捷联惯性导航原理

合集下载

惯性导航系统简介

惯性导航系统简介

光纤陀螺捷联惯性导航系统The Fiber Optical Gyroscope Strap-down InertialNavigation System中文摘要光纤陀螺捷联惯性导航系统由于具有结构简单、无运动部件、动态范围宽等特点,在导航领域里深受关注,并且正在迅速发展。

光纤陀螺捷联惯性导航系统研发的关键技术在于光纤陀螺惯性测量组件的硬件设计、初始对准技术以及光纤陀螺惯性测量组件的测试与误差标定技术。

【关键词】光纤陀螺惯性导航捷联惯性导航系统AbstractThe Strap-down Inertial Navigation System (SINS) can provide location and attitude. It has inertial sensors combined on the body, including gyros and accelerometers. And an on-board computer realizes the navigation algorithm. The mainstream of recent navigation sensor research is that about gyros without rotor. While in comparison with ring laser gyro or fiber optical gyro, hemispherical resonator gyro (HRG) is competitive due to the optimum cost VS degree of required accuracy, reliability and longevity.Key words: Fiber Optical Gyroscope; Inertial navigation; Strap-down Navigation System一、惯性技术的发展(一)惯性技术的重要性惯性技术是对载体进行导航的关键技术之一,惯性技术是利用惯性原理或其它有关原理,自主测量和控制运载体运动过程的技术,它是惯性导航、惯性制导、惯性测量和惯性敏感器技术的总称。

捷联惯性导航原理

捷联惯性导航原理

2.捷联惯导力学编排方程
姿态角定义: ψ航向角----载体纵轴在水平面的投影与地理子午线之间 的夹角,用ψ表示,规定以地理北向为起点,偏东方向 为正,定义域0~360°。 θ俯仰角----载体纵轴与纵向水平轴之间的夹角,用θ表 示,规定以纵向水轴为起点,向上为正,向下为负,定 义域-90 ° ~+90 ° 。 γ横滚角----载体纵向对称面与纵向铅垂面之间的夹角, 用γ表示,规定从铅垂面算起,右倾为正,左倾为负, 定义域-180 ° ~+180° 。(载体纵向对称面和 纵轴空 间 铅垂面)
捷联惯性导航原理
2010.11.30 北航通信导航与自动测试实验室
如果载体真实地理位置以纬度、经度、高度 表示,则与此对应的载体在地球坐标系中的 真实位置(x,y,z)可通过下式求得:
地球各点重力加速度近似计算公式: g=g0(1-0.00265cos&)/1+(2h/R) g0:地球标准重力加速度9.80665(m/平方秒) &:测量点的地球纬度 h:测量点的海拔高度 R: 地球的平均半径(R=6370km) s:时间 ????????????????????
f 为地球椭球模型的椭圆度,f= 1/298.257223563
R1 RN h R2 RM h
注意从瞬时速度过来那条线,用来计算w(enn)
3、捷联惯导系统的算法
3.1 姿态更新算法 四元数法:
Q(q0 , q1 , q2 , q3 ) q0 q1i q2 j q3k
1. 惯性导航中的常用坐标系
yt
yb
z e zi

xb
zb
zt
xt
O

Oe

§3.9捷联式惯导系统介绍

§3.9捷联式惯导系统介绍

G G dωie G dr 对上式求导,假定地球旋转角速度是常矢量, = 0且 = ve ,可得 dt dt e G K dv e G G d 2r K K G = + ωie × ve + ωie × [ωie × r ] 2 dt i dt i

K G G d 2r = f +G dt 2 i
G G G G G dv e K K G = f − ωie × ve − ωie × [ωie × r ] + G dt i
b 标系 Oe X iYi Z i 的角速度 ωib ,上角标 b 表示该角速度在 b 坐标系上的投 b 进行姿态矩阵 Cbi 计算。由于姿态矩阵 Cbi 中的元素是 影。利用 ωib
OX bYb Z b 相对 OX iYi Z i 的航向角、横滚角、俯仰角的三角函数构成,
所以当求得了姿态矩阵 Cbi 的即时值,便可进行加速度计信息的坐标 变换和提取姿态角的大小。 这三项功能实际上就代替了平台式惯性导 航系统中的稳定平台的功能, 这样计算机中的这三项功能也就是所谓
哥氏校正
fb
比力测量值 的分解
fi


