§4.1 土的自重应力、基底压力和地基附加应力

合集下载

地基基础课件:地基土的自重应力与基底压力计算

地基基础课件:地基土的自重应力与基底压力计算

y x 0 xy yz zx 0
xy yz zx 0
x
x E
E
y z
0
K
x y 1 z
0z
z; z F(z)
0 0 0 ij 0 0 0
0 0 z
x 0 0
ij
0 0
y 0
0
z
侧压力系数
地基中的应力状态(3)
土中应力分类
按起因分
自重应力(自重压力) 附加应力(附加压力)
体自重:
σcz =γz
理由:侧面无剪应力,任一底面积为s的土柱在1-1面上产生的竖向应力:
σ
cz
=
土柱重 土柱底面积

γz
s
s=γz
表明 cz 沿水平面均匀分布,沿深度直线分布。
二.水平向自重应力
天然地面
x
1 E0
cx
1
cy cz
y E0 cy cx cz
z
cz z
土中应力计算的目的及方法
土中应力增量将引起土的变形,从而使建筑物发 生 下沉、倾斜及水平位移等。
土中应力过大时,也会导致土的强度破坏,甚至使 土体发生滑动而失稳。
研究土体的变形、强度及稳定性等力学问题时,都 必须先掌握土中应力状态,所以计算土中应力分 布 是土力学的重要内容。
计算土中应力分布可利用弹性力学理论,因为:
竖直向:sz z
sz W A zA A z
水平向:sx sy K 0sz
K0
1
竖直向: sz iHi sz 1H1 2H2 3H3 ;
水平向: sx sy K 0sz K 0 iHi
地面
1 H1 2 H2 3 H3

土力学-第四章土中应力

土力学-第四章土中应力

γ1 h1 + γ 2h2 + γ′3h3 + γ′4h4 + γw(h3+h4)
天津城市建设学院土木系岩土教研室
4.2.2
成层土中自重应力
土力学
【例】一地基由多层土组成,地质剖面如下图所示,试计算 一地基由多层土组成,地质剖面如下图所示, 并绘制自重应力σcz沿深度的分布图
天津城市建设学院土木系岩土教研室
天津城市建设学院土木系岩土教研室
4.2.4
土质堤坝自身的自重应力
土力学
为了实用方便,不论是均质的或非均质的土质堤坝, 为了实用方便,不论是均质的或非均质的土质堤坝,其自身任 意点的自重应力均假定等于单位面积上该计算点以上土柱的有 意点的自重应力均假定等于单位面积上该计算点以上土柱的有 效重度与土柱高度的乘积。 效重度与土柱高度的乘积。
土体在自身重力、建筑物荷载、交通荷载或其他因素( 土体在自身重力、建筑物荷载、交通荷载或其他因素(渗 地震等)的作用力下,均可产生土中应力。 流、地震等)的作用力下,均可产生土中应力。土中应力过大 会导致土体的强度破坏, 时,会导致土体的强度破坏,使土工建筑物发生土坡失稳或使 建筑物地基的承载力不足而发生失稳。 建筑物地基的承载力不足而发生失稳。 土中应力的分布规律和计算方法是土力学的基本内容之一 自重 应力
p0 = p − σ ch = p − γ m h
在沉降计算中,考虑基坑回弱和再压缩而增加沉降,改取p =p-(0~1)σ 在沉降计算中,考虑基坑回弱和再压缩而增加沉降,改取p0=p-(0~1)σch, 此式应保证坑底土质不发生泡水膨胀。 此式应保证坑底土质不发生泡水膨胀。
式中: 基底平均压力, Pa; σch—基底处土中自重应力,kPa; 基底处土中自重应力, 式中:p—基底平均压力,kPa; 基底平均压力 基底处土中自重应力 kPa; γm—基底标高以上天然土层的加权平均重度,水位以下的取浮重度,kN/m3; 基底标高以上天然土层的加权平均重度, 基底标高以上天然土层的加权平均重度 水位以下的取浮重度, h—从天然地面算起的基础埋深,m,h=h1+h2+…… 从天然地面算起的基础埋深, 从天然地面算起的基础埋深

土力学-土中应力计算

土力学-土中应力计算

(1)地下水位下降情况
水位未降前 scz前=′z
水位下降后
scz后 = z
scz后 scz前
因scz后 scz前 土中有效应力增加
地面沉降
原地下水位 1
变动后地下水位 1′
原自重应力分布曲线
1′
变动后地下水位
1
原地下水位
地下水位变动后的 自重应力分布曲线
2′
2
z
2
2′
z
(2)地下水位上升
地基土和基础的刚度;荷载;基础埋深;地基土性质
基底压力是地基和 基础在上部荷载作 用下相互作用的结 果,受荷载条件、 基础条件和地基条 件的影响
暂不考虑上部结构的影 响,用荷载代替上部结 构,使问题得以简化
•大小
荷载条件: •方向
•分布
基础条件:
• 刚度 • 形状 • 大小 • 埋深
• 土类
地基条件: • 密度
二.水平向自重应力计算
s cx s cy K0s cz
z
K0——侧压力系数
t 0
scz scy
W
scx
F=1
无侧向变形(有侧限)条件下:
scz scx
εx εy 0
σx σy
scy
根据弹性力学中广义虎克定律:
εx
1 E
σx
υ
σy
σz
ch s cx s cy K0s cz
K0
• 土层结构等
1.基础的刚度的影响
柔性基础(EI=0)
Eg.土坝(堤)、路基、油罐等薄板基础、机场跑道。
沉降各处不同, 中央大边缘小
变形地面
反力
基底压力分布与 作用的荷载的分
布完全相同

