平面直角坐标系单元备课

合集下载

712平面直角坐标系备课教案

712平面直角坐标系备课教案

主题7.1.2平面直角坐标系教学目标1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。

会画平面直角坐标系,并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置。

2、知道平面直角坐标系内有几个象限,清楚各象限的点的坐标的符号特点。

3、给出坐标能判断所在象限。

重点1、在给定的平面直角坐标系内,会根据坐标确定点,根据点的位置写出点的坐标。

2、知道象限内点的坐标符号的特点,根据点的坐标判断其所在象限。

难点坐标轴上点的坐标的特点。

教学过程:一、引课1、画一条数轴,在数轴上标出 3 , -3 , 0 , 2师板书:数轴点可以用哪些实数表示?引出坐标概念:数轴上的点可以用个实数来表示,这个实数叫做。

2、思考:直线上的一个点可以用数轴上一个实数来表示点的位置,能不能找到一种办法来确定平面内的点的位置呢?(例如图7.1-3中A、B、C、D各点)。

引出课题后,出示目标二、教学新知1、自学课本第66-67页的内容,然后填空。

检测1:我们可以在平面内画两条互相_____、_____重合的数轴,组成________________,水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的________。

2、教师讲解如何确定点的坐标。

提问:原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?学生思考后回答检测2:写出点A、B、C、D、E\F\G的坐标:(2,4)(-3,4)(-1,-5)(5,-3 (3,0)(0,2.5)(0,0)3、借助测验2引出象限概念及各象限内点的坐标特点(1)概念:(建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。

四个象限在坐标系内按_____(顺、逆)时针排列的。

)提问:点A、B、C、D、分别在哪个象限?点E\F呢?得出结论:坐标轴上的点不属于任何象限。

《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。

《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。

平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。

本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。

2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。

知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。

数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。

情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。

3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。

平面直角坐标教案5篇

平面直角坐标教案5篇

平面直角坐标教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标教案5篇一个教案使教师更好地在教学中应对学生的学习差异和特殊需求,老师在编写教案时需要充分考虑学生的学习需求和兴趣点,以下是本店铺精心为您推荐的平面直角坐标教案5篇,供大家参考。

第六章平面直角坐标系单元备课

第六章平面直角坐标系单元备课

★★★★★第六章平面直角坐标系单元备课..............一.教材分析㈠教学目标:“图形与坐标”是“空间与图形”的四个重要组成部分之一,它是发展学生空间观念的重要载体,还是以后“一次函数”的重要基础。

1、理解平面直角坐标系的有关概念,能正确地画出直坐标系。

2、能找出平面上点的坐标。

3、会说出各象限及坐标轴上点的坐标特征教材重点:平面直角坐标系的概念:点的坐标:一个点在不同的象限或坐标轴上,点的坐标不一样。

教材难点:特殊位置的点的坐标的特点:㈡课时安排:1.平面直角坐标系: 3课时2.直角坐标系中的图形: 3课时3.回顾与思考:1课时二.教法设计1、恰当的运用多种教学手段,本章需要大量的坐标纸、地图等材料,事前的准备是必需的。

2、注意揭示知识间的联系。

教学中,应有意识、有计划地设计教学活动,引导学生体会位置确定与坐标变换之间的关系以及平移、轴对称间的联系,形成对图形变换的整体认识。

三.学情分析在本节内容之前,学生学习研究了用有序数对表示平面上的位置的方法,对于点在平面上的位置的确定有了基本的认识,这为学生坐标意识的的形成提供了依据,但要搞清楚直角坐标系、有序数对和平面上的点之间的一一对应关系,需要有个较长的过程。

因此在教学过程中提供给学生实践操作的机会加强了点的位置写出坐标,由点坐标描出的位置两个方面的训练,以达到本节的教学目标。

四.问题预测坐标系产生的必要性是难点,而坐标系知识对后续的学习又显得尤为重要,因此教师的课前准备与课堂组织显得尤其重要。

通过创设一些问题情境,积极引导、启发学生探索思考,使学生学会学习、学会探索、学会研究。

同时,借助设计制作的多媒体课件辅助手段,极大提高课堂教学效益。

五.学法指导以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。

北师大版八年级数学上册3.2《平面直角坐标系》集体备课教案

北师大版八年级数学上册3.2《平面直角坐标系》集体备课教案

八年级数学上集体备课教案3.2《平面直角坐标系》一、教学目标知识目标:1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2.认识并能画出平面直角坐标系;3.能在给定的直角坐标系中,由点的位置写出它的坐标。

能力目标:1.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索每一象限内点的坐标特点及坐标轴上点的坐标有什么特点,培养学生的探索意识和能力。

情感目标:由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

二、教学重难点教学重点:1.理解平面直角坐标系的有关知识;2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3.平面内每一象限点的坐标特点及坐标轴上点的坐标特点归纳。

教学难点:平面内每一象限点的坐标特点及坐标轴上点的坐标特点归纳。

:三、教法学法教法:引导发现法,自主探索法讨论归纳法学法:学生自主探索学习知识,主要采用观察分析法,小组讨论法教学环节教师活动学生活动设计意图复备记录预习检测反馈同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,在科技大学的小亮如何给来访的朋友介绍该市的几个风景点的位置呢?尽可能给出简洁的表示方法,并与同伴交流.大成殿:;中心广场:;碑林:. 请学生举手回答。

通过预习检测发现学生在预习中遇到的困难,制定本节课的学习目标,从而有效的为学生答疑解惑。

创设情景做一做(1)小红在旅游示生活中到处都是确定物体位置的问题,谁能用学过的知识完成下面的做一做呢?意图上画上了方格,标上数字,如图(1)所示,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?(1)(2)按照小红的方法,(5,2)中的2表示,(2,5)中的2表示.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图(2)所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?(通常将(0,0)点称为原点)在上一节课,我们已经学习了许多确定位置的方法,对于这个问题,大家看用哪种方法比较合适?如果城市比较大,地图还需要向右上方扩展,你能类似地表示右上部分其他点的位置吗?学生讨论、交流、发言。

初中数学初二数学上册《平面直角坐标系》教案、教学设计

初中数学初二数学上册《平面直角坐标系》教案、教学设计
b.坐标的平移、对称性质在几何问题中如何应用?
c.如何利用坐标系解决实际问题?
2.各小组汇报讨论成果,教师进行点评总结坐标系的实际应用和坐标性质的作用。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
a.填空题:给出一些点的坐标,让学生填写对应的点。
b.选择题:判断坐标的性质,如平移、对称等。
4.小组合作,探讨坐标系的平移、对称性质在解决几何问题中的应用。要求每组选取一个典型问题进行详细解答,并在课堂上进行分享。这个作业有助于培养学生的团队协作能力和表达能力。
5.针对课堂学习内容,撰写学习心得体会,总结自己在平面直角坐标系知识方面的收获和不足。要求字数不少于300字,让学生在反思中不断提高。
4.分层次设计练习题,针对不同水平的学生,提高他们在坐标系知识方面的掌握程度。同时,注重题目的实际应用背景,培养学生的数学建模能力。
5.教学过程中,注重启发式教学,引导学生主动发现问题、解决问题,提高学生的自主探究能力。
6.定期进行课堂小结,帮助学生总结所学知识,形成知识体系。同时,关注学生的学习反馈,调整教学策略,提高教学效果。
2.完成教材课后练习题,包括填空题、选择题和计算题。这些题目涵盖了本节课的重点知识,有助于学生巩固坐标的表示方法和性质,提高运算能力。
3.设计一道实际问题,要求学生运用坐标系知识进行解答。例如:在学校的平面图上,标出教学楼、操场和食堂的位置,并计算它们之间的距离。这个作业旨在培养学生将实际问题转化为数学问题的能力,提高数学建模能力。
难点:将抽象的坐标系与实际情境相结合,运用数学知识解决现实问题。
(二)教学设想
1.采用情境导入法,以生活中的实际问题为例,引导学生认识到坐标系在解决实际问题时的重要性,激发学生的学习兴趣。

