高中数学新课程创新教学设计案例二次函数修订稿

合集下载

高中数学新课程创新教学设计案例--二次函数

高中数学新课程创新教学设计案例--二次函数

精心整理10二次函数教材分析二次函数是重要的基本函数之一,由于它存在最值,因此,其单调性在实际问题中有广泛的应用,并且它与前面学过的二次方程有密切联系,又是后面学习解一元二次不等式的基础.二次函数在初中学生已学过,主要是定义和解析式,这里,在此基础上,接着学习二次函数的性质与图像,进而使学生对二次函数有一个比较完整的认识.本节先研究特殊的二次函数y=ax2,(a≠0)的图像与a值的关系,这可通过a在0的附近取值画图观察得到.然后,通过一个实例,如y=x2+4x+6,研讨二次函数的性质与图像.最后,总结出一般性结论.这节内容的重点是二次函数的性质,即顶点坐标、对称轴方程、二次函数的单调性及其图像,难点是用配方法把y=ax2+bx +c21.2.3.与a1.2.(1)y(53.4.x)=x(1(2)问:它有没有最值?若有最大(小)值,最大(小)值是多少?试求出此时对应的自变量x的值.(3)画出它的图像.(4)它的图像有没有对称轴?如果有,位置如何?(5)确定函数的单调区间.1.先让学生独立解答问题1,然后师生共同确定答案(1)令y=0,即x2+4x+6=0,解得x1=-6,x2=-2.∴与x轴交于两点(-6,0),(-2,0).(2)将原式配方,得f(x)=x2+4x+6=(x2+8x+12)=(x2+8x+16-16+12)=(x+4)2-2.∵对任意x∈R,都有(x+4)2≥0,∴f(x)≥-2,当且仅当x=-4时,取“=”号.∴函数有最小值是-2,记作y min=-2,此时x=-4.(3)以x=-4为中间值,取x的一些值列表如下:表10-1描点,画图.(4)由上表及图像推测:二次函数f(x)的图像存在对称轴,并且对称轴过点(-4,-2),与y轴平行.(5)观察图像知:二次函数f(x)在(-∞,-4]上是减函数,在(-4,+∞)上是增函数.2.(1x2).(2)=x4.(3)把f x)=(4x(5+的形式,1.=-,2.(1)当a>0时,抛物线开口向上,函数在(-∞,-]上递减,在[-,+∞)上递增,当x=-时,[f(x)]min=.(2)当a<0时,抛物线开口向下,函数在(-∞,-]上递增,在[-,+∞)上递减,当x=-时,[f(x)]max=.思考:(1)二次函数的图像一定与x轴或y轴相交吗?(2)函数y=(x-1)2+2,x∈[2,3]的最小值是2吗?四、解释应用[例题]1.求函数y=3x2+2x+1的最小值和它的图像的对称轴,并指出它的单调性.注:可利用上面的性质直接写出答案.2.某商品在最近一个月内价格f(t)与时间t的函数关系式是f(t)=+22,(0≤t≤30,t∈N),售量g(t)与时间t的函数关系是g(t)=-,(0≤t≤30,t∈N).求这种商品的日销售额的最大值.∵t∈N,∴当t=,不能使.[练1.2.3.4.抛物线1.2.3.=-点评效果.。

二次函数教案(3篇)

二次函数教案(3篇)

二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选一、教学内容本节课的教学内容选自人教版高中数学必修二第五章第二节《二次函数》。

具体内容包括:二次函数的定义、标准形式、图像特征、顶点坐标、开口方向与二次项系数的关系以及二次函数的性质。

二、教学目标1. 让学生掌握二次函数的定义、标准形式和图像特征,理解顶点坐标、开口方向与二次项系数的关系。

2. 培养学生运用二次函数解决实际问题的能力。

3. 培养学生的合作交流能力和创新思维。

三、教学难点与重点重点:二次函数的定义、标准形式、图像特征和性质。

难点:顶点坐标、开口方向与二次项系数的关系。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:笔记本、彩色笔、数学教材、练习题。

五、教学过程1. 实践情景引入:利用多媒体展示一些实际问题,如抛物线运动、二次函数在工程、经济等方面的应用,引导学生思考二次函数的实际意义。

2. 知识讲解:(1)介绍二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

(2)讲解二次函数的标准形式:y=a(xh)^2+k,其中(h,k)为顶点坐标。

(3)分析二次函数的图像特征:开口方向、顶点坐标、对称轴等。

(4)讲解二次函数的性质:单调性、最大(小)值等。

3. 例题讲解:选取典型例题,如y=x^22x+1,引导学生运用二次函数的知识点进行分析、解答。

4. 随堂练习:设计一些具有针对性的练习题,让学生巩固所学知识,如:(1)判断二次函数的开口方向。

(2)求二次函数的顶点坐标。

(3)计算二次函数的最大(小)值。

5. 合作交流:学生分组讨论,分享解题心得,互相学习,培养合作交流能力。

6. 创新拓展:引导学生思考二次函数在实际生活中的应用,如设计抛物线形状的物体、优化函数模型等。

六、板书设计1. 二次函数的定义、标准形式、图像特征、性质。

2. 顶点坐标、开口方向与二次项系数的关系。

七、作业设计1. 判断二次函数的开口方向,并说明理由。

2. 求二次函数y=x^24x+3的顶点坐标。

二次函数数学教案(优秀2篇)

二次函数数学教案(优秀2篇)

二次函数数学教案(优秀2篇)作为一名默默奉献的教育工,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。

来参考自己需要的教案吧!本文范文为您精心收集了2篇《二次函数数学教案》,希望朋友们参阅后能够文思泉涌。

次函数数学教案篇一教学目标1·从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系·2·探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念·能够利用二次函数的图象求一元二次方程的近似根·3·通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点·教学重点二次函数的最大值,最小值及增减性的理解和求法·教学难点二次函数的性质的应用·《22·2二次函数与一元二次方程》同步练习三、解答题7·(1)请在坐标系中画出二次函数y=x2—2x的大致图象;(2)根据方程的根与函数图象的。

