期中原创卷A 卷九年级数学·参考答案13.(–1,–2) 14.1 15.y =x 2–216.517. y 1 > y 3 > y 218.219.【解析】(1)方程整理,得(3 x -1)2- (x x -1)= 0 ,因式分解,得(x -1)[(3 x -1)- x ] = 0 ,于是,得 x -1 = 0 或2x - 3 = 0 , 解得 x = 1, x = 3;(3 分)122(2)方程整理,得 x 2 - 3x +1 = 0 , a = 1, b = -3 , c = 1,∴ = b 2 - 4ac =(- 3)2- 4 ⨯1⨯1 = 5 > 0 ,∴ x == ,即 x 1=3 + 22a 5 , = 3 - 2 2 25.(6 分)20.【解析】(1)根据题意得:△=(–2)2–4(m –2)≥0,解得 m ≤3;(3 分)(2)根据题意得:x 1+x 2=2,x 1x 2=m –2,∴3x 1+3x 2–x 1x 2=6–(m –2)=–m +8,而 m ≤3,所以当 m =3 时,3x 1+3x 2–x 1x 2 的值最小, 最小值为:–3+8=5.(6 分)21. 【解析】∵ AB = AC ,∴AB =AC ,∴△ABC 为等腰三角形(相等的弧所对的弦相等),(3 分)∵∠ACB =60°,∴△ABC 为等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠COA (相等的弦所对的圆心角相等).(6 分)22.【解析】(1)设这两年该校植树棵数的年平均增长率为x,根据题意得:500(1+x)2=720,(4 分)解得x1=0.2=20%,x2=–2.2(不合题意,舍去).答:这两年该校植树棵数的年平均增长率为20%.(6 分)(2)720×(1+20%)=864(棵).答:该校第四年植树864棵.(8 分)23.【解析】(1)黄球个数:10⨯ 0.4 = 4 (个),白球个数:(4 + 2)÷3= 2 (个),红球个数:10 - 4 - 2 = 4 (个),即袋中红、黄、白三种颜色的球的个数分别是4 个、4 个、2 个;(3 分)(2)设放入红球x 个,则4 +x =(10 +x)⨯0.7 ,解得x =10 ,即向袋中放入10 个红球;(6 分)(3)P (摸出一个球是白球)=210 +10= 0.1 ,即摸出一个球是白球的概率是0.1 .(8 分)24.【解析】(1)如图,△A1B1C1 为所作;(4 分)(2)如图,△A2B2C2 为所作,点C2 的坐标为(–3,1);(7 分)(3)若△ABC 内一点P(m,n)绕原点O 逆时针旋转90°的对应点为Q,则Q 的坐标为(–n,m).故答案为:(–3,1),(–n,m).(10 分)25.【解析】(1)根据题意得,y=200+(80–x)×20=–20x+1800,所以销售量y 件与销售单价x 元之间的函数关系式为y=–20x+1800(60≤x≤80);(3 分)(2)W=(x–60)y=(x–60)(–20x+1800)=–20x2+3000x–108000,所以销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式为:W =–20x 2+3000x –108000;(5 分)(3)根据题意得,–20x +1800≥240,解得 x ≤78,∴76≤x ≤78,3000W =–20x 2+3000x –108000,对称轴为 x =–2 ⨯(-20)=75,∵a =–20<0,∴抛物线开口向下,∴当 76≤x ≤78 时,W 随 x 的增大而减小,∴x =76 时,W 有最大值,最大值=(76–60)(–20×76+1800)=4480(元). 所以商场销售该品牌童装获得的最大利润是 4480 元.(10 分)26. 【解析】(1)如图,连接 OA ,1 由题意得:AD = 2AB =30,OD =r –18,(3 分)在 Rt △ADO 中,由勾股定理得:r 2=302+(r –18)2,解得 r =34;(5 分) (2)如图,连接 OA ′,∵OE =OP –PE =30,(6 分)在 Rt △A ′EO 中,由勾股定理得:A ′E 2=A ′O 2–OE 2, 即:A ′E 2=342–302,(8 分) 解得 A ′E =16.∴A ′B ′=32.∵A ′B ′=32>30,∴不需要采取紧急措施.(12 分)27. 【解析】(1)∵抛物线与 x 轴的交点 A (–3,0),对称轴为直线 x =–1,∴抛物线与 x 的轴交点 B 的坐标为(1,0), 设抛物线解析式为 y =a (x +3)(x –1),将点 C (0,–3)代入,得:–3a =–3,解得 a =1,则抛物线解析式为 y =(x +3)(x –1)=x 2+2x –3;(4 分)(2) 设点 P 的坐标为(a ,a 2+2a –3),则点 P 到 OC 的距离为|a |.1 ∵S △POC =4S △BOC ,∴2 1 •OC •|a |= 21 OC •OB ,即 21 ×3×|a |=4× 2×3×1,解得 a =±4.当a=4 时,点P 的坐标为(4,21);当a=–4 时,点P 的坐标为(–4,5).∴点P 的坐标为(4,21)或(–4,5).(8 分)(3)如图所示:设AC 的解析式为y=kx–3,将点A 的坐标代入得:–3k–3=0,解得k=–1,∴直线AC 的解析式为y=–x–3.设点D 的坐标为(x,x2+2x–3),则点Q 的坐标为(x,–x–3).9 9 ∴QD=–x–3–(x2+2x–3)=–x–3–x2–2x+3=–x2–3x=–(x2+3x+ –4 43)=–(x+29)2+ ,43∴当x=–29时,QD 有最大值,QD 的最大值为4.(12 分)。

2019届山东省九年级上学期期中质量检测数学试卷【含答案及解析】

2019届山东省九年级上学期期中质量检测数学试卷【含答案及解析】

2019届山东省九年级上学期期中质量检测数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列函数中,不属于二次函数的是()A. B.C. D.2. 下列函数中,图象通过原点的是()A. B. C. D.3. 在一次足球比赛中,守门员用脚踢出去的球的高度h随时间t的变化而变化,可以近似地表示这一过程的图象是()A. B. C.D.4. 如果将二次函数的图象向上平移5个单位,得到新的图象的二次函数表达式是()A. B. C. D.5. 形状、开口方向与抛物线相同,但是顶点为(﹣2,0)的抛物线解析式为()A. B.C. D.6. 如图,抛物线的顶点P的坐标是(1,﹣3),则此抛物线对应的二次函数有()A.最大值1 B.最小值﹣3 C.最大值﹣3 D.最小值17. 已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.B.C.D.8. 图中有相同对称轴的两条抛物线,下列关系不正确的是()A.h=m B.k=n C.k>n D.h<0,k>0二、填空题9. 若抛物线开口向下,则m= .10. 把二次函数配方成的形式,得y= ,它的顶点坐标是.11. 如果将二次函数的图象沿y轴向下平移1个单位,再向右平移3个单位,那么所得图象的函数解析式是.12. 已知抛物线的顶点在坐标轴x轴上,则b的值是.三、解答题13. (14分)已知函数.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?14. (15分)已知二次函数.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出此函数图象与的图象的关系.15. (15分)如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x (cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围;(2)当x取什么值时,y的值最大?并求最大值.16. (16分)已知:如图,二次函数的图象与x轴交于A(﹣2,0),B(4,0)两点,且函数的最大值为9.(1)求二次函数的解析式;(2)设此二次函数图象的顶点为C,与y轴交点为D,求四边形ABCD的面积.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】。