第七章 平面直角坐标系 单元备课

第七章 平面直角坐标系 单元备课

活页教案单元备课第( 7)单元年级七学科数学单元名称平面直角坐标系备课教师单元教学内容的地位、知识结构及前后联系1. 本部分结构特点本章的主要内容包括平面直角坐标系的有关概念和点与坐标(均为整数)的对应关系,以及用坐标表示地理位置和用坐标表示平移的内容,教科书首先从实际中需要确定物体的位置(如电影院中的座位的位置以及教室中学生座位的位置等)出发,引出有序数对的概念,指出利用有序数对可以确定物体的位置,由此联想到是否可以用有序数对表示平面内点的位置的问题,结合数轴上确定点的位置的方法,引出平面直角坐标系,学习平面直角坐标系的有关概念,如横轴、纵轴、原点、象限,建立点与坐标(整数)的一一对应关系等,在此基础上学习平面直角坐标系在确定地理位置和表示平移交换中的应用.2.教材的地位及作用在数学科学中,由于平面直角坐标系的引入,架起了数与形之间的桥梁,使得我们可以用几何的方法研究代数问题,又可以用代数的方法研究几何问题.利用坐标的方法研究平移的内容,从数的角度刻画平移交换,这就用代数的方法研究几何问题,体现了平面直角坐标系在数学中的作用.无论是在数学还是在其他领域,平面直角坐标系都有着非常广泛的应用.本章也是后续研究函数的重要基础.教学目的教学要求1.通过实例认识有序数对,感受它在确定点的位置中的作用.2.认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数).3.能在方格纸中建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问题中的作用.4.在同一平面直角坐标系中,能用坐标表示平移交换;通过研究平移与坐标的关系,使学生看到平面直角坐标系是数与形之间的桥梁,感受代数问题与几何问题的相互转换.5.结合实例,了解可以用不同的方式确定物体的位置.重点难点教学重点:平面直角坐标系的概念和点与坐标的对应关系. 教学难点:(1)建立适当的平面直角坐标系描述物体的位置.(2)用坐标表示平移交换.课时安排6.1 平面直角坐标系 3课时6.2 坐标方法的简单应用 2课时本章复习 1课时教学措施和方案1.密切联系实际本章内容的编写仅仅围绕着确定物体的位置展开.教科书首先从建国50周年庆典中的背景图案、确定电影院中座位的位置以及教室中学生座位的位置等实际出发,引出有序数对,进而引出平面直角坐标系.通过对坐标系的研究,认识坐标系的有关概念和建立坐标系的方法,然后再利用坐标系解决生活中确定地理位置的问题(如确定同学家的位置等),让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题的过程.2.准确把握教学要求对于某些重要的概念和方法,本套教科书采用了螺旋上升的编排方式.对于平移变换,教科书首先在上一章"相交线与平行线"的基础上,从坐标的角度进一步认识平移交换;在后面"实数"的章节中进一步安排了在实数范围内研究平移的内容,以后续学习利用平移交换探索几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础.对于平面直角坐标系,本章只要求学生会在方格纸中建立直角坐标系,能根据坐标描出点的位置,能由点的位置写出点的坐标,其中点的坐标都是整数,这实际研究了点与有序数对的对应关系,在后面"实数"的章节中将把点的坐标扩展到实数范围,并建立点与有序数对的一一对应关系,以后续学习函数的图像、函数与方程和不等式的关系等问题打下基础.因此,教学中要注意内容安排的这个特点,准确把握本章对于平移交换和平面直角坐标系的教学要求,以一个动态的、发展的观点看待教学要求.3.突出数形结合的思想本章我们在平面直角坐标系中,利用表表的方法表示了平移,从数的角度刻画平移交换,这就用代数的方法研究几何问题.通过本章的学习,要让学生初步感受数形结合的思想,让学生看到平面直角坐标系的引入,架起了数与形之间的桥梁,加强了数与形之间的联系,它是解决数学问题的一个强有力的工具.单元检测分析总结。

《第五章 平面直角坐标系》单元教学设计

《第五章 平面直角坐标系》单元教学设计

第1课时教学设计(其他课时同)课题平面直角坐标系新授课□章/单元复习课□专题复习课□课型习题/试卷讲评课□学科实践活动课□其他□1.教学内容分析本节课通过数学模型来解决生活中关于位置变化的描述以及几何图形变化过程中数量的变化。

学会在平面直角坐标系中利用一对有序实数来描述点的位置,同时会读出一些简单几何图形的顶点坐标。

将坐标系运用于生活,比如电路板的焊接指示,公园景点的寻找,宝藏的发现,让这些实际运用激发学生的学习兴趣。

通过三个活动让学生明确坐标系建立的实际意义,同时发现物体位置的变化可以和数量联系起来,最后联系到具体的生活,掌握生存的技能。

2.学习者分析初中生知道了经纬度的概念,了解通过经纬度可以描述位置(地理常识);知道了有序实数对可以表示点的位置,会读出一些点的坐标。

能在方格纸上画出简单图形运动后的图形,了解确定物体位置的一些基本方法。

3.学习目标确定(1)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

(2)在实际问题中,能建立适当的直角坐标系,描述物体的位置。

(3)在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念(4)感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。

4.学习重点难点符合认知规律,学生也容易接受。

这样的理论来的自然,可谓水到渠成,自然得法。

6. 板书设计第五章 平面直角坐标系活动一:寻找空间物体的位置 活动三:认识平面直角坐标系活动二:刻画平面物体的位置 活动四:建立合适的平面直角坐标系8. 作业与拓展学习设计A 层次:某市区有3个加油站,如图所示,若加油站1的位置表示(B ,1),则加油站2的位置表示为 ,加油站3的位置可表示为 .B 层次:四边形ABCD 的四个顶点坐标分别为A (-6,1)B (-3,3),C (-6,-4),A (-3,-2),(1)在直角坐标系中画出这个四边形并判断它是什么四边形。

平面直角坐标系集体备课

平面直角坐标系集体备课

好运角中学电子备课
学科:数学主备人:李文晶时间:10.12
象限:x轴和y轴把坐标平面分成四个部分,如图4:
图4
每一个部分叫做一个象限.按逆时针方向分别为:第一象限、第二象限、第三象限、第四象限.
注意:坐标轴不属于任何象限.
活动4 问题探究,合作交流,引导学生发现坐标平面内的点的坐标的特征.
问题:
(1)坐标原点的坐标是什么?
(2)x轴、y轴上的点有什么特征?
(3)各个象限内点的横纵坐标有什么特征?谈谈你对上述问题的看法.
学生活动设计:
小组合作,分组讨论,然后进行交流;学生经。

第七章《平面直角坐标系》备课

第七章《平面直角坐标系》备课

团风县思源实验学校集体备课记录2013 年3 月29 日星期五1、自学导读:①确定一个同学的座位位置需要几个数据?怎样确定教室里每一个同学的座位位置?②什么是有序数对?如何表示?③生活中利用有序数对表示位置的情况是很常见的,请举出一些的例子。

