14.1.4整式的乘法第2课时(单项式乘多项式)

合集下载

人教版八年级数学上册课件14.1.4 整式的乘法(第2课时)

人教版八年级数学上册课件14.1.4 整式的乘法(第2课时)



(1)不能漏乘:即单项式要乘多项式的每一项.
(2)去括号时注意符号的变化.
探究新知
某地区在退耕还林期
间,有一块原长m米,宽为 b a米的长方形林区,若长增
加了n米,宽增加了b米, a
请你计算这块林区现在的
面积.
m
n
探究新知
你能用不同的形式表示所拼图的面积吗?
方法一: (m+n)(a+b)
b
mb
1
am
+a2n+b3m
4
+bn
34
“多乘多” 顺口溜:
多乘多,来计算,多项式各项都见面,
乘后结果要相加,化简、排列才算完.
探究新知
素养考点 1 用多项式乘以多项式法则进行计算
例1 计算: (1)(3x+1)(x+2);
(2)(x–8y)(x–y);
解: (1) 原式=3x·x+2·3x+1·x+1×2
2x2 4x 6 x2 2x 1 x2 2x 5;
3x
课堂检测
(2)(2x 3)(x 2) (x 1)2; 解:原式 2x 2 4x 3x 6 (x 2 12 )
2x2 7x 6 x2 1
运算法 则混淆
x2 7x 7.
(x 1)(x 1)
(x2 2x 1)
nb
方法二:
m(a+b)+n(a+b)
a
ma
na
方法三: ma+mb+na+nb
m
n
这块林区现在长为(m+n)米,宽为(a+b)米.
探究新知
由于(m+n)(a+b)和(ma+mb+na+nb)表示同一块地的 面积,故有:

八年级上册数学人教版 集体备课 14.1.4整式的乘法(2)单项式乘多项式

八年级上册数学人教版 集体备课 14.1.4整式的乘法(2)单项式乘多项式

初中数学集体备课活页纸
第二步:互助探究环节1:师友探究
为了扩大绿地的面积,要把街心花园的一块长p 米,宽b米的长方形绿地,向两边分别加宽a 米和c米,你能用几种方法表示扩大后的绿地的面积?
环节2:教师讲解
如果把它看成一个大长方形,那么它的宽为__________,面积可表示为_________.
如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.
根据面积相等,你可以列出一个等式:
单项式乘以多项式的法则:。

第三步:分层提高环节1 师友训练
例1.(-4x)·(2x2+3x-1)
2
21
2(2).
32
ab ab ab
-⋅
()
环节2 教师提升
思考:单项式乘以多项式实际上是如何转化的?
第四步:
总结归纳
环节1:师友归纳
•1.通过本节课的学习,学到了什么?
•这节课我想对师傅(学友)说……。

人教版数学八年级上册:14.1.4 整式的乘法 同步练习(附答案)

人教版数学八年级上册:14.1.4 整式的乘法  同步练习(附答案)

