双馈发电机原理

合集下载

双馈式风力发电机原理

双馈式风力发电机原理

双馈式风力发电机原理双馈式风力发电机介绍双馈式风力发电机是一种常见的风力发电装置。

它具有较高的效率和良好的适应性,被广泛应用于风力发电场。

下面将逐步解释双馈式风力发电机的原理。

风能转换风是一种自然资源,可以转化为电能。

风力发电机通过转换风能为机械能,再将机械能转化为电能,实现风能的利用。

双馈式风力发电机在风能转换过程中采用了特殊的设计,使得发电效率更高。

基本原理双馈式风力发电机的基本原理如下:1.风能转化为旋转动能:风力发电机的叶片接收到风的动能,产生旋转运动。

2.传递旋转动能:旋转的轴通过齿轮传动等方式,将旋转动能传递给转子。

3.转子的双馈结构:转子包含一对主磁极和一对辅助磁极,其中辅助磁极是可调节的。

4.感应发电原理:主磁极在转子上产生的磁场与定子上的线圈相互作用,产生感应电动势。

5.电能传输:感应电动势经过变频器和其他电气设备进行调节和转换后,传输到电网中。

双馈式结构优势双馈式风力发电机采用双馈结构,具有以下优势:•提高稳定性:通过调整辅助磁极的位置,可以实现对转速和功率的精确控制,提高系统的稳定性。

•减小成本:辅助磁极的可调节性降低了对控制系统的要求,减小了成本。

•适应性强:双馈式风力发电机适应性强,可以适应不同的风速和转速变化。

总结双馈式风力发电机通过利用风能转化为电能,实现了对风力资源的有效利用。

它采用双馈结构,通过调节辅助磁极的位置,实现对转速和功率的精确控制,提高了系统的稳定性和功率输出。

双馈式风力发电机具有较高的效率和适应性,是目前风力发电场常用的装置之一。

双馈风力发电机工作原理

双馈风力发电机工作原理

双馈风力发电机工作原理双馈风力发电机由三个主要部分组成:风轮,机械传动系统和电气系统。

风轮是由叶片和轮毂组成的,它负责将风能转化为旋转能量。

机械传动系统则负责将旋转能量转移到发电机上。

而电气系统则将机械能转化为电能,并送入电网中。

首先,风轮在风速的推动下开始旋转。

当风速足够高时,风轮旋转的速度也相应增加。

旋转的风轮通过主轴将旋转能量传输给发电机的转子。

与传统的固定速度(常规)发电机不同的是,双馈风力发电机是一种变速发电机。

它的转子上设有两组绕组:定子绕组和转子绕组。

定子绕组固定在发电机的圆柱形部分上,而转子绕组则固定在转子上。

定子绕组与电网直接相连,通过电网供电并产生旋转磁场。

转子绕组上也有一个与电网连接并可以提供电能的回路。

这个循环是通过一个双级功率变换器实现的,这也是双馈风力发电机名称的由来。

双级功率变换器是由一个转子侧变频器和一个定子侧变频器组成的。

当风轮旋转的速度发生变化时,定子绕组上的旋转磁场也会发生变化。

这个变化的旋转磁场会产生感应电动势,使转子绕组上的电流发生变化。

这个变化的电流经由双级功率变换器输入到定子绕组上。

由于双级功率变换器的存在,电流可以根据需求进行加减,从而实现功率的控制。

通过双级功率变换器,转子绕组上的电流可以与定子绕组上的电压相互配合,从而实现最佳的功率传输。

定子侧的变频器控制着定子绕组上的电流和频率,保持电网的稳定性和功率质量。

而转子侧的变频器则控制着转子绕组上的电流和频率,提高了发电机的效率和可靠性。

总的来说,双馈风力发电机通过风轮将风能转化为旋转能量,然后将旋转能量通过机械传动系统传输给发电机的转子。

转子上的双级功率变换器帮助将机械能转化为电能,并将其送入电网中。

通过双级功率变换器的灵活控制,双馈风力发电机能够提高整个系统的效率和稳定性,从而更好地利用风能资源。

双馈、直驱、半驱风力发电机工作原理

双馈、直驱、半驱风力发电机工作原理

双馈、直驱、半驱风力发电机工作原理双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。

它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中得到广泛应用。

我们来了解一下双馈风力发电机的工作原理。

双馈风力发电机是一种采用异步发电机的结构,其转子由两部分组成:一个是固定子,另一个是转子。

风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。

在双馈风力发电机中,转子的定子通过拖动转子的磁场,使得风力发电机可以实现变频调速。

双馈风力发电机具有转矩平稳、响应速度快的优点,可以适应不同风速下的工作状态。

接下来,我们介绍一下直驱风力发电机的工作原理。

直驱风力发电机是一种采用永磁同步发电机的结构,其转子由永磁体构成。

风力通过叶片传递给转子,转子通过直接驱动发电机产生电能。

直驱风力发电机不需要传动系统,减少了能量转换的损失,提高了发电效率。

直驱风力发电机具有结构简单、体积小、维护成本低等优点,逐渐成为风力发电领域的主流技术。

我们来了解一下半驱动风力发电机的工作原理。

半驱动风力发电机是双馈风力发电机和直驱风力发电机的结合体,它采用了双馈发电机的转子结构和直驱发电机的永磁体。

风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。

半驱动风力发电机兼具双馈风力发电机和直驱风力发电机的优点,具有较高的发电效率和稳定性。

双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。

它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中发挥重要作用。

双馈风力发电机通过变频调速实现转矩平稳,响应速度快;直驱风力发电机通过永磁同步发电机实现高效发电;半驱动风力发电机兼具双馈和直驱的优点,具有较高的发电效率和稳定性。