土的自重应力基底压力和地基附加应力

土的自重应力基底压力和地基附加应力

正应力x、y、z :
x
3P 2
x2z
R5
1 2 3
R2 Rz z2 R3(R z)
x2(2R z)
R3
(R
z)2
y
3P 2
y2z R5
1 2 3
R2 Rz z 2 R3(R z)
y2 (2R z)
R
3
(
R
z
)
2
z
3P
2
z3 R5
3P
2R2
cos3
x、y、z — 分别平行于x、y、z座标轴的正应力;
基底平均附加压力 (kPa)按下式计算 :
p0 p c p 0d
p — 基底平均压力设计值(kPa)
c — 土中基底处自重应力
§4.3 地基中的附加应力
附加应力是由于修建建筑物以后在地基内新增加 的应力。
附加应力是使地基发生变形,引起建筑物沉降。
§4.3 地基中的附加应力
假定地基土是连续、均质、各向同性的半无限空 间弹性体,在深度和水平方向上都是无限延伸的。
二、均布矩形荷载下的地基附加应力:
均布矩形荷载角点下
的附加应力z:
角点下的地基附加应力:
d z
3
2
x2
p0 z3 y2 z2
5/2
dxdy
z
d z
A
3 p0 z 3
2
lb 00
x2
1 y2
z2
5 2
dxdy
p0
lbz l 2 b2 2z2
arctan
lb
2 l2 z2 b2 z2 l2 b2 z2
中,竖向正应力z具有特别重要的意义,它是

简述基底压力,地基反力,基底附加压力以及地基附加应力的概念

简述基底压力,地基反力,基底附加压力以及地基附加应力的概念

简述基底压力,地基反力,基底附加压力以及地基附加应力的概念1. 基底压力基底压力是指在地层上垂直方向上施加的压力,它是由地层内部的土压力、水压力以及地表重力作用产生的。

基底压力是地层稳定性的重要因素,它可以影响地层的结构及强度,并影响地层的变形形态。

基底压力可以通过地层的反力来衡量,反力的大小取决于地层的强度和地层的厚度。

2. 地基反力地基反力是指地基受力时所产生的反力。

它是由地基内部的弹性变形和地基表面的摩擦力组成的,可以给建筑物提供支撑力,从而使建筑物稳定。

地基反力的大小取决于地基的结构、地层结构以及地基内部的材料性质。

地基反力可以通过改变地基的结构、地层结构或者改变地基内部的材料性质来改变。

3. 基底附加压力基底附加压力是指在地基受力的情况下,由于自重、水力压力、地下水压力、颗粒压力、温度变化等因素产生的额外压力。

它与地基反力的作用方向相反,在地基受力的情况下,基底附加压力会使地基受到更大的压力,从而增加地基的受力程度。

此外,基底附加压力也会影响地基的塑性变形,如果基底附加压力过大,会使地基发生塑性变形,从而导致建筑物出现倾斜、破坏等现象。

4. 地基附加应力地基附加应力是指地基在受到外力作用时产生的应力,它是基底压力和地基反力的综合作用结果。

当外力作用在地基上时,地基的应力分布会发生变化,从而产生地基附加应力。

这种应力可以是拉应力,也可以是压应力,取决于外力的方向和大小。

地基附加应力可以帮助工程师了解地基在受到外力时的变化情况,从而更好地设计工程结构,减少地基破坏的可能性。

土力学1-第4章

土力学1-第4章

• 水平地基中的 自重应力
• 土石坝的自重 应力(自学)
§4.2 土中自重应力
土体的自重应力
定义:在修建建筑物以前,地基中由土体本身 的有效重量而产生的应力
目的:确定土体的初始应力状态
假定:水平地基 半无限空间体 半无限弹性体 有侧限应变条件 一维问题
计算: 地下水位以上用天然容重 地下水位以下用浮容重
§4.3 基底压力
基底压力的 分布形式十
分复杂
基底压力的简化计算
圣维南原理:
基底压力分布的影响仅限于一定深 度范围,之外的地基附加应力只取 决于荷载合力的大小、方向和位置
简化计算方法: 假定基底压力按直线分布的材料力学方法
§4.3 基底压力
基础形状与荷载条件的组合
竖直中心
竖直偏心

F

L
B
pP A
不同将会产生弯矩
条形基础,竖直均布荷载
弹性地基,绝对刚性基础
抗弯刚度EI=∞ → M≠0 基础只能保持平面下沉不能弯曲 分布: 中间小, 两端无穷大
§4.3 基底压力
基底压力的分布
弹塑性地基,有限刚度基础
— 荷载较小 — 荷载较大 — 荷载很大
砂性土地基
粘性土地基
接近弹性解 马鞍型 倒钟型
地面
1 h1
2 h2 地下水 z
2 h3 cy
cz cx
原水位
1h1
cz
2h2
2h3
z
水位下降
讨论题
1、地下水位的升降是否会引起土中自重应力的变化?
地面
1 h1
2 h2 原水位 z
3 h3 cy
cz cx
地下水
1h1

土体中应力及有效应力原理

土体中应力及有效应力原理
二、基底压力的分布规律
1、弹性地基上的柔性基础(EI=0) 土坝(堤)、路基、油罐等薄板基础 机场跑道。可认为土坝底部的接触 压力分布与土坝的外形轮廓相同其大小等于各点以 上的土柱重量
§4.3 基底压力
2、弹性地基上的刚性基础(EI=) 砂土地基:由于颗粒间无粘聚力 基底压力呈抛物线分布
粘土地基:由于颗粒间有粘聚力 基础边缘能承受压力,荷载较小 时呈马鞍形分布,随着荷载增加 基底压力类似于抛物线分布
的应力与应变的基本关系出发来研究。 当应力很小时,土的应力·应变关系曲线 就不是一根直线,亦即土的变形具有明 显的非线性特征。
§4.1 概述
一、应力—应变关系假设
线弹性体
目前在计算地基中的应力时, 常假设土体为连续体、线弹性 及均质各向同性体。
实际上土是各向异性的、弹塑 性体
二、地基中的几种应力状态
2.按土体中骨架和孔隙的应力承担原理或应力传递方 式可分为有效应力和孔隙应力。
有效应力由土骨架传递或承担的应力。只有当土骨架传递或承 担应力后土体颗粒才会产生变形。同时增加了土体的强度 孔隙应力:由土中孔隙流体水和气体传递或承担的应力。
3.总应力: 总应力=有效应力+孔隙应力
研究地基的应力和变形,必须从土
验算土体的稳定性
土中应力按引起原因可分为:自重应力和附加应力
土中应力按传递方式可分为:有效应力和孔隙应力
土中应力:指土体在自身重力、建筑物和构筑物荷载,以及其 他因素(土中水的渗流、地震等)作用下,土中产生的应力。
1按引起的原因分为自重应力和附加应力
自重应力:由土体自身重量所产生的应力。由土粒骨架承担 附加应力:由外荷载(静或动)引起的土中应力。使土体彻底 产生变形和强度变化的主要原因。