2、归纳总结:①平时我们确定教室里座位的位置,需要两个数据,常用排数和列数来表示一个确定的位置。

如约定“列数在前,排数在后” .②用含有两个数的表达方式来确定一个位置,其中两个数各自表示不同的含义。

我们把这种有顺序的两个数a 和b 组成的数对,叫做有序数对,记作(a ,b )。

温馨提示:有序数对有两个要点:一是一对数,二是有顺序。

有序数对用符号表示时,中间用逗号隔开,外边必须加小括号。

3、反馈练习:做一做〗根据教室平面图,教师喊口令,学生起立,反复依次进行。

(1)第3 列;(2)第4 排;(3)第1 列第5 排;(4)第2 列第4 排;(5)第4 列第2 排;(6)第3 列第3排;(7)第5 列第6 排.〖试一试〗根据教室平面图,我们约定“列数在前,排数在后” ,请你用有序数对来表示以下同学的座位位置:(1)第1列第5 排;(2)第2 列第4 排;(3)第4列第2 排;(4)第3列第3 排;(5)第5 列第6 排;(6)第6列第5 排. 〖练一练〗1)下列不能确定物体位置的是(A.行宫小区4里8 号楼C.座位是3 排7 号B )B .北偏东30°D .东经118°, 北纬402)小张去看电影,买了一张9排12 号的电影票, 用有序实数对可表示为(9,12 )(排在前,号在后),如果调换有序数对中两个数的位置,那么原数对所表示的位置和调换后数对表示的位置不同(填“相同”或“不同” ). 三、合作学习,展示纠错〖例题讲解〗例1、如图所示,A 的位置为(2,6), 小明从A 出发, 经过(2,5)→ (3,5)→ (4,5)→(4,4)→ (5,4)在→图中(6,标4),出他〖变式练习〗小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6则,7此), 时两人相距几个格?〖方法归纳〗在平面上,用有序数对表示点的位置时,先要“约定”顺序。

第六章平面直角坐标系集体备课教案

第六章平面直角坐标系集体备课教案

第六章平面直角坐标系教材内容本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等。

实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来。

用坐标法表示地理位置体现了直角坐标系在实际生活中的应用。

用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成。

用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移。

此外,用极坐标表示一个地点的地理位置,在本章最后的“数学活动”中有所渗透。

教学目标〔知识与技能〕1、能利用有序数对来表示点的位置;2会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

〔过程与方法〕1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识;2、通过平面直角坐标确定地理位置,提高学生解决问题的能力。

〔情感、态度与价值观〕明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想。

重点难点在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点。

课时分配6.1平面直角坐标系……………………………………… 3课时6.2 坐标方法的简单应用…………………………………2课时本章小结……………………………………………………2课时课题:6.1.1有序数对课时安排:1课时主备人:杜荣凤审核人:〔教学目标〕理解有序数对的意义,能利用有序数对表示物体的位置。

平面直角坐标系单元集体备课

平面直角坐标系单元集体备课
教学
重点
难点
教学重点:平面直角坐标系
教学难点:平面直角坐标系及坐标系中的图形
重点
难点
突破
措施
(1)立足于学生的生活经验和已有的教学活动经验,创造性地选用现实生活中的有关题材,呈现教学内容。
(2)恰当运用多种教学手段
(3)注重揭示知识间的联系
知识
结构
课时
分配
1、确定位置2课时
2、平直角坐标系中,感受图形变化后点的坐标变化和各点坐标变化后图形的变化。
2、能力目标:从事对现实世界中确定位置的现象进行观察,分析抽象和概括的活动,经历探索图形坐标变化与图形形状,变化之间关系的过程,进一步发展学生的数形结合意识,形象思维能力和数字应用能力。
教材
学生
分析
主要内容:平面直角坐标系及直角坐标系中的图形
回顾与思考1课时
作业
安排
要求
作业批改重点放在规范性方面(关注重点学生精批、细改,当面辅导与学生结队辅导相结合。)
单元
调研
命题
思路
单元
教学
补偿
措施
平面直角坐标系单元集体备课
主备教师
包组教干
编号
单元名称
平面直角坐标系
备课时间
年月日
集备教师
教学日期
月日至月日
单元
教学
目标
1、知识目标:(1)认识并能画出平面直角坐标系,在给定的直角坐标系中会根据坐标描述点的位置,由点的位置写出它的坐标。
(2)能在方格上建立适当的坐标系,描述物体的位置,能结合具体情境,灵活运用多种方式确定物体的位置