随着风力发电技术的不断发展,这些风力发电机构将进一步完善和提升,为可持续能源的开发和利用做出更大贡献。

双馈发电机的原理

双馈发电机的原理

双馈发电机的原理双馈发电机是一种独特的电动机,在发电和驱动领域得到广泛应用。

它采用了双馈结构,即同时给定定子绕组和转子绕组电源,具有高效率和较好的性能。

本文将详细介绍双馈发电机的原理及其工作过程。

一、双馈发电机的结构双馈发电机由定子绕组、转子绕组和磁路组成。

定子绕组是通过固定在定子上的线圈形成的,而转子绕组是固定在转子上的线圈。

通过将定子和转子绕组分别接入电源,实现对发电机的控制。

二、双馈发电机的原理双馈发电机的原理是基于磁场的相互作用和电流的感应。

当定子绕组通电时,产生的磁场将影响转子绕组中的电流。

反过来,转子绕组中的电流也会产生磁场,进一步影响定子绕组中的电流。

通过这种相互作用,能够实现能量的转换和传输。

三、双馈发电机的工作过程在正常工作状态下,双馈发电机的定子和转子绕组均接通电源。

定子绕组产生旋转磁场,通过与转子绕组的电流相互作用,产生驱动力矩。

转子绕组中的电流会产生磁场,与定子绕组的磁场相互作用,进一步提高发电机的效率和性能。

四、双馈发电机的优势相比传统的发电机,双馈发电机具有以下优势:1. 高效率:双馈发电机能够通过转子绕组中的电流来调节和控制磁场,从而提高发电机的效率。

2. 较好的性能:双馈发电机在低速启动和高速运行时具有较好的性能,能够适应各种工况要求。

3. 灵活性:双馈发电机的结构和控制方式可以根据实际需求进行调整,具有较强的灵活性和适应性。

五、双馈发电机的应用领域双馈发电机广泛应用于风力发电、水力发电和轨道交通等领域。

在风力发电中,双馈发电机能够充分利用风能,并通过优化的控制系统实现最大的发电效率。

在水力发电中,双馈发电机具有低噪音、高效率和可靠性等优点。

在轨道交通中,双馈发电机能够实现高速度和高扭矩的需求。

六、总结双馈发电机作为一种独特的电动机,通过双馈结构实现了高效率和较好的性能。

它的工作原理是基于磁场的相互作用和电流的感应。

双馈发电机的优势包括高效率、较好的性能和灵活性,广泛应用于风力发电、水力发电和轨道交通等领域。

双馈异步发电机 工作原理

双馈异步发电机 工作原理

双馈异步发电机工作原理
双馈异步发电机是一种常用于风力发电系统的发电机,其工作原理是利用两个独立的电路,即主回路和辅助回路,来实现有效的变速调节和发电功率控制。

主回路是由发电机的定子绕组和电网组成,它负责将发电机产生的电能传输到电网中。

辅助回路由辅助回路绕组和产生逆变电压的逆变器组成。

辅助回路将逆变后的电能送回到发电机的转子绕组中,这样就形成了发电机的双馈结构。

通过控制逆变器输出的电压和频率,可以实现对发电机的转速和功率的调节。

在运行过程中,双馈异步发电机的转子绕组通过转速传感器等装置实时监测转子的转速,并将转速信号传输给控制系统。

根据所设定的转速和功率要求,控制系统通过调节逆变器的输出电压和频率,来控制转子的转速。

具体地说,当风能资源较为丰富时,控制系统会提高逆变器的输出电压和频率,从而提高转子的转速。

反之,当风能资源较为稀缺时,控制系统会降低逆变器的输出电压和频率,使转子的转速下降。

通过灵活地调节逆变器的输出,双馈异步发电机能够在不同的风力条件下运行,并始终保持较高的发电效率。

总的来说,双馈异步发电机通过在转子回路中引入辅助回路,并通过逆变器来调节转子的转速和功率,实现了对风力发电系统的灵活控制。

这种发电机具有高效、可靠和可变风速工作范围宽等优点,成为风力发电系统中常用的发电设备之一。

双馈风机工作原理

双馈风机工作原理

双馈风机工作原理
双馈电机是一种能够实现电能直接向机械能的转换的电机,它能够直接接入电网,在电网运行。

双馈电机在运行时,转子上的磁通发生变化,从而形成了一个特殊的磁场,这个磁场使转子对定子旋转。

在定子与电网之间产生一个交流电压,通过控制变频器上的变流器(或双馈电机上的变流器)向电网输送电能。

因此,双馈电机属于一种电压源型换流器(VSC)。

交流电压由变
频器控制,双馈电机转子侧和电网侧都可以直接向电网输送电能。

双馈电机能够实现风电场的并网运行,对风电场的运行是非常有利的。

它可以在风电场中采用不同功率等级的发电机以实现并网运行,这将使整个风电场向电网提供相同水平的电能,并且不需要增加或改变风力发电机的容量。

双馈电机通过改变定子磁场中电流的大小和方向来发电和配电。

这意味着双馈电机不需要复杂的控制系统即可实现对有功功率、无功功率和频率的控制。

为了获得最大的发电量,双馈电机通常需要大容量的变流器来提供所需容量。

—— 1 —1 —。

双馈风力发电机的工作原理

双馈风力发电机的工作原理

双馈风力发电机的工作原理
双馈风力发电机是一种新型可控风力发电机,它具有更高的可靠性、性能和效率,是当前风力发电技术的重要发展方向。

双馈风力发电机是采用双馈式控制结构,具有较高的可控性和调节性,能够有效提高风力发电机的电能转换效率,以及对风力条件的适应性和可靠性。