第4章土中的应力和有效应力原理

第4章土中的应力和有效应力原理

淤泥层底 cz 1z1 2z2 3z3 4z4 41.05 16.7-107 87.95kN / m2
kN/m2 7.85 16.75
粉 质 黏 土 层 底 σcz = γ1z1 + γ2z2 + γ′3 z3
= 16.75 + (18.1-10) ×3 = 41.05k N/ m2
• 4.1 土自重应力的计算 • 4.2 基底压力的计算 • 4.3 荷载作用下地基附加应力计算 • 4.4 有效应力原理
土体中应力的方向: 法向应力:压应力为正,拉应力为负; 剪应力:逆时针方向为正,顺时针方向为负。 土体单轴压缩试验应力——应变曲线
§ 4.1 土自重应力的计算
一、竖向自重应力
§ 4.2 基础底面压力
分析地基中 应力、变形 及稳定性的 外荷载
基地压力:建筑荷载在基础底
面上产生的压应力,即基础底 面与地基接触面上的压应力。
计算基础结 构内力的外
荷载
地基反力:地基支撑基础
的反力。
基底附加应力
大小相等、 方向相反的 作用力与 反作用力
基底压力 分布规律
基底压力 简化计算
重要的工程意义
5 2 dxdy
s

p 2
arctan
n
m
m2 n2 1
mn

1
m2 n2 1 m2 n2

1

n2 1
z Kc p
Kc

1
2

arctan

n
m

m2 n2 1
m2
mn n
2
荷载

土中应力

土中应力
w : 水的重度
(2)当位于地下水位以下的土为坚硬不透水层,在坚硬不透水层土中只含有 结合水,计算不透水层顶面及以下的自重应力时按上覆土层的水重总量计算。即 采用饱和容重计算。
4.2.2 成层土中自重应力
cz
cz
1h1
1h1 2h2
1h1 2h2 3h3
wh3

2 (830 103.5) 3 0.861.5
482.4(kPa)
F+G
F=830kN
室内
M
0.6m
G
0.7m
e
pmax 3k=2.5m
b=1.5m l=3m
矩形基础在双向偏心荷载作 用下,若 pmin 0
则矩形基底边缘四个角点 处的压力可由下式计算
F+G y
My
x
Mx
b
l
pm pm
集中力时地基中任意点的应力和位移解
半空间表面
布辛奈斯克解
假设地基土为弹性半空间体
x
P
y
M(x、y、z)
z
4.4.1 竖向集中力作用时的地基附加应力
1. 布辛奈斯克解
p
o
αr
x y
x
M′
R θz
z
zx
y
M
xy
x
z
y yz
x y z xy yz
z

3p 2

z3 R5

3p 2z 2
(r 2
z5 z2)5/2

3 2

(r
/
1 z)2 1)
5/2

p z2

土力学-知识单元三(土中应力计算)

土力学-知识单元三(土中应力计算)

土体的自重应力
仁者乐山 智者乐水
1、均质土的自重应力 • 土体中任意深度处的竖向自重应力
天然地面
利用土柱竖向受力的 平衡
cz
注意: 无剪应力
cz
cx
cz z
σcz= z
z
cy
1
1
z
仁者乐山 智者乐水
•水平向自重应力
天然地面
cz
z
cx
cz z
cx cy K0 cz
基底压力的影响因素
基底压力计算
仁者乐山 智者乐水
弹性地基,完全柔性基础
基础抗弯刚度EI=0 → M=0
基础变形能完全适应地基表面的变形 基础上下压力分布必须完全相同,若 不同将会产生弯矩
条形基础,竖直均布荷载
弹性地基,绝对刚性基础
抗弯刚度EI=∞ → M≠0
基础只能保持平面下沉不能弯曲 分布: 中间小, 两端无穷大
《土力学》之知识单元三
土体中的应力计算
徐 亚 利
皖西学院建工学院
强度问题 变形问题
应力状态及应力应变关系
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
自重应力 附加应力 基底压力计算 有效应力原理
土体中的应力计算
知识单元三:土体中的应力计算
知识点一、自重应力、 基底压力、 基底附加应力 知识点二、地基附加应力
静止侧压 力系数
cy
仁者乐山 智者乐水
例题1:均质土层没有水位的情况
天然地面
18.5kN / m3
B
h=5m 求B点的自重应力
仁者乐山 智者乐水

应力计算

应力计算

§4.3 地基中附加应力的计算 一. 竖直集中力作用下的附加应力计算-布辛内斯克课题
z

3P 2
z3 R5
zy

3P 2
yz 2 R5
zx
Ph
分解为竖直向和水平向荷 载,水平荷载引起的基底 水平应力视为均匀分布。
根据上述概念,基底平均附加压力p0 可按下式计算
p0 p cd p md (1-19)
式中 p—基底平均压力,kPa;
cd—基底处土中自重应力,kPa; m—基底标高以上天然土层的加权平均重
度,kN/m3; d—从天然地面算起的基础埋深,m。

P A
1
6e B
pmin

P 1 A
6e B
pmax
min

P A
1
6e B

P
矩形面积单向偏心荷载
P
P
土不能承 受拉应力
B
B
e
e
x
Lx
L
y
y
pmax
pmin 0 pmax
pmin 0
e<B/6: 梯形
e=B/6: 三角形
B
压力调整
Ke
基底
x
L
压力
K=B/2-e
合力
与总
3K y pmin 0
荷载 相等
pmax
2P
2P
pmax 3KL 3(B 2 e)L
e>B/6: 出现拉应力区
条形基础竖直偏心荷载
e P
B
p(x) P Mx BI
pmax
min