2019学年山东省九年级上学期期中考试数学试卷【含答案及解析】(1)

2019学年山东省九年级上学期期中考试数学试卷【含答案及解析】(1)

2019学年山东省九年级上学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列方程是一元二次方程的是()A. B. C. D.2. 一元二次方程的解是()A. B. C.或 D.或3. 已知关于x 的一元二次方程有两个不相等的实数根,则m的取值范围是()A.m>-1 B.m<-2 C.m ≥0 D.m<04. 抛物线的对称轴是()A.直线 B.直线 C.直线 D.直线5. 二次函数)图象如图所示,现有下列结论:①2-4>0 ②>0③>0 ④>0 ⑤4+2+<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个6. 如图所示的图形中,既是轴对称图形又是中心对称图形的是()7. 平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A.(3,-2) B.(2,3) C.(-2,-3) D.(2,-3)8. 在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.9. 图中∠BOD的度数是()A.55° B.110° C.125° D.150°10. 下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心11. 同圆的内接正方形和外切正方形的周长之比为()A.∶1 B.2∶1 C.1∶2 D.1∶12. 如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A. B. C.8 D.10二、填空题13. 一个直角三角形的两条直角边的长是方程x2-7x+12=0的两个根,则此直角三角形的周长为。

14. 某商品原价200元,连续两次降价后售价为148元。

2019届山东省九年级上学期期中考试数学试卷【含答案及解析】

2019届山东省九年级上学期期中考试数学试卷【含答案及解析】

2019届山东省九年级上学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列标志既是轴对称图形又是中心对称图形的是()2. 一元二次方程-x-2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定3. 把抛物线y=-x2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为()A.y=-(x-1)²-3B.y=-(x+1)²-3C.y=-(x-1)²+3D.y=-(x+1)²+34. 如图,在O中,直径CD⊥弦AB,则下列结论中正确的是()A.AD=AB B.∠BOC=2∠D C.∠D +∠BOC=90° D.∠D=∠B5. 某公司2007年缴税60万元,2009年缴税80万元,设该公司这两年缴税的年平均增长率为x,则得到方程()A.60+2x=80B.60(x+1)=80C.60=80D.60=806. 用一个圆心角为120°,半径为18cm 的扇形作一个圆锥的侧面,则这个圆锥的底面半径应等于()A.9cm B.6cm C.4cm D.3cm7. 若2+x-4=0,则4+2x-3的值是()A.4 B.5 C.6 D.88. 如图,把△ABC绕点C顺时针旋转某个角度后得到△A′B′C′,若∠A=30°,∠1=70°,则旋转角等于()A.30° B.50° C.40° D.100°9. 二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0B.-4ac<0C.当-1<x<3时,y>0D.-=110. 如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以AC的长为半径作圆,将Rt△ABC截去两个扇形,则余下阴影部分的面积为()cm2A. B.24- C.24- D.24-二、填空题11. 请你写出一个有一根为1的一元二次方程____________________.12. 二次函数y=+3,当x 时,函数值y随x的增大而增大.13. 正方形绕中心至少旋转___________度后能与自身重合.14. 如图,PA,PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,∠ACB=75°,∠P 的度数= .15. 已知a、b是等腰△ABC的底和腰长,若a≠b且a、b均是方程-6x+8=0的解,则△ABC的周长为______.16. 二次函数的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为.17. 如图,在矩形ABCD中,AB=1,AD=2,将AD绕点A顺时针旋转,当点D落在BC上点D′时,则∠DAD′=__________度.18. 如图,已知AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.给出以下结论:①AD∥OC;②FC=FE;③点E为△CDB的内心.其中正确的是________________(填序号).三、解答题19. 解方程:2-x-3=0.20. 如图,点O、A、B的坐标分别为(0,0)(4,2)(3,0),将△OAB绕点O按逆时针方向旋转后,得到△OCD.(点A转到点C)(1)画出△OCD;(2)C的坐标为;(3)求A点开始到结束所经过路径的长.21. 往直径为680mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.22. 已知二次函数的图象与y轴相交于点(0,3),并经过点(-2,5),它的对称轴是x=1,求这个函数的解析式,并写出这个函数图象的顶点坐标.23. 已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.24. 如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n个图中,共有瓷砖______________________块,其中白色瓷砖______________块,黑色瓷砖_________________块(均用含n的代数式表示)(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?25. 已知:Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC,CB(或它们的延长线)于E、F,当∠EDF绕D点旋转到DE⊥AC于E时(如图1),(1)易证+=.(2)当∠EDF绕点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、、又有怎样的数量关系?请写出你的猜想,不需证明.26. 如图一条抛物线(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是_______________三角形;(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