双馈风力发电机的工作原理主要是通过调节风力发电机的叶片转动角度来实现电能转换的。

双馈风力发电机的控制结构是通过一个扰动电机和一个控制电机来实现的,扰动电机通过检测风速,按照设定的参数来调节叶片角度,从而使风力发电机有效捕获风力,从而产生电能;控制电机负责调节风力发电机的叶片角度,使叶片的转动角度达到最优,从而提高风力发电机的电能转换效率。

双馈风力发电机的工作原理可以概括为:通过检测风速,控制扰动电机调节叶片角度,控制电机调节叶片转动角度,从而使风力发电机有效捕获风力,有效转换电能。

双馈风力发电机的特点是具有较高的可控性和调节性,可以有效提高风力发电机的电能转换效率,有效提升风力发电机的可靠性和适应性。

双馈发电机工作原理

双馈发电机工作原理

第七章双馈风力发电机工作原理我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。

双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。

同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。

交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。

这说明交流励磁电机比同步电机多了两个可调量。

通过改变励磁频率,可改变发电机的转速,到达调速的目的。

这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。

改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。

这说明电机的功率角也可以进行调节。

所以交流励磁不仅可调节无功功率,还可以调节有功功率。

交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。

但是,实现可变交流励磁电流的控制是比拟困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。

一、双馈电机的根本工作原理设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速11f 及电机的极对数p 的关系如下:pf n 1160=〔3-1〕同样在转子三相对称绕组上通入频率为2f 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:pf n 2260=〔3-2〕由式3-2可知,改变频率2f ,即可改变2n ,而且假设改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。

双馈异步发电机原理

双馈异步发电机原理

双馈异步发电机原理双馈异步发电机(Double Fed Induction Generator,DFIG)是一种常用于风力发电系统的电机。

它具有一定的功率调节能力和较高的发电效率,在现代能源领域得到广泛应用。

本文将就双馈异步发电机的原理进行介绍。

一、简介双馈异步发电机由固定部分(定子)和旋转部分(转子)组成。

定子绕组中通以三相对称电流,形成旋转磁场,而转子通过刚性转子轴与风力发电机的转动相连。

定子与转子的耦合通过定子绕组和转子绕组之间传递电流来实现。

这就是为什么它被称为“双馈”发电机的原因。

二、工作原理当双馈异步发电机以风力发电机的转动速度运转时,风轮带动发电机旋转,同时将机械能转化为电能。

定子的电压通过电网和电池汇流条供电。

为了实现双馈异步发电机的控制,定子绕组由逆变器供电,逆变器通过电网进行功率调节,并使双馈异步发电机保持在最佳工作状态。

三、主要特点1. 调节能力:双馈异步发电机的电压和频率可以通过逆变器调节,从而实现对功率输出的精确控制。

这使得它在风能系统中成为一种理想的发电机。

2. 高效性能:相比传统发电机,双馈异步发电机在输送能量时能够减小电流的损耗,提高发电效率。

3. 提高动态响应:双馈异步发电机可以通过逆变器的调节来提高其动态响应能力,使其能够更快速地适应变化的风速和负载。

4. 减少对电网的影响:双馈异步发电机可以通过逆变器来控制发电功率,减少对电网的负荷影响,提高电网的稳定性和可靠性。

四、应用领域双馈异步发电机在风力发电系统中得到广泛应用。

其调节能力和高效性能使其成为风能转换系统的核心组件。

同时,双馈异步发电机也可以应用于其他领域,如水力发电、轨道交通以及工业领域等。

总结双馈异步发电机具有调节能力强、高效、动态响应快以及对电网影响小等特点,为风力发电系统带来了巨大的发展潜力。

随着能源需求的不断增长,双馈异步发电机将继续在可再生能源领域发挥重要作用,为我们提供更清洁、可持续的发电解决方案。

双馈发电机工作原理

双馈发电机工作原理

双馈发电机工作原理双馈发电机(Doubly Fed Induction Generator,简称DFIG)是一种常见的风力发电机的类型,其工作原理基于异步电机的原理。