速度v e和 位置的估 计值
i
导航计算
Cbi
固连于载体 的陀螺
ω
b ib
速度和位置的初始估计值 姿态计算
姿态的初始估值
图 捷联式惯导系统——惯性坐标系机械编排
3、当地地理坐标系的机械编排
在这种机械编排中,地理坐标系表示的地速是 vet ,它相对于地理 坐标系的变化率可通过其在惯性坐标系下的变化率表示 G G dv e dv e G G G = − [ wie + wet ] × ve dt t dt i G G G G G G dv e dve 用 ,得 = f − ωie × ve + g1 替代 dt t dt i G G dv e G G G K = f − [2 wie + wet ] × ve + g1 dt t 表示在选定的导航坐标系(地理坐标系)中,有

捷联式惯性导航系统原理

捷联式惯性导航系统原理

1、方向余弦表cos cos sin sin sin sin cos cos sin sin cos sin sin cos cos cos sin cos sin sin sin cos sin sin cos sin cos cos cos C ψϕψθϕψϕψθϕθϕψθψθθψϕψθϕψϕψθϕθϕ-+-⎡⎤⎢⎥=-⎢⎥⎢⎥+-⎣⎦(1.0.1)X E Y C N Z ζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1.0.2) 在列写惯导方程需要采用方向余弦表,因为错误!未找到引用源。

α较小,经常采用两个假设,即:cos 1sin 1αα≈≈ (1.0.3)式中 α-两坐标系间每次相对转动的角度。

由于在工程实践中可以使其保持很小,所以进一步可以忽略如下形式二阶小量,即:sin sin 0αβ≈ (1.0.4)式中β-两坐标系间每次相对转动的角度。

可以将C 近似写为:111C ψϕψθϕθ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(1.0.5) 2、用四元素表示坐标变换对于四元素123q p i p j p k λ=+++,可以表示为如下形式cossincos sincos sincos 2222q i j k θθθθαβγ=+++ (2.0.1)式(2.0.1)的四元数称为特殊四元数,它的范数1q =。

1'R q Rq -= (2.0.2)式中''''R xi yj zk R x i y j z k=++=++ (2.0.3)将q 和1q -的表达式及式(2.0.3)带入(2.0.2),然后用矩阵表示为:()()()()()()()()()22221231231322222123213231222213223131222''22'22p p p p p p p p p x x y p p pp p p p p p yz z p p p p p p p p p λλλλλλλλλ⎡⎤+--+-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+--+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥+-+--⎣⎦(2.0.4)由四元素到方向余弦表的建立123cos cos22sin cos22sin sin22cos sin22p p p θψϕλθψϕθψϕθψϕ-=-=-=+= (2.0.5) 将式(2.0.5)带入式(2.0.4),有cos cos sin cos sin cos sin sin cos cos sin sin sin cos cos cos sin sin sin cos cos cos cos sin sin sin sin cos cos C ϕψϕθψϕψϕθψϕθϕψϕθψϕψϕθψϕθθψθψθ-+⎡⎤⎢⎥=---+⎢⎥⎢⎥-⎣⎦(2.0.6)3、四元数转动公式的进一步说明采用方向余弦矩阵描述飞行器姿态运动时,需要积分姿态矩阵微分方程式,即C C =Ω (3.0.1)式中 C -动坐标系相对参考坐标系的方向余弦阵Ω-动坐标系相对参考坐标系角速度ω的反对称矩阵表达式 其中C 为公式(1.0.5)提供000z y zx y xωωωωωω⎡⎤-⎢⎥Ω=-⎢⎥⎢⎥-⎣⎦(3.0.2)采用(3.0.1)计算需要列写9个一阶微分方程式,计算量大。