14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 . 5.某市环保局欲将一个长为2×103dm ,宽为4×102dm ,高为8×10dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x2y)2·(-23xyz)·34xz2;(2)(-4ab3)(-18ab)-(12ab2)2.9.先化简,再求值:2x2y·(-2xy2)3+(2xy)3·(-xy2)2,其中x=4,y=1 4.10.已知(-2ax b y2c)(3x b-1y)=12x11y7,求a+b+c的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( )A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b 2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A .3xyB .-3xyC .-1D .18.一个拦水坝的横断面是梯形,其上底是3a 2-2b ,下底是3a +4b ,高为2a 2b ,要建造长为3ab 的水坝需要多少土方?9.计算:2xy 2(x 2-2y 2+1)= . 10.计算:-2x(3x 2y -2xy)= . 中档题11.要使(x 2+ax +5)(-6x 3)的展开式中不含x 4项,则a 应等于( )A .1B .-1 C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x-5y)(3x-y)=2x·3x+2x·+(-5y)·3x+(-5y)·=.3.计算:(1)(2a+b)(a-b)=;(2)(x-2y)(x2+2xy+4y2)=.4.计算:(1)(3m-2)(2m-1);(2)(3a+2b)(2a-b);(3)(2x-3y)(4x2+6xy+9y2);(4)a(a-3)+(2-a)(2+a).5.先化简,再求值:(x-5)(x+2)-(x+1)(x-2),其中x=-4.6.若一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是( ) A.6x3-5x2+4x B.6x3-11x2+4x C.6x3-4x2D.6x3-4x2+x+4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a厘米,宽为3 4a厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是平方厘米.8.我校操场原来的长是2x米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了平方米.9.计算(a-2)(a+3)的结果是( )A.a2-6 B.a2+a-6 C.a2+6 D.a2-a+610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3 C.a=-2,b=3D.a=2,b=-316.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A,B,C三类卡片若干张,拼出了一个长为2a+b、宽为a+b的长方形图形.请你通过计算求出小思同学拼这个长方形所用A,B,C三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A.-4x2B.-4x4C.-4x6D.4x6 10.(黔南中考)下列运算正确的是(D)A.a3·a=a3 B.(-2a2)3=-6a5 C.a3+a5=a10 D.8a5b2÷2a3b=4a2b 11.计算:(1)2x2y3÷(-3xy);(2)10x2y3÷2x2y;(3)3x4y5÷(-23xy2).12.计算(6x3y-3xy2)÷3xy的结果是( )A.6x2-y B.2x2-y C.2x2+y D.2x2-xy 13.计算:(1)(x5y3-2x4y2+3x3y5)÷(-23xy);(2)(6x3y4z-4x2y3z+2xy3)÷2xy3.14.计算:310÷34÷34=.中档题15.下列说法正确的是( )A.(π-3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103 D.若(x+4)0=1,则x≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = .18.已知(x -5)x =1,则整数x 的值可能为 .19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h ,一架喷气式飞机的速度为1.8×106 m/h ,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x +y)(x -y)-(4x 3y -8xy 3)÷2xy ,其中x =1,y =-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4. 2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z.(2)5a 2·(3a 3)2.解:原式=5a 2·9a 6=45a 8.4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3.6.3x 5y 4z .7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2; 解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3. (2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4. 9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7=-8x 5y 7.当x =4,y =14时,原式=-12. 10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7.∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C2.D3.C4.计算:(1)(2xy 2-3xy)·2xy ;解:原式=2xy 2·2xy -3xy·2xy=4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a) =a 3b 3+43a 3b 2. (3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1)=-2a 2b 2+6a 2b 3+2ab.(4)(34a n +1-b 2)·ab. 解:原式=34a n +1·ab -b 2·ab =34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14.6.C7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3. 答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方.9.2x 3y 2-4xy 4+2xy 2.10.-6x 3y +4x 2y .11.D12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b)=(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).综合题17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x2-8x+15;(2)x2-2x-24.12.-5.13.(1)(x+1)(x+4);解:原式=x2+5x+4.(2)(m+2)(m-3);解:原式=m2-m-6.(3)(y-4)(y-5);解:原式=y2-9y+20.(4)(t-3)(t+4).解:原式=t2+t-12.14.x2-9xy+8y2.15.B16.20x2.17.2.18.(1)(a+3)(a-2)-a(a-1);解:原式=a2-2a+3a-6-a2+a=2a-6.(2)(-7x2-8y2)·(-x2+3y2);解:原式=7x4-21x2y2+8x2y2-24y4=7x4-13x2y2-24y4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x -2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4.(2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa2=12h +2H.答:需要(12h +2H)个这样的杯子.。

14.1.4整式的乘法-单项式乘以多项式

14.1.4整式的乘法-单项式乘以多项式

课题:14.1.4单项式乘以多项式一、教材分析:(一)学习目标:⒈掌握单项式与多项式相乘的法则,知道单项式乘以多项式的结果仍然是多项式.⒉会进行单项式乘以多项式的计算以及含有单项式乘以多项式的混合运算.⒊通过例题教学,培养灵活运用所学知识分析问题、解决问题的能力.(二)学习重点和难点:重点:掌握单项式乘以多项式的法则难点:熟练地运用法则,准确地进行计算(三)学习方法:操作,归纳.二、问题导读单:⒈复习巩固⑴单项式与单项式相乘的法则?⑵完成下列各题。

①=-∙)4(22xy x ;②=-∙-)3()2(2xy x ;③=∙-)32()21(2ab ab ;④写出多项式122--x x 的项 ⑤=+-⨯)654332(12 = = ⒉在)654332(12+-⨯中,用什么样的方法较简单? ⒊代数式中的字母都表示数,如果把上题中的数都换成字母,如何计算)(c b a m ++.⒋你算出的结果能否用长方形的面积加以验证?⒌单项式与多项式相乘的法则:单项式乘以多项式,就是 .三、问题训练单:⒈计算⑴)13()4(2+∙-x x ⑵ab ab ab 21)232(2∙-⑶)(5)21(22222ab b a a b ab a --+- ⑷)2(6)2(23332x x x x x ++-⒉先化简再求值 ⑴21),1(3)3()3(222=----++x x x x x x x x 其中⑵已知22-=xy ,求)53(5273y y x y x xy ---的值.练习)293)(32()12(23222323b a a b a ab b a ----,其中3,31-==b a。

1.4整式的乘法(第2课时)教学课件北师大版中学数学七年级(下)