DFIG是由一个转子和一个固定转子组成的,其中转子通常由铜或铝制成。

DFIG的工作原理如下:1.转子:DFIG的主要部分是转子,它是由绕组组成的。

绕组中的导线将电能传递给转子,以形成旋转磁场。

旋转磁场通过与固定转子的磁场交互,产生电动势。

转子上的绕组通常是属于定子的,即与固定转子的绕组相连。

转子的绕组也被称为发电机侧的绕组。

2.固定转子:固定转子是固定在发电机的外部的,由静子绕组组成。

静子绕组通常是三相绕组,其绕组与电网相连,接收来自电网的电能。

静子绕组的电能由定子中的定子绕组接收,它们通过拖曳转子旋转磁场生成的电动势传输。

定子绕组也被称为电网侧的绕组。

3.转子绕组:转子绕组是双馈发电机的关键组成部分之一、它有两个绕组:一个是通过滑环连接到固定转子的绕组,另一个是通过短路圈连接到直流环。

这两个绕组可以使发电机在双馈模式和全功率模式之间切换。

当DFIG处于双馈模式时,转子的旋转磁场通过滑环绕组传递电动势到定子绕组,然后通过定子绕组传输到电网。

这种方式下,电网接收到的电能比转子绕组输入的电能要大。

当DFIG处于全功率模式时,转子的旋转磁场通过短路圈绕组传递电动势到直流环绕组,然后通过直流环绕组传输到定子绕组。

这种方式下,输出到电网的电能比输入到转子绕组的电能要大。

DFIG的双馈模式和全功率模式的切换是由电力电子装置控制的,这个装置通常被称为转子侧变流器。

总的来说,DFIG的工作原理是通过转子和固定转子间的相互作用,将输入的电能转换成输出的电能。

DFIG的旋转磁场产生电动势,在双馈模式和全功率模式下,电动势通过不同的绕组传输到电网。

这使得DFIG 在不同工作条件下都能有效地工作。

双馈风力发电机的工作原理

双馈风力发电机的工作原理

双馈风力发电机的工作原理
1、双馈风力发电机的工作原理:
是通过叶轮将风能转变为机械转矩,通过主轴传动链,经过齿轮箱增速到异步发电机转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。

如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。

双馈发电机正是由叶片通过齿轮箱变速,带动以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,已达到最大利用风能效果。

2、双馈风力发电的特点:
(1)由于定子直接与电网连接,转子采用变频供电,因此,系统中的变频器容量仅仅取决于发电机运行时的最大转差功率,一般发电机最大转差功率为25%-35%,因而变频器的最大容量仅为发电机容量的1/4-1/3,这样系统的总体配置费用就比较低。