捷联惯性导航系统的解算方法课件

捷联惯性导航系统的解算方法课件

02
CATALOGUE
捷联惯性导航系统组成及工作 原理
主要组成部分介绍
惯性测量单元
包括加速度计和陀螺仪,用于测量载体在三个正交轴上的加速度 和角速度。
导航计算机
用于处理惯性测量单元的测量数据,解算出载体的姿态、速度和 位置信息。
控制与显示单元
用于实现人机交互,包括设置导航参数、显示导航信息等。
工作原理简述
学生自我评价报告
知识掌握情况
学生对捷联惯性导航系统的基本原理、解算 方法和实现技术有了深入的理解和掌握。
实践能力提升
通过实验和仿真,学生的动手实践能力得到了提升 ,能够独立完成相关的实验和仿真验证。
团队协作能力
在课程项目中,学生之间的团队协作能力得 到了锻炼和提升,能够相互协作完成项目任 务。
对未来发展趋势的预测和建议
捷联惯性导航系统的解算 方法课件
CATALOGUE
目 录
• 捷联惯性导航系统概述 • 捷联惯性导航系统组成及工作原理 • 捷联惯性导航系统解算方法 • 误差分析及补偿策略 • 实验验证与结果展示 • 总结与展望
01
CATALOGUE
捷联惯性导航系统概述
定义与基本原理
定义
捷联惯性导航系统是一种基于惯性测量元件(加速度计和陀螺仪)来测量载体(如飞机、导弹等)的加速度和角 速度,并通过积分运算得到载体位置、速度和姿态信息的自主导航系统。
01
高精度、高可靠性
02
多传感器融合技术
随着科技的发展和应用需求的提高, 捷联惯性导航系统需要进一步提高精 度和可靠性,以满足更高层次的应用 需求。
为了克服单一传感器的局限性,可以 采用多传感器融合技术,将捷联惯性 导航系统与其他传感器进行融合,提 高导航系统的性能和鲁棒性。

§3.7捷联式惯导系统介绍4

§3.7捷联式惯导系统介绍4


Ctb = (Cbt ) −1 = Cbt
位置信息 重力计算
gt
固连于载体 坐标系的加 速度计
哥氏校正
fb
比力测量值 的分解
ft


速度ve 和 位置的估 计值
t
导航计算
Cbt
固连于载体 的陀螺
ω
速度和位置的初始估计值
b ib
姿态计算
t t ωie + ωet
姿态的初始估值
图 捷联式惯性导航系统——地理坐标系机械编排
重力加速度
r r v v r g = G − ωie × [ωie × r ]
于是
i &ei = f i − ωie v × vei + g i
加速度计提供的载体坐标系中比力的测量值,用向量 f b 表示。为 了建立导航方程,加速度计的输出必须分解到惯性系中,得到 f i
f i = Cbi f b
式中 Cbi 是一个 3 × 3 的矩阵,定义了载体坐标系相对于 i 系的姿态。利 用陀螺提供的角速度的测量值,可求解方向余弦矩阵 Cbi
b 标系 Oe X iYi Z i 的角速度 ωib ,上角标 b 表示该角速度在 b 坐标系上的投 b 进行姿态矩阵 Cbi 计算。由于姿态矩阵 Cbi 中的元素是 影。利用 ωib
OX bYb Z b 相对 OX iYi Z i 的航向角、横滚角、俯仰角的三角函数构成,
所以当求得了姿态矩阵 Cbi 的即时值,便可进行加速度计信息的坐标 变换和提取姿态角的大小。 这三项功能实际上就代替了平台式惯性导 航系统中的稳定平台的功能, 这样计算机中的这三项功能也就是所谓
第二,在平台式系统中,计算机只完成导航计算并对惯性元件的 误差进行简单补偿。而在捷联式系统中,计算机除完成导航计算外 捷联式系统对计算机的容量、 速度和精度要求要比平台式惯导系统高 得多。计算机问题是捷联式惯导系统发展的另一障碍。但是近年来, 由于计算技术的惊人发展,满足捷联式系统购要求已不成问题,它已 经成为促进捷联式导航系统发展的积极因素。 第三,捷联式系统比平台式系统可靠性高,这是它的一个突出优 点。 这首先是由于捷联式系统用数字电路代替了平台式系统的复杂的 框架。 提高机电系统的可靠性要比提高电子部件特别是数子电路的可 靠性困难得多。 另外, 如果平台发生故障, 必须用另一个备用平台(包 括三个陀螺、三个或两个加速度计)取而代之才能继续完成导航任务。 而在捷联式系统中,任何一个惯性元件发生故障,只要用一个备用惯 性元件取而代之就行了。美国有人对 100 套惯导系统作过统计,由液 浮陀螺组成的平台式系统平均每工作 100 万小时发生故障 1832 次, 而捷联式系统只有 744 次。 第四,捷联式系统另一个突出优点是成本比较低。这主要是因为 在平台式系统中框架及其有关的元部件占去成本的大部分。另外,捷 联式系统维护比较简单方便,又进—步降低了维护费用。—套平台式 惯导系统的成本约为 6 万美元, 而相应的捷联式系统成本只需 2 万美 元。 第五,捷联式系统由于取消了笨重的框架结构、力矩电机、角度