1.4整式的乘法(第2课时)教学课件北师大版中学数学七年级(下)
化为单项式乘单项式)
单项式与多项式的乘法法则
单项式与多项式相乘,就是根据乘法分配律用单项
式去乘多项式的每一项,再把所得的积相加.
用字母表示如下:p(a+b+c)=pa+pb+pc
注意:(1)根据是乘法分配律;
(2)积的项数与多项式的项数相同.
知识讲授
例1
ቤተ መጻሕፍቲ ባይዱ
计算:
(1)2ab(5ab2+3a2b);
1
2
2
注意:(1)多项式每一项要包括前面的符号;
(2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致;
(3)单项式系数为负时,改变多项式每项的符号.
随堂训练
4.计算:
-22·( + 2)-5(-)
解:原式=- − − +
=- − − +
=-7 + .
随堂训练
5.先化简,再求值3a(2a2-4a+3)-2a2(3a+4),其中
a=-2.
解:3a(2a2-4a+3)-2a2(3a+4)
=6a3-12a2+9a-6a3-8a2
=-20a2+9a.
当a=-2时,原式=-20×(-2)2+9×(-2)=-98.
随堂训练
6.如果(-3x)2(x2-2nx+2)的展开式中不含x3 项,
注 意
(2)不要出现漏乘现象
(3)运算要有顺序:先乘方,再乘除,最后加减
(4)对于混合运算,注意最后应合并同类项
别相乘,其余字母连同它的指数不变,作为积的因式.
2. 什么叫多项式的项?
在多项式中,每个单项式叫做多项式的项。

14.1.4 整式的乘法 第2课时 单项式与多项式相乘【习题课件】八年级上册人教版数学

14.1.4 整式的乘法 第2课时 单项式与多项式相乘【习题课件】八年级上册人教版数学

14.1.4 整式的乘法
第2课时 单项式与多项式相乘
基础通关
能力突破
9. 若( x2+ ax +1)(-6 x3)的展开式中不含 x4项,则 a 的值为(
A. -6

C.

B. 0
B
素养达标
)
D. -1
【解析】( x2+ ax +1)(-6 x3)=-6 x5-6 ax4-6 x3,
∵展开式中不含 x4项,
1
2
3
4
(-2 x2+11 x )平方米
5
6
7
8
9
10
.

11
12
13
14
15
16
14.1.4 整式的乘法
第2课时 单项式与多项式相乘
基础通关
能力突破
素养达标
14. 先化简,再求值:3 a (2 a2-4 a +3)-2 a2(3 a +4),其中 a =-2.
解:3 a (2 a2-4 a +3)-2 a2(3 a +4)=6 a3-12 a2+9 a -6 a3-8 a2=
第十四章
整式的乘法与因式分解
14.1
14.1.4
第2课时
整式的乘法
整式的乘法
单项式与多项式相乘
14.1.4 整式的乘法
第2课时 单项式与多项式相乘
基础通关
能力突破
素养达标
单项式与多项式相乘
1. 下列计算中错误的是(
C
)
A. x ( x -1)= x2- x
B. (- x )(2- x )=-2 x + x2
B. 互为相反数
C. 互为倒数
D. 前式是后式的- a 倍

人教版八年级数学上册 (整式的乘法)整式的乘法与因式分解课件教学(第2课时)

人教版八年级数学上册 (整式的乘法)整式的乘法与因式分解课件教学(第2课时)

教科书第102页 练习1、2题.

2x2 4xy
单项式乘单项式
讨论 尝试归纳单项式乘以多项式的运算法则.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
单项式乘以多项式
一般地,单项式与多项式相乘,就是用单项式乘 多项式的每一项,再把所得的积相加.
转化
单项式乘以多项式
单项式乘以单项式
乘法分配律
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
1.填空: (1) 5(mn5) 5m5n25 . (2) (2a3b)(4ab) 8a2b12ab2 . (3) 2x(4x26x8) 8x312x216x . (4) (a2b)(c) ac2bc .
抢答
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 你还能通过别的方法得到等式p(abc)papbpc吗?
p(abc)papbpc 乘法分配律
单项式乘多项式
类比单项式乘单项式, 说说这是什么运算?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 尝试计算:2x(x2y)
解:2x(x2y)
单项式乘多项式
2x·x 2x·2y
乘法分配律 转

步解决问题的能力.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
①②
p p p p
p
abc
a
b
c
a
b
c
如果把它看成一个大长方形,
如果把它看成三个小长方形,
那么它的面积可表示为:

14.1.4 整式的乘法(第2课时) 初中数学人教版八年级上册教学课件(共25张PPT)

14.1.4 整式的乘法(第2课时) 初中数学人教版八年级上册教学课件(共25张PPT)
14.1.4整式的乘法 (第二课时)
第十四章——整式的乘法 与因式分解
学习目标 01 掌握多项式乘以多项式的运算法则; 02 能够灵活地运用多项式乘以多项式的运算法 则进行运算.
知识回顾
单项式乘单项式: 单项式与单项式相乘,把它们的 系数 、 同底数幂 分别相乘,对于 只在一个单项式里含有的字母,则连同它的指数作为 积的一个因式 . 单项式乘多项式:
1
(2)若 x 1 x2 3ax a 的乘积中不含 x2 项,则常数 a 的值为___3___.
解析:(1)原式 (x 2)(x m) (2) x 1 x2 3ax a
x2 mx 2x 2m x2 (m 2)x 2m x2 ax 6 , 2m 6, m 2 a ,
为了扩大街心花园的绿地面积,把一块原长 a m ,宽 p m 的 长方形绿地,加长了 b m,加宽了 q m .你能用几种方法求出 扩大后的面积?
a
b
p
q
探究新知
a
b
qp
【方法1】如果把它看成一个大 长方形,则它的长为(ab) m, 宽为 (pq)m.它的面积可表示为:
(ab)(pq)
a
b
ap
p
bp
解:(1)由题意得,
3a 2b3a b a ba b
9a2 3ab 6ab 2b2 a2 b2
9a2 3ab 2b2 a2 b2 8a2 3ab b2 (棵),
即大长方形实验田比小长方形实验田多种植 8a2 3ab b2 棵樱桃树苗.
(2) 3a 2b3a b a ba b
p
a
b
aq
q
bq
q
【方法2 】如果把它看成四个小 长方形,则它的面积可表示为:

人教版八年级数学上册14.1.4整式的乘法单项式与单项式、多项式相乘(教案)

人教版八年级数学上册14.1.4整式的乘法单项式与单项式、多项式相乘(教案)
3.重点难点解析:在讲授过程中,我会特别强调同类项相乘法则和单项式与多项式相乘法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式乘法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示整式乘法的基本原理。
-多项式乘以多项式的法则(拓展重点):指导学生理解多项式乘以多项式的过程,即每一项都要分别与另一个多项式的每一项相乘,并将结果相加。
2.教学难点
-难点一:正确识别同类项并进行乘法运算。
-解释:学生在进行单项式相乘时,可能会忽略同类项的概念,导致指数相加错误或遗漏。
-难点二:单项式与多项式相乘时,确保每一项都得到正确处理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版八年级数学上册14.1.4整式的乘法单项式与单项式、多项式相乘(教案)
一、教学内容
本节课我们将学习人教版八年级数学上册第14章第1节第4小节“整式的乘法单项式与单项式、多项式相乘”。教学内容主要包括以下两个方面:
1.单项式与单项式相乘:掌握单项式相乘的法则,并能运用该法则进行相关计算。
-举例:3x^2 * 4x,5a^3b * 2ab^2等。
-举例:重点讲解3x^2 * 4x = 12x^3,说明3和4相乘得到12,x^2和x相乘得到x^3。

14.1.4 第2课时 单项式多项式相乘课件2024-2025学年人教版数学八年级上册

14.1.4 第2课时 单项式多项式相乘课件2024-2025学年人教版数学八年级上册

2
2
2
2
2.解:原式 x2 x 2x2 2x 6x2 15x 3x2 16x 当 x 2 时,原式 3 (2)2 16 (2) 12 32 44
思注考意 :单在项做式与乘多法项计式算相时乘,的结应果注是意一哪个些多问项式题,?其项数与多项
式的项数相同.
课堂小结
1.本节课学了哪些内容?你有哪些收获和体会? 2.单项式与单项式相乘,单项式与多项式相乘运算 中,你要注意什么?
6x2 3xy
63x2xy
18x3 y ;

系数相乘
三 相同字母、同底数幂相乘

走 单独字母连同指数抄下来
探究新知
问题
为了扩大绿地面积,要把街心花园的一块长 p m,宽 b m的长 方形绿地向两边分别加宽 a m和 c m,你能用几种方法表示扩大后 的绿地面积?
p p
a
b
c
解法1:先求扩大后的绿地的边长, 再求面积,即为 p(a+b+c)
2.先化简,再求值.
x(x 1) 2x(x 1) 3x(2x 5) ,其中 x 2 .
1.解:(1)原式 3a 5a 3a 2b 15a2 6ab ;
(2)原式 x 6x 3y 6x 6x2 18xy ;
(3)原式 1 xy 4x 1 xy 2xy2 1 xy1 2x2 y x2 y3 1 xy .
知识要点
单项式乘以多项式的法则
单项式与多项式相乘,就是用单项式乘多项式的 每一项,再把所得的积相加.
p(a+b+c) = pa+pb+pc
单项式与多项式相乘
转化 乘法分配律

单项式与单项式相乘

整式的乘法(第二课时单项式乘以多项式)(原卷版)

整式的乘法(第二课时单项式乘以多项式)(原卷版)