(2)具有变速恒频的特性。

(3)可以实现有功功率和无功功率的调节。

双馈发电机工作原理

双馈发电机工作原理

双馈发电机工作原理双馈发电机是一种高效且可靠性较高的发电机,广泛应用于风力发电系统中。

它采用双馈结构,即转子上的绕组通过定子绕组和旋转子绕组电气连接。

双馈发电机的设计是为了克服传统发电机中的一些问题,例如启动和控制方式的限制以及电力损耗的减少。

在双馈发电机中,转子绕组和定子绕组分别通过双馈触摸圈和滑环进行电气连接。

这个连接允许转子上部分的绕组电流与定子产生磁场相互作用,并将电能传递到发电机的输出端。

双馈发电机通过这种方式实现了功率的传送与控制。

具体而言,双馈发电机在运行时,由风轮转动带动转子旋转。

在转动过程中,转子绕组和定子绕组之间的相互作用产生了感应电动势。

这个电动势通过双馈触摸圈和滑环传送给定子绕组,进而通过输出端输出电力。

双馈发电机的输出电能可以通过变频器进行调节,以满足不同的电力需求。

另一个优点是能够提高系统的可靠性。

由于双馈发电机具有自动调节电力输出的能力,它可以根据外部环境变化(如风速变化)来调整输出功率,从而保持系统的稳定。

此外,双馈发电机的结构相对简单,维护和维修也相对容易。

然而,双馈发电机也存在一些局限性。

首先,相对于传统的直驱式发电机,双馈发电机的效率相对较低。

其次,双馈发电机的成本较高,尤其是在大规模风电场中的应用。

此外,双馈发电机容易受到电网电压波动的影响,需要配备电网电压调节装置。

总之,双馈发电机是一种高效且可靠性较高的发电机。

其工作原理是通过转子和定子绕组之间的相互作用,实现电能的传递和控制。

双馈发电机的特点是能够变速运行和自动调节输出功率,从而提高整个风力发电系统的效率和稳定性。

然而,双馈发电机也有一些局限性,例如较低的效率和较高的成本。

双馈发电机原理

双馈发电机原理

双馈发电机原理双馈发电机是一种常用于大型风力发电机组的电机类型。

它具备高转速、高功率密度和低成本等优势,被广泛应用于风力发电领域。

本文将详细介绍双馈发电机的原理及其工作过程。

一、双馈发电机概述双馈发电机,又称为异步双馈发电机,是一种由转子和永磁体绕组组成的电机。

与传统的感应电机不同,双馈发电机在转子上额外增加了一个功率输出装置,该装置通常由电流互感器和功率变流器组成。

该装置的主要作用是将一部分电流经过功率变流器控制并重新注入到绕组中,从而实现对电机的控制和调节。

因此,双馈发电机在工作时可以通过改变转子上的电流来调整输出功率和电机的性能。

二、双馈发电机的原理基于转子上的功率输出装置。

当风力发电机叶片转动时,叶片产生的机械能被转化为转子上的电能。

转子上的电能被分为两部分,一部分经过转子的绕组直接注入电网;另一部分则经过功率输出装置控制后重新注入绕组。

功率输出装置主要由电流互感器和功率变流器组成。

电流互感器用于检测电流信号,并将信号传输给功率变流器。

功率变流器负责将电流信号转换为适当的电压和频率,然后将其注入到绕组中。

通过调节功率输出装置的参数,可以达到对电机功率输出的控制和调节。

三、双馈发电机工作过程双馈发电机在工作时,首先通过输入端子引入定子绕组的感应电流。

随后,该感应电流通过转子绕组和功率输出装置注入到转子上。

在此过程中,转子上的电流与输入电压之间存在一定的相位差。

转子上的电流与输入电压的相位差会导致一部分电能通过功率输出装置注入到绕组中,而不是直接输出到电网上。

这样一来,双馈发电机的输出电功率和频率就可以通过调节功率输出装置的参数进行控制和调节。

四、双馈发电机的优点1. 高转速:双馈发电机的转速通常比直联发电机要高,能够更好地适应风力发电机组的工作要求。

2. 高功率密度:双馈发电机采用双馈线圈结构,使得发电机的功率密度更高,可以实现更大的功率输出。

3. 低成本:由于双馈发电机采用了较简单的控制装置,相比其他类型的发电机,其成本相对较低。

双馈风力发电机原理

双馈风力发电机原理

双馈风力发电机原理双馈风力发电机(DFIG)是一种常用于风力发电系统的发电机类型。

它采用双馈结构,具有高效、可靠和灵活的特点。

本文将介绍双馈风力发电机的原理和工作方式。

一、双馈风力发电机的结构组成双馈风力发电机主要由转子、定子和功率电子装置组成。

转子由主转子和辅助转子构成,主转子装有定子绕组,辅助转子则利用功率电子装置与电网相连。

二、双馈风力发电机的工作原理双馈风力发电机采用变频技术,可以自动调节发电机的转速和电网之间的电流和电压。

当风能转换为机械能并带动风力发电机转动时,风力发电机通过转子将机械能转换为电能。

双馈风力发电机的主要原理是利用定子绕组在电磁铁芯上产生磁场,通过主转子的转动,使得辅助转子携带的电流与主转子相互作用,从而产生电磁转矩。

这一转矩通过主轴传递给风力发电机的转子,进而带动风力发电机旋转。

这种旋转的力矩可以带动发电机的发电部分,将机械能转化为电能并输出到电网上。

三、双馈风力发电机的优点1. 高效:双馈风力发电机通过使用变频技术,能够根据风力的变化自动调节风力发电机的转速,保持最佳的效率。

2. 可靠:双馈风力发电机采用双馈结构,辅助转子通过功率电子装置与电网相连,能够在故障情况下保持风力发电机的正常运行。

3. 灵活:双馈风力发电机能够实现无级变速,适应不同风力条件下的工作要求。

四、双馈风力发电机的应用双馈风力发电机广泛应用于风力发电场。

风力发电场中的风力发电机通常需要适应风速和风向的变化,而双馈风力发电机正是这样的一种装置。

它不仅能够适应不同风力条件下的工作要求,还能够通过变频技术将电能高效地输送到电网上。

五、总结双馈风力发电机是一种高效、可靠和灵活的风力发电机。

它的工作原理基于双馈结构和变频技术,通过将风能转换为机械能,并最终转化为电能输出到电网上。

双馈风力发电机在风力发电场中有着广泛的应用前景,将成为风力发电系统的重要组成部分。

虽然本文没有严格按照合同或作文的格式写,但在核心内容的传递和组织结构方面仍满足题目要求。

双馈异步发电机工作原理

双馈异步发电机工作原理

双馈异步发电机工作原理双馈异步发电机是一种常用于风力发电和水力发电等领域的发电机,其工作原理主要基于双馈变流器的控制原理。

双馈异步发电机由定子、转子、双馈变流器和控制系统等部分组成,其工作原理如下:首先,当双馈异步发电机接通电网后,定子绕组和转子绕组都会受到电网的激励,从而产生电磁力和电磁转矩。