山东省济南市济南中学2019-2020学年九年级上学期期中考试数学试题(word无答案)最新修正版

山东省济南市济南中学2019-2020学年九年级上学期期中考试数学试题(word无答案)最新修正版

济南中学西校区2019~2020学年第一学期期中考试九年级数学一、选择题(本大题共15小题,每小题4分,共60分)1.下面的几何体是有三个同样大小的立方体搭成的,其左视图为( )A .B .C .D . 2.下列各点在反比例函数y =6x的图象上的是( )A .(2,-3)B .(2,4)C .(-2, 3)D .(2, 3) 3.若y x =34,则x +y x的值为( )A .1B .47C .54D .124.连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是( ) A .16 B .14 C .13 D .125.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 的对应中线的比为( )A .34B .43C .916D .1696.在△ABC 中,D 、E 为AB 、AC 的中点,已知△ADE 的周长为4,那么△ABC 的周长为( )A .2B .4C .8D .167.一元二次方程x 2+4x +4=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定8.某种药品原价36元/盒,经过连续两次降价后售价为25元/盒,设这两次平均每次降价的百分率为x ,根据题意,所列方程正确的是( )A .36(1-x )2=36-25B .36(1-2x ) =25C .36(1-x )2=25D .36(1-x 2) =25 9.如图,小正方形的边长为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是( )A .B .C .D .10.如图,为估算某河的宽度,在河对岸选定一个目标点A ,在近岸取点B 、C 、D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A 、E 、D 在同一条直线上,测得BE =20m ,CE =10m ,CD =20m ,则河宽AB =( )mA .60B .40C .30D .2011.如图,在平面直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心、位似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标是( ) A .(2,1) B .(2,0) C .(3,3) D .(3,1)12.下列条件不能判定△ABC 与△ADE 相似的是( )A .AE AC =ADAB ,∠CAE =∠BAD B .∠B =∠ADE ,∠CAE =∠BADC .AE AC =AD AB =DE BC D .AD AB =DEBC,∠C =∠E13.当k ≠0时,一次函数y=kx+1与反比例函数y=kx在同一个坐标系中的图象可能是( )A .B .C .D .14.如图,正比例函数y 1=k 1x 和反比例函数y 2=k 2x 的图象交于A (-1,2)和B (1,-2)两点,若y 1<y 2,则x的取值范围是( )A .x <-1或x >1B .x <-1或0<x <1C .-1<x <0或0<x <1D .-1<x <0或x >115.在矩形ABCD 中,延长CB 到E ,使CE =CA ,连接AE ,点F 是AE 的中点,连接BF 、DF ,DF 交AB 于点G ,下列结论:①BF ⊥DF ;②S △BDG =S △ADF ;③EF 2=FG ·DF ;④AG BG =BC AC .其中正确结论的个数是( )A .4B .3C .2D .1二、填空题(本大题共6小题,每小题4分,共24分)16.已知关于x 的方程x 2-3x +m =0的一个根是1,那么m =_________;17.已知四条线段a 、b 、c 、d 是成比例线段,其中a =3cm 、b =2cm 、c =6cm ,则d =_________cm ; 18.小亮和他的弟弟在阳光下散步,小亮的身高为1.6米,他的影子长0.8米,此时他弟弟的影子长为0.7米,则弟弟的身高为_________米;19.如图,菱形OABC 的顶点O 是坐标原点,B 在y 轴上,菱形的两条对角线的长分别为6和4,反比例函数y =kx(x <0)的图象经过点C ,则k =_________;20.如图,AB ⊥DB 于点B ,CD ⊥DB 于点D ,AB =6,CD =4,BD =14,则在DB 上存在点P ,当DP =______时,可以使以C 、D 、P 为顶点的三角形与以P 、B 、A 为顶点的三角形相似.21.如图,n 个别边长为1的相邻正方形的一边均在同一条直线上,点M 1、M 2、M 3,…,M n 分别为B 1B 2、B 2B 3、B 3B 4、B n B n +1的中点,△B 1C 1M 1的面积为S 1,△B 2C 2M 2的面积为S 2,…,△B n C n M n 的面积为S n ,则S n =_________(用含n 的式子表示).三、解答题(本大题共7小题,共66分)22.(8分)解方程:(1)x2-2x=3;(2)2(x-3)2=x2-923.(8分)如图,△ABC三个顶点的坐标分别为A(1,2)、B(3,1)、C(2,3),以原点O为位似中心,将△ABC 放大为原来的2倍,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出A′、B′、C′的坐标;(2)求△A′B′C′的面积.24.(8分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长.25.(8分)一个不透明的袋子里有3个小球,其中1个红球,2个白球,它们处颜色外其余都相同.(1)摸出一个球是白球的概率为_________;(2)摸出一个球记下颜色后,放回并搅匀,再摸出一个球,用画树状图或列表的方法求两次摸到的球恰好颜色相同的概率.26.(10分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验、测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?27.(12分)如图心知点A (1,-3)在反比例涌数y =k x 图象上,直线y =一12x +12与反比例函版y =kx 的随象在第四象限的交点为B 点.(l )求反比例函数和直线AB 的表达式; (2)求S △AOB ;(3)动点P (x ,0)在x 轴正半轴上运动,当线段P A 与线段PB 之差最大时,求点P 的坐标及│P A 一PB │的最大值.28.(12分)如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,AB =6cm ,BC =8cm ,对角线AC =10cm . (1)求证:四边形ABCD 是矩形; (2)如图(2),若动点Q 从点C 出发,在CA 边上以每秒5cm 的速度向点A 匀速运动;同时,点P 从点B 出发,在BC 上以每秒4cm 的速度向点C 匀速运动,运动时间为t 秒(0≤t <2),连接BQ 、AP ,当AP ⊥BQ 时,求t 的值;(3)如图(3),若动点Q 在对角线CA 边上,CQ =4cm ,动点P 从点B 出发,以每秒1cm 的速度沿BC 上运动至点C 停止.设点P 运动了t 秒,请探索:从运动开始,经过多少时间,一点Q 、P 、C 为顶点的三角形是等腰三角形?。