高中数学同步备课 平面直角坐标系

高中数学同步备课 平面直角坐标系

一平面直角坐标系1.平面直角坐标系(1)平面直角坐标系的作用:使平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现数与形的结合.(2)坐标法解决几何问题的三步骤:第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题; 第二步:通过代数运算解决代数问题; 第三步:把代数运算结果翻译成几何结论. 2.平面直角坐标系中的伸缩变换(1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归纳为坐标伸缩变换,这就是用代数方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换的定义:设点P(x,y)是平面直角坐标系中任意一点,在变换φ:⎩⎪⎨⎪⎧x′=λ·x λ>0y′=μ·y μ>0的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.用坐标法解决几何问题[例1] [思路点拨] 首先在平行四边形ABCD 所在的平面内建立平面直角坐标系,设出点A,B,C,D 的坐标,再依据两点间的距离公式即可证得结论.[证明] 如图,以A 为坐标原点,AB 所在的直线为x 轴,建立平面直角坐标系.设B(a,0),C(b,c),则AC 的中点E 的坐标为⎝ ⎛⎭⎪⎫b 2,c 2,由对称性知D(b -a,c),所以|AB|2=a 2,|AD|2=(b -a)2+c 2,|AC|2=b2+c2,|BD|2=(b-2a)2+c2,|AC|2+|BD|2=4a2+2b2+2c2-4ab=2(2a2+b2+c2-2ab),|AB|2+|AD|2=2a2+b2+c2-2ab,所以|AC|2+|BD|2=2(|AB|2+|AD|2).根据图形的几何特点选择适当的直角坐标系的规则(1)如果图形有对称中心,选对称中心为原点;(2)如果图形有对称轴,可以选对称轴为坐标轴;(3)使图形上的特殊点尽可能多地在坐标轴上.1.已知在等腰梯形ABCD中,AD∥BC,求证:|AC|=|BD|.证明:取BC所在直线为x轴,线段BC的中垂线为y轴,建立如图所示的直角坐标系.设A(-a,h),B(-b,0),则D(a,h),C(b,0).∴|AC|=b+a2+h2,|BD|=a+b2+h2.∴|AC|=|BD|,即等腰梯形ABCD中,|AC|=|BD|.2.在△ABC中,D是BC边上的任意一点(D与B,C不重合),且|AB|2=|AD|2+|BD|·|DC|,求证:△ABC为等腰三角形.证明:作AO⊥BC,垂足为O,以BC所在的直线为x轴,OA所在的直线为y轴,建立平面直角坐标系,如图所示.设A(0,a),B(b,0),C(c,0),D(d,0),因为|AB|2=|AD|2+|BD|·|DC|,所以由距离公式得b2+a2=d2+a2+(d-b)(c-d),即-(d-b)(b+d)=(d-b)(c-d).因为d-b≠0,所以-b-d=c-d,即-b=c,所以O为线段BC的中点.又因为OA ⊥BC,所以|AB|=|AC|. 所以△ABC 为等腰三角形.用平面直角坐标系解决实际问题[例2] 已知某荒漠上有两个定点A,B,它们相距2 km,现准备在荒漠上围垦一片以AB 为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8 km.(1)问农艺园的最大面积能达到多少;(2)该荒漠上有一条水沟l 恰好经过点A,且与AB 成30°的角,现要对整条水沟进行加固改造,但考虑到今后农艺园的水沟要重新改造,所以对水沟可能被农艺园围进的部分暂不加固,问暂不加固的部分有多长.[解] (1)设平行四边形的另两个顶点为C,D,由围墙总长为8 km,得|CA|+|CB|=4>|AB|=2, 由椭圆的定义知,点C 的轨迹是以A,B 为焦点,长轴长2a =4,焦距2c =2的椭圆(去除落在直线AB 上的两点).以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示),则点C 的轨迹方程为x 24+y23=1(y≠0).易知点D 也在此椭圆上,要使平行四边形ACBD 的面积最大,则C,D 为此椭圆短轴的端点,此时,面积S =12×23×2=2 3 km 2.(2)因为修建农艺园的可能范围在椭圆x 24+y23=1(y≠0)内,故暂不需要加固水沟的长就是直线l :y =33(x +1)被椭圆截得的弦长,如图所示. 由⎩⎪⎨⎪⎧y =33x +1,x 24+y 23=1得13x 2+8x -32=0,则x 1+x 2=-813,x 1x 2=-3213,那么弦长L =1+k 2|x 1-x 2| =1+⎝⎛⎭⎪⎫332·⎝ ⎛⎭⎪⎫-8132-4×⎝ ⎛⎭⎪⎫-3213=4813,故暂不加固的部分长为4813km.运用解析法解决实际问题的步骤(1)建系——建立平面直角坐标系.建系原则是利于运用已知条件,使表达式简明,运算简便.因此,要充分利用已知点和已知直线作为原点和坐标轴.(2)设点——选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程. (3)运算——通过运算,得到所需要的结果.3.已知B 村位于A 村的正西方向1 km 处,原计划经过B 村沿着北偏东60°的方向埋设一条地下管线l,但在A 村的西北方向400 m 处,发现一古代文物遗址W.根据初步勘察的结果,文物管理部门将遗址W 周围100 m 范围划为禁区.试问:埋设地下管线l 的计划需要修改吗?解:建立如图所示的平面直角坐标系,则A(0,0),B(-1 000,0),由W 位于A 的西北方向及 |AW|=400,得W(-2002,2002).由直线l 过B 点且倾斜角为90°-60°=30°,得直线l 的方程是x -3y +1 000=0. 于是点W 到直线l 的距离为 |-2002-3×2002+1 000|2=100×(5-2-6)≈113.6>100. 所以埋设地下管线l 的计划可以不修改.4.如图所示,A,B,C 是三个观察站,A 在B 的正东,两地相距6 km,C 在B 的北偏西30°,两地相距4 km,在某一时刻,A 观察站发现某种信号,并知道该信号的传播速度为 1 km/s,4 s 后B,C 两个观察站同时发现这种信号,在以过A,B 两点的直线为x 轴,以AB 的垂直平分线为y 轴建立的平面直角坐标系中,指出发出这种信号的P 的坐标.解:设点P 的坐标为(x,y), 则A(3,0),B(-3,0),C(-5,23).因为|PB|=|PC|,所以点P 在BC 的中垂线上. 因为k BC =-3,BC 的中点D(-4,3),所以直线PD 的方程为y -3=13(x +4).① 又因为|PB|-|PA|=4,所以点P 必在以A,B 为焦点的双曲线的右支上, 双曲线方程为x 24-y25=1(x≥2).②联立①②,解得x =8或x =-3211(舍去),所以y =5 3.所以点P 的坐标为(8,53).[例3] 伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x′=x ,y′=4y ,曲线C 在此变换下变为椭圆x′2+y′216=1,求曲线C的方程.[解] 设P(x,y)为曲线C 上的任意一点.把⎩⎪⎨⎪⎧x′=x ,y′=4y代入x′2+y′216=1,得x 2+y 2=1,故曲线C 的方程为x 2+y 2=1.坐标伸缩变换φ:⎩⎪⎨⎪⎧x′=λxλ>0,y′=μyμ>0注意变换中的系数均为正数.在伸缩变换下,平面直角坐标系保持不变,即在同一坐标系下只对点的坐标进行伸缩变换.利用坐标伸缩变换φ可以求变换前和变换后的曲线方程.已知前换前后曲线方程也可求伸缩变换φ.5.求4x 2-9y 2=1经过伸缩变换⎩⎪⎨⎪⎧x′=2x ,y′=3y 后的图形所对应的方程.解:由伸缩变换⎩⎪⎨⎪⎧x′=2x ,y′=3y ,得⎩⎪⎨⎪⎧x =12x′,y =13y′,将其代入4x 2-9y 2=1,得4·⎝ ⎛⎭⎪⎫12x′2-9·⎝ ⎛⎭⎪⎫13y′2=1.整理得x′2-y′2=1.∴经过伸缩变换后图形所对应的方程为x′2-y′2=1.6.若函数y =f(x)的图象在伸缩变换φ:⎩⎪⎨⎪⎧x′=2x ,y′=3y 的作用下得到曲线的方程为y′=3sin ⎝⎛⎭⎪⎫x′+π6,求函数y =f(x)的最小正周期.解:由题意,把变换公式代入方程y′=3sin ⎝ ⎛⎭⎪⎫x′+π6得3y =3sin ⎝ ⎛⎭⎪⎫2x +π6,整理得y =sin ⎝ ⎛⎭⎪⎫2x +π6,故f(x)=sin ⎝⎛⎭⎪⎫2x +π6.所以y =f(x)的最小正周期为2π2=π.一、选择题1.将一个圆作伸缩变换后所得到的图形不可能是( ) A .椭圆 B .比原来大的圆 C .比原来小的圆D .双曲线解析:选D 由伸缩变换的意义可得.2.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x′=5x ,y′=3y后,曲线C 变为曲线x′2+y′2=1,则曲线C 的方程为( )A .25x 2+9y 2=0 B .25x 2+9y 2=1 C .9x 2+25y 2=0D .9x 2+25y 2=1解析:选B 把⎩⎪⎨⎪⎧x′=5x ,y′=3y代入方程x′2+y′2=1,得25x 2+9y 2=1,∴曲线C 的方程为25x 2+9y2=1.3.圆x 2+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x′=2x ,y′=3y 后所得图形的焦距为( )A .4B .213C .2 5D .6解析:选C 由伸缩变换⎩⎪⎨⎪⎧x′=2x ,y′=3y ,得⎩⎪⎨⎪⎧x =x′2,y =y′3,代入x 2+y 2=1,得x′24+y′29=1,该方程表示椭圆,∴椭圆的焦距为29-4=2 5.4.在同一平面直角坐标系中,将曲线y =12sin 3x 变为曲线y′=sin x′的伸缩变换是( )A.⎩⎪⎨⎪⎧x =3x′y =12y′ B.⎩⎪⎨⎪⎧x′=3x y′=12yC.⎩⎪⎨⎪⎧ x =3x′y =2y′D.⎩⎪⎨⎪⎧x′=3x y′=2y解析:选D 设伸缩变换公式为⎩⎪⎨⎪⎧x′=λxλ>0,y′=μy μ>0,则μy= sin λx ,即y =1μsin λx ,∴⎩⎪⎨⎪⎧λ=3,μ=2,∴伸缩变换公式为⎩⎪⎨⎪⎧x′=3x ,y′=2y.二、填空题5.y =cos x 经过伸缩变换⎩⎪⎨⎪⎧x′=2x ,y′=3y 后,曲线方程变为________.解析:由⎩⎪⎨⎪⎧x′=2x ,y′=3y ,得⎩⎪⎨⎪⎧x =12x′,y =13y′,代入y =cos x,得13y′=cos 12x′,即y′=3cos x′2. 答案:y′=3cos x′26.将点P(-2,2)变换为P′(-6,1)的伸缩变换公式为________.解析:设伸缩变换公式为⎩⎪⎨⎪⎧x′=λxλ>0,y′=μy μ>0,则⎩⎪⎨⎪⎧-6=-2λ,1=2μ,解得⎩⎪⎨⎪⎧λ=3,μ=12.所以伸缩变换公式为⎩⎪⎨⎪⎧x′=3x ,y′=12y.答案:⎩⎪⎨⎪⎧x′=3x ,y′=12y7.已知f 1(x)=cos x,f 2(x)=cos ωx(ω>0),f 2(x)的图象可以看作是把f 1(x)的图象在其所在的坐标系中的横坐标缩短到原来的13(纵坐标不变)而得到的,则ω为________.解析:函数f 2(x)=cos ωx ,x ∈R(ω>0,ω≠1)的图象可以看作把余弦曲线上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω(纵坐标不变)而得到的,所以13=1ω,即ω=3.答案:3 三、解答题8.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x′=12x ,y′=13y 后的图形.(1)5x +2y =0;(2)x 2+y 2=1. 解:由伸缩变换⎩⎪⎨⎪⎧x′=12x ,y′=13y得到⎩⎪⎨⎪⎧x =2x′,y =3y′.①(1)将①代入5x +2y =0,得到经过伸缩变换后的图形的方程是5x′+3y′=0,表示一条直线. (2)将①代入x 2+y 2=1,得到经过伸缩变换后的图形的方程是x′214+y′219=1,表示焦点在x 轴上的椭圆.9.已知△ABC 是直角三角形,斜边BC 的中点为M,建立适当的平面直角坐标系,证明:|AM|=12|BC|.证明:以Rt △ABC 的直角边AB,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系.设B(b,0),C(0,c),则M 点的坐标为⎝ ⎛⎭⎪⎫b 2,c 2.由于|BC|=b 2+c 2,|AM|= b 24+c 24=12b 2+c 2, 故|AM|=12|BC|.10.在同一平面直角坐标系中,求一个伸缩变换使其满足下列曲线的变换,并叙述变换过程. (1)曲线y =2sin x4变换为曲线y =sin 2x ;(2)圆x 2+y 2=1变换为椭圆x 29+y24=1.解:(1)将变换后的曲线方程 y =sin 2x 改写为y′=sin 2x′,设伸缩变换为⎩⎪⎨⎪⎧x′=λxλ>0,y′=μy μ>0,代入y′=sin 2x′得μy=sin 2λx , 即y =1μsin 2λx,与原曲线方程比较系数得⎩⎪⎨⎪⎧2λ=14,1μ=2,所以⎩⎪⎨⎪⎧λ=18,μ=12,所以伸缩变换为⎩⎪⎨⎪⎧x′=18x ,y′=12y.即先使曲线y =2sin x4上的点的纵坐标不变,将曲线上的点的横坐标缩短为原来的18,得到曲线y =2sin ⎣⎢⎡⎦⎥⎤148x =2sin 2x,再将其纵坐标缩短到原来的12,得到曲线y =sin 2x.(2)将变换后的椭圆方程x 29+y 24=1改写为x′29+y′24=1,设伸缩变换为⎩⎪⎨⎪⎧x′=λx λ>0,y′=μy μ>0,代入x′29+y′24=1得λ2x 29+μ2y 24=1,即⎝ ⎛⎭⎪⎫λ32x 2+⎝ ⎛⎭⎪⎫μ22y 2=1,与x 2+y 2=1比较系数得⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫λ32=1,⎝ ⎛⎭⎪⎫μ22=1,所以⎩⎪⎨⎪⎧λ=3,μ=2,所以伸缩变换为⎩⎪⎨⎪⎧x′=3x ,y′=2y.即先使圆x 2+y 2=1上的点的纵坐标不变,将圆上的点的横坐标伸长为原来的3倍,得到椭圆x 29+y 2=1,再将该椭圆的纵坐标伸长为原来的2倍,得到椭圆x 29+y 24=1.。