在发电机运行过程中,双馈变流器会通过控制转子绕组的电流,调节发电机的输出功率和电压,从而实现对发电机的控制。

其次,双馈异步发电机的转子绕组通过双馈变流器与电网相连,可以实现双向能量的传递。

当发电机转速超过额定转速时,双馈变流器可以将多余的能量通过转子绕组反馈到电网中,从而实现对发电机的功率调节,提高发电机的运行效率。

另外,双馈异步发电机的控制系统可以实现对发电机的无级调速,使其在不同风速或水流条件下都能够保持稳定的输出功率和电压。

通过控制双馈变流器的工作状态,可以实现对发电机的无级调速和无功功率控制,从而满足不同场合对发电机功率和电压的需求。

总的来说,双馈异步发电机通过双馈变流器和控制系统的配合,实现了对发电机的精确控制和调节,提高了发电机的运行效率和稳定性,是一种在风力发电和水力发电等领域广泛应用的发电机类型。

在实际应用中,双馈异步发电机可以根据具体的需求和场合进行灵活的设计和调整,从而更好地满足不同场合对发电机功率和电压的需求。

同时,双馈异步发电机还具有结构简单、维护成本低等优点,因此在风力发电和水力发电等领域有着广阔的应用前景。

综上所述,双馈异步发电机通过双馈变流器和控制系统的精确配合,实现了对发电机的精确控制和调节,提高了发电机的运行效率和稳定性,是一种在风力发电和水力发电等领域具有广泛应用前景的发电机类型。