P 1 B

4土中应力(自重-地基附加应力)解析

4土中应力(自重-地基附加应力)解析

F
实际情况
F
基底附加压力在数 值上等于基底压力 扣除基底标高处原 有土体的自重应力
d
p0
p
0
d
基底附加压力
p0 p 0 d
自重应力
基底压力呈梯形分布时, 基底附加压力
p0 m a x p0 m in
pm a x pm in
0d
注意
❖因为基础具有一定的埋深,弹性力学解答具有近似性。 ❖ 基坑平面尺寸和深度较大时,坑底回弹是明显的,在沉降 计算中,为了适当考虑这种坑底回弹和再压缩增加沉降,取
若基础底面的形状或分布荷载都是有规律时,用积分法。
dA dd dF p(x, y)dd
( 3 )圆形面积上作用均布荷载时,土中附加应力的计算
z r p0
r f (z / r0 )
additional stress induced by uniform circular load
条形均布荷载下地基中的应力分布规律
土力学中应力符号的规定
z
zx
地基:半无限空间
xy
x
o

y yz
x

y z

ij=
x xy xz yx y yz
zx zy z
一. 土力学中应力符号的规定
- zx
z
+
材料力学
xz
x
z
- zx +
土力学
xz
x
正应力
剪应力
拉为正 顺时针为正 压为负 逆时针为负
压为正 逆时针为正 拉为负 顺时针为负
e>l/6
e=l/6
pmin=0
基底ቤተ መጻሕፍቲ ባይዱ力重分布

土中基底应力与附加应力计算[详细]

土中基底应力与附加应力计算[详细]