《平面直角坐标系2》集体备课稿 -

《平面直角坐标系2》集体备课稿 -

导学案 7.1 平面直角坐标系(2)【学习目标】1.认识并能画出平面直角坐标系,能在给定的平面直角坐标系中根据坐标来描点或由点的位置写出坐标;2.能说出平面直角坐标系中各象限及坐标轴上点的坐标的特点。

【学习重难点】重点:由点的位置写出点的坐标,由点的坐标找出点的位置。

难点:能根据实际条件建立适当的平面直角坐标系。

【学习过程】一、自主学习,质疑交流。

1、自学导读:①什么叫做点在数轴上的坐标?点的坐标和点在数轴上的位置有什么关系?②什么是平面直角坐标系?什么是横轴和纵轴?什么是原点?平面直角坐标系的作用是什么?③怎样画平面直角坐标系?④怎样确定平面内的点的位置?什么叫做点的坐标?怎样写点的坐标?⑤原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?⑥什么是象限?各象限内的点的坐标有什么特点?2、归纳总结:①数轴上的每个点都对应一个实数,这个实数叫做这个点的坐标。

点的坐标与点在数轴上的位置是一一对应的关系。

②平面直角坐标系:平面内两条互相、重合的,组成平面直角坐标系。

水平的数轴称为或,习惯上取向为正方向;竖直的数轴称为或,习惯上取向为方正向;两坐标轴的交点为平面直角坐标系的,记为O;有了平面直角坐标系,平面内的点就可以用一个来表示,叫做点的坐标。

③平面直角坐标系的四个特征:(1)两条数轴互相垂直(2)原点重合 (3)通常取向右、向上为正方向 (4)单位长度一般取相同的。

④通常当平面坐标系中有一点A, 过点A作横轴的垂线交横轴于a, 过点A作纵轴的垂线交纵轴于b,有序..实数对(a ,b)叫做点A的坐标,其中a叫横坐标,b叫纵坐标。