关系,将方程x2—2x=1的根在图上近似地表示出来(描点);(3)观察图象,直接写出方程x2—2x=1的根(精确到0·1)· 《22·2二次函数与一元二次方程》练习题16·(杭州中考)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t—5t2(0≤t≤4)· (1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围·次函数数学教案篇二教学目标熟练地掌握二次函数的最值及其求法。

重点二次函数的的最值及其求法。

难点二次函数的最值及其求法。

一、引入二次函数的最值:二、例题分析:例1:求二次函数的`最大值以及取得最大值时的值。

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。

次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。

)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。

3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。

)二、新课教授【例1】画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

二次函数的教学案例

二次函数的教学案例

二次函数的教学案例一、引言二次函数是高中数学中重要的一章内容,它的掌握对于学生的数学素养和解决实际问题具有重要意义。

为了帮助学生更好地理解和应用二次函数,我们设计了以下教学案例。

二、教学目标1. 理解二次函数的定义和性质。

2. 熟练掌握二次函数的图像、基本形态和常见应用。

3. 能够通过解析法和图像法解决与二次函数相关的实际问题。

三、案例一:抛物线的图像1. 案例描述在开展本案例之前,教师可以先引入抛物线的概念,并介绍二次函数的标准形式和顶点形式。

然后,以抛物线为例,引导学生通过调整二次函数的系数、平移抛物线的顶点等方式,探索二次函数图像的变化规律,并让学生总结出不同参数对图像的影响。

2. 案例步骤a. 给出一个标准形式的二次函数:y=ax^2+bx+c,其中a、b、c为常数。

b. 让学生通过改变a、b、c的值,观察抛物线图像的变化。

c. 引导学生思考,当a、b、c取不同值时,抛物线的开口方向、顶点位置以及对称轴的位置会发生怎样的变化。

d. 提醒学生注意特殊情况,如a=0和b=0时的图像特点。

四、案例二:二次函数的应用1. 案例描述通过使用实际问题,让学生理解二次函数在现实生活中的应用,并培养他们解决实际问题的能力。

例如,利用二次函数探究物体的抛射运动、汽车的油耗问题等。

2. 案例步骤a. 给出一个具体的实际问题,如某物体的自由落体运动问题。

b. 引导学生分析问题,提取相关信息,并建立数学模型。

c. 根据已建立的二次函数模型,解决问题。

可以采用解析法或图像法,视情况而定。

d. 让学生思考,当问题中的条件发生变化时,二次函数模型会如何变化,对应的结果会有何变化。

五、案例三:二次函数方程的解1. 案例描述通过解二次函数方程,让学生进一步理解二次函数,掌握解方程的方法和技巧。

2. 案例步骤a. 给出一个二次函数方程,如x^2-3x+2=0。

b. 引导学生分析方程的形式,并指导其利用因式分解、配方法或求根公式等解方程的方法解题。

2024年数学《二次函数》优秀教案

2024年数学《二次函数》优秀教案

2024年数学《二次函数》优秀教案一、教学目标知识与技能:使学生掌握二次函数的基本形式、图像特征及其性质。

学会根据二次函数的表达式绘制其图像,并能够通过图像解析出函数的主要性质。

理解二次函数在现实生活中的应用,如抛物运动、优化问题等。

过程与方法:培养学生运用代数方法解决二次函数问题的能力。

通过合作学习和讨论,提升学生探究问题、解决问题的能力。

增强学生的数学建模意识,使其能够用数学语言描述和解释自然现象。

情感、态度与价值观:激发学生对数学的兴趣和热情,培养学生主动学习数学的习惯。

强化学生团队协作与沟通能力,提倡积极向上的学习氛围。

培养学生的创新思维和批判性思维,鼓励其从不同角度审视问题。

二、教学重点和难点教学重点:二次函数的基本形式和性质。

二次函数图像的绘制与解析。

二次函数在实际问题中的应用。

教学难点:二次函数图像的变换规律,如平移、伸缩等。

复杂二次函数问题的解析与求解。

将实际问题抽象为二次函数模型的能力。

三、教学过程引入新课:复习一次函数相关知识,为引入二次函数做铺垫。

通过生活中的实例(如投篮轨迹、喷泉喷水高度等)激发学生的好奇心,引出二次函数的概念。

提出问题,引导学生思考二次函数与一次函数的区别与联系。

知识讲解:讲解二次函数的基本形式,包括标准形式、顶点形式等。

分析二次函数图像的开口方向、对称轴、顶点等关键特征。

探讨二次函数的单调性、极值点等基本性质。

实践演练:通过例题演示如何根据二次函数表达式绘制图像,并解析图像信息。

要求学生自己绘制一些典型二次函数的图像,如开口向上或向下的抛物线。

开展小组讨论,分享绘制图像的经验和技巧。

问题解决:提供一些涉及二次函数的实际问题(如优化问题、运动轨迹计算等),引导学生将问题抽象为数学模型。

指导学生利用代数方法解决这些问题,如配方、因式分解等。

组织学生展示解题思路和答案,鼓励不同的解决方法和创新思考。

总结提升:总结二次函数的主要知识点和解题方法。

强调二次函数在实际应用中的重要性,鼓励学生多思考、多实践。

数学《二次函数》优秀教案

数学《二次函数》优秀教案

数学《二次函数》优秀教案教案:二次函数教学目标:1. 了解二次函数的定义和特征。

2. 掌握二次函数的图像特点、形状和性质。

3. 学会求解二次函数的零点、顶点和最值。

4. 能够应用二次函数解决实际问题。

教学重点:1. 二次函数的图像特点和性质。

2. 二次函数的零点、顶点和最值的求解方法。

教学难点:1. 如何确定二次函数的图像的形状和性质。

2. 如何求解二次函数的零点、顶点和最值。

教学准备:1. 教师准备PPT、教科书、黑板、彩色粉笔等教学工具。

2. 学生准备笔记本、铅笔、直尺等学习用具。

教学过程:一、导入新知识(5分钟)1. 展示一张二次函数的图像。

2. 引导学生观察图像特征,让学生猜测图像所表示的函数类型。

二、引入新知识(10分钟)1. 教师介绍二次函数的定义和特征,并解释二次函数与线性函数的区别。

2. 教师讲解二次函数的一般形式f(x) = ax^2 + bx + c,并解释每个参数的含义。

三、学习新知识(30分钟)1. 教师讲解二次函数的图像特点和性质,如开口方向、开口位置、对称轴、顶点等。

2. 教师通过实例演示,解释如何通过参数a、b和c来确定二次函数的图像形状和性质。

四、巩固练习(15分钟)1. 让学生自主完成一组题目,求解二次函数的零点、顶点和最值。

2. 教师抽查学生的答案,进行讲解和纠正。

五、运用知识(10分钟)1. 教师提供一些实际问题,要求学生运用二次函数解决问题。

2. 学生分组讨论并呈现解决过程和结果。

六、归纳总结(5分钟)1. 教师总结本节课的重点和难点,并与学生共同归纳要点。

2. 学生自主完成本节课的学习笔记,做好知识回顾和巩固。