八年级数学上分层优化堂堂清十四章 整式的乘法与因式分解第二课时 单项式乘以多项式学习目标:1.探索并掌握单项式乘以多项式的法则.2.灵活运用单项式乘以多项式的法则进行运算. 重点:单项式与多项式乘法法的应用.难点:单项式与多项式相乘时结果的符号的确定.老师对你说:知识点1 单项式乘以多项式(1)单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(2)单项式与多项式相乘时,应注意以下几个问题: ①单项式与多项式相乘实质上是转化为单项式乘以单项式; ②用单项式去乘多项式中的每一项时,不能漏乘; ③注意确定积的符号.知识点2 单项式乘多项式的应用根据题目的需要利用单项式乘以多项式的法则进行运算,从而解决问题.单项式乘以多项式【例11】计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB .6x 3+1C .6x 3+2xD .6x 2+2x【例12】化简:()222214322x xy y x xy x y ⎛⎫--- ⎪⎝⎭.【例13】先化简,后求值(1)152(41)(69)3x x x ---+--,其中2x =.(2)2212(2)3()(2)3a a a ab a b +-+--+,其中,1a =-,2b =-.【例14】阅读:已知x 2y=3,求2xy(x 5y 23x 3y4x)的值.分析:考虑到x ,y 的可能值较多,不能逐一代入求解,故考虑整体思想,将x 2y=3整体代入. 解:2xy(x 5y 23x 3y4x)=2x 6y 36x 4y 28x 2y =2(x 2y)36(x 2y)28x 2y =2×336×328×3=24.你能用上述方法解决以下问题吗?试一试! (1)已知ab=3,求(2a 3b 23a 2b+4a)·(2b)的值;(2)已知a 2+a -1=0,求代数式a 3+2a 2+2018的值.单项式乘多项式的应用【例21】如图,阴影部分的面积是( )A .72xyB .92xyC .4xyD .2xy【例22】一块长方形硬纸片,长为(5a 2+4b 2)m ,宽为6a 4m ,在它的四个角上分别剪去一个边长为32a 3m 的小正方形然后折成一个无盖的盒子,请你求这个无盖盒子的表面积.【例23】将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( ) A .6B .7C .8D .9【例24】老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:÷(−12y )=﹣6x +2y ﹣1则手掌捂住的多项式 3xy ﹣y 2+12y .能力提升训练1. 当|a +b -1|+(a -b -3)2=0时,化简求值:3a 2(a 3b 2-2a)+4a(-a 2b)2.2.已知a 2(b +c )=b 2(a +c )=2017,且a 、b 、c 互不相等,对c 2(a +b )﹣2016=( ) A .0B .1C .2016D .20173.已知关于x 的多项式a (x +1)2﹣b (x +1)+c ﹣7的化简结果为2x 2+5x ,则a +b +c = .4.小明外祖母家的住房装修三年后,地砖出现破损,破损部分的图形如图:现有A 、B 、C 三种地砖可供选择,请问需要A 砖 块,B 砖 块,C 砖 块.堂堂清一、选择题(每小题4分,共32分)1.计算:(-2a 2) ·(3ab 25ab 3)结果是( )A .6a 3b 2+10a 3b 3B .6a 3b 2+10a 2b 3C .6a 3b 2+10a 3b 3D .6a 3b 210a 3b 32.计算(―xy )3·(7xy 2―9x 2y )正确的是( )A .―7x 2y 5+9x 3y 4B .7x 2y 5―9x 3y 4C .―7x 4y 5+9x 5y 4D .7x 4y 5+9x 5y 43.计算(3x )·(2x 25x 1)的结果是( )A .6x 215x 23xB .6x 3+15x 2+ 3xC .6x 3+15x 2D .6x 3+15x 214.要使(﹣6x 3)(x 2+ax ﹣3)的展开式中不含x 4项,则a =( ) A .1B .0C .﹣1D .165.在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:()23323163x x x x x --+-=++ ,“□”的地方被墨水污染了,你认为“□”内应填写( )A .29xB .29x -C .9xD .9x -6.已知正方形ABCD 边长为x ,长方形EFGH 的一边长为2,另一边的长为x ,则正方形ABCD 与长方形EFGH 的面积之和等于( ) A .边长为x +1的正方形的面积B .一边长为2,另一边的长为x +1的长方形面积C .一边长为x ,另一边的长为x +1的长方形面积D .一边长为x ,另一边的长为x +2的长方形面积7.已知a 2(b +c )=b 2(a +c )=2017,且a 、b 、c 互不相等,对c 2(a +b )﹣2016=( ) A .0B .1C .2016D .20178. 三个连续奇数,若中间的一个为n ,则这三个连续奇数之积为( ) A .4n 3﹣nB .n 3﹣4nC .8n 2﹣8nD .4n 3﹣2n二、填空题(每小题4分,共20分)9.计算 222525x y x y ⎛⎫--=⎪⎝⎭. 10.如图所示,四边形均为长方形,根据图形,写出一个正确的等式: (答案不唯一) .11 .如果m 2﹣2m ﹣2=0,那么代数式3m (m ﹣2)+2的值是 .12 .一个长方体的长、宽、高分别是3x ﹣2、2x 和x ,它的体积等于 . 13 .111111111111112311231023112310⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++++⋅⋅⋅+-+++⋅⋅⋅+++⋅⋅⋅+= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭______________.三、解答题(共6小题,48分)14 .(9分)计算:(1)(﹣2ab )(3a 2﹣2ab ﹣4b 2); (2)3x (2x ﹣3y )﹣(2x ﹣5y )•4x ;(3)5a (a ﹣b +c )﹣2b (a +b ﹣c )﹣4c (﹣a ﹣b ﹣c ).15 .(6分)先化简,再求值3a (2a 2﹣4a +3)﹣2a 2(3a +4),其中a =﹣2.16 .(7分)先化简,再求值:A =3a 2b ﹣ab 2,B =ab 2+3a 2b ,其中a =12,b =13.求5A ﹣B 的值.17 .(8分)已知:A =12x ,B 是多项式,王虎同学在计算A +B 时,误把A +B 看成了A ×B ,结果得3x 3﹣2x 2﹣x .(1)求多项式B . (2)求A +B .18 .(8分)阅读:已知x 2y =3,求2xy (x 5y 2﹣3x 3y ﹣4x )的值.分析:考虑到x ,y 的可能值较多,不能逐一代入求解,故考虑整体思想,将x 2y =3整体代入. 解:2xy (x 5y 2﹣3x 3y ﹣4x )=2x 6y 3﹣6x 4y 2﹣8x 2y =2(x 2y )3﹣6(x 2y )2﹣8x 2y =2×33﹣6×32﹣8×3 =﹣24.你能用上述方法解决以下问题吗?试一试!(1)已知ab =3,求(2a 3b 2﹣3a 2b +4a )•(﹣2b )的值. (2)已知a 2+a ﹣1=0,求代数式a 3+2a 2+2020的值. 19 .(10分)如图,大正方形边长为x ,小正方形边长为y .(1)若|5||4|0x y -+-=,求阴影部分面积的和;(2)定义:单项式乘多项式就是用单项式去乘多项式的每一项,再把所得的积相加:例如()a b c ab ac +=+.试用含x 、y 的式子表示阴影部分面积之和.拓展培优*冲刺满分1.一张长方形餐桌的表面如图所示,图中空白部分的面积是阴影部分面积的( ) A .2倍B .3倍C .12D .132. 将7张如图①所示的小长方形纸片按图①的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a ,长为4a ,则21=S S -______(结果用含a 的代数式表示).3.如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)。