这里表示点的位置有两个数据,一个表示水平方向与A点的距离,另一个表示竖直方向上到A点的距离。

点的坐标的写法:横坐标写在前,纵坐标写在后, 中间用逗号隔开。

⑤原点的坐标是(0,0), x轴上的点的纵坐标为0,y轴上的点的横坐标为0。

⑥建立平面直角坐标系后,平面被坐标轴分成四部分,象限的命名是按逆时针方向依次进行的,分别叫,,,,坐标轴上的点不属于任何象限。

第七章《平面直角坐标系》单元教案

第七章《平面直角坐标系》单元教案

第七章平面直角坐标系7.1平面直角坐标系7.1.1有序数对1.理解有序数对的应用意义,了解平面上确定点的常用方法.2.培养学生应用数学知识的意识,激发学生的学习兴趣.重点有序数对及平面内确定点的方法.难点利用有序数对表示平面内的点.一、创设情境,引入新课教师出示以下几个情景,并请同学们思考共同之处.1.一位居民打电话给供电部门“卫星路第8根电线杆的路灯坏了”,维修人员很快修好了路灯.2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”.3.某人买了一张6排3号的电影票,很快找到了自己的座位.分析以上情景,他们都利用哪些数据找到位置的?师:你还能举出生活中利用数据表示位置的例子吗?学生回答,由教师指导分析.二、讲授新课有序数对:用含有两个数的数对表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).利用有序数对,可以很准确地表示出一个位置.教师反复强调:明确数对表示的含义和格式.三、例题讲解【例】如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?分析:寻找规律,确定路线.图中确定点用前一个数表示街,后一个数表示大道.解:其他的路径可以是:(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(3,3)→(4,3)→(5,3).根据所学的知识,请同学们思考自己在班级里的位置,应该怎样表示?四、方法探究常见的确定平面上的点的位置常用的方法:1.以某一点为原点(0,0),将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置.2.以某一点为观测点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45°、距灯塔3 km处.五、课堂小结为什么要用有序数对表示点的位置,没有顺序可以吗?总结几种常用的表示点的位置的方法.本节课板书的内容比较少,板书有序数对和实际举例的有序数对,目的是突出“有序数对”的概念,让学生从感官上得以完善,建立简单的坐标系是对本节课知识的巩固,同时为下节课学习平面直角坐标系打好基础.7.1.2平面直角坐标系1.认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能根据点的坐标画出点的位置.2.渗透对应关系,培养学生的数感.重点平面直角坐标系和点的坐标.难点正确画坐标和找对应点.一、创设情境,引入新课启发学生,在地图上我们要确定一个地点的位置,需要借助经线和纬线,这两条线从局部上可以看成是平面内两条互相垂直的直线,有刻度、有方向的直线,进而抽象成数轴.而平面内,两条互相垂直的且有公共原点的数轴,就如同地图上的经线和纬线,可以帮助我们确定平面内任何一个点的位置.这就是我们今天要学习的知识:平面直角坐标系.二、观察体验,探索结论给出严格的平面直角坐标系的概念、画法以及象限的规定.凝聚学生注意力,强调由点的位置如何确定点的坐标以及坐标的表示形式.探索活动(1)将任意点A放入直角坐标系中,由其所处的位置让学生确定点的坐标.教师提出问题:1.点在各个象限的坐标有什么特点?2.坐标轴上的点有什么特点?3.坐标轴上的点属于第几象限呢?探索活动(2)由坐标描出点的位置,给学生提供动手实践的机会,由学生自己根据对平面直角坐标系的理解,亲自动手,独立操作完成,师生共同进行归纳总结.同时,针对本节课的易错点,即点的坐标的表示形式,设计了顺口溜形式,作为本节课阶段性小结:“平面直角坐标系,两条数轴来唱戏.一个点,两个数,先横后纵再括号,最后隔开用逗号.”探索活动(3)在全班展开互动游戏来深化本节课的教学.以班里某个同学为坐标原点,建立全班范围的平面直角坐标系.问题:1.你的象限以及你的坐标是多少?2.在x、y轴的同学,你们的坐标有什么特点?3.横坐标为2的同学起立,你们所在的直线和y 轴上的同学有什么位置关系?纵坐标为-1的同学起立,你们所在的直线和x轴上的同学有什么位置关系?4.你的坐标和你到x轴、y轴的距离有什么关系?三、讲授新课1.定义:在平面内两条互相垂直、原点重合的数轴组成平面直角坐标系.其中水平的数轴称为x轴或横轴,竖直方向的数轴称为y轴或纵轴.两坐标轴的交点为平面直角坐标系的原点.(如上活动(1)图)注:(1)横轴取向右为正方向,纵轴取向上为正方向.一般情况下,横轴和纵轴的单位长度取一致.(2)建立平面直角坐标系,必须满足三个条件:a.两条数轴b.互相垂直c.公共原点2.点的坐标:对于平面内任一点M,分别作垂直于x轴、垂直于y轴的垂线,设垂足分别为x、y,则x叫做点M的横坐标、y叫做点M的纵坐标,有序数对(x,y)叫做点M的坐标.3.(1)各象限符号的确定:点在第一象限P(a,b)a>0,b>0 符号特征(+,+)点在第二象限P(a,b)a<0,b>0 符号特征(-,+)点在第三象限P(a,b)a<0,b<0 符号特征(-,-)点在第四象限P(a,b)a>0,b<0 符号特征(+,-)(2)坐标轴上的点的坐标特征:点P(a,b)在x轴上时记作P(a,0)点P(a,b)在y轴上时记作P(0,b)原点记作(0,0)(3)在平面直角坐标系中的点和有序数对是一一对应的关系.即:对于平面内任意一点,都有唯一的有序数对与它对应.对于任意的有序数对,平面上都有唯一的一个点与它对应.4.根据坐标描点的步骤:(1)找到该点的横坐标在x轴上的位置,过该位置作x轴的垂线.(2)找到该点的纵坐标在y轴上的位置,过该位置作y轴的垂线.(3)两线交点即为要描出的点的位置.四、巩固练习1.点(-3,2)在第________象限;点(-1.5,-1)在第________象限;点(0,3)在________轴上;若点(a+1,-5)在y轴上,则a=________.2.在x轴上,且与原点距离为3个单位长度的点的坐标为________.3.若点P在第二象限,它的横坐标与纵坐标的和为-1,则点P的坐标可以是________.4.若点(a,b-1)在第二象限,则a的取值范围是________,b的取值范围是________.5.如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线()A.平行于x轴B.平行于y轴C.经过原点D.以上都不对【答案】1.二三y-12.(3,0)或(-3,0)3.(-2,1)(答案不唯一)4.a<0b>15.B五、课堂小结本节课主要内容回顾:平面直角坐标系;点的坐标及其表示;各象限内点的坐标的特征;坐标的简单应用.请同学们自己讨论,交流心得.通过今天的学习,我们发现,当我们确定了一个点的坐标时,就能准确地找到这个点的位置.同学们,如果你们确定了你们人生的坐标,那么也一定要不断努力,不断进取,才能使你们早日登上你们学业的象牙塔.7.2坐标方法的简单应用7.2.1用坐标表示地理位置1.了解用平面直角坐标系来表示地理位置的意义及主要过程.2.培养学生解决实际问题的能力.重点利用坐标表示地理位置.难点建立适当的直角坐标系,利用平面直角坐标系解决实际问题.一、创设情境,引入新课不管是出差办事,还是出去旅游,人们都愿意带上一幅地图,它给人们出行带来了很大方便,你知道怎样用坐标表示地理位置吗?今天我们学习如何用坐标表示地理位置.二、师生互动探究用坐标表示地理位置的方法.活动1:根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后再向东走50米.小敏家:出校门向南走100米,再向东走300米,最后向南走75米.教师提问:如何建立平面直角坐标系呢?以哪个参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况的平面图?学生讨论回答:小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点,根据描述,可以以正东方向为x轴、以正北方向为y轴建立平面直角坐标系,并取比例尺1∶10000(即图中1 cm相当实际中10000 cm,即100 m).由学生画出平面直角坐标系,标出学校的位置,即(0,0).教师引导学生一起完成示意图.教师再问:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?学生讨论,总结回答:可以很容易地写出三位同学家的位置.活动2:归纳利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程.经过学生讨论、交流,教师适当引导后得出结论:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向.(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度.(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.活动3:思考:如图,一艘船在A处遇险后向相距35 n mile位于B处的救生船报警,如何用方向和距离描述救生船相对于遇险船的位置?救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?由图可知,救生船在遇险船北偏东60°的方向上,与遇险船的距离是35 n mile,用北偏东60°,35 n mile就可以确定救生船相对于遇险船的位置,反过来,用南偏西60°,35 n mile就可以确定遇险船相对于救生船的位置.一般地,可以建立平面直角坐标系,用坐标表示地理位置,此外,还可以用方位角和距离表示平面内物体的位置.三、课堂小结让学生归纳如何利用坐标表示地理位置.通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足.针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用.7.2.2用坐标表示平移掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上的坐标的变化,来判定图形的移动过程.重点掌握坐标变化与图形平移的关系.难点利用坐标变化与图形平移的关系解决实际问题.一、复习回顾、引入新课教师提问:1.什么叫做平移?2.平移后得到的新图形与原图形有什么关系?学生回答:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移.平移后图形的位置改变,形状、大小不变.二、探索点的坐标变化与平移间的关系1.观察试验探索思考:(1)将点A(-2,-3)向右平移5个单位长度,它的坐标是________.将点A(-2,-3)纵坐标不变,横坐标加5,它的位置发生了什么变化?(2)把点A向上平移4个单位长度呢?若A点横坐标不变,纵坐标加4呢?教师总结:归纳1:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).归纳2:在平面直角坐标系中,如果把点(x,y)的横坐标加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把点(x,y)纵坐标加(或减去)一个正数b,相应的新图形就是把原图向上(或向下)平移b个单位长度.思考:如何平移点A(-2,1)得到点A′?指示:可将点A按照:(1)先向右平移5个单位长度,再向下平移3个单位长度.(2)先向下平移3个单位长度,再向右平移5个单位长度.教师总结:点的斜向平移,可通过点的水平平移和竖直平移来完成.三、探索图形上点的坐标变化与图形平移间的关系【例】如图,三角形ABC三个顶点的坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1,B1,C1,依次连接A1,B1,C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置有什么关系?(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2,B2,C2,依次连接A2,B2,C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置有什么关系?解:如图,所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC 的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.教师强调:在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向上(或向下)平移b个单位长度.四、巩固练习1.在平面直角坐标系中,把点P(-1,-2)向上平移4个单位长度所得点的坐标是________.2.将点P(-4,3)沿x轴负方向平移2个单位长度,再沿y轴负方向平移2个单位长度,所得到的点的坐标为________.3.已知三角形的三个顶点坐标分别是(-4,-1),(1,1),(-1,4),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)【答案】1.(-1,2) 2.(-6,1) 3.A五、课堂小结本节课是在学生学习了位置平移的概念和性质的基础上进行的,主要是引导学生运用分类思想,依次经过点或图形平移的观察、画图、比较、推理、归纳等活动,最终探索出点的坐标变化与点平移的关系、图形各个点的坐标变化与图形平移的关系,并结合演示体验坐标平面上的点与有序数对成一一对应的关系.在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行游戏或试验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性.。