山东省济南市历下区2019-2020学年人教版九年级上学期期中考试数学试题 含解析

山东省济南市历下区2019-2020学年人教版九年级上学期期中考试数学试题  含解析

2019-2020学年九年级上学期期中考试数学试题一、选择题(本大题共12小题,每小题3分,共30分)1.下面的几何体中,俯视图为三角形的是()A.B.C.D.2.一元二次方程x2+4x=﹣3用配方法变形正确的是()A.(x﹣2)2=1 B.(x+2)2=1 C.(x﹣2)2=﹣1 D.(x+2)2=﹣1 3.对于反比例函数,下列说法中不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.y随x的增大而减小D.当x<0时,y随x的增大而减小4.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7 B.5a=2b C.=D.=15.下列条件中,能判断四边形是菱形的是()A.对角线互相平分且垂直的四边形B.对角线互相垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等的平行四边形6.电影《我和我的祖国》讲述了普通人与国家之间息息相关密不可分的动人故事,一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把增长率记作x,则方程可以列为()A.3(1+x)=10 B.3(1+x)2=10C.3+3(1+x)2=10 D.3+3(1+x)+3(1+x)2=107.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1 B.2 C.3 D.48.如图,两个转盘中指针落在每个数字的机会均等.现在同时自由转动甲、乙两个转盘,转盘停止后,指针各自指向一个数字,用甲所指的数字作为横坐标x,乙所指的数字作为纵坐标y,则点(x,y)在反比例函数y=图象上的概率为()A.B.C.D.9.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米10.如图,在▱ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE 交BC于点F.已知AB=4,BC=6,CE=2,则CF的长等于()A.1 B.1.5 C.2 D.311.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD 组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共20分)13.已知A(m+3,2),B(3,)和是同一个反比例函数图象上的两个点,则m=.14.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为.15.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是(结果精确到0.01).16.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC 交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,这时CD=2,则AB=.17.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是cm2.18.已知函数y=﹣(x>0)与y=(x<0)的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A、B两点,连接OA、OB.下列结论;①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(2,﹣).其中正确的结论为.三、解答题(本大题共9小题,共78分)19.解方程:(x+3)2=2x+6.20.如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E,判断四边形OCED的形状,并说明理由.21.“今有井径五尺,不知其深,立五尺于井上,从木末望水岸,入径2尺,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,请你求出井深BD.22.(1)如图①,在8×6的网格图中,每个小正方形边长均为1,原点O和△ABC的顶点均为格点.点C坐标为(2,4),以O为位似中心,在网格图中作△ABC,使△A′B′C′与△ABC位似,且位似比为1:2;(保留作图痕迹)(2)则点C′的坐标为,周长比C△A′B′C′:C△ABC=.(3)如图②,AB和DE是直立在地面上的两根立柱.AB=6m,某一时刻AB在阳光下的投影BC=4m,DE在阳光下的投影长为6m.①请你在图②中画出此时DE在阳光下的投影EF.②根据题中信息,求得立柱DE的长为m.23.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨x(0<x<20)元.(1)售价上涨x元后,该商场平均每月可售出个台灯(用含x的代数式表示);(2)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应进台灯多少个?24.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.25.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是x1=2和x2=4,则方程x2﹣6x+8=0是“倍根方程”.(1)根据上述定义,一元二次方程2x2+x﹣1=0 (填“是”或“不是”)“倍根方程”.(2)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=.(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,则a、b、c之间的关系为.(4)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mm+n2的值.26.如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:DG•BC=DF•BG;(2)连接CF,求∠CFB的大小;(3)作点C关于直线DE的对称点H,连接CH,FH.猜想线段DF,BF,CH之间的数量关系并加以证明.27.如图①,在矩形OABC中,OA=4,OC=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=kx+b经过点E和点F.(1)求反比例函数的解析式;(2)连接OE、OF,求△OEF的面积;(3)在第一象限内,请直接写出关于x的不等式kx+b≤的解集:.(4)如图②,将线段OB绕点O顺时针旋转一定角度,使得点B的对应点H恰好落在x 轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求HN+ON的最小值.参考答案与试题解析一.选择题(共12小题)1.下面的几何体中,俯视图为三角形的是()A.B.C.D.【分析】根据俯视图是从物体上面看所得到的图形进行解答即可.【解答】解:俯视图为三角形的是.故选:C.2.一元二次方程x2+4x=﹣3用配方法变形正确的是()A.(x﹣2)2=1 B.(x+2)2=1 C.(x﹣2)2=﹣1 D.(x+2)2=﹣1 【分析】根据一元二次方程的配方法即可求出答案.【解答】解:∵x2+4x=﹣3,∴x2+4x+4=1,∴(x+2)2=1,故选:B.3.对于反比例函数,下列说法中不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.y随x的增大而减小D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质用排除法解答,当系数k>0时,函数图象在第一、三象限,当x>0或x<0时,y随x的增大而减小,据此可以得到答案.【解答】解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,本选项正确;B、∵k=2>0,∴图象在第一、三象限,本选项正确;C、当x>0时,y随x的增大而减小,本选项不正确;D、当x<0时,y随x的增大而减小,本选项正确.故选:C.4.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7 B.5a=2b C.=D.=1【分析】根据比例的性质进行判断即可.【解答】解:A、当a=10,b=4时,a:b=5:2,但是a+b=14,故本选项错误;B、由a:b=5:2,得2a=5b,故本选项错误;C、由a:b=5:2,得=,故本选项正确;D、由a:b=5:2,得=,故本选项错误.故选:C.5.下列条件中,能判断四边形是菱形的是()A.对角线互相平分且垂直的四边形B.对角线互相垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等的平行四边形【分析】利用菱形的判定方法对各个选项一一进行判断即可.【解答】解:A、对角线互相平分且垂直的四边形是菱形,符合题意;B、对角线互相平分且垂直的四边形是菱形,对角线互相垂直的四边形不一定是菱形,不符合题意;C、对角线互相平分且垂直的四边形是菱形,对角线互相垂直且相等的四边形不一定是菱形.不符合题意;D、对角线互相平分且垂直的四边形是菱形,对角线相等的平行四边形不是菱形,不符合题意;故选:A.6.电影《我和我的祖国》讲述了普通人与国家之间息息相关密不可分的动人故事,一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把增长率记作x,则方程可以列为()A.3(1+x)=10 B.3(1+x)2=10C.3+3(1+x)2=10 D.3+3(1+x)+3(1+x)2=10【分析】设平均每天票房的增长率为x,根据三天后累计票房收入达10亿元,即可得出关于x的一元二次方程,此题得解.【解答】解:设平均每天票房的增长率为x,根据题意得:3+3(1+x)+3(1+x)2=10.故选:D.7.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1 B.2 C.3 D.4【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,AE=3,故选:C.8.如图,两个转盘中指针落在每个数字的机会均等.现在同时自由转动甲、乙两个转盘,转盘停止后,指针各自指向一个数字,用甲所指的数字作为横坐标x,乙所指的数字作为纵坐标y,则点(x,y)在反比例函数y=图象上的概率为()A.B.C.D.【分析】先用列表法或画树状图法分析所有可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:树状图如图所示.由树状图知,则点(2,3)和(3,2)在反比例函数y=图象上,所以点(x,y)在反比例函数y=图象上的概率为=,故选:B.9.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B(2,5),设双曲线BC的解析式为y=,得到k=10,于是得到结论.【解答】解:∵四边形AOEB是矩形,∴BE=OA=5,AB=2,∴B(2,5),设双曲线BC的解析式为y=,∴k=10,∴y=,∵CD为1∴当y=1时,x=10,∴DE的长=10﹣2=8m,故选:D.10.如图,在▱ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE 交BC于点F.已知AB=4,BC=6,CE=2,则CF的长等于()A.1 B.1.5 C.2 D.3【分析】过O作OM∥BC交CD于M,根据平行四边形的性质得到BO=DO,CD=AB=4,AD =BC=6,根据三角形的中位线的性质得到CM=CD=2,OM=BC=3,通过△CFE∽△EMO,根据相似三角形的性质得到,代入数据即可得到结论.【解答】解:过O作OM∥BC交CD于M,∵在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=CD=2,OM=BC=3,∵OM∥CF,∴△CFE∽△EMO,∴,即,∴CF=1.5.故选:B.11.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD 组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=,故选:B.二.填空题(共6小题)13.已知A(m+3,2),B(3,)和是同一个反比例函数图象上的两个点,则m=﹣6 .【分析】根据反比例函数图象上点的坐标特征得到2(m+3)=3×,然后解关于m的方程即可.【解答】解:∵A(m+3,2),B(3,)和是同一个反比例函数图象上的两个点,∴2(m+3)=3×,∴m=﹣6.故答案为﹣6.14.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为2020 .【分析】把x=m代入方程计算即可求出所求.【解答】解:把x=m代入方程得:m2﹣m﹣2019=0,即m2﹣m=2019,则原式=2019+1=2020,故答案为:202015.