七、作业布置(5分钟)1. 布置完成一定数量的二次函数求解题目。

2. 要求学生总结本节课所学的图像特点和性质。

教学反思:本节课主要通过讲解和实例演示,让学生了解二次函数的图像特点和性质,并掌握求解二次函数的零点、顶点和最值的方法。

通过实际问题的应用,培养学生运用二次函数解决问题的能力。

二次函数教学设计(精选19篇)

二次函数教学设计(精选19篇)

二次函数教学设计二次函数教学设计(精选19篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

以下是小编为大家收集的二次函数教学设计,欢迎阅读与收藏。

二次函数教学设计篇1教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课一、例题讲解投影片:(§2.8.1A)我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么(1)h与t的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议投影片:(§2.8.1B)二次函数①y=x2+2x,②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习随堂练习(P67)Ⅳ.课时小结本节课学了如下内容:1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业习题2.9板书设计§2.8.1 二次函数与一元二次方程(一)一、1.例题讲解(投影片§2.8.1A)2.议一议(投影片§2.8.1B)3.想一想二、课堂练习随堂练习三、课时小结四、课后作业备课资料思考、探索、交流把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r= .∴S圆=πr2=π·( )2=π· = ≈796(m2).所以圆的面积最大.二次函数教学设计篇2一、教学目标:1。

数学《二次函数》优秀教案

数学《二次函数》优秀教案

数学《二次函数》优秀教案数学《二次函数》优秀教案(通用11篇)作为一名默默奉献的教育工作者,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

那么问题来了,教案应该怎么写?下面是小编精心整理的数学《二次函数》优秀教案,欢迎阅读与收藏。

数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想、3、通过学生共同观察和讨论,培养大家的合作交流意识、(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性、2、具有初步的创新精神和实践能力、教学重点1、体会方程与函数之间的联系、2、理解何时方程有两个不等的实根,两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、教学难点1、探索方程与函数之间的联系的过程、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系、教学方法讨论探索法、教具准备投影片二张第一张:(记作§2、8、1A)第二张:(记作§2、8、1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解、数学《二次函数》优秀教案篇2教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根、2、进一步发展估算能力、(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验、2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想、(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力、教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、能够利用二次函数的图象求一元二次方程的近似根、教学难点利用二次函数的图象求一元二次方程的近似根、教学方法学生合作交流学习法、教具准备投影片三张第一张:(记作§2、8、2A)第二张:(记作§2、8、2B)第三张:(记作§2、8、2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可、但是在图象上我们很难准确地求出方程的解,所以要进行估算、本节课我们将学习利用二次函数的图象估计一元二次方程的根、数学《二次函数》优秀教案篇3一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

二次函数教案范文3篇

二次函数教案范文3篇

⼆次函数教案范⽂3篇《⼆次函数》教案⼀、教学⽬标1.知识与技能⽬标。

(1)使学⽣理解并掌握⼆次例函数的概念。

(2)能判断⼀个给定的函数是否为⼆次例函数,并会⽤待定系数法求函数解析式。

(3)能根据实际问题中的条件确定⼆次例函数的解析式,体会函数的模型思想。

2.过程与⽅法⽬标。

通过“探究——感悟——练习”,采⽤探究、讨论等⽅法进⾏。

3.情感态度与价值观。

通过对⼏个特殊的⼆次函数的讲解,向学⽣进⾏⼀般与特殊的辩证唯物主义教育。

⼆、教学重、难点1.重点。

理解⼆次例函数的概念,能根据已知条件写出函数解析式。

2.难点:理解⼆次例函数的概念。

三、教具准备从⽹上及相关资料搜集与本节课有关的材料,远程资源。

四、教学过程1.新课导⼊。

(1)⼀元⼆次⽅程的⼀般形式是什么?(2)回忆⼀下什么是正⽐例函数、⼀次函数?它们的⼀般形式是怎样的?2.新课。

问题1,正⽅体的六个⾯是全等的正⽅形,如果正⽅形的棱长为x,表⾯积为y,那么y与x的关系可表⽰为?[y=6x2问题2,某⼯⼚⼀种产品现在的年产量是20件,计划今后两年增加产量。

如果每年都⽐上⼀年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值⽽定,y与x之间的关系怎样表⽰? y=20x2+40x+20观察以上三个问题所写出来的三个函数关系式有什么特点?经化简后都具有y=ax2+bx+c的形式,(a,b,c是常数, a≠0 )。

我们把形如y=ax2+bx+c(其中a,b, c是常数,a≠0)的函数叫做⼆次函数。

称,a为⼆次项系数,ax2叫做⼆次项;b为⼀次项系数,bx叫做⼀次项;c为常数项。

⼜例:y=x2+ 2x–33.巩固练习。

1.下列函数中,哪些是⼆次函数?(1)y=3x-1 (2)y=3x2+2 (3)y=3x3+2x2(4)y=2x2-2x+1(5)y=x2-x(1+x)(6)y=x-2+x(7)y=1/2(8)y=x(1-x)(9)(1)y=x22.做⼀做。

高中数学新课标教案典范

高中数学新课标教案典范

高中数学新课标教案典范
课题:二次函数的性质
课时:1课时
教学目标:
1. 了解二次函数的定义与基本性质。

2. 掌握二次函数的图象与性质。

3. 能够应用二次函数解决实际问题。

教学重难点:
1. 二次函数的图象与性质。

2. 二次函数的应用。

教学过程:
1. 介绍二次函数的定义与性质(10分钟)
教师先讲解二次函数的定义,即$f(x)=ax^2 + bx + c$,其中$a、b、c$为常数且$a\neq 0$。