双馈电机的工作原理

双馈电机的工作原理

双馈电机的工作原理双馈电机是一种特殊的异步电机,它的转子绕组不仅与电源交流,还与定子绕组交流。

这种结构使得双馈电机具有比传统异步电机更好的启动性能和控制性能,并且适合于大型机械设备的驱动,例如风力发电机、钢铁轧机等。

双馈电机的工作原理可以从其结构和特点入手。

首先,双馈电机的定子绕组与电源交流,产生旋转磁场。

其次,转子绕组分别与定子绕组的两个端子相连,形成双馈结构。

当转子旋转时,由于其绕组与定子绕组的耦合作用,会在转子绕组中产生感应电动势,导致转子电流的流动。

这些电流与定子绕组的磁场相互作用,产生转矩,使得转子旋转。

同时,由于转子绕组中电流的存在,转子的磁场也会对定子绕组产生影响,从而使定子绕组中的电流产生变化。

这种交互作用增强了电机的启动性能和控制性能。

双馈电机的特点还在于其转子绕组的设计。

通常,双馈电机的转子绕组由两部分组成:一部分是传统的线圈绕组,另一部分是巨大的扼流圈。

扼流圈是一个环形的铜棒,通常安装在转子的两端。

当转子旋转时,扼流圈中的电流会产生磁场,从而减弱转子绕组的磁场,使得转子的电流和转矩产生变化。

这种设计使得双馈电机在启动时可以产生大的转矩,同时还可以实现较好的速度和转矩控制。

双馈电机的应用范围非常广泛。

例如,风力发电机通常采用双馈电机作为发电机,因为双馈电机可以适应风速变化和负载变化的特点。

此外,钢铁轧机等大型机械设备也常常采用双馈电机作为驱动电机,因为双馈电机可以实现较好的启动和控制性能,同时还可以减少设备的能源消耗和维护成本。

双馈电机是一种特殊的异步电机,其转子绕组与定子绕组的耦合作用使得其具有比传统异步电机更好的启动性能和控制性能。

双馈电机的应用范围非常广泛,特别适合于大型机械设备的驱动。

双馈电机的原理及特点

双馈电机的原理及特点
ωr=ω1-ω2
其中:ωr是转子旋转角频率;
ω1是定子电流形成的旋转磁场的角频率;
ω2是转子电流形成的旋转磁场的角频率。
由此可得转子供电频率f2=s?f1,此时定转子旋转磁场均以同步速n1旋转,两者保持相对静止。
与同步电机相比,双馈电机励磁可调量有三个:一是与同步电机一样,可以调节励磁电流的幅值;二是可以改变励磁电流的频率;三是可以改变励磁电流的相位。通过改变励磁频率,可调节转速。这样在负荷突然变化时,迅速改变电机的转速,充分利用转子的动能,释放和吸收负荷,对电网的扰动远比常规电机小。另外,通过调节转子励磁电流的幅值和相位,可达到调节有功功率和无功功率的目的。而同步电机的可调量只有一个,即励磁电流的幅值,所以调节同步电机的励磁一般只能对无功功率进行补偿。与之不同的是双馈电机的励磁除了可以调节电流幅值外,亦可以调节其相位,当转子电流的相位改变时,由转子电流产生的转子磁场在气隙空间的位置就产生一个位移,改变了双馈电机电势与电网电压向量的相对位置,也就改变了电机的功率角。所以双馈电机不仅可调节无功功率,也可调节有功功率。一般来说,当电机吸收电网的无功功率时,往往功率角变大,使电机的稳定性下降。而双馈电机却可通过调节励磁电流的相位,减小机组的功率角,使机组运行的稳定性提高,从而可多吸收无功功率,克服由于晚间负荷下降,电网电压过高的困难。与之相比,异步发电机却因需从电网吸收无功的励磁电流,与电网并列运行后,造成电网的功率因数变坏。所以双馈电机较同步电机和异步电机都有着更加优越的运行性能。
1) 运行于变速恒频方式;
2) 运行于无功大范围调节的方式;
3) 运行于发电-电动方式。
二、双馈异步发电机与同步发电机的比较
随着电力系统输电电压的提高,线路的增长, 当线路的传输功率低于自然功率时,线路和电站将出现持续的工频过电压.为改善系统的运行特性, 不少技术先进的国家,在16世纪初开始研究异步发电机在大电力系统中的应用问题,并认为系统采用异步发电机后,可提高系统的稳定性, 可靠性和运行的经济性.

双馈发电机原理讲解

双馈发电机原理讲解

双馈发电机原理讲解首先,双馈发电机的发电原理与传统的固定励磁同步发电机有所区别。

在传统的固转子发电机中,励磁磁场是由固定的励磁绕组产生,而转子绕组只用于产生转矩。

而在双馈发电机中,转子绕组不仅用于产生转矩,还可以通过切割磁感线的方式来控制电励磁磁场。

具体来说,双馈发电机的转子上存在一个较小的绕组,称为次级绕组,它通过耦合电感绕组与固定的次级绕组相连。

当转子转动时,次级绕组中感应出的电流可以通过控制电励磁磁场的大小和方向来直接控制发电机的输出电压和功率。

首先是启动阶段,双馈发电机启动时,由于转子绕组接入次级绕组,可以通过变压器原理产生励磁磁场,使得转子绕组激磁并逐渐上升到额定电流。

在这个阶段,发电机是以固定转差电压进行运行的。

接下来是同步运行阶段,当发电机达到额定转速之后,转子绕组的励磁电流将维持在一个恒定的值,称为额定磁通,同时通过改变次级绕组中的电流来调整发电机的输出电压和功率。

这种调节方式能够使得发电机的输出电压和频率与电网同步,从而实现功率输出。

最后是输出功率限制阶段,在电网发生故障或负载突然变化时,双馈发电机会根据转子绕组的电流变化来控制发电机的输出功率。

当电网负载减小时,双馈发电机会自动减小转子绕组的电流,以保持恒定的励磁磁通;当电网负载增加时,双馈发电机会增大转子绕组的电流,增加励磁磁通以提供额外的输出功率。

双馈发电机相比传统的固转子发电机具有以下优势:首先,由于双馈发电机可以通过转子绕组控制励磁磁通,使得发电机具有更好的控制性能,能够更快速地响应电网负载变化;其次,双馈发电机具有较高的转子功率因数,可以减少无功功率的损耗,提高发电机系统的效率;最后,双馈发电机还具有较高的起动转矩和抗短路能力,能够更好地适应电网的动态变化。

双馈发电机在风力发电、水力发电和调频发电等领域都有广泛的应用。

在风力发电中,双馈发电机可以通过控制转子绕组的电流,实现最大功率追踪和风机桨叶的可变风角控制。

在水力发电中,双馈发电机可以通过调节励磁电流,控制水轮机的输出功率和调速能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技术研发部
编写
双馈发电机原理
一.风力发电机的主要类型
1.异步发电机
●笼鼠式异步发电机
特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。

缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。

一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。

●绕线转子异步发电机
特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。

风速大的时候多余的能量可以消耗在转子电阻上。

●双馈异步发电机
特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。

2.同步发电机
●永磁同步发电机
特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。

转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。

一般用于海上风机。

●直流励磁同步发电机
技术研发部编 写
特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

二.
双馈异步发电机原理
1.旋转磁场
旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。

从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。

三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120º、对称地放置到定子槽内的三个独立的绕组
由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是
对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。

2.旋转磁场的转速和转向
以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。

① ωt=0 º时,合成磁场方向:向下
()()
︒-=︒-==240sin 120sin sin t I i t I i t
I i m C m B m A ωωω
技术研发部
编写
②ωt=60º时,合成磁场方向顺时针转过60º。