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是0.95 (结果精确到0.01).【分析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概.【解答】解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.9516.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,这时CD=2,则AB= 6 .【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【解答】解:∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴△AOB∽△DOC,∴=,∴AB=3CD,∵CD=2,∴AB=6,故答案为6.17.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是6πcm2.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故答案为:6π.18.已知函数y=﹣(x>0)与y=(x<0)的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A、B两点,连接OA、OB.下列结论;①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(2,﹣).其中正确的结论为②③④.【分析】①错误.因为x1<x2<0,函数y随x是增大而减小,所以y1>y2;②正确.求出A、B两点坐标即可解决问题;③正确.设P(0,m),则B(,m),A(﹣,m),可得PB=﹣,PA=﹣,推出PA=4PB,S AOB=S△OPB+S△OPA=+=7.5;④正确.设P(0,m),则B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP =﹣m,由△OPB∽△APO,可得OP2=PB•PA,列出方程即可解决问题;【解答】解:①错误.∵x1<x2<0,函数y随x是增大而减小,∴y1>y2,故①错误.②正确.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正确.③正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵S AOB=S△OPB+S△OPA=+=7.5,故③正确.④正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴=,∴OP2=PB•PA,∴m2=﹣•(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(2,﹣),故④正确.∴②③④正确,故答案为②③④.三.解答题(共9小题)19.解方程:(x+3)2=2x+6.【分析】先变形得到(x+3)2﹣2(x+3)=0,然后利用因式分解法解方程.【解答】解:(x+3)2﹣2(x+3)=0,(x+3)(x+3﹣2)=0,x+3=0或x+3﹣2=0,所以x1=﹣3,x2=﹣1.20.如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E,判断四边形OCED的形状,并说明理由.【分析】欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可.【解答】解:平行四边形OCED是矩形,理由如下:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形21.“今有井径五尺,不知其深,立五尺于井上,从木末望水岸,入径2尺,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,请你求出井深BD.【分析】根据题意可知△ABF∽△ADE,根据相似三角形的性质可求AD,进一步得到井深.【解答】解:依题意可得:△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=2:5,解得:AD=12.5,BD=AD﹣AB=12.5﹣5=7.5尺.所以井深BD为5尺.22.(1)如图①,在8×6的网格图中,每个小正方形边长均为1,原点O和△ABC的顶点均为格点.点C坐标为(2,4),以O为位似中心,在网格图中作△ABC,使△A′B′C′与△ABC位似,且位似比为1:2;(保留作图痕迹)(2)则点C′的坐标为(1,2),周长比C△A′B′C′:C△ABC=1:4 .(3)如图②,AB和DE是直立在地面上的两根立柱.AB=6m,某一时刻AB在阳光下的投影BC=4m,DE在阳光下的投影长为6m.①请你在图②中画出此时DE在阳光下的投影EF.②根据题中信息,求得立柱DE的长为9 m.【分析】(1)利用位似图形的性质得出A′,B′,C′的位置,进而得出答案;(2)由(1)中所画图形可得;(3)①根据已知连接AC,过点D作DF∥AC,即可得出EF就是DE的投影;②利用三角形△ABC∽△DEF得出比例式,求出DE即可.【解答】解:(1)如图,△A′B′C′即为所求作三角形,(2)由(1)知,A′(﹣1,0),C′(1,2),∵位似比为1:2,∴S△A′B′C′:S△ABC=()2=,故答案为:(1,2);1:4.(3)①作法:连接AC,过点D作DF∥AC,交直线BE于F,如图所示,EF就是DE的投影.②∵太阳光线是平行的,∴AC∥DF.∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴,∵AB=6m,BC=4m,EF=6m,∴,∴DE=9(m).故答案为:923.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨x(0<x<20)元.(1)售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯(用含x的代数式表示);(2)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应进台灯多少个?【分析】(1)根据原销售量结合售价每上涨1元销售量就将减少10个,即可得出售价上涨x元后的月销售量;(2)根据总利润=单台利润×月销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯.故答案为:(600﹣10x).(2)依题意,得:(40﹣30+x)(600﹣10x)=10000,整理,得:x2﹣50x+400=0,解得:x1=10,x2=40(不合题意,舍去),∴40+x=50,600﹣10x=500.答:这种台灯的售价应定为50元,这时应进台灯500个.24.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【解答】解:(1)因为有A,B,C3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率==.25.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是x1=2和x2=4,则方程x2﹣6x+8=0是“倍根方程”.(1)根据上述定义,一元二次方程2x2+x﹣1=0 不是(填“是”或“不是”)“倍根方程”.(2)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c= 2 .(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,则a、b、c之间的关系为2b2=9ac.(4)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mm+n2的值.【分析】(1)根据“倍根方程”的定义即可得出结论;(2)根据倍根方程的定义以及根与系数的关系即可求出答案.(3)设x=m与x=2m是方程ax2+bx+c=0的解,然后根据根与系数的关系即可求出答案;(4)根据定义可求出n=4m或n=m,代入原式后即可求出答案;【解答】解:(1)2x2+x﹣1=0,(2x﹣1)(x+1)=0,解得x1=和x2=﹣1,故一元二次方程2x2+x﹣1=0 不是(填“是”或“不是”)“倍根方程”.(2)由题意可知:x=m与x=2m是方程x2﹣3x+c=0的解,∴m2﹣3m+c=0,4m2﹣6m+c=0,∴m=1,c=2;(3)设x=m与x=2m是方程ax2+bx+c=0的解,∴2m+m=﹣,2m2=,∴消去m得:2b2=9ac,(4)由(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,且该方程的两根分别为x=2和x=,∴=4或=1,当n=4m时,原式=(m﹣n)(4m﹣n)=0当n=m时,原式=(m﹣n)(4m﹣n)=0.故答案为:不是;2;2b2=9ac.26.如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:DG•BC=DF•BG;(2)连接CF,求∠CFB的大小;(3)作点C关于直线DE的对称点H,连接CH,FH.猜想线段DF,BF,CH之间的数量关系并加以证明.【分析】(1)根据正方形的性质得到∠BCD=90°,证明∠BGC=∠FGD,得到△BGC∽△DGF,根据相似三角形的性质证明结论;(2)连接BD,证明△BGC∽△DGF,根据相似三角形的性质得到∠BDG=∠CFG,根据正方形的性质解答;(3)在线段FB上截取FM,使得FM=FD,连接DM,证明△BDM∽△CDF,得到BM=CF,根据等腰直角三角形的性质得到CH=CF,证明结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BCD=90°,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG;(2)解:如图1,连接BD,∵△BGC∽△DGF,∴,∴,∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴∠BDG=∠ADC=45°,∴∠CFB=45°;(3)解:BF=CH+DF,理由如下:如图2,在线段FB上截取FM,使得FM=FD,连接DM,∵∠BFD=90°,∴∠MDF=∠DMF=45°,DM=DF,∵∠BDG=45°,∴∠BDM=∠CDF,∵△BGD∽△CGF,∴∠GBD=∠DCF,∴△BDM∽△CDF,∴,∴BM=CF,∵∠CFB=45°,BF⊥DE,点C关于直线DE的对称点H,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CH=CF,∴BM=CH,∴BF=BM+FM=CH+DF.27.如图①,在矩形OABC中,OA=4,OC=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=kx+b经过点E和点F.(1)求反比例函数的解析式;(2)连接OE、OF,求△OEF的面积;(3)在第一象限内,请直接写出关于x的不等式kx+b≤的解集:0<x<或x>3 .(4)如图②,将线段OB绕点O顺时针旋转一定角度,使得点B的对应点H恰好落在x 轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求HN+ON的最小值.【分析】(1)首先确定点B坐标,再根据中点坐标公式求出点D的坐标即可解决问题.(2)求出点E,F的坐标,再根据S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△EFB计算即可.(3)写出在第一象限,直线的图象在反比例函数的图象的下方的自变量x的取值范围即可.(4)如图②中,作NJ⊥BD于J.HK⊥BD于K.解直角三角形首先证明:sin∠JOD=,推出NJ=ON•sin∠NOD=ON,推出NH+ON=NH+NJ,根据垂线段最短可知,当J,N,H共线,且与HK重合时,HN+ON的值最小,最小值=HK的长,由此即可解决问题.【解答】解:(1)在矩形ABCO中,∵OA=BC=4,OC=AB=3,∴B(3,4),∵OD=DB,∴D(,2),∵y=经过D(,2),∴k=3,∴反比例函数的解析式为y=.(2)如图①中,连接OE,OF.由题意E(,4),F(3,1),∴S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△EFB=12﹣×4×﹣×3×1﹣×3×(3﹣)=.(3)观察图象可知:在第一象限内,关于x的不等式kx+b≤的解集为:0<x<或x >3.故答案为:0<x<或x>3.(4)如图②中,作NJ⊥BD于J.HK⊥BD于K.由题意OB=OH=5,∴CH=OH﹣OC=5﹣3=2,∴BH===2,∴sin∠CBH==,∵OM⊥BH,∴∠OMH=∠BCH=90°,∵∠MOH+∠OHM=90°,∠CBH+∠CHB=90°,∴∠MOH=∠CBH,∵OB=OH,OM⊥BH,∴∠MOB=∠MOH=∠CBH,∴sin∠JOD=,∴NJ=ON•sin∠NOD=ON,∴NH+ON=NH+NJ,根据垂线段最短可知,当J,N,H共线,且与HK重合时,HN+ON的值最小,最小值=HK的长,∵OB=OH,BC⊥OH,HK⊥OB,∴HK=BC=4,∴HN+ON是最小值为4.。