然后介绍二次函数的基本性质,包括顶点、对称轴、开口方向等。

2. 展示二次函数的图象(15分钟)
教师通过投影仪展示二次函数的图象,并解释图象的特点,引导学生对二次函数的图象进
行分析和理解。

3. 讲解二次函数的性质(15分钟)
教师详细讲解二次函数的性质,包括顶点坐标的计算、对称轴的求解、开口方向的判断等
内容。

4. 分组讨论与小组展示(15分钟)
学生分成小组进行讨论,探讨二次函数的性质及应用,然后由每个小组选择一个代表进行
展示,分享自己的研究成果。

5. 实际问题解决(15分钟)
通过实际问题导入,让学生应用二次函数解决实际问题,巩固所学知识。

6. 知识点梳理与作业布置(5分钟)
教师对学生所学知识点进行梳理,并布置相关练习作业。

教学反思:
通过本节课的教学,学生对二次函数的定义与性质有了更深入的了解,同时也提高了应用二次函数解决实际问题的能力。

但在教学过程中,也发现部分学生对二次函数的性质掌握不够牢固,需要进一步加强复习与训练。

高中数学新课程创新教学设计案例--二次函数

高中数学新课程创新教学设计案例--二次函数

精心整理10二次函数教材分析二次函数是重要的基本函数之一,由于它存在最值,因此,其单调性在实际问题中有广泛的应用,并且它与前面学过的二次方程有密切联系,又是后面学习解一元二次不等式的基础.二次函数在初中学生已学过,主要是定义和解析式,这里,在此基础上,接着学习二次函数的性质与图像,进而使学生对二次函数有一个比较完整的认识.本节先研究特殊的二次函数y=ax2,(a≠0)的图像与a值的关系,这可通过a在0的附近取值画图观察得到.然后,通过一个实例,如y=x2+4x+6,研讨二次函数的性质与图像.最后,总结出一般性结论.这节内容的重点是二次函数的性质,即顶点坐标、对称轴方程、二次函数的单调性及其图像,难点是用配方法把y=ax2+bx +c21.2.3.与a1.2.(1)y(53.4.x)=x(1(2)问:它有没有最值?若有最大(小)值,最大(小)值是多少?试求出此时对应的自变量x的值.(3)画出它的图像.(4)它的图像有没有对称轴?如果有,位置如何?(5)确定函数的单调区间.1.先让学生独立解答问题1,然后师生共同确定答案(1)令y=0,即x2+4x+6=0,解得x1=-6,x2=-2.∴与x轴交于两点(-6,0),(-2,0).(2)将原式配方,得f(x)=x2+4x+6=(x2+8x+12)=(x2+8x+16-16+12)=(x+4)2-2.∵对任意x∈R,都有(x+4)2≥0,∴f(x)≥-2,当且仅当x=-4时,取“=”号.∴函数有最小值是-2,记作y min=-2,此时x=-4.(3)以x=-4为中间值,取x的一些值列表如下:表10-1描点,画图.(4)由上表及图像推测:二次函数f(x)的图像存在对称轴,并且对称轴过点(-4,-2),与y轴平行.(5)观察图像知:二次函数f(x)在(-∞,-4]上是减函数,在(-4,+∞)上是增函数.2.(1x2).(2)=x4.(3)把f x)=(4x(5+的形式,1.=-,2.(1)当a>0时,抛物线开口向上,函数在(-∞,-]上递减,在[-,+∞)上递增,当x=-时,[f(x)]min=.(2)当a<0时,抛物线开口向下,函数在(-∞,-]上递增,在[-,+∞)上递减,当x=-时,[f(x)]max=.思考:(1)二次函数的图像一定与x轴或y轴相交吗?(2)函数y=(x-1)2+2,x∈[2,3]的最小值是2吗?四、解释应用[例题]1.求函数y=3x2+2x+1的最小值和它的图像的对称轴,并指出它的单调性.注:可利用上面的性质直接写出答案.2.某商品在最近一个月内价格f(t)与时间t的函数关系式是f(t)=+22,(0≤t≤30,t∈N),售量g(t)与时间t的函数关系是g(t)=-,(0≤t≤30,t∈N).求这种商品的日销售额的最大值.∵t∈N,∴当t=,不能使.[练1.2.3.4.抛物线1.2.3.=-点评效果.。

新课标2024年高中数学教案

新课标2024年高中数学教案

新课标2024年高中数学教案
课题:二次函数的性质及应用
教学目标:
1. 理解二次函数的定义及性质。

2. 能够运用二次函数解决实际问题。

3. 掌握二次函数的图像和性质。

4. 培养学生的逻辑思维能力和数学建模能力。

教学过程:
一、导入(5分钟)
教师通过提出一个问题引导学生思考:如果一个函数的导数为一次函数,那么这个函数是什么形式?引出二次函数的定义和性质。

二、概念讲解(15分钟)
1. 介绍二次函数的定义:y=ax^2+bx+c。

2. 讲解二次函数的图像和性质,包括顶点、开口方向、对称轴等。

三、例题讲解(20分钟)
教师通过几个例题讲解如何求二次函数的顶点、对称轴、开口方向等,并引导学生思考如何应用二次函数解决实际问题。

四、练习(15分钟)
学生在课堂上完成一些简单的练习题,巩固所学知识。

五、拓展应用(10分钟)
教师提供一些拓展应用题,让学生在实际情境中运用二次函数解决问题,培养学生的数学建模能力。

六、总结(5分钟)
教师对本节课的重点内容进行总结,并强调二次函数在数学中的重要性和应用价值。

课后作业:
1. 完成课堂练习题。

2. 阅读相关教材,进一步理解二次函数的性质和应用。

3. 解决一些实际问题,运用二次函数解决。

教学反思:
本节课通过讲解二次函数的定义、性质和应用,使学生能够更深入地理解二次函数的特点,并培养他们的数学建模能力。

在教学过程中,教师要注重引导学生思考,激发他们的兴趣,并提供足够的例题和练习,帮助学生掌握知识点。

高中数学新课标教案

高中数学新课标教案

高中数学新课标教案
课题:二次函数
教学目标:
1. 理解二次函数的基本概念和性质;
2. 掌握二次函数的图像、平移、旋转等基本操作;
3. 能够解决与二次函数相关的实际问题。