车载捷联惯导系统基本原理

车载捷联惯导系统基本原理

车载捷联惯导系统基本原理一、捷联惯导系统基本原理捷联惯导系统基本原理如图2-1所示:图中陀螺和加速度计直接与载体系b固联,用来测量载体的角运动信息和线运动信息。

导航解算的本质是根据初值进行积分的过程,通过求解姿态微分方程完成对姿态和航向角的积分,通过求解比力微分方程完成对速度的积分,通过求解位置微分方程实现对位置的积分。

捷联惯导的姿态矩阵C n 相当于“数学平台”,取代了平台惯导中的实体平台,而ωˆ相当于对数学平台“施矩”的指令角速率。

二、捷联惯导微分方程(一)姿态微分方程在捷联惯导系统中,导航坐标系n 和载体坐标系b 之间的角位置关系通常用姿态矩阵、四元数和欧拉角表示,相应也存在姿态矩阵微分方程、四元数微分方程和欧拉角微分方程三种形式。

姿态矩阵微分方程的表达式为:在欧拉角微分方程式(2.2-7)中,当俯仰角θ趋于90º时,cosθ趋于0,tanθ趋于无穷,方程存在奇异性,所以这种方法不能在全姿态范围内正常工作;姿态矩阵微分方程式(2.2-1)可全姿态工作,但姿态矩阵更新相当于求解包含9个未知量的线性微分方程组,计算量大;四元数微分方程式(2.2-6)同样可以全姿态工作,且更新算法只需求解4个未知量的线性微分方程组,计算量小,算法简单,是较实用的工程算法。

(二)速度微分方程速度微分方程即比力方程,是惯性导航解算的基本关系式:三、捷联惯性导航算法捷联惯导解算的目的是根据惯性器件输出求解载体姿态、速度和位置等导航信息,实际上就是求解三个微分方程的过程,相应存在姿态更新算法、速度更新算法和位置更新算法。

(一)姿态更新算法求解微分方程式(2.2-6)可得四元数姿态更新算法为:在车辆行驶过程中,一般不存在高频大机动环境,并且车载导航系统往往不工作在纯惯性导航方式,而是利用里程仪或零速条件进行组合导航,所以算法误差的影响有限,常用的5ms采样周期和二子样优化算法即可满足要求。