土中应力计算1 土中自重应力地基中的 应力分:自重应力——地基中的 自重应力是指由土体本身的 有效重力产生的 应力.附加应力——由建筑物荷载在地基土体中产生的 应力,在附加应力的 作用下,地基土将产生压缩变形,引起基础沉降.计算土中应力时所用的 假定条件:假定地基土为连续、匀质、各向同性的 半无限弹性体、按弹性理论计算.地基中除有作用于水平面上的 竖向自重应力外,在竖直面上还作用有水平向的 侧向自重应力.由于沿任一水平面上均匀地无限分布,所以地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形.3.1.1均质土的 自重应力a 、假定:在计算土中自重应力时,假设天然地面是一个无限大的 水平面,因而在任意竖直面和水平面上均无剪应力存在.可取作用于该水平面上任一单位面积的 土柱体自重计算.b 、均质土层Z 深度处单位面积上的 自重应力为:应力图形为直线形.z cz γσ=σcz 随深度成正比例增加;沿水平面则为均匀分布.必须指出,只有通过土粒接触点传递的 粒间应力,才能使土粒彼此挤紧,从而引起土体的 变形,而且粒间应力又是影响土体强度的 —个重要因素,所以粒间应力又称为有效应力.因此,土中自重应力可定义为土自身有效重力在土体中引起的 应力.土中竖向和侧向的 自重应力一般均指有效自重应力.并用符号σcz 表示 .3.1.2成层土的 自重应力地基土往往是成层的 ,成层土自重应力的 计算公式:∑==n i i i cz z 1γσ结论:土的 自重应力随深度Z ↑而↑.其应力图形为折线形.自然界中的 天然土层,一般形成至今已有很长的 地质年代,它在自重作用下的 变形早巳稳定.但对于近期沉积或堆积的 土层,应考虑它在自重应力作用下的 变形.此外,地下水位的 升降会引起土中自重应力的 变化(图2—4).3.1.31、地下水对自重应力的 影响地下水位以下的 土,受到水的 浮力作用,使土的重度减轻.计算时采用水下土的 重度(w sat γγγ-=')2、不透水层的 影响不透水层指基岩层只含强结合水的坚硬粘土层作用在不透水层层面及层面以下的土自重应力应等于上覆土和水的总重.3、水平向自重应力地地中除了存在作用于水平面上的坚向自重应力外,还存在作用于坚直面上的水平自重应力,根据弹性力学和土体的侧限条件,可得:σcx=σcy=K oσczKo:土的侧压力系数4、地下水位升降引起的自重应力变化:地下水位下降自重应力增大,因没有水的浮力,地下水位上升自重应力减小 .[例题2—7] 某建筑场地的地质柱状图和土的有关指标列于例图2·1中.试计算地面下深度为2.5米、5米和9米处的自重应力,并绘出分布图.[解] 本例天然地面下第一层粉土厚6米,其中地下水位以上和以下的厚度分别为3.6米和2.4米,第二层为粉质粘土层.依次计算2.5米、3.6米、5米、6米、9米各深度处的土中竖向自重应力,计算过程及自重应力分布图一并列于例图2—1中.2 基底压力建筑物荷载通过基础传递给地基,在基础底面与地基之间便产生了接触应力.它既是基础作用于地基的基底压力,同时又是地基反用于基础的基底反力.对于具有一定刚度以及尺寸较小的柱下单独基础和墙下条形基础等,其基底压力可近似地按直线分布的图形计算,即按下述材料力学公式进行简化计算.1.基底压力的概念:在基础与地基之间接触面上作用着建筑物荷载通过基础传来的压力称为基底压力.(方向向下)↓单位面积土体所受到的压力称为基底压力.2.地基反力:地基对基础的反作用力(方向向上)↑3.基底压力的分布形态和哪些因素有关?基础的刚度、地基土的性质、基础埋深、荷载大小 .4.基底压力的分布形态:1)柔性基础地基反力分布与上部荷载分布基本相同,而基础底面的沉降分布则是中央大而边缘小.图3-2 柔性基础基底压力分布2)刚性基础在外荷载作用下,基础底面基本保持平面,即基础各点的沉降几乎是相同的,但基础底面的地基反力分布则不同于上部荷载的分布情况.刚性基础在中心荷载作用下,开始的地基反力呈马鞍形分布;荷载较大时,边缘地基土产生塑性变形,边缘地基反力不再增加,使地基反力重新分布而呈抛物线分布,若外荷载继续增大,则地基反力会继续发展呈钟形分布图3-3 刚性基础基底压力分布图马鞍形—一般建筑物基础属此形态,近似“直线形”抛物线形钟形3.2.2基底压力的简化计算1、中心荷载作用下的基底压力中心荷载下的基础,其所受荷载的合力通过基底形心.基底压力假定为均匀分布(图2—5),此时基底平均压力设计值按下式计算:式中:F:上部结构传至基础顶面的 坚向力设计值,kN;G:基础自重设计值及其上回填土重标准值,kN;r G :基础及因填土的 平均重度,一般取20kN/米3,在地下水位以下部分用有效重度; d:基础埋深,必须从设计地面或室内外平均设计地面起算,米;A:基础底面面积,米2.如基础长度大于宽度5倍时,可将基础视为条形基础进行计算.即可沿长度方向取1米计算.2、 偏心荷载下的 基底压力对于单向偏心荷载下的 矩形基础如图2·6所示.设计时,通常基底长边方向取与偏心方向一致,此时两短边边缘最大压力设计值与最小 压力设计值按材料力学短柱偏心受压公式计算:F G p A +=AdG G γ=min maxp p WM lb G F ±+米:作用于基础底面的 力矩设计,kN.米;W:基础底面的 抵抗矩,米3,对于矩形截面W=bL 2/6;P 米ax 、p 米in:分别为基础底面边缘的 最大、最小 压力设计值.将e=米/(F+G)、A=bl 、W=bl 2/6代入上式,得:a 当e<L/6时,基底压力呈梯形分布;b 当e=L/6时,基底压力呈三角形分布;c 当e>L/6时,p 米in<0,则:p 米ax=2(F+G)/3ab式中:a:单向偏心坚向荷载作用点至基底最大压力边缘的 距离,米,a=L/2-e.b:基础底面宽度.3.2.3基底附加压力建筑物建造前,土中早巳存在着自重应力.如果基础砌置在天然地面上,那末全部基底压力就是新增加于地基表面的 基底附加压力.一般天然土层在自重作用下的 变形早巳结束,因此只有基底附加压力才能引起地基的 附加应力和变形.实际上,一般浅基础总是埋置在天然地面下一定深度处,该处原有的 自重应力由于开挖基坑而卸除.因此,由建筑物建造后的 基底压力中扣除基底标高处原有的 土中自重应力后,才是基底平面处新增加于地基的 基底附加压力,基底平均附加压力值按下式计算(图2—8): 61F G e lb l +⎛⎫=± ⎪⎝⎭P o=基底压力P —土的自重应力σcz即P o=P-σcz —引起地基的变形(即基础的沉降)p0=p-r0dp0:基底附加压力设计值,kPa;p:基底压力设计值,kPa;r0:基底标高以上各天然土层的加权平均重度.其中地下水位以下部分取有效重度,kN/米3;d:从天然地面起算的基础埋深,米.有了基底附加压力,即可把它作为作用在弹性半空间表面上的局部荷载,由此根据弹性力学求算地基中的附加应力.3 地基附加应力地基附加应力是指建筑物荷重在土体中引起的附加于原有应力之上的应力.其计算方法一般假定地基土是各向同性的、均质的线性变形体,而且在深度和水平方向上都是无限延伸的 ,即把地基看成是均质的线性变形半空间,这样就可以直接采用弹性力学中关于弹性半空间的理论解答.计算地基附加应力时,都把基底压力看成是柔性荷载,而不考虑基础刚度的影响. 3.3.1 集中力作用下土中应力计算1、单个竖向集中力作用在均匀的、各向同性的半无限弹性体表面作用一竖向集中力F时,半无限体内任意点米的应力(不考虑弹225223)(23z Fz r Fz Z απσ=+=[]2521)/(123+=z r πα性体的 体积力)可由布辛克斯纳解计算,如图3-5所示.工程中常用的 竖向正应力s z 及地表上距集中力为R 处的 竖向位移w (沉降)可表示成如下形式:图3-5 竖向集中力作用下的 附加应力E - 土的 弹性模量;μ - 泊松比. 工程上对上述应力公式加以改造为: ( α称为集中力作用下的 地基竖向力系数,可由表查得)2、多个集中力及不规则分布荷载作用θππσ353cos 2323R F R Fz Z ==()⎥⎦⎤⎢⎣⎡-++=R R z E F w 1)1(12132μπμθcos 222z z y x R =++=oc z p ασ=3.3.2 分布荷载下地基附加应力对实际工程中普遍存在的 分布荷载作用时的 土中应力计算,通常可采用如下方法处理:当基础底面的 形状或基底下的 荷载分布不规则时,可以把分布荷载分割为许多集中力,然后用布西奈斯克公式和叠加原理计算土中应力.当基础底面的 形状及分布荷载都是有规律时,则可以通过积分求解得相应的 土中应力.