教学重点:
1. 二次函数的定义和性质;
2. 二次函数的图像和基本操作。

教学难点:
1. 二次函数的平移、旋转等操作;
2. 应用二次函数解决实际问题。

教学准备:
1. 教师:熟悉二次函数的相关知识,准备课件和教学素材;
2. 学生:准备好笔记本和课堂参与积极性。

教学过程:
一、导入新知识(10分钟)
教师引导学生回顾一次函数的概念,并引出二次函数的定义和性质。

二、二次函数的定义和性质(15分钟)
教师讲解二次函数的定义及其一般形式,并介绍二次函数的性质,如对称轴、顶点等。

三、二次函数的图像和基本操作(20分钟)
1. 给出一个具体的二次函数公式,让学生画出其图像;
2. 教师演示如何通过平移、旋转等操作来改变二次函数的图像;
3. 学生练习在纸上操作二次函数图像。

四、应用实际问题(15分钟)
教师给出几个与二次函数相关的实际问题,并让学生尝试解决。

五、课堂小结(5分钟)
教师总结本节课的重点内容,并布置作业。

教学反思:
本堂课中,学生积极参与,能够理解二次函数的定义和性质。

但在解决实际问题时,部分学生仍存在困难。

下节课需要加强练习和应用环节,提高学生的实际应用能力。

二次函数新课教案设计(完美排版)

二次函数新课教案设计(完美排版)

第二章 二次函数第1课时 二次函数一、阅读课本: 二、学习目标:1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地,形如____________________________的函数,叫做二次函数。