③ωt=120º时,合成磁场方向顺时针又转过60º,共120 º。

④ωt= 180º时,合成磁场方向顺时针又转过60º,共180 º。

技术研发部编 写
当三相对称电流通入三相对称绕组,必然会产生一个大小不变,且在空间以一定的转速不断旋转的旋转磁场。

一个电流周期,旋转磁场在空间转过360°。

则一个电流周期,旋转磁场在空间转过360°。

则160f n s /P (转/分)
旋转磁场的旋转方向由通入三相绕组中的电流的相序决定的。

即当通入三相对称绕组的对称三相电流的相序发生改变时,即将三相电源中任意两相绕组接线互换,旋转磁场就会改变方向。

3.变速恒频发电原理
风力发电一个不同于火力发电和水力发电的地方,就是风力的随机变化性。

风速随机变化,风向也随机变化,这样发电机获得的机械能是不稳定的,发电机转子的机械转速会在大范围内变化,假如使用同步发电机,那么输出的电压幅值和频率都是不稳定的。

为了弥补转子速度和同步转速之间的转速差,可以在转子绕
技术研发部
编写
组中进行交流励磁,根据上面的旋转磁场的论述,交流励磁电流会在转子绕组中感应出一个相对自身旋转的磁场。

这样转子中的磁场相对于定子的实际转速就有两个部分组成,一个是转子的机械转速,一个是电磁转速。

二者的矢量和构成产生定子中感应电动势的实际转速。

当发电机并网发电时,发电机的同步转速是恒定的,同电网频率和定子极对数有关。

60fs/Ps= nr+60fr/Pr
式中:fs为定子电压频率;
Ps为电机定子的极对数;
Pr为电机转子的极对数;
nr为双馈发电机的转速;
fr为转子励磁电流频率。

由上式可知,当转速nr发生变化时,若调节fr变化,可使fs保持恒定不变,实现双馈发电机的变速恒频控制。

4.双馈变频器工作原理
上面讲到,,双馈异步发电机在形式上和绕线转子电动机是一致的,要实现风力发电机组的变速恒频发电控制,转子绕组经过滑环,由双馈变频器提供交流励磁,双馈变频器由电网供电。

技术研发部
编写
双馈发电机组原理图
双馈变频器电路拓扑结构图
4.1.双馈变频器的结构
双馈变频器一般使用交直交这种形式,两边各有一个PWM变流器,和电网连接的一般称为网侧变流器,和转子连接的一般称为转子侧变流器,中间使用直流
技术研发部
编写
环节将两边连接起来。

变流器可以实现整流和逆变这两种基本的功能。

功率元件一般使用IGBT,并同二极管反并联。

中间回路使用电容建立直流环节。

4.2.工作原理
电网的三相交流电经过网侧变流器的整流作用,在中间环节建立起来直流电压。

此时转子侧变流器处于逆变状态,将中间直流电压逆变为三相交流电压,输出给转子绕组进行励磁。

“双馈”其本意是能量的双向反馈,上面讲到的情况是能量流动的一种形式,属于电网给变频器供电,变频器对转子绕组进行励磁,对转子绕组进行馈电。

能量的流向是从电网流向转子。

另外的一种形式是发电机转子处于发电状态,向双馈变频器输出能量,此时转子侧变流器处于整流状态,中间直流环节不变,网侧变流器处于逆变状态,将中间直流母线电压逆变为和电网电压幅值和频率一致的交流电,将能量反馈给电网。

以上就是双馈异步发电的简单理论原理。

5.双馈发电机的三种工作状态
按照发电机转子转速和同步转速之间的关系,双馈发电机有三种不同的工作状态。

它的这种特点,使双馈发电机组能在很宽的一段风速范围内稳定发电。

这也是它比常规异步发电机性能先进的地方。

5.1.亚同步状态
转子的机械转速小于发电机的同步转速。

(0<S<1)
双馈变频器对双馈异步发电机的转子进行励磁的最终目的,就是在转子绕组中产生一个旋转的磁场,这个磁场的转速和转子的机械转速合成为转子发电的实际转
技术研发部
编写
速,以便达到电机的同步转速。

使异步发电机像同步发电机一样运行。

此时的能量流动关系是,变频器给转子供电,能量由电网流向转子。

定子输出的能量由两部分组成,一是轮毂传递的机械能,一是转子从电网得到的能量。

而输送到电网的能量是机械能。

5.2.同步状态
转子的机械转速等于发电机的同步转速。

(S=0)
双馈变频器给转子以直流励磁,此时双馈异步发电机就是同步发电机运行。

除了转子绕组的一些损耗外,转子不消耗能量用于励磁发电。

机械能全部转化为电能从定子输出到电网。

5.3.超同步状态
转子的机械转速大于发电机的同步转速。

(S<0)
此时发电机定子和转子都处于发电状态,转子侧变流器处于整流状态,网侧变流器处于逆变状态。

转子发出的电能反馈给电网。

一般的双馈发电机组的额定速度都在同步转速以上,对于同步速为1500r/min 的双馈异步发电机,发电机组的额定转速一般在1700r/min,对于双馈变频器的控制来说,同步转速是一个临界状态,双馈变频器无法在此状态长期稳定运行,所以额定转速一般在同步速以上。

相关文档
最新文档