八年级数学上册《平面直角坐标系》教案、教学设计

八年级数学上册《平面直角坐标系》教案、教学设计
(3)通过师生互动,探究坐标平面内点的坐标规律,如对称点的坐标关系。
2.教学目标:
(生的空间观念和逻辑思维能力。
(三)学生小组讨论
1.教学活动设计:
将学生分成小组,针对以下问题进行讨论:
(1)坐标变换的规律是什么?如何运用坐标变换解决实际问题?
(2)让学生分享学习收获,提出疑问,教师进行解答;
(3)强调本节课的重点内容,提醒学生课后复习。
2.教学目标:
(1)强化学生对平面直角坐标系的认识,巩固所学知识;
(2)培养学生的归纳总结能力和自主学习能力。
五、作业布置
为了巩固本节课所学知识,提高学生的运用能力,特布置以下作业:
1.基础题:
(1)请在坐标纸上准确画出平面直角坐标系,并标出给定点的坐标;
(3)总结坐标系在本节课中的应用,分享你的学习心得。
作业要求:
1.学生要认真完成作业,注意书写规范,保持作业整洁;
2.鼓励学生在解决问题时,尝试不同的方法和思路,培养创新意识;
3.家长要关注孩子的作业完成情况,适时给予指导和鼓励;
4.教师在批改作业时,要关注学生的解题思路和方法,及时发现并解决学生的疑问。
3.拓展应用:
设计具有挑战性的实际问题,让学生运用坐标系知识解决问题,提高他们的问题解决能力和思维品质。
4.课堂小结:
采用师生互动的方式,总结本节课的重点内容,强化学生对坐标系的认知,巩固所学知识。
5.作业布置:
布置分层作业,既有基础题,也有拓展题,让学生在巩固基础知识的同时,提高自己的能力。
6.教学策略:
3.培养学生勇于探索、严谨治学的精神,使他们形成良好的学习习惯;
4.培养学生运用数学知识解决实际问题的能力,使他们体会数学的价值,增强自信心。

平面直角坐标系教案

平面直角坐标系教案

第一单元:位置单元教学目标:1、在具体的情境中,能在方格纸上用数对确定位置。

2、通过具体的情境,理解数对对确定位置的作用,并能根据数对确定物体的位置。

单元教学重点:掌握确定位置的方法,说出某一物体的位置。

单元教学难点:在方格纸上用"数对"确定位置。

课时划分:2课时第一课时位置教学内容:教材2~3页的例1、例2,练习一1~5题。

教学目标:1、使学生能结合教材提供的素材,自主探索确定物体位置的方法,并能利用方格纸依据数对确定物体的位置或根据平面位置确定物体。

2在确定位置的过程中培养学生的空间观念,渗透平面坐标最基本的知识。

3、能把自己的思维过程与结果用语言表达出来,并与同伴进行很好的交流、合作。

4、体会生活中处处有数学,感受数学的价值,产生对数学的亲切感。

教学重点:运用数对准确表示物体位置。

教学难点:利用方格纸正确表示用数对确定位置。

教学过程:一、旧知铺垫、导入新课1、介绍位置先请若干名学生站上讲台,要求学生说出XX同学的位置。

由学生介绍自己座位所处的位置,然后再介绍几个好朋友所处的位置。

学生介绍位置的方式可能有以下两种:(1)用“第几组第几座”描述。

(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。

2、谈话导入(1)教师肯定以上学生描述的方式。

(2)明确说明本节课我们要进一步学习确定位置的有关知识。

板书课题:位置二、探索活动,获取新知1、教学例1实物投影出示主题图:班级座位图(1)说一说学生观察座位图,想说谁的位置就跟同伴说一说。

(2)想一想师:李刚的位置在哪里?可以怎样说?学生可能有不同的回答,只要合理都予以肯定。

(3)写一写请学生用自己喜欢的方式把李刚的位置表示出来A:学生独立操作,教师巡视课堂,记录不同的表达方式。

B:展示几个不同的表达方式(4)讨论师:同样都是李刚的位置,大家表示的方法却各有不同。

虽然所有的方法都有道理,但是总让人感到太麻烦。

你有什么好建议,可以用一种统一的既清楚又简便的方法来表示?确定:列表示竖排,一般从左往右;行表示横排,一般从前往后。

八年级数学下册《平面直角坐标系》教案、教学设计

八年级数学下册《平面直角坐标系》教案、教学设计
-小组内进行分工合作,共同收集资料、整理数据、撰写报告,提高团队协作能力。
4.课后反思:
-要求学生课后认真总结本节课的学习内容,反思自己在学习过程中遇到的困难和问题,并提出解决方案。
-教师在下次课前检查学生的反思情况,了解他们的学习进度,为下一步教学提供参考。
5.预习任务:
-布置下一节课的预习任务,让学生提前了解下一章节的知识点,为课堂学习做好准备。
-采用多元化的评价方式,如课堂提问、作业、小组讨论、小测验等,全面了解学生的学习情况。
-及时给予学生反馈,鼓励他们积极思考、勇于提问,帮助他们克服学习难点。
-关注学生的个体差异,针对不同层次的学生给予个性化的辅导和指导。
4.教学反思:
-在教学过程中,教师要时刻关注学生的学习状态,根据实际情况调整教学策略。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平面直角坐标系的基本概念、各象限内点的坐标特征、距离的计算公式、线性方程的图像表示。
2.难点:坐标点的准确判断、距离计算公式的灵活运用、线性方程图像的绘制及分析。
(二)教学设想
1.教学方法:
-采用情境导入法,标系的概念。
2.距离计算公式
-讲解两点之间的距离计算公式,并通过具体例子进行演示。
-引导学生掌握距离公式的应用,解决实际问题。
3.线性方程图像表示
-介绍线性方程的图像表示方法,如斜率、截距等。
-通过绘制图像,让学生直观地了解线性方程与坐标轴、坐标点的位置关系。
(三)学生小组讨论
1.教学活动设计
-将学生分成小组,针对本节课学习的知识点,设计具有挑战性的问题,让学生进行讨论。
-运用问题驱动的教学方法,设计具有挑战性的问题,引导学生主动探究,培养其解决问题的能力。