初中数学-整式的乘法(二)单项式与多项式相乘教学设计学情分析教材分析课后反思精选全文

初中数学-整式的乘法(二)单项式与多项式相乘教学设计学情分析教材分析课后反思精选全文

可编辑修改精选全文完整版整式的乘法(第二课时)一、学情分析本章首先通过实例介绍了同底数幂的乘法、幂的乘方与积的乘方以及同底数幂的除法以及整式运算产生的实际背景,使学生经历实际问题“符号化”的过程,进而发展符号感。

本节课是在前几节的基础上,来进一步学习单项式与多项式相乘,同时,通过为探索有关运算法则设置归纳、类比等运动,加深了对算理的理解和基本运算技能的掌握。

二、任务分析单项式与多项式相乘用到了有理数的乘法、,幂的运算性质,转化为单项式与单项式相乘。

因此,在教学中首先要对已学知识进行回顾,再从实际问题导入,引导学生自己动手试一试,主动探索;在教学过程中教师先不给出单项式与多项式相乘的运算法则,而是让学生先独立思考,再相互交流,然后由学生总结得出如何进行单项式与多项式相乘。

在探索新知的过程中,让学生体会从特殊到一般,从具体到抽象的认识过程。

在这一过程中,要注意留给学生探索和交流的空间,让学生在实践中获得单项式与多项式相乘的运算法则,从而构建新的知识体系,在此基础上要求学生用语言叙述这个性质,这有利于提高学生的数学语言能力。

三、教学目标1、经历探索单项式与多项式相乘的运算法则的过程,能利用法则进行运算。

2、理解单项式与多项式相乘运算的算理,从中体验数形结合和转化的数学思想方法,发展学生有条理的思考能力和语言表达能力。

3、引导学生主动参与到探索过程中,进一步丰富数学学习的成功体验,激发对数学学习的好奇心,形成独立思考、主动探索的习惯和主动与他人合作交流的意识。

四、教学重难点重点:对单项式与多项式相乘运算法则的理解和应用难点:探究单项式与多项式相乘的法则;提高计算的正确率。

五、教学过程本节课共设计了八个环节:1<复习回顾>——2<探究新知—提出问题>——3<探究新知—解决问题>——4<精讲精练>——5<巩固提高>——6<能力提升 拓展延伸>——7<总结串联、纳入系统>——8<达标检测、评价矫正><第一环节>复习回顾1、回顾幂的运算性质(1)同底数幂相乘,底数不变,指数相加。

人教版数学八年级上册:14.1.4 整式的乘法 同步练习(附答案)

人教版数学八年级上册:14.1.4 整式的乘法  同步练习(附答案)