其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习1.观察:①y =6x 2;②y =-32 x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2 (4)y =3x 3+2x 2(5)y =x +1x五、课堂训练 1.y =(m +1)xmm 2-3x +1是二次函数,则m 的值为___________.2.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_____________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值;(3)当y =-13 时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.六、目标检测1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-12.下列函数中,是二次函数的是( ) A .y =x 2-1B .y =x -1C .y =8xD .y =8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.第2课时二次函数y=ax2的图象与性质一、阅读课本:二、学习目标:1.知道二次函数的图象是一条抛物线;2.会画二次函数y=ax2的图象;3.掌握二次函数y=ax2的性质,并会灵活应用.三、探索新知:画二次函数y=x2的图象.【提示:画图象的一般步骤:①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】列表:x …-3 -2 -1 0 1 2 3 …y=x2……描点,并连线由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).四、例题分析例1 在同一直角坐标系中,画出函数y =12 x 2,y =x 2,y =2x 2的图象.解:列表并填: x … -4 -3 -2 -1 0 1 2 3 4 … y =12x 2 ……y =x 2的图象刚画过,再把它画出来. x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 … y =2x 2……归纳:抛物线y =12 x 2,y =x 2,y =2x 2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”) .例2 请在例1的直角坐标系中画出函数y =-x 2,y =-12 x 2, y =-2x 2的图象.列表:x … -3 -2 -1 0 1 2 3 … y =x 2 ……x …-4 -3 -2 -1 0 1 2 3 4 …y=-12x2……x …-4 -3 -2 -1 0 1 2 3 4 …y=-2x2……归纳:抛物线y=-x2,y=-12x2,y=-2x2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”).五、理一理1.抛物线y=ax2的性质图象(草图)开口方向顶点对称轴有最高或最低点最值a>0 当x=____时,y有最______值,是______.a<0 当x=____时,y有最______值,是______.2.抛物线y=x2与y=-x2关于________对称,因此,抛物线y=ax2与y=-ax2关于_____ 对称,开口大小_______________.3.当a>0时,a越大,抛物线的开口越___________;当a<0时,|a|越大,抛物线的开口越_________;因此,|a|越大,抛物线的开口越________,反之,|a|越小,抛物线的开口越_______.六、课堂训练1.填表:开口方向 顶点对称轴有最高或最低点 最值y =23 x 2当x =____时,y 有最_______值,是______. y =-8x 2当x =____时,y 有最_______值,是______.2.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图, ① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________七、目标检测1.函数y =37 x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________.2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.第3课时 二次函数y =ax 2+k 的图象与性质一、阅读课本: 二、学习目标:1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 三、探索新知:在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表x … -3 -2 -1 0 1 2 3 … y =x 2+1 … … y =x 2-1……描点并画图观察图象得:1.开口方向顶点对称轴有最高(低)点最值y=x2y=x2-1y=x2+12.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.四、理一理知识点1.y=ax2y=ax2+k开口方向顶点对称轴有最高(低)点最值a>0时,当x=______时,y有最____值为________;a<0时,当x=______时,y有最____值为________.增减性2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;抛物线y=2x2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y=ax2与y=ax2+k的形状__________________.五、课堂巩固训练1.填表函数草图开口方向顶点对称轴最值对称轴右侧的增减性y=3x2y=-3x2+1y=-4x2-52.将二次函数y=5x2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y=-x2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y=4x2+1关于x轴对称的抛物线解析式为______________________.六、目标检测1.填表函数开口方向顶点对称轴最值对称轴左侧的增减性y=-5x2+3 y=7x2-12.抛物线y=-13x2-2可由抛物线y=-13x2+3向______平移______个单位得到的.3.抛物线y=-x2+h的顶点坐标为(0,2),则h=_______________.4.抛物线y=4x2-1与y轴的交点坐标为__________,与x轴的交点坐标为_________.第4课时 二次函数y =a(x-h)2的图象与性质一、阅读课本: 二、学习目标:1.会画二次函数y =a (x -h )2的图象;2.掌握二次函数y =a (x -h )2的性质,并要会灵活应用; 三、探索新知:画出二次函数y =-12 (x +1)2,y -12 (x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:x … -4 -3 -2 -1 0 1 2 3 4 … y =-12 (x +1)2…… y =-12 (x -1)2……描点并画图.1.观察图象,填表:函数 开口方向 顶点对称轴最值增减性y =-12 (x +1)2y =-12(x -1)22.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12(x -1)2的形状大小____________.②把抛物线y=-12x2向左平移_______个单位,就得到抛物线y=-12(x+1)2;把抛物线y=-12x2向右平移_______个单位,就得到抛物线y=-12(x+1)2.四、整理知识点1.y=ax2y=ax2+k y=a (x-h)2开口方向顶点对称轴最值增减性(对称轴左侧)2.对于二次函数的图象,只要|a|相等,则它们的形状_______,只是_______不同.五、课堂训练1.填表图象(草图)开口方向顶点对称轴最值对称轴右侧的增减性y=12x2y=-5 (x+3)2y=3 (x-3)22.抛物线y=4 (x-2)2与y轴的交点坐标是_________,与x轴的交点坐标为_______.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为_______________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为___________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式______________________.六、目标检测1.抛物线y=2 (x+3)2的开口__________;顶点坐标为__________;对称轴是_________;当x>-3时,y___________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则m=_________,n=__________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.第5课时二次函数y=a(x-h)2+k的图象与性质一、阅读课本:二、学习目标:1.会画二次函数的顶点式y=a (x-h)2+k的图象;2.掌握二次函数y=a (x-h)2+k的性质;3.会应用二次函数y=a (x-h)2+k的性质解题.三、探索新知:画出函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.列表:x …-4 -3 -2 -1 0 1 2 …y=-12(x+1)2-1 ……由图象归纳: 1.函数 开口方向顶点对称轴最值增减性y =-12 (x +1)2-12.把抛物线y =-12 x 2向_______平移______个单位,再向______平移_____个单位,就得到抛物线y =-12 (x +1)2-1.四、理一理知识点y =ax 2y =ax 2+ky =a (x -h)2y =a (x -h)2+k开口方向顶点 对称轴最值增减性 (对称轴右侧)2.抛物线y =a (x -h)2+k 与y =ax 2形状___________,位置________________.五、课堂练习 1.y=3x2y=-x2+1 y=12(x+2)2y=-4 (x-5)2-3开口方向顶点对称轴最值增减性(对称轴左侧)2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为________________.六、目标检测1.开口方向顶点对称轴y=x2+1y=2 (x-3)2y=-(x+5)2-42.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)第6课时二次函数y=ax2+bx+c的图象与性质一、阅读课本:二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+212.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.列表:x … 3 4 5 6 7 8 9 …y=12x2-6x+21 ……3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.