山东省青岛市2019-2020学年九年级(上)期中数学试卷 含解析

山东省青岛市2019-2020学年九年级(上)期中数学试卷  含解析

2019-2020学年九年级(上)期中数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0 2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠23.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.94.在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为()A.B.C.D.5.如图,在△ABC中,DE∥BC,BD=3AD,BC=12,则DE的长是()A.3 B.4 C.5 D.66.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.328.如图,点O为正方形ABCD的中心,AD=1,BE平分∠DBC交DC于点E,延长BC到点F,使BD=BF,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HE•HB.正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(本题满分24分,共有8道小题,每小题3分)9.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=.10.若是一个直角三角形两条直角边的长a,b,满足(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.11.若点C是线段AB的黄金分割点(AC>BC),AB=8cm,则AC=.12.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为.13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.14.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为m.15.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为cm3.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n O∁n B n的对角线交点的坐标为.三.解答题(共72分)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.18.用指定方法解方程:(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x=﹣2(公式法解)19.第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.20.如图梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.22.如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.(1)求证:∠BCE=∠DCF;(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出50kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x2+16x+19的最小值.解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2(2)求﹣m2﹣m+2的最大值解:﹣m2﹣m+2=﹣(m2+m)+2=﹣因大于等于0,所以﹣小于等于0,所以﹣+小于等于,即﹣m2﹣m+2的最大值是,此时,m=﹣.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则,,,…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为.(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为.(直接写出答案)25.如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.参考答案与试题解析一.选择题(共8小题)1.方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0 【分析】利用提公因式法解方程即可.【解答】解:x2=x,移项得x2﹣x=0,提公因式得x(x﹣1)=0,解得x1=1,x2=0.故选:D.2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.3.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.4.在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为()A.B.C.D.【分析】先列举出所有满足条件的两位数,然后找出能被3整除的两位数,即可得到能被3整除的概率.【解答】解:可以得到的所有两位数为:12,13,14,23,24,34,43,42,41,32,31,21,共有12个.其中能被3整除的有4个,所以两位数能被3整除的概率是=,故选:A.5.如图,在△ABC中,DE∥BC,BD=3AD,BC=12,则DE的长是()A.3 B.4 C.5 D.6【分析】由DE∥BC,可以判断△ADE∽△ABC,根据AD:BD=1:3即可得出结论.【解答】解:∵BD=3AD,∴AD:BD=1:3,∴AD:AB=1:4,∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=3,故选:A.6.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.32【分析】由菱形的性质可知AC⊥BD,2OD•AO=28①,进而可利用勾股定理得到OD2+OA2=36②,结合①②两式化简即可得到OD+OA的值.【解答】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28 ①∵菱形的边长为6,∴OD2+OA2=36 ②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.8.如图,点O为正方形ABCD的中心,AD=1,BE平分∠DBC交DC于点E,延长BC到点F,使BD=BF,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HE•HB.正确结论的个数为()A.1 B.2 C.3 D.4【分析】①只要证明OH是△DBF的中位线即可得出结论;②③根据OH是△BFD的中位线,得出OH=BF=BD可得出结论;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论;⑤证明△HEC∽△HCB,则HC:HB=HE:HC,即HC2=HE•HB,由HC=HF,即可得到⑤正确.【解答】解:①∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF(SAS),∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF(ASA),∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;②③∵点O为正方形ABCD的中心,AD=1,BD=BF,∴BD=BF=.由三角形中位线定理知,OG=BC=,GH=CF=(﹣1),∴OG:GH=1:(﹣1),故②错误,③正确;④∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF=90°,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,∴∠CHF=2∠EBC.故④正确;⑤∵∠ECH=∠CBH,∠CHE=CHB,∴△HEC∽△HCB,∴HC:HB=HE:HC,即HC2=HE•HB,而HC=HF,∴HF2=HC•HB,故⑤正确.故选:D.二.填空题(共8小题)9.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=2019 .【分析】直接把x=﹣1代入一元二次方程ax2﹣bx﹣2019=0中即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2019=0得a+b﹣2019,所以a+b=2019.故答案为2019.10.若是一个直角三角形两条直角边的长a,b,满足(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.【分析】根据勾股定理c2=a2+b2代入方程求解即可.【解答】解:∵a,b是一个直角三角形两条直角边的长设斜边为c,∴(a2+b2)(a2+b2+1)=12,根据勾股定理得:c2(c2+1)﹣12=0即(c2﹣3)(c2+4)=0,∵c2+4≠0,∴c2﹣3=0,解得c=或c=﹣(舍去).则直角三角形的斜边长为.故答案为:11.若点C是线段AB的黄金分割点(AC>BC),AB=8cm,则AC=4(﹣1)cm.【分析】根据黄金分割的定义:如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.列出方程即可求解.【解答】解:设AC的长为xcm,根据黄金分割定义可知:=即AC2=AB•BC,x2=8(8﹣x)x2+8x﹣64=0,解得x1=4(﹣1),x2=﹣4(+1)(不符合题意,舍去).所以AC的长为4(﹣1)cm.故答案为4(﹣1)cm.12.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为40 .【分析】由条件共摸了1000次,其中200次摸到白球,则有800次摸到红球;所以摸到白球与摸到红球的次数之比可求出,由此可估计口袋中白球和红球个数之比,进而可计算出红球数.【解答】解:∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球,∴白球与红球的数量之比为1:4,∵白球有10个,∴红球有4×10=40(个).故答案为:40.13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.14.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为 4.6 m.【分析】作EH⊥CD于H,交AB于G,如图,易得EG=BF=3m,GH=BD=7m,GB=HD=EF=1.6m,则AG=0.9,再证明△EAG∽△EHC,利用相似比计算出CH=3,然后利用CD =CH+DH进行计算.