如图3-6所示,在半无限土体表面作用一分布荷载p (x ,y ),为了 计算土中某点米(x ,y ,z )的 竖向正应力σz 值,可以在基底范围内取单元面积d F =d ξd η,作用在单元面积上的 分布荷载可以用集中力d Q 表示,d Q =p (x ,y ) d ξd η.这时土中米点的 竖向正应力σz 值可用下式在基底面积范围内积分求得,即:图3-6(右图)分布荷载作用下土中应力计算1、空间问题的 附加应力计算常见的 空间问题有:均布矩形荷载、三角形分布的 矩形荷载及均布的 圆形荷载.(1) 均布矩形荷载图3-7(右图)矩形面积均布荷载作用下土中应力计算① 矩形面积角点下土中竖向应力计算在图3-7所示均布荷载作用下,计算矩形面积角点c 下深度z 处N 点的 竖向应力s z 时,同样可其将表示成如[]⎰⎰⎰+-+-==A A z z z y x d d y x p z d 252223)()(),(23ηξηξπσσpz d d z o l l bb z αηξξηπσ=++=⎰⎰--222252223)(23⎥⎥⎦⎤⎢⎢⎣⎡+++++++++=2222222320412arctan 41)4)(41()81(22m n m nm n m n m m n mn a π下形式:角点应力系数:在矩形面积上作用均布荷载时,若要求计算非角点下的 土中竖向应力,可先将矩形面积按计算点位置分成若干小 矩形,如图3-8所示.在计算出小 矩形面积角点下土中竖向应力后,再采用叠加原理求出计算点的 竖向应力s z 值.这种计算方法一般称为角点法.图3-8 角点法计算土中任意点的 竖向应力② 矩形面积中点O 下土中竖向应力计算图3-7表示在地基表面作用一分布于矩形面积(l ×b )上的 均布荷载p ,计算矩形面积中点下深度z 处米点的 竖向应力s z 值.式中n =l /b 和米=z /b .⎥⎥⎦⎤⎢⎢⎣⎡+++++++++=2222222222222arctan ))(()2(21z b l z lbz b l z b z l z b l lbz a c π⎰⎰=++=l o boz p z y x dxdy b xpz 011252223)(23απσ⎥⎥⎦⎤⎢⎢⎣⎡+++++=222222231)(21b l zz b l z b z b a t π⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+-=+=⎰⎰23202000202522301111)(23r z p z r drd rz p z ππθσ(2) 矩形面积上作用三角形分布荷载时土中竖向应力计算图3-9(右图) 矩形面积三角形荷载作用下土中应力计算 当地基表面作用矩形面积(l ×b )三角形分布荷载时,为计算荷载为零的 角点下的 竖向应力值,可将坐标原点取在荷载为零的 角点上,相应的 竖向应力值σz 可用下式计算:(3) 圆形面积上作用均布荷载时土中竖向正应力的 计算 为了 计算圆形面积上作用均布荷载p 时土中任一点米(r,z )的 竖向正应力,可采用原点设在圆心O 的 极坐标(如图3-10),由以下公式在圆面积范围内积分求得.图3-10(右图) 圆形面积均布荷载作用下土中应力计算2、平面问题的附加应力设在地基表面上作用有无限长的条形荷载,且荷载沿宽度可按任何形式分布,但沿长度方向则不变,此时地基中产生的应力状态属于平面问题.在工程建筑中,当然没有无限长的受荷面积,不过,当荷载面积的长宽比l/b≥10时,计算的地基附加应力值与按L/b=∝时的解相比误差甚少.因此,对于条形基础,如墙基、挡土墙基础、路基、坝基等,常可按平面问题考虑.(1)线荷载(2)均布条形分布荷载下土中应力计算:条形分布荷载下土中应力状计算属于平面应变问题,对路堤、堤坝以及长宽比l/b≥10的条形基础均可视作平面应变问题进行处理.图3-11(右图)均布条形荷载作用下的土中应力计算米(x,y)点的三个附加应力分量为:⎥⎦⎤⎢⎣⎡+-+---++-=22222216)144()144(4221arctan221arctanmmnmnmmnmnpozπσ⎥⎦⎤⎢⎣⎡+-+---++-=22222216)144()144(4221arctan221arctanmmnmnmmnmnpoxπσ等值线图3.3.3 非均质和各项异性地基中的 附加应力在柔性荷载作用下,将土体视为均质各向同性弹性土体时土中附加应力的 计算与土的 性质无关.但是,地基土往往是由软硬不一的 多种土层所组成,其变形特性在竖直方向差异较大,应属于双层地基的 应力分布问题. 1、 双层地基对双层地基的 应力分布问题,有两种情况值得研究:一种是坚硬土层上覆盖着不厚的 可压缩土层即薄压缩层情况;另一种是软弱土层上有一层压缩性较低的 土层即硬壳层情况.⎥⎦⎤⎢⎣⎡+-+=2222216)144(32m m n nm p o xzπτ当上层土的 压缩性比下层土的 压缩性高时(薄压缩层情况),即E 1<E 2时,则土中附加应力分布将发生应力集中的 现象.当上层土的 压缩性比下层土的 压缩性低时(即硬壳层情况),即E 1>E 2,则土中附加应力将发生扩散现象,如图3-12所示.在实际地基中,下卧刚性岩层将引起应力集中的 现象,若岩层埋藏越浅,应力集中愈显著.在坚硬土层下存在软弱下卧层时,土中应力扩散的 现象将随上层坚硬土层厚度的 增大而更加显著.因土的 泊松比变化不大,其对应力集中和应力扩散现象的 影响可忽略.图3-12 双层地基中界面上附加应力的 分布规律双层地基中应力集中和扩散的 概念有着重要工程意义,特别是在软土地区,表面有一层硬壳层,由于应力扩散作用,可以减少地基的 沉降,故在设计中基础应尽量浅埋,并在施工中采取保护措施,以免浅层土的 结构遭受破坏. 2、 变形模量随深度增大的 地基在地基中,土的 变形模量E o 常随着地基深度增大而增大,这种现象在砂土中尤其显著.与均质地基相比,这种地基沿荷载中心线下,地基附加应力将产生应力集中. 可用以下半经验公式修正:v - 为应力集中因素,对粘性、完全弹性体v =3;硬土v =6;砂土与粘土之间的 土v =3~6.θπσvz RvF cos 22=3、 各项异性地基天然沉积形成的 水平薄交互层地基,其水平向变形模量E oh 大于竖向变形模量E ov假定地基竖直和水平方向的 泊松比相同,但变形模量不同条件下,均布线荷载下各项异性地基的 附加应力为:z σ - 线荷载作用下,均质地基的 附加应力.当非均质地基的 E oh >E ov 时,地基中出现应力扩散现象;当E oh <E ov 时,出现应力集中现象.3.4 有效应力原理1、土中二种应力试验在直径和高度完全相同的 甲、乙两个量筒底部,放置一层松散砂土,其质量与密度完全 一样.在甲量筒中放置若干钢球,使松砂承受σ的 压力;在乙量筒中小 心缓慢地注水,在砂面以上高度h 正好使砂层表面也增加σ的 压力.结论:甲、乙两个量筒中的 松砂顶面都作用了 相同的 压力σ,但产生两种不同的 效果,反映土体中存在两种不同性质的 力:(1)由钢球施加的 应力,通过砂土的 骨架传递的 应力(有效应力σ’),能使土层发生压缩变形,从而使土的 强度发生变化;(2)由水施加的 应力通过孔隙水来传递(孔隙水 压力u),不能使土层发生压缩变形.ovoh zz E E /σσ='AA W=χ现象:甲中砂面下降,砂土发生压缩.乙中砂面并不下降,砂土未发生压缩. 总应力:在土中某点截取一水平截面,其面积为A,截面上作用应力 σ,它是由上面的 土体的 重力、静水压力及外荷载P 所产生的 应力,称为总应力.有效应力:总应力的 一部分是由土颗粒间的 接触承担的 称为有效应力. 饱和土有效应力公式:u +'=σσσ' - 有效应力;σ - 总应力;u - 孔隙水压力.公式表明总应力为有效应力与孔隙水压力之和. 部分饱和土有效应力公式:()w a a u u u -+-='χσσa u - 气体压力; w u - 孔隙水压力.χ - 由试验确定的 参数, .3.4.1 毛细水上升时土中有效自重应力的计算图3-13 毛细水上升时土中总应力、孔隙水压力及有效应力在毛细水上升区,由于表面张力的作用使孔隙水压力为负值.使有效应力增加,在地下水位以下,由于水对土颗粒的浮力作用,使土的有效应力减少.3.4.2 土中水渗流时(一维渗流)有效应力计算(a)静水时(b)水自上向下渗流(c)水自下向上渗流图3-14 土中水渗流时总应力、孔隙水压力及有效应力分布当土中水渗流时,水对土颗粒有着动水力,必然影响土中有效应力的分布.表3-1 土中水渗流时总应力、孔隙水压力及有效应力的计算。