四、理一理知识点:y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k y=ax2+bx+c开口方向顶点对称轴最值增减性(对称轴左侧)五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y =12 x 2-2-1的顶点坐标.2.二次函数y =-x 2+mx 中,当x =3时,函数值最大,求其最大值.第7课时 二次函数y =ax 2+bx +c 的性质一、复习知识点: 二、学习目标:1.懂得求二次函数y =ax 2+bx +c 与x 轴、y 轴的交点的方法; 2.知道二次函数中a ,b ,c 以及△=b 2-4ac 对图象的影响. 三、基本知识练习1.求二次函数y =x 2+3x -4与y 轴的交点坐标为________,与x 轴的交点坐标_______. 2.二次函数y =x 2+3x -4的顶点坐标为_________,对称轴为___________. 3.一元二次方程x 2+3x -4=0的根的判别式△=______________. 4.二次函数y =x 2+bx 过点(1,4),则b =________________. 5.一元二次方程y =ax 2+bx +c (a ≠0),△>0时,一元二次方程有_______________, △=0时,一元二次方程有___________,△<0时,一元二次方程_______________. 四、知识点应用1.求二次函数y =ax 2+bx +c 与x 轴交点(含y =0时,则在函数值y =0时,x 的值是抛物线与x 轴交点的横坐标).例1 求y =x 2-2x -3与x 轴交点坐标.2.求二次函数y =ax 2+bx +c 与y 轴交点(含x =0时,则y 的值是抛物线与y 轴交点的纵坐标).例2 求抛物线y =x 2-2x -3与y 轴交点坐标.3.a 、b 、c 以及△=b 2-4ac 对图象的影响. (1)a 决定:开口方向、形状(2)c 决定与y 轴的交点为(0,c )(3)b 与-b2a共同决定b 的正负性(4)△=b 2-4ac ⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000例3 如图,由图可得:a_______0b_______0c_______0△______0例4 已知二次函数y=x2+kx+9.①当k为何值时,对称轴为y轴;②当k为何值时,抛物线与x轴有两个交点;③当k为何值时,抛物线与x轴只有一个交点.五、课后练习1.求抛物线y=2x2-7x-15与x轴交点坐标_______,与y轴的交点坐标为______.2.抛物线y=4x2-2x+m的顶点在x轴上,则m=__________.3.如图:由图可得:a_______0b_______0c_______0△=b2-4ac______0六、目标检测1.求抛物线y=x2-2x+1与y轴的交点坐标为_______________.2.若抛物线y=mx2-x+1与x轴有两个交点,求m的范围.3.如图:由图可得:a _________0b_________0c_________0△=b2-4ac_________0第8课时二次函数y=ax2+bx+c解析式求法一、学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式.二、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.三、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式.四、归纳用待定系数法求二次函数的解析式用三种方法:1.已知抛物线过三点,设一般式为y=ax2+bx+c.2.已知抛物线顶点坐标及一点,设顶点式y=a(x-h)2+k.3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2) .(其中x1、x2是抛物线与x轴交点的横坐标)五、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?六、课堂训练1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与 y 轴交于点C (0,3),求二次函数的顶点坐标.4.如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.七、目标检测1.已知二次函数的图像过点A (-1,0),B (3,0),C (0,3)三点,求这个二次函数解析式.第9课时 二次函数y =ax 2+bx +c 的性质一、阅读教科书: 二、学习目标:几何问题中应用二次函数的最值. 三、课前基本练习1.抛物线y =-(x +1)2+2中,当x =___________时,y 有_______值是__________.2.抛物线y =12 x 2-x +1中,当x =___________时,y 有_______值是__________.3.抛物线y =a x 2+b x +c (a ≠0)中,当x =___________时,y 有_______值是__________. 四、例题分析:用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是多少时,场地的面积S 最大?五、课后练习Q PC B A1.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?2.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是h =30t -5t 2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?3.如图,四边形的两条对角线AC 、BD 互相垂直,AC +BD =10,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?六、目标检测如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当 点E 位于何处时,正方形EFGH 的面积最小?第10课时 用函数观点看一元二次方程一、阅读课本:DC B AF E D C B A HG FE D C B A二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx +c与x轴的公共点的个数.三、探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x +1=0的根的判别式△_______0.四、理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程_________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数_________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值.2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五、基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________ 4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0六、课堂训练1.特殊代数式求值:①如图看图填空:(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0②如图2a+b_______04a+2b+c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七、目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八、课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).第11课时实际问题与二次函数商品价格调整问题一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价P(元/千克)的关系如下表:上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千10.5 9 7.5 6 4.5 3克)这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?第12课时实际问题与二次函数一、阅读课本:二、学习目标:1.会建立直角坐标系解决实际问题;2.会解决桥洞水面宽度问题.三、基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________.2.拱桥呈抛物线形,其函数关系式为y=-14x2,当拱桥下水位线在AB位置时,水面宽为12m,这时水面离桥拱顶端的高度h是()A.3m B.2 6 m C.4 3 m D.9m 3.有一抛物线拱桥,已知水位线在AB位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M处?四、课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y=ax2+c的形式,请根据所给的数据求出a、c的值;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m,高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m时,水面CD 的宽是10m .(1)建立如图所示的直角坐标系,求此抛物线的解析式. (2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1h 时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?图①第13课时 二次函数综合应用一、复习二次函数的基本性质 二、学习目标:灵活运用二次函数的性质解决综合性的问题. 三、课前训练1.二次函数y =kx 2+2x +1(k <0)的图象可能是( )2.如图:(1)当x 为何范围时,y 1>y 2?(2)当x 为何范围时,y 1=y 2?(3)当x 为何范围时,y 1<y 2?3.如图,是二次函数y =ax 2-x +a 2-1的图象,则a =____________.4.若A (-134 ,y 1),B (-1,y 2),C (53 ,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 5.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A 、B 、C ,则△ABC 的面积为__________.6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A→B→C→D的路线做匀速运动.当点P运动到点D时停止运动,矩形ABCD也随之停止运动.(1)求点P从点A运动到点D所需的时间.(2)设点P运动时间为t(秒)①当t=5时,求出点P的坐标.②若△OAP的面积为S,试求出S与t之间的函数关系式(并写出相应的自变量t的取值范围).五、目标检测如图,二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0)两交点,且交y 轴于点C.(1)求b、c的值;(2)过点C作CD∥x轴交抛物线于点D,点M为此抛物线的顶点,试确定△MCD的形状.。