【解答】解:作EH⊥CD于H,交AB于G,如图,则EG=BF=3m,GH=BD=7m,GB=HD=EF=1.6m,所以AG=AB﹣GB=2.5﹣1.6=0.9(m),∵AG∥CH,∴△EAG∽△EHC,∴=,即=,解得:CH=3,∴CD=CH+DH=4.6(m).故答案为:4.6.15.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为1500 cm3.【分析】设剪掉的小正方形的边长为xcm,根据题意列出方程,求出方程的解得到x的值,求出所求即可.【解答】解:设剪掉的小正方形的边长为xcm,根据题意,得:2x2+20x×2=30×40﹣950,x2+20x﹣125=0,解这个方程得:x1=5,x2=﹣25(不合题意,应舍去),当x=5时,长方体盒子的体积为:x(30﹣2x)(20﹣x)=5×(30﹣2×5)×(20﹣5)=1500(cm2),答:此时长方体盒子的体积1500cm3故答案为:1500.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n O∁n B n的对角线交点的坐标为(﹣,).【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n O∁n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).三.解答题(共9小题)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.【分析】①作∠MAB=∠α.②在∠MAN的两边截取AD=AB=a,③分别以D、B为圆心a为半径画弧,两弧交于点C.菱形ABCD即为所求.【解答】解:如图菱形ABCD即为所求.18.用指定方法解方程:(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x=﹣2(公式法解)【分析】(1)根据配方法即可求出答案;(2)根据公式法即可求出答案;【解答】解:(1)∵2x2+4x﹣3=0,∴x2+2x=,∴(x+1)2=,∴x+1=,∴x=﹣1±(2)∵5x2﹣8x=﹣2,∴a=5,b=﹣8,c=2,∴△=64﹣4×5×2=24,∴x==;19.第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.【分析】列表得出所有等可能的情况数,找出取出的2个球中有1个白球、1个红球的情况数,即可求出所求的概率.【解答】解:列表如下:白红红白(白,白)(红,白)(红,白)白(白,白)(红,白)(红,白)红(白,红)(红,红)(红,红)所有等可能的情况有9种,其中取出的2个球中有1个白球、1个红球的情况有5种,所以P(取出的2个球中有1个白球、1个红球)=.20.如图梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.【分析】(1)先证明四边形BCDE为平行四边形,从而得到ED∥BC,于是得到∠EDB=∠FBM,又因为∠DME=∠BMF,从而可证明△EDM∽△FBM;(2)由F为BC的中点,得到BC=2FB,又由(1)得到的四边形BCDE为平行四边形,可得对边BC=ED,等量代换可得DE=2FB,由(1)得到的三角形EDM与三角形FMB相似,可得相似比为2:1,即得到DM:MB=2:1,设出DM=2k与MB=k,根据BD的长列出关于k的方程,求出方程的解即可得到k的值,从而得到BM的长.【解答】(1)证明:∵AB=2CD,点E是AB的中点,∴DC=EB.又∵AB∥CD,∴四边形BCDE为平行四边形.∴ED∥BC.∴∠EDB=∠FBM.又∵∠DME=∠BMF,∴△EDM∽△FBM.(2)解:由F为BC的中点,得到BC=2FB,又四边形DCBE为平行四边形,得到DE=BC,则DE=2FB,即FB:DE=1:2,∴△FMB与△EMD的相似比为1:2,即DM:MB=2:1,又BD=9,设DM=2k,MB=k,所以BD=BM+MD=k+2k=9,解得k=3,则BM=3.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【分析】(1)根据判别式的意义得到△=(﹣6)2﹣4(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.【解答】解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,解得m≤4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.22.如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.(1)求证:∠BCE=∠DCF;(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.【分析】(1)由正方形的性质得到∠B=∠ADC=∠BCD=90°,BC=CD,根据全等三角形的判定和性质即可得到结论;(2)根据已知条件得到四边形CEGF是平行四边形,根据全等三角形的性质得到CE=CF,证得四边形CEGF是菱形,求得∠ECF=∠BCD=90°,于是得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠B=∠ADC=∠BCD=90°,BC=CD,∴∠B=∠CDF=90°,在△BCE与△DCF中,∴△BCE≌△DCF(SAS),∴∠BCE=∠DCF;(2)解:四边形CEGF是正方形,理由:∵EG∥CF,FG∥CE,∴四边形CEGF是平行四边形,∵△BCE≌△DCF,∴CE=CF,∴四边形CEGF是菱形,∵∠BCE=∠DCF,∴∠ECF=∠BCD=90°,∴四边形CEGF是正方形.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出50kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?【分析】(1)根据“销售单价每涨2元,月销售量就减少20千克”,可知:月销售量=500﹣(销售单价﹣50)×.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;(2)销售成本不超过10000元,即进货不超过10000÷40=250kg.根据利润表达式求出当利润是8000时的售价,从而计算销售量,与进货量比较得结论.【解答】解:(1)当销售单价定为每千克56时,月销售量为:500﹣(56﹣50)×10=44(千克),所以月销售利润为:(56﹣40)×4407040;(2)由于水产品不超过10000÷40=250kg,定价为x元,则(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=80,x2=60.当x1=80时,进货500﹣10(80﹣50)=200kg<250kg,符合题意,当x2=60时,进货500﹣10(60﹣50)=400kg>250kg,舍去.答:商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为80元.24.【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x2+16x+19的最小值.解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2(2)求﹣m2﹣m+2的最大值解:﹣m2﹣m+2=﹣(m2+m)+2=﹣因大于等于0,所以﹣小于等于0,所以﹣+小于等于,即﹣m2﹣m+2的最大值是,此时,m=﹣.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则,,,…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为720 .(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为1458cm2.(直接写出答案)【分析】【探索发现】利用配方法解决问题即可.【拓展应用】利用相似三角形构建二次三项式,再利用配方法解决问题即可.【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,转化为图②中模型解决问题即可.【实际应用】如图④,延长BA、CD交于点E,过点E作EH⊥BC于点H,转化为图②中模型解决问题即可.【解答】解:【探索发现】=﹣(x﹣3)2+12,∵﹣(x﹣3)2≤0,∴=﹣(x﹣3)2+12=﹣(x﹣3)2+12≤12,∴矩形BDEF的面积的最大值为12.【拓展应用】设PN=b,∵PN∥BC,∴△APN∽△ABC,∴=,∵BC=a,BC边上的高AD=h,∴=,PQ=,∴S=b•PQ==﹣b2+bh=﹣(x﹣)2+≥∴S的最大值为:;则矩形PQMN面积的最大值为;故答案为:.【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,故答案为720.【实际应用】如图④,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵∠B=∠C=60°,∴EB=EC,∵EH⊥BC,∴BH=HC,∵=tan60°=设CH=BH=x,Z则EH=x,∵BC=BH+CH=108=2x,x=54,∴BH=CH=54,EH=54,∴EBEC=2BH=108,∵AB=70,∴AE=38,∴BE的中点Q在线段AB上,∵CD=76,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=×108×54=1458cm2,故答案为1458cm2.25.如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.【分析】(1)利用平行线的性质构建方程即可解决问题.(2)如图1中,作OE⊥AB于E,OF⊥BC于F.利用平行线的性质构建方程求出QE,QF 即可解决问题.(3)根据S四边形BPQC:S矩形ABCD=9:20,构建方程解决问题即可.(4)如图1中,作OE⊥AB于E,OF⊥BC于F.当PQ⊥QC时,△QEP∽△QFC,则=,由此构建方程即可解决问题.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=BC=3,∴BD===5,由题意BP=t,DQ=t,∵PQ∥AD,∴=,∴=,∴t=,∴满足条件的t的值为.(2)作OE⊥AB于E,OF⊥BC于F.∵QE∥AD,∴=,∴=,∴QE=(5﹣t),∵QF∥CD,∴=,∴=,∴QF=(5﹣t),∴S=S△PBQ+S△BCQ=•PB•QE+•BC•QF=•t•(5﹣t)+×3×(5﹣t)=﹣t2+t+6.(3)由题意:(﹣t2+t+6):12=9:20,整理得:t2﹣t﹣2=0,解得t=2或﹣1(舍弃),∴满足条件的t的值为2.(4)如图1中,作OE⊥AB于E,OF⊥BC于F.当PQ⊥QC时,△QEP∽△QFC,则=,∴=,解得t=,∴满足条件的t的值为.。