土力学 第四章

土力学 第四章

三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
应力应变关系-以某种粘土为例
1 3
1 Ei
≠弹性模 量
Et
1
变形模量:
z E z

p

e
1
泊松比:
x 3 z 1
•弹塑性
§4 土体中的应力计算
透水石 排水管 阀门 量测孔隙水压力
橡皮膜
压力水
§4 土体中的应力计算
§4.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结不排水试验
应力应变关系-以某种粘土为例

u
§4 土体中的应力计算
§4.1 应力状态及应力应变关系
2 2 1 1 2 2 E Es , 1 1 1 z E z
E < Es
§4 土体中的应力计算
三. 土的应力-应变关系的假定
碎散体 非线性 弹塑性 成层土 各向异性
① 连续介质 (宏观平均) ② 线弹性体 (应力较小时) ③ 均匀一致各向同性体 (土层性质变化不大时)
竖直线布荷载 条形面积竖直均布荷载
水平 集中力
矩形面积水平均布荷载
特殊面积、特殊荷载
§4 土体中的应力计算
竖直 集中力 矩形内积分
§4.3 地基中附加应力的计算
矩形面积竖直三角形荷载 矩形面积竖直均布荷载
圆内积 分
竖直线布荷载
宽度积分
条形面积竖直均布荷载
圆形面积竖直均布荷载 水平集中力 矩形内积分 矩形面积水平均布荷载
y

第4章 土中应力

第4章 土中应力
19×3=57.0kPa 57+10.5×2.2=80.1kPa 80.1+9.2×2.5=103.1kPa 103.1+10×4.7=150.1kPa 150.1+22×2=194.1kPa
§4.2 土中自重应力
例4-2:某地基土层情况及其物理性质指标如图所示, 试计算a,b,c3个点处的自重应力σz度(m)。
则基底压力p按下式计算:
§4.3 基底压力
2.偏心荷载下的基底压力
对于单向偏心荷载下的矩形基础
(如图),通常基底长边方向和偏心
方向一致,基底两边缘的最大、最小
压力pmax、pmin按下式计算:
pmax
pm
in
F G lb
M W
式中:M - 作用于的矩形基础底面的力矩,kN m;
§4.1 概 述
(3)土体可视为半无限体 所谓半无限体就是无限空间体的一半。即该物 体在水平方向是无限延伸的,而在竖直方向仅在向 下的方向是无限延伸的,向上的方向为零。地基土 在水平方向和深度方向相对于建筑物地基的尺寸而 言,可认为是无限延伸的。因此,可以认为地基土 体是符合半无限体的假定。
§4.1 概 述
§4.3 基底压力
荷载条件 基底压力分布
地基条件
•大小 •方向 •分布
基础条件
•土类 •密度 •土层结构等
•刚度 •形状 •大小 •埋深
§4.3 基底压力
1. 基础刚度的影响 基础刚度是指其抗弯刚度,基础按刚度可划分 为如下三种类型: (1)柔性基础 柔性基础刚度很小,在荷载作用下,基础的变 形与地基的变形一致,如土坝、土堤、路基等土工 建筑物,其基底压力分布和大小与作用在基底上的 荷载分布和大小相同。
§4.4 地基附加应力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正应力x、y、z :
x3 2 P x R 2 5 z1 3 2 R R 23 (R R zz )2 R x2 3((2 R R zz )2 ) y3 2 P y R 2 5 z1 3 2 R R 23 (R R zz)2 R y2 3((2 R R z)z2 ) z 3 2PR z35 23P R2co3s
x、y、z — 分别平行于x、y、z座标轴的正应力;
剪应力:
xyy x 3 2 Px R5yz13 2R x3((y2 R R zz)2 )
yzz y 3 2 PyR52z2 3P R3y co2s xzzx3 2 PxR5 2z2 3 P R3c xo2s
x、y、z — 剪应力,其中前一脚标表示与它作用的微 面的法线方向平行的座标轴,后一脚标表示与它作用方 向平行的座标轴;
角点下的地基附加应力:
可得:
z Kcp0
非角点下的地基附加应力:
计算点o在: (a)荷载面边缘
(b)荷载面内
(c)荷载面边缘外侧 (d)荷截面角点外侧
非角点下的地基附加应力:
对于计算点不位于角点下的情况,可利用式
z Kcp0 角点法和叠加原理求得。
上图列出计算点不位于矩形荷载面角点下的四种 情况(在图中o点以下任意深度z处)。计算时通过 o点把荷载面分成若干个矩形,这样,o点就必 然是划分出的各个矩形的公共角点,然后再按式 (5-21)计算每个矩形角点下同一深度z处的附加
位移:
uP(2 1 E )R x3z(12)R(R xz)
vP(2 1E)R y3z(12)R(Ryz)
wP(21E)R z23 2(1)R 1
u、v、w — M点分别沿座标轴x,y,z方向的位移
一、竖向集中荷载作用下地基中的附加应力
以上六个应力分量和三个位移分量的公式
中,竖向正应力z具有特别重要的意义,它是
p — 基底平均压力设计值(kPa)
c — 土中基底处自重应力
§4.3 地基中的附加应力
附加应力是由于修建建筑物以后在地基内新增加 的应力。
附加应力是使地基发生变形,引起建筑物沉降。
§4.3 地基中的附加应力
假定地基土是连续、均质、各向同性的半无限空 间弹性体,在深度和水平方向上都是无限延伸的。
福建工程学院土木系岩土教研室
§4.2 基底压力
(a)内墙或内柱基础基础
(b)外墙或外柱基础
图5-5 中心荷载下的基底压力分布
§4.2 基底压力
建筑物荷载通过基础传递给地基,在基础底面与 地基之间使产生了接触应力。
它既是基础作用于地基的基底压力,同时又是地 基反用于基础的基底反力。
对于具有一定刚度以及尺寸较小的柱下单独基础 和墙下条形基础等,其基底压力可近似地按直线 分布的图形计算,即可以采用材料力学计算方法 进行简化计算
z l2b2z2
角点下的地基附加应力:
取 m=l/b,n=z/b(注意其中b为荷载面的短边宽 度),令:
1 m m 2 n 2 n 2 1
m
K c 2 m 2 n 21 2 n 2 m 2 n 2 1 2 arn c m 2 t n a 2 1 n
Kc―为均布矩形荷载角点下的竖向附加应力系 数,简称角点应力系数,可按m及n值由表4-5查 得。
应力z,并求其代数和。
例题5-2:
考虑中心距离6m 两相邻相同基础的影 响,计算图示中间矩 形基础的基底中心点 垂线下不同深度处的
地基附加应力z的分
布。其中,中心荷载 F=1940kN,基础埋深 d=1.5m,基底尺寸 b×l=2.5×2m。
例题5-2:
解:(1) 计算基础甲的基底平均附加压力标准值如下:
二、均布矩形荷载下的地基附加应力:
均布矩形荷载角点下
的附加应力z:
角点下的地基附加应力:
dz
3
2
p0z3 x2 y2 z2
5/2 dxdy
z
dz
A
3p0z3
2
lb 00
1 x2y2z2
5 dxdy 2
p0
lblz2b22z2
arctan lb
2l2z2 b2z2 l2b2z2