14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 .5.某市环保局欲将一个长为2×103 dm ,宽为4×102 dm ,高为8×10 dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x 2y)2·(-23xyz)·34xz 2; (2)(-4ab 3)(-18ab)-(12ab 2)2.9.先化简,再求值:2x 2y·(-2xy 2)3+(2xy)3·(-xy 2)2,其中x =4,y =14.10.已知(-2ax b y 2c )(3x b -1y)=12x 11y 7,求a +b +c 的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( ) A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A.3xy B.-3xy C.-1 D.18.一个拦水坝的横断面是梯形,其上底是3a2-2b,下底是3a+4b,高为2a2b,要建造长为3ab的水坝需要多少土方?9.计算:2xy2(x2-2y2+1)=.10.计算:-2x(3x2y-2xy)=.中档题11.要使(x2+ax+5)(-6x3)的展开式中不含x4项,则a应等于( )A .1B .-1C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x -5y)(3x -y)=2x·3x +2x· +(-5y)·3x +(-5y)· = . 3.计算:(1)(2a +b)(a -b)= ;(2)(x -2y)(x 2+2xy +4y 2)= . 4.计算:(1)(3m -2)(2m -1); (2)(3a +2b)(2a -b);(3)(2x -3y)(4x 2+6xy +9y 2); (4)a(a -3)+(2-a)(2+a).5.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.6.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( )A .6x 3-5x 2+4xB .6x 3-11x 2+4xC .6x 3-4x 2D .6x 3-4x 2+x +4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为34a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是 平方厘米.8.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了 平方米. 9.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-3 16.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A ,B ,C 三类卡片若干张,拼出了一个长为2a +b 、宽为a +b 的长方形图形.请你通过计算求出小思同学拼这个长方形所用A ,B ,C 三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A .-4x 2B .-4x 4C .-4x 6D .4x 610.(黔南中考)下列运算正确的是(D)A .a 3·a =a 3B .(-2a 2)3=-6a 5C .a 3+a 5=a 10D .8a 5b 2÷2a 3b =4a 2b11.计算:(1)2x 2y 3÷(-3xy); (2)10x 2y 3÷2x 2y ; (3)3x 4y 5÷(-23xy 2).12.计算(6x 3y -3xy 2)÷3xy 的结果是( )A .6x 2-yB .2x 2-yC .2x 2+yD .2x 2-xy13.计算:(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.14.计算:310÷34÷34= . 中档题15.下列说法正确的是( )A .(π-3.14)0没有意义B .任何数的0次幂都等于1C .(8×106)÷(2×109)=4×103D .若(x +4)0=1,则x ≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = . 18.已知(x -5)x =1,则整数x 的值可能为 . 19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h,一架喷气式飞机的速度为1.8×106 m/h,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=1,y=-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法 第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4.2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z. (2)5a 2·(3a 3)2. 解:原式=5a 2·9a 6 =45a 8. 4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3. 6.3x 5y 4z . 7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2;解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3.(2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4.9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7 =-8x 5y 7.当x =4,y =14时,原式=-12.10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7. ∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C 2.D 3.C 4.计算:(1)(2xy 2-3xy)·2xy ; 解:原式=2xy 2·2xy -3xy·2xy =4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a)=a 3b 3+43a 3b 2.(3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1) =-2a 2b 2+6a 2b 3+2ab. (4)(34a n +1-b2)·ab. 解:原式=34a n +1·ab -b 2·ab=34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14. 6.C 7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3.答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方. 9.2x 3y 2-4xy 4+2xy 2. 10.-6x 3y +4x 2y .12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b) =(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x 2-8x +15;(2)x 2-2x -24.12.-5.13.(1)(x +1)(x +4);解:原式=x 2+5x +4.(2)(m +2)(m -3);解:原式=m 2-m -6.(3)(y -4)(y -5);解:原式=y 2-9y +20.(4)(t -3)(t +4).解:原式=t 2+t -12.14.x 2-9xy +8y 2.15.B16.20x 2.17.2.18.(1)(a +3)(a -2)-a(a -1);解:原式=a 2-2a +3a -6-a 2+a=2a -6.(2)(-7x 2-8y 2)·(-x 2+3y 2);解:原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x-2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4. (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa 2 =12h +2H. 答:需要(12h +2H)个这样的杯子.。

等式的乘法 第二课时

等式的乘法 第二课时
(1)先求三家连锁店的总销售量,再求总收入, m(a+b+c) 即总收入为:________________ (2)先分别求三家连锁店的收入,再求它们的和, ma+mb+mc 即总收入为:________________ 所以:m(a+b+c)= ma+mb+mc 你能根据上式问题总 结出单项式与多项式 相乘的方法吗?
14.1.4 整式的乘法
第2课时
1.使学生能按步骤进行简单的单项式与多项式相乘的运算. 2.经历探究单项式与多项式相乘的方法,体验单项式与多 项式的乘法运算规律,总结运算法则,认识到单项式与多 项式相乘,结果仍是多项式,积的项数与因式中多项式的
项数相同.
3.培养学生合作交流的思想,体验单项式与多项式相乘的 内涵.
单项式与多项式相乘的法则:
=-6a3b2+10a2b
【例题】
计算:
(1) ( 4x 2 )( 3 x 1)
【解析】原式 (-4x ) (3 x) (-4x ) 1
2 2
-12x3 - 4x 2
(2)3a(5a b)
【解析】 原式 3a 5a 3a b
(3) - 7x y 2 x 3 y
单项式与多项式相乘,只要将单项式分别乘以 多项式的各项,再将所得的积相加.
m(a b c) = ma mb mc
① 用单项式分别去乘多项式的每一项; ② 再把所得的积相加。 运算时要注意哪些问题? ① 不能漏乘: 即单项式要乘遍多项式的每一项. ② 去括号时注意符号的确定.
只要能收获甜蜜,荆棘丛中也会有蜜蜂忙 碌的身影. ——塞内加
辩一辩 下列各题的解法是否正确,如果错了,指 出错在什么地方,并改正过来。