山东大学附属中学九年级上册期中试卷检测题

山东大学附属中学九年级上册期中试卷检测题

山东大学附属中学九年级上册期中试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。

【详解】解:(1)∵()4,0-A ,()0,4B ,四边形ABCO 为平行四边形, ∴点C 坐标为(4,4),又∵P 为x 轴上一动点,点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,P 点运动时间为t ,∴P 点坐标为(43t ,0), (2)∵B ,D 的坐标分别为:()0,4B ,4,03D ⎛⎫- ⎪⎝⎭, ∴4OB =,43OD =, 由勾股定理有:22224441033DB OBOD, 当BDP ∆为等腰三角形时, ①如图所示,当BDBP 时,OD OP =,∴P 点坐标为(43,0), ∴1t =②如图所示,当BD DP =时,∵4103DB ,OP DP OD∴44410101333OP ,∴101t③如图所示,当BP DP =时,设P 点坐标为:(x ,0) 则有:2224BP x,2243DPx, ∴222443xx,解之得:163x = ∴P 点坐标为(163,0), ∴4t =综上所述,当t 为1,101-,4时,BDP ∆为等腰三角形;(3)答:存在t ,使得ABD OBP ∠=∠。

2020-2021山东师范大学附属中学九年级数学上期中试题附答案

2020-2021山东师范大学附属中学九年级数学上期中试题附答案

2020-2021山东师范大学附属中学九年级数学上期中试题附答案一、选择题1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .2.下列事件中,属于必然事件的是( )A .随时打开电视机,正在播新闻B .优秀射击运动员射击一次,命中靶心C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形3.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .344.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4 5.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .310B .925C .425D .110 6.已知()222226x y y x +-=+,则22x y +的值是( ) A .-2 B .3 C .-2或3 D .-2且37.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠38.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 9.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60︒,90︒,210︒.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712 10.一元二次方程x 2+2x +2=0的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 11.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .412.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.15.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.16.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.17.如图,将正六边形ABCDEF 放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C 的坐标是_____.18.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.19.一元二次方程()22x x x -=-的根是_____.20.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点O 为圆心,OC 的长为半径作»CD交OB 于点D ,若OA=2,则阴影部分的面积为 .三、解答题21.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.22.如图,已知抛物线y=﹣x 2+bx +c 与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)求点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.23.如图,点C 是⊙O 的直径AB 延长线上的一点,且有BO=BD=BC .(1)求证:CD 是⊙O 的切线;(2)若半径OB=2,求AD 的长.24.如图,ABO V 与CDO V 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .25.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A .是随机事件,故A 不符合题意;B .是随机事件,故B 不符合题意;C .是随机事件,故C 不符合题意;D .是必然事件,故D 符合题意.故选D .点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.3.D解析:D【解析】过B 作⊙O 的直径BM ,连接AM ,则有:∠MAB=∠CDB=90°,∠M=∠C ,∴∠MBA=∠CBD ,过O 作OE ⊥AB 于E ,Rt △OEB 中,BE=12AB=4,OB=5, 由勾股定理,得:OE=3,∴tan ∠MBA=OE BE =34, 因此tan ∠CBD=tan ∠MBA=34, 故选D .4.C解析:C【解析】【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.5.A解析:A【解析】【分析】画树状图(用A 、B 、C 表示三本小说,a 、b 表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A 、B 、C 表示三本小说,a 、b 表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310. 故选:A .【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.6.B解析:B【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=. 故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.7.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 8.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD 的弧长=6,∴S 扇形DAB =11lr =22×6×3=9. 故选D .【点睛】本题考查扇形面积的计算. 9.B解析:B【解析】【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为901= 3604,即转动圆盘一次,指针停在黄区域的概率是14,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.10.D解析:D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键11.B解析:B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档