二次函数的修改教案

二次函数的修改教案

二次函数的修改教案一、教学目标。

1. 知识目标,学生能够掌握二次函数的基本概念,能够理解二次函数的图像特征和性质。

2. 能力目标,学生能够灵活运用二次函数的相关知识,解决实际问题。

3. 情感目标,培养学生对数学的兴趣,增强学生对数学的自信心。

二、教学重点和难点。

1. 重点,二次函数的基本概念和图像特征。

2. 难点,二次函数的变形和应用。

三、教学过程。

1. 导入新知识(10分钟)。

教师通过提问和引导,让学生回顾一元二次方程的基本形式,并引出二次函数的概念。

通过实例让学生感受二次函数的图像特征。

2. 讲解新知识(30分钟)。

(1)二次函数的基本形式,y=ax^2+bx+c。

(2)二次函数的图像特征,顶点、对称轴、开口方向等。

(3)二次函数的变形,平移、缩放、翻转等。

3. 练习与讨论(40分钟)。

让学生通过练习题,巩固二次函数的基本概念和图像特征。

然后让学生分组讨论并解答一些应用题,如抛物线的应用问题等。

4. 拓展延伸(20分钟)。

引导学生思考更多的二次函数的应用问题,如最值问题、交点问题等,并通过实例进行讲解和讨论。

5. 课堂小结(10分钟)。

教师对本节课的重点内容进行总结,并提出下节课的预习任务。

四、教学方法。

1. 示范法,通过具体的实例和图像,让学生更直观地理解二次函数的特征。

2. 合作学习法,让学生分组讨论和解答问题,培养学生的合作意识和团队精神。

3. 提问法,通过提问引导学生思考,激发学生的学习兴趣。

五、教学手段。

1. 教学软件,使用数学软件进行二次函数的图像展示和变形演示。

2. 教学实物,使用实物或图片展示二次函数的应用场景,增强学生的学习兴趣。

3. 板书,将重点知识点和例题进行梳理和整理,方便学生复习和回顾。

六、教学反思。

二次函数作为高中数学的重要内容,对学生的数学思维能力和逻辑推理能力有较高的要求。

在教学过程中,要注重引导学生思考,培养学生的数学思维习惯,激发学生对数学的兴趣。

同时,要结合实际应用,让学生感受数学在现实生活中的重要性,增强学生对数学的学习动力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学新课程创新教
学设计案例二次函数 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】
10 二次函数
教材分析
二次函数是重要的基本函数之一,由于它存在最值,因此,其单调性在实际问题中有广泛的应用,并且它与前面学过的二次方程有密切联系,又是后面学习解一元二次不等式的基础.二次函数在初中学生已学过,主要是定义和解析式,这里,在此基础上,接着学习二次函数的性质与图像,进而使学生对二次函数有一个比较完整的认识.本节先研究特殊的二次函数y=ax2,(a≠0)的图像与
a值的关系,这可通过a在0的附近取值画图观察得到.然后,通过一个实例,如y=x2+4x+6,研讨二次函数的性质与图像.最后,总结出一般性结论.这节内容的重点是二次函数的性质,即顶点坐标、对称轴方程、二次函数的单调性及其图像,难点是用配方法把y=ax2+bx+c的形式转化为y=a(x-h)2+k的形式.
教学目标
1. 通过一个例子研究二次函数的图像和性质,得到一般性结论,培养学生归纳、抽象能力.
2. 掌握二次函数的概念、表达式、图像与性质.会用配方法解决有关问题,能熟练地求二次函数的最值.
3. 能初步运用二次函数解决一些实际问题,培养学生分析问题和解决问题的能力.
任务分析学习这节内容时要先复习一下学生初中学过的二次函数的有关问题.为了得到y=ax2,(a≠0)的图像与a的关系以及二次函数y=ax2+bx+c的性质,这里遵循由特例到一般的原则,充分利用图像的直观性,以便学生接受.在这一过程中,应讲明配方法的操作过程.
教学设计
一、复习引申
1. 什么是二次函数?
2. 在同一坐标系中作出下列函数的图像.
(1)y=-3x2.(2)y=-2x2.(3)y=-x2.(4)y=-0.5x2.
(5)y=0.5x2.(6)y=x2.(7)y=2x2.(8)y=3x2.
3. 学生讨论:函数y=ax2中系数a的取值与它的图像形状有何关系?
4. 教师明晰:在a从-3逐渐变化到+3的过程中,抛物线开口向下并逐渐变大,当a=0时,y=0,抛物线变为x轴,然后抛物线开口向上,并逐渐变小.
二、问题情境
已知二次函数f(x)=x2+4x+6.
(1)求它与x轴的交点坐标.
(2)问:它有没有最值若有最大(小)值,最大(小)值是多少试求出此时对应的自变量x的值.
(3)画出它的图像.
(4)它的图像有没有对称轴如果有,位置如何
(5)确定函数的单调区间.
1. 先让学生独立解答问题1,然后师生共同确定答案
(1)令y=0,即x2+4x+6=0,解得x1=-6,x2=-2.∴与x轴交于两点(-6,0),(-2,0).
(2)将原式配方,得f(x)=x2+4x+6=(x2+8x+12)=
(x2+8x+16-16+12)=(x+4)2-2.
∵对任意x∈R,都有(x+4)2≥0,
∴f(x)≥-2,当且仅当x=-4时,取“=”号.
∴函数有最小值是-2,记作y min=-2,此时x=-4.
(3)以x=-4为中间值,取x的一些值列表如下:
表10-1
x…-7-6-5-4-3-2-1…
y…0--2-0…
描点,画图.
(4)由上表及图像推测:二次函数f(x)的图像存在对称轴,并且对称轴过点(-4,-2),与y 轴平行.
(5)观察图像知:二次函数f(x)在(-∞,-4]上是减函数,在(-4,+∞)上是增函数.2. 相关问题
(1)对称轴与图像(抛物线)的交点叫抛物线的顶点,函数f(x)=x2+4x+6的顶点坐标是(-4,-2).
(2)如果将过点(x1,0)平行于y轴的直线记作x=x1,则函数f(x)=x2+4x+6的对称轴为x=-4.
(3)把f(x)=x2+4x+6转化为f(x)=(x+4)2-2,采用的是“配方法”.
(4)思考:怎样证明函数f(x)=x2+4x+6的图像关于直线x=-4对称?
[提示:证明f(-4+h)=f(-4-h)]
(5)类似地,再对二次函数f(x)=-x2-4x+3研讨上面四个方面的问题.
三、建立模型
对任何二次函数y=f(x)=ax2+bx+c,(a≠0)都可以通过配方法化为y=a(x+)2+的形式,并且有如下性质:
1. 二次函数f(x)=ax2+bx+c,(a≠0)的图像是一条抛物线,对称轴方程为x=-,顶点坐标是(-,).
2. (1)当a>0时,抛物线开口向上,函数在(-∞,-]上递减,在[-,+∞)上递
增,当x=-时,[f(x)]min=.
(2)当a<0时,抛物线开口向下,函数在(-∞,-]上递增,在[-,+∞)上递减,
当x=-时,[f(x)]max=.
思考:(1)二次函数的图像一定与x轴或y轴相交吗?
(2)函数y=(x-1)2+2,x∈[2,3]的最小值是2吗?
四、解释应用
[例题]
1. 求函数y=3x2+2x+1的最小值和它的图像的对称轴,并指出它的单调性.
注:可利用上面的性质直接写出答案.
2. 某商品在最近一个月内价格f(t)与时间t的函数关系式是f(t)=+22,(0≤t≤30,t
∈N),售量g(t)与时间t的函数关系是g(t)=-,(0≤t≤30,t∈N).求这种商品的日销售额的最大值.
解:设该商品的日销售额为S,则
∵t∈N,
∴当t=10或t=11时,S max=808.5.
答:这种商品日销额的最大值是808.5.
注:本题是应用题,自变量t∈N,不能使.
[练习]
1. 已知函数f(x)=x2-2x-3,不计算函数值,试比较f(-2)和f(4),f(-3)和f(3)的大小.
2. 二次函数y=f(x)满足f(1+x)=f(1-x),且方程f(x)=0有两个实根x1,x2,求x1+x2.
3. 已知函数f(x)=2x2+(a-1)x+3在[2,+∞)上递增,求a的取值范围.
4. 抛物线y=ax2+bx与直线y=ax+b,(ab≠0)的图像(如下图)只可能是().
四、拓展延伸
1. 如果已知二次函数的图像(抛物线)的顶点坐标为(h,k),那么它的解析表达式如何?如果已知二次函数的图像(抛物线)与x轴的交点坐标为(x1,0),(x2,0),它的解析表达式又如何?
2. 用函数单调性的定义研究f(x)=ax2+bx+c,(a<0)的单调性.
3. 证明函数f(x)=ax2+bx+c,(a≠0)的图像关于直线x=-对称.
点评
这篇案例讲述了两个方面的知识点,一是特殊的二次函数y=ax2,(a≠0)的图像随a值变化的规律性,二是二次函数的性质与图像.设计恰当,重点突出,即重点讲解二次函数的性质与图像.遵循由特殊到一般、由具体到抽象的原则,使结论便于被学生理解.例题与练习的选配难易适中,代
表广泛,并有利于巩固本课重点知识.拓展延伸中提出的三个问题都是二次函数的重要特征,实用性强,并且所得结论对解决有关问题能起到事半功倍的效果.。

相关文档
最新文档