单项式乘多项式

单项式乘多项式

4.计算: (1)(2xy2-3xy)·2xy; 解:原式=2xy2·2xy-3xy·2xy=4x2y3-6x2y2 (2)-x(2x+3x2-2);
解:原式=-x·2x+(-x)·3x2+(-x)·(-2)=-2x2-3x3+2x
(3)(34an+1-b2)·ab. 解:原式=34an+1·ab-b2·ab=34an+2b-12ab2
知识点2:化简求值 5.当x=1,y=时,3x(2x+y)-2x(x-y)=____5____. 6.先化简,再求值:x(x-1)+(x2-1)x,其中x=-1.
解:原式=x2-x+x3-x=x3+x2-2x, 当x=-1时, 原式=(-1)3+(-1)2-2×(-1)=-1+1+2=2
7.若计算(x2+ax+5)·(-2x)-6x2 的结果中不含有 x2 项,则 a 的值为( A ) A.-3 B.-13 C.0 D.3
知识影响格局,格局决定命运! 路漫漫其修远兮,吾将上下而求索!
11.某同学在计算一个多项式乘以-3x2时,算成了加上- 3x2,得到的答案是x2-x+1,那么正确的计算结果是多少?
解:设这个多项式为 A,则 A+(-3x2)=x2-12x+1,∴ A=4x2-12x+1.∴A·(-3x2)=(4x2-12x+1)(-3x2)=- 12x4+32x3-3x2
知识影响格局,格局决定命运!
9.计算:
(1)(-12ab)(23ab2-2ab+43b+1); 解:原式=(-12ab)·23ab2+(-12ab)·(-2ab)+(-12ab)·43 b+(-12ab)×1=-13a2b3+a2b2-23ab2-12ab
(2)3ab(a2b-ab2-ab)-ab2(2a2-3ab+2a).
14.1 整式的乘法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. (连云港·中考)下列计算正确的是(
A.a+a= a2 C.(a2) 3=a5 B.a·a2 =a3 D.a2 (a+1)=a3+1

【答案】B
2.计算: (1)-10mn·(2m2n-3mn2). (2)(-4ax)2·(5a2-3ax2).
(3)(3x2y-2xy2)·(-3x3y2)2.
结论:
单项式与多项式相乘法则: 单项式与多项式相乘,就是用单项式去乘多项式的每 一项,再把所得的积相加.
ma b c ma mb mc
【例题】
计算:
(1) ( 4x 2 )( 3 x 1)
【解析】原式 (-4x ) (3 x ) (-4x ) 1
2 2
(2)3a(5a b)
-12x3 - 4x 2
【解析】 原式 3a 5a 3a b
(3) - 7x 2 y 2 x 3 y 2

15a 2 3ab


2 2 2 【解析】原式 (7x y) 2x (7x y) 3y
14x 3 y 21x 2 y3
单项式乘以单项式的法则有几点? ①各单项式的系数相乘; ②相同字母的幂按同底数的幂相乘;
③单独字母连同它的指数照抄.
口算:
(1)5x2y2·(-3x2y)
-15x4y3
(2) (x2)2 ·(-2x3y2)
-2x7y2
(3)(-2mx2)2·(-3m2x)3
-108m8x7
你知道这块绿地的面积是多少吗
还有其 它表示 方法吗
p
pa
pb
pc
a
b
c
p(a b = c) pa pb pc
单项式与多项式相乘满足乘法分配律
探究:
计算: 24 (
1 1 1 ) 2 3 4 =12-8+6
根据乘法分配律, 不难算出结果吧 !
=10
试一试 计算:2a2·(3a2-5b)
= 2a2· 3a2- 2a2· 5b =6a4 -10a2b
【规律方法】整式的运算是在数的运算的基础上发展 起来的,所以在解决问题时类比数的运算律,将单项 式乘以多项式转化为单项式的乘法.并且不能漏乘,注
意符号的变化.
1.本节课学了哪些内容?你有哪些收获和体会? 2.单项式与多项式的运算过程中,你要特别注意什么?
只要能收获甜蜜,荆棘丛中也会有蜜蜂忙 碌的身影. ——塞内加
(4)7a(2ab2-3b).
【答案】
(1) (2) (3)
-20m3n2+30m2n3. 80a4x2-48a3x4. 27x8y5-18x7y6.
(4)
14a2b2-21ab.源自3.化简:x(x2-1)+2x2(x+1)-3x(2x-5). 【解析】原式=x3-x+2x3+2x2-6x2+15x =3x3-4x2+14x.
14.1.4 整式的乘法
第二课时
1.使学生能按步骤进行简单的单项式与多项式相乘的运算. 2.经历探究单项式与多项式相乘的方法,体验单项式与多 项式的乘法运算规律,总结运算法则,认识到单项式与多 项式相乘,结果仍是多项式,积的项数与因式中多项式的
项数相同.
3.培养学生合作交流的思想,体验单项式与多项式相乘的 内涵.
【跟踪训练】
1.
2.
4a-4b+4 4·(a-b+1)=__________________.
2-3xy2 6x 2 3x·(2x-y )=__________________.
2+15xy-18xz -6x 3. -3x·(2x-5y+6z)=__________________.
4.
5-8a4b+4a4c 2 2 -4a (-2a ) ·(-a-2b+c)=________________.
相关文档
最新文档