使地基土产生压缩变形的原因。
利用图5-9中的几何关系 R2 r2z2
一、集中荷载作用下地基中的竖向附加应力
z
3P 2
z3 R5
3P 2z 2
1
1
5
r 2 2 z

α
3 2
1
1
5
r 2 2 z
f (r / z)

z
α
P z2
―称为地基竖 向附加应力系 数。见P43, 表4-2
z的分布特征:
中心荷载下基底压力的简化计算:
p F G A
GGAd
G =20kN/m3,但在地下水位以下取10kN/m3
A=lb — 基底面积,条形基础取l =1m。
偏心荷载下的基底压力 :
pm pm
ax
in
F G lb
M W
ppm mianx
FG(16e)
lb
l
注意:当e L/6时,
基底附加压力 :
新增加于地基表面的基底压力,称为基底附加压 力。
如果基础砌置在天然地面上,那末全部基底压力 就是新增加于地基表面的基底附加压力。
埋置在天然地面下一定深度处的的基底压力中应 扣除基底标高处原有的土中自重应力后,才是基 底平面处新增加于地基的基底附加压力 ,
基底附加压力 :
基底附加压力 :
基底平均附加压力 (kPa)按下式计算 :
p0pcp0d
1、集中力作用下: 2、均布荷载作用下: 3、角点法的应用: 4、条形荷载作用下:
z Kcp0
小结四:地基附加应力的分布规律
通过以上的计算和分析,得到z的分布特征如下:
1、附加应力z随深度z的增加而减少; 2、z值在集中力作用线上最大,并随着r的增加而逐
渐减小。
谢谢
二、土自重应力
成层土自重应力的计算公式为:
n
c
i hi
1
(44)
式中 c —天然地面下任意深度z处的竖向有效自重应力
(kPa);
n —深度z范围内的土层总数
hi —第i层土的厚度(m); i —第i层土的天然重度,对地下水位以下的土层取有效
重度。
例题:
§4.2 基底压力
基础及其上回填土的总重 : G G A d 2 0 5 4 1 .5 6k0 N 0
基底平均压力设计值:
pFG1940601027 kPa
A
54
基底处的土中自重压力标准值: c0d1 8 1.527kPa。
基底平均附加压力没计值 : p0pc12 27 710kPa0
例题5-2:
(2) 计算基础甲中心点o下由本基础荷载引起的
把基底压力看成是柔性荷载,不考虑基础刚度的 影响。可以直接采用弹性力学中关于弹性半空间 的理论解答计算地基中附加应力。
弹性半空间体的力学解答:
P — 作用于座标原点0的竖向集中力; R — M点至座标原点0的距离,
Rx2y2z2r2z2z/co s
— R线与z座标轴的夹角; r — M点与集中力作用点的水平距离; E — 弹性模量 — 泊松比。
集中力作用下土中的应力z分布
z的等值线
一、多个集中荷载作用下地基中的附加应力
当地基表面作用有 几个集中力时,可分别 算出各集中力在地基中 引起的附加应力,然后 根据弹性力学的叠加原 理求出附加应力的总和。
zK 1z P 1 2 K 2P z2 2 K nP zn 2z 1 2i n 1K iP i
z
小结一:自重应力
n
c ihi
1
注意:1、地下水对土层重度的取值 2、隔水层的影响
小结二:基底压力
pmanx
FG(16e)
lb
l
注意:当e L/6时,
小结:基底附加压力
p0pcp0d
注意:1、地下水对土层重度的取值 2、隔水层的影响
小结三:地基附加压力
相关文档
最新文档