四、捷联惯导误差模型传感器误差、初值误差和算法误差是SINS的主要误差源,其中器件误差和初值误差又是影响导航结果的主要因素。

3捷联惯性导航系统原理 - search readpudncom

3捷联惯性导航系统原理 - search readpudncom
( 4 ) 角 速度
角 速 度 用带 有 上 下 标的 符 号 表 示, 如: 。 九 , 其下 标含义为b 系( 机 体 坐标系) 相
对于i 系( 惯性坐标系)的 转动角速度,上标含义为此角速度在b 系( 机体坐标系)中
的投影。 其它角速度符号含义与此相似。
( 5 ) 坐 标系 变换矩阵
( 5 ) 机 体 坐 标 系( 下 标为b ) - o x b y b z b
机体坐标下是固连在机体上的坐标系。
机体 坐 标 系的 坐 标原点。 位于 飞 行 器的 重 心 处,x b 沿 机体横 轴 指向 右,Y h 沿 机体
纵 轴 指问 前 , z 。 垂 直 于 o x h Y 6 , 并 沿 飞 行 器的 竖 轴 指 向 上。 x b y b z 。 构 成 右 手 坐 标系 机
坐 标 系 变 换 矩 阵 也 用 带 有 上 下 标的 符 号 表 示 , 如:心, 其 含 义 为n 系( 导 航 坐 标
系) 到b 系〔 机体坐标系)的 变换矩阵。其它坐标系变换矩阵符号的含义与此相似。
(பைடு நூலகம் 6 ) 地球半径:
的需要而选取的作为导航基准的坐标系。当把导航坐标系选得与地理坐标系重合时,可 将这种导航坐标系成为指北方位系统;为了适应在极区附近导航的需要往往将导航坐标
系 的z轴 仍 选 的 与z 轴 重 合, 而 使x 。 与x , 及Y , 与Y , 之 间 相 差 一 个自 由 方 位角 或 游 动 方
位角a,这种导航坐标系可称为自由方位系统或游动自由方位系统。
于其它类型的导航方案 ( 如无线电导 航、天文导航等)的根本不同 之处就在于其导航原 理是建立在牛顿力学定律一一又可称为惯性定修 一 的基础上的, “ 惯性导航” 也因此
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 春分点是天文测量中确定恒星时的起始点,因 此 Oe xi 、Oe yi 、Oezi 均指向惯性空间某一方向不变。
1. 惯性导航中的常用坐标系
➢ 地球坐标系(下标为e)— Oe xe ye ze
▪ 地球坐标系的原点在地球中心 Oe, Oeze 轴与 Oe zi轴重合,
Oexe ye 在赤道平面内,xe 轴指向格林威治经线,ye 轴指向东经
2.捷联惯导力学编排方程
▪ 载体坐标系与地理坐标系之间的关系-----姿态矩阵 地理坐标系 Oxt yt zt 绕 zt 轴负向(拇指指z负旋转)转 角ψ得ox’y’z’ , ox’y’z’绕 x’轴转角θ得ox’’y’’’z’’, ox’’y’’’z’’再绕 y’’轴转角γ 则得到载体坐标 系 Oxb。ybz(b 地理到载体即是z负xy正正, ψ θ γ 形 式)
➢ 导航坐标系(下标为n)— Oxn yn zn ▪ 导航坐标系是在导航时根据导航系统工作的需要而选取
的作为导航基准的坐标系。 ▪ 指北方位系统,游离方位系统;
➢ 载体坐标系(下标为b)— Oxb yb zb ➢ 坐标原点位于载体的重心,yb 轴沿载体纵轴指向前,xb
轴沿载体横轴指向右, zb 轴垂直于平面指向上。
▪ 间的增加会带来误差的累积
0
bnb
wbx nb
wby nb
wbz nb
wnbbx 0
wnbbz wby
nb
wnbby wbz
nb
0 wnbbx
wnbbz wnbby
wbx nb
0
2.捷联惯导力学编排方程
wnbb wibb wibe webn wibb Cnb (wine wenn )
内容
1
惯性导航中的常用坐标系
2
捷联惯导力学编排方程
3
捷联惯导系统的算法
4
捷联惯导系统的误差分析
1. 惯性导航中的常用坐标系
➢ 地心惯性坐标系(下标为i) --- Oe xi yi zi
▪ 惯性坐标系是符合牛顿力学定律的坐标系,即是 绝对静止或只做匀速直线运动的坐标系。
▪ 以地心 Oe为原点作右手坐标系,Oe zi轴沿地轴指 向地球的北极,Oe xi ,Oe yi 轴在地球赤道平面内与 地轴垂直并不随地球自转,其中,Oexi 轴指向春 分点。(惯性-不随地球自转,所以指向春分点)
1. 惯性导航中的常用坐标系
yb
ze zi