平面直角坐标系单元教学设计-优质教案

平面直角坐标系单元教学设计-优质教案
1、知道可以用数量来描述物体的位置。
2、知道数量的变化与位置的变化有着紧密的联系。
3、会在给定的平面直角坐标系中,根据点的坐标描出点的位置。
4、能建立适当平面直角坐标系,将实际问题数学化。
3.单元(或主题)整体教学思路(教学结构图)
1、“位置的确定”这一节教学,需选用比列尺尽可能大的地图和地球仪,引导学生根据课本提供的素材动手操作,感受物体位置的方法,感受点的运动、位置的变化。
3.学习目标确定
会描述事物运动的路径,能根据经纬度确定移动事物位置变化的路径,会用变化的数量描绘事物位置的变化;
学会运用所学的知识和方法解决简单的问题,培养实践能力;
通过研究数量的变化和位置的变化的联系,感受我们生活在变化的世界中,感受用运动变化和联系的观点研究这些变化;
通过克服困难的经历和获得成功的体验,培养对数学的兴趣,增进应用数学的信心。
4.学习重点难点
会描述物体运动的路径,会用变化的数量描绘事物位置的变化.
会用变化的数量描绘事物位置的变化.
5.学习评价设计
标志物不仅可以描述我们熟悉的生活中的小事物的位置的变化,还可以描述世人瞩目的大事物的位置的变化.
描述台风位置的每一对经纬度是不同的,根据不同的经纬度画出的点的位置也不同,而经纬度就是数学上的一对数.数学里,我们用一对数据来描绘事物的位置,用变化的数据来描绘位置的变化.
年级
初二
教科书版本及章节
苏教版第一节
单元(或主题)教学设计
单元(或主题)名称
1.单元(或主题)教学设计说明
以“生活数学”、“活动思考”为主线呈现本章内容。
1、本章内容主要包括:位置的确定,平面直角坐标系
2、本章内容编排的线索:数量描述大千世界的各种变化—数量的变化与位置的变化有着紧密的联系-位置的确定-平面直角坐标系-在平面直角坐标系中用有序实数对描述点的位置和位置的变化。

最新平面直角坐标系----单元备课-(1)

最新平面直角坐标系----单元备课-(1)

第七章平面直角坐标系单元备课七年级数学备课组撰稿人:蔡晓东审核人:郑强周锦华一、教材分析本单元的教学内容是平面直角坐标系的有关概念和点与坐标的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容。

要求学生理解并掌握点和坐标的对应关系,提高数学思维能力,通过合作交流和小组探讨,发现生活中的数学问题,了解数学的应用价值。

由于学生的年龄特点和认知结构,教师在教学过程中,引导学生回顾数轴知识,然后结合现实生活中的具体位置,让学生直观的感受有序实数对的应用,同时要采用多媒体等教学用具,生动形象地展现知识,让学生在轻松愉快的气氛中,掌握知识,提高技能。

(1)知识点上①本章主要研究平面直角坐标系及有关概念,坐标方法的简单应用。

本章是今后学习函数图象、函数与方程和不等式的基础,也是用代数方法研究几何问题的有力工具。

②本章内容与生活密切相关,利用平面直角坐标系可以解决生活中确定位置、平移等实际问题,通过学习可以让学生体会到平面直角坐标系在生活中的作用,培养学生“用数学”的意识。

⑵思想方法上平面直角坐标系的学习充分体现了数形结合的思想,而坐标方法的简单应用更是从平移及实际应用的角度让学生感受数形结合的思想。

⑶能力上掌握点与有序整数对的关系,能建立适当的平面直角坐标系确定点的位置,为今后函数的学习打好基础。

能将实际问题转化为几何问题,能实现几何问题与代数问题的转换建立起数形联系(应用)。

二、教学目标■知识与能力1.理解有序数对,掌握平面直角系的概念2.掌握平面内的点与有序数对的一一对应关系,能熟练地在给定的直角坐标系中,根据坐标描出点的位置,能由点的位置写出点的坐标。

3.了解象限的概念,能根据象限内和坐标轴的特征,熟练地由点的坐标判断点在的象限。

4.在同一平面直角坐标系中,能用坐标表示平移和说出坐标变换的平移。

■过程方法1.由生活事例引入,师生合作。

先从实际中需要确定物体的位置出发,引出有序数对的概念,指出有序数对可以确定物体的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章平面直角坐标系单元备课
七年级数学备课组撰稿人:蔡晓东审核人:郑强周锦华
一、教材分析
本单元的教学内容是平面直角坐标系的有关概念和点与坐标的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容。

要求学生理解并掌握点和坐标的对应关系,提高数学思维能力,通过合作交流和小组探讨,发现生活中的数学问题,了解数学的应用价值。

由于学生的年龄特点和认知结构,教师在教学过程中,引导学生回顾数轴知识,然后结合现实生活中的具体位置,让学生直观的感受有序实数对的应用,同时要采用多媒体等教学用具,生动形象地展现知识,让学生在轻松愉快的气氛中,掌握知识,提高技能。

(1)知识点上
①本章主要研究平面直角坐标系及有关概念,坐标方法的简单应用。

本章是今后学习函数图象、函数与方程和不等式的基础,也是用代数方法研究几何问题的有力工具。

②本章内容与生活密切相关,利用平面直角坐标系可以解决生活中确定位置、平移等实际问题,通过学习可以让学生体会到平面直角坐标系在生活中的作用,培养学生“用数学”的意识。

⑵思想方法上平面直角坐标系的学习充分体现了数形结合的思想,而坐标方法的简单应用更是从平移及实际应用的角度让学生感受数形结合的思想。

⑶能力上
掌握点与有序整数对的关系,能建立适当的平面直角坐标系确定点的位置,为今后函数的学习打好基础。

能将实际问题转化为几何问题,能实现几何问题与代数问题的转换建立起数形联系(应用)。

二、教学目标
■知识与能力
1.理解有序数对,掌握平面直角系的概念
2.掌握平面内的点与有序数对的一一对应关系,能熟练地在给定的直角坐标系中,根据坐标描出点的位置,能由点的位置写出点的坐标。

3.了解象限的概念,能根据象限内和坐标轴的特征,熟练地由点的坐标判断点在的象限。

4.在同一平面直角坐标系中,能用坐标表示平移和说出坐标变换的平移。

■过程方法
1.由生活事例引入,师生合作。

先从实际中需要确定物体的位置出发,引出有序数对的概念,指出有序数对可以确定物体的位置。

2.用有序数对确定平面内的位置,结合数轴上确定点的方法,引出平面直角坐标系学习平面直角坐标系的概念,如:横轴、纵轴、原点、坐标、象限,建立点与坐标的关系。

3.采用动画和游戏课件,让学生在轻轻松松的环境中掌握重点和难点。

4.让学生观察地图上怎样利用坐标表示点的地理位置,使学生启发,建立坐标系的问题。

■情感态度价值观
1.通过具体情境的创设,使学生在生活中发现数学问题,感受数学知识在生活中的应用,激发学习数学的兴趣。

2.认识“说”“做”“找”中获得数学猜想,进而验证结论,感受“自己不试一试,怎知自己行不行?”
3.通过操作、探究、体验平面直角坐标系上的点与有序数对一一对应,感受数形结合思想。

4.通过研究平移与坐标的关系,能看到平面直角坐标系是数与形结合的桥梁,感受代数与几何问题的相互转化,理解数形结合思想。

三、重点、难点
■重点:
1、掌握点与坐标的一一对应关系,能在坐标系中根据坐标找到点,由点得
坐标,掌握各象限的和坐标轴上的点的坐标符号规律。

2、建立适当的坐标系,描述物体的位置,在同一平面直角坐标系中,能用
坐标表示平移变换。

■难点:
1. 能在坐标系中根据坐标找到点,由点得坐标,掌握各象限的和坐标轴上的点的坐标符号规律。

2.点的平移引起坐标的变化,点的坐标的变化引起点的平移。

■教学突破
1.通过形象地比喻和生活中的实例,激发学生的学习兴趣,引导学生主动合
作和小组交流。

2.结合生活中的例子,让学生积极动手操作,通过合作小组交流解决重点和
难点。

四、教学时间
本章共分两大节
1.平面直角坐标系3课时(引入基础知识)
2.坐标方法的简单应用3课(应用基本技能)
数学活动、小结1至2课时。

相关文档
最新文档