yt
xb
zb z t
xt
O

Oe xi
xe
ye
yi
地球坐标系到地理坐标系转换矩阵
▪ Ce-g=
▪ 若为地理坐标系转为地球坐标系则为转置阵
2.捷联惯导力学编排方程
上图理解
▪ 上图理解:由陀螺仪的角速度(以及地球自转 等角速度 得到四元数微分方程,求解出 姿态 矩阵:一方面提取姿态角,一方面 把加速度计 比力转化为导航坐标系;再由比力方程得到 速 度,由速度得到位置。)
▪ 也就是wnbb=wibb- winb式中:wine 为地球(坐标系相
对于惯性坐标系的)自转角速率在导航坐标系中的投 影;wenn 为导航坐标系中相对地球坐标系的角速率
在导航坐标系上的投影。(由瞬时速度 Venn 求得) 导
捷联惯性导航原理
2010.11.30 北航通信导航与自动测试实验室
如果载体真实地理位置以纬度、经度、高度 表示,则与此对应的载体在地球坐标系中的
真实位置(x,y,z)可通过下式求得:
▪ 地球各点重力加速度近似计算公式:
g=g0(1-0.00265cos&)/1+(2h/R) g0:地球标准重力加速度9.80665(m/平方秒) &:测量点的地球纬度 h:测量点的海拔高度 R: 地球的平均半径(R=6370km) s:时间 ????????????????????
2.捷联惯导力学编排方程
▪ 当载体姿态发生变化时,陀螺仪就能敏感出相应的
角速率,姿态矩阵亦之发生了变化,其微分方程为
▪ 即更新
g
Cnb bnbCnb
▪ 式中,bnb为姿态角速度 wnbb wnbbx
wby nb
wbz nb
T

成的反对称阵。-----看陀螺加速度输出是哪个坐标系,就看小上标。
▪ ,而且解算欧拉角的积分运算随着时
sin
0
1
0
sin
cos
0
0 sin cos sin 0 cos 0 0 1
cos cos
sin cos
sin
sin cos sin sin cos
sin sin sin cos cos
sin
cos
sin cos cos sin sin sin sin cos cos sin cos cos
2.捷联惯导力学编排方程
▪ 姿态矩阵:从导航坐标系(n系)载体坐标系(b系)的变 换矩阵;
sin sin sin cos cos
Cnb
sin cos
cos sin sin sin cos
cos sin sin sin cos cos cos
sin sin cos sin cos
cos sin
2.捷联惯导力学编排方程
▪ 姿态角定义: ✓ ψ航向角----载体纵轴在水平面的投影与地理子午线之间
的夹角,用ψ表示,规定以地理北向为起点,偏东方向 为正,定义域0~360°。 ✓ θ俯仰角----载体纵轴与纵向水平轴之间的夹角,用θ表 示,规定以纵向水轴为起点,向上为正,向下为负,定 义域-90 ° ~+90 ° 。 ✓ γ横滚角----载体纵向对称面与纵向铅垂面之间的夹角, 用γ表示,规定从铅垂面算起,右倾为正,左倾为负, 定义域-180 ° ~+180° 。(载体纵向对称面和 纵轴空 间 铅垂面)
sin
cos cos
•ψ为航向角,θ为俯仰角,γ为横滚角 •程序中转换采用这一矩阵形式
▪ 导航坐标系绕三轴(zxy)依次旋转ψ 角θ角γ角,则得 到机体坐标系。由此,导航坐标系和机体坐标系之间的 转换矩阵为(和前面的不一样?)
1 0 0 cos 0 sin cos sin 0
Cnb 0 cos
90°方向。又称为空间直角坐标系或地心地固坐标系。 (地球-x轴指向0子午线)
➢ 地理坐标系(东北天)(下标为t)— Oxt yt zt
▪ 原点选在载体重心处 ,xt 指向东,yt指向北,zt 沿垂线
方向指向天。 ▪ 是在载体上用来表示载体所在位置的东向、北向和垂线
方向的坐标系。
1. 惯性导航中的常用坐标系
相关文档
最新文档