惯性导航原理说课讲解
L1-导航原理(哈工大导航原理、惯性技术课件)讲解学习
陶瓷 壳体
球形 转子
球形电极 自转轴
钛离子泵
缺陷:结构复杂、昂贵
Lecture 1 -- Introduction
23
5.2 低成本、小型化
环形激光陀螺 (Ring laser gyro -- RLG) 1960s 早期开始研制, 1970s 后期进入实用
光纤陀螺 (Fiber Optical Gyro – FOG) 1970s 开始研制, 1980s 早期进入实用
15
4.2 历史: 陀螺罗经
陀螺仪被寄予希望, 但面临着自动寻北 的挑战
1908年, Anschutz (德国) 发明了陀螺罗经 (gyro compass)
1909年, Sperry (美国) 也独 立研制出陀螺罗经.
—— 陀螺罗经的出现标志着陀螺仪技术 的现代应用的发端
Lecture 1 -- Introduction
Lecture 1 -- Introduction
14
4.2 历史: 在航海的应用
磁罗盘 (Magnetic compass) 被用于早期的航海
19世纪后期,大量的木质 轮船被钢铁材质的轮船取代, 使磁罗盘的效能受到影响.
磁罗盘的使用在地球两极 附近受到限制 寻找替代的方向指示装置
Lecture 1 -- Introduction
Exam: Close book, close note Contact: 15204694662
Lecture 1 -- Introduction
28
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
t
S
S0
Vdt
0
惯性导航的特点: 自主 (Autonomous, self-contained) 只依赖于对载体的惯性测量 (借助加速度计、陀螺仪) 连续稳定的输出
平台式惯性导航系统原理及应用课件
Part
03
平台式惯性导航系统关键技术
陀螺仪技术
机械陀螺仪
利用角动量守恒原理,通 过转子高速旋转来测量角 度和方向的变化。
光纤陀螺仪
采用光学干涉原理,具有 精度高、稳定性好的优点 ,但成本较高。
微机械陀螺仪
基于微电子机械系统( MEMS)技术,具有体积 小、成本低、易于集成等 优点。
加速度计技术
惯性导航系统概述
惯性导航系统的基本原理 和组成。
平台式惯性导航系统的特 点和优势。
惯导系统的误差来源和精 度评估。
Part
02
平台式惯性导航系统原理
惯性导航系统基本原理
利用陀螺仪和加速度计测量运动 物体的角速度和加速度,从而计 算出物体在空间中的位置、速度
和姿态。
惯性导航系统不受外界干扰,自 主性强,适用于各种复杂环境。
平台式惯性导航系统面临的挑战
技术瓶颈
虽然平台式惯性导航系统已经取得了很大的进展,但是在 高精度、高稳定性、小型化等方面仍然存在一定的技术瓶 颈。
替代技术
随着卫星导航系统、无线电导航等技术的发展,平台式惯 性导航系统的应用受到了一定的挑战,需要不断进行技术 更新和市场拓展。
成本压力
由于平台式惯性导航系统研发和生产成本较高,对于一些 需要大量使用该系统的领域来说,成本压力较大,需要寻 求更加经济可行的解决方案。
地。
无人机航拍
将平台式惯性导航系统应用于无人 机航拍中,可实现高精度航拍图像 采集,为城市规划、资源调查等领 域提供重要数据支持。
救援任务
在救援任务中采用平台式惯性导航 系统,可快速定位失踪人员或物资 ,提高救援效率。
商业领域应用
物流配送
惯性导航仪的工作原理
惯性导航仪的工作原理引言概述:惯性导航仪是一种用于飞行器、舰船、导弹等载具的导航设备,它能够通过测量载具的加速度和角速度来确定载具的位置、速度和方向。
惯性导航仪具有高精度、独立性强等优点,被广泛应用于航空航天领域。
一、惯性导航仪的基本原理1.1 惯性导航仪的加速度测量原理惯性导航仪内置加速度计,通过测量载具的加速度来确定载具的运动状态。
当载具发生加速度变化时,加速度计会产生相应的电信号,进而计算出载具的加速度值。
1.2 惯性导航仪的角速度测量原理惯性导航仪内置陀螺仪,通过测量载具的角速度来确定载具的旋转状态。
陀螺仪会产生相应的电信号,用于计算载具的角速度值。
1.3 综合加速度和角速度信息惯性导航仪会综合加速度和角速度信息,通过积分计算出载具的位置、速度和方向,从而实现导航功能。
二、惯性导航仪的误差补偿原理2.1 零偏误差补偿惯性导航仪存在零偏误差,需要进行零偏误差补偿。
通过定期校准零偏误差,可以提高导航仪的准确性。
2.2 温度漂移补偿惯性导航仪的性能会受到温度的影响,需要进行温度漂移补偿。
通过传感器内部的温度补偿电路,可以减小温度对导航仪的影响。
2.3 震动干扰抑制惯性导航仪在运动过程中会受到震动干扰,需要进行震动干扰抑制。
通过滤波算法和信号处理技术,可以减小震动对导航仪的影响。
三、惯性导航仪的工作模式3.1 静态模式在载具住手运动时,惯性导航仪处于静态模式。
此时,导航仪主要通过加速度计和陀螺仪测量载具的姿态和位置。
3.2 动态模式在载具运动时,惯性导航仪处于动态模式。
此时,导航仪主要通过积分计算出载具的位置、速度和方向。
3.3 切换模式惯性导航仪可以根据载具的运动状态自动切换不同的工作模式,以确保导航的准确性和稳定性。
四、惯性导航仪的应用领域4.1 航空领域惯性导航仪被广泛应用于飞机、直升机等航空器上,用于实现飞行导航和飞行控制。
4.2 舰船领域惯性导航仪也被应用于舰船上,用于实现航行导航和姿态控制。
惯性导航原理课件
未来惯性导航系统将更加注重 小型化、低功耗和集成化设计 ,以满足各种便携式和嵌入式 设备的需求。
惯性导航技术与其他导航技术 的融合将进一步深化,形成更 加高效、精准、可靠的导航解 决方案。
THANKS 感谢观看
由于制造工艺和环境因素的影响,陀螺仪 的测量结果会存在误差,需要进行误差补 偿。
加速度计的测量结果也会受到多种因素的 影响,需要进行误差补偿。
积分误差
外部干扰误差
由于积分运算本身的误差累积效应,惯性 导航系统在长时间工作时误差会逐渐增大 ,需要进行定期校准。
载体运动过程中受到的外部干扰(如风、 水流等)会影响惯性导航系统的测量结果 ,需要进行相应的误差补偿。
06 总结与展望
本课程总结
01
介绍了惯性导航的基本原理和实现方法,包括陀螺仪
和加速度计的工作原理、误差模型和标定技术等。
02
重点讲解了卡尔曼滤波器在惯性导航系统中的应用,
以及如何进行系统状态估计和误差修正。
03
结合实际案例,分析了不同场景下惯性导航系统的优
缺点和适用性。
惯性导航技术发展趋势
随着传感器技术和微电子技术的不断发展,惯性导航系统的精度和稳定性将得到进 一步提升。
角速度测量
陀螺仪实时测量载体的角速度 ,并输出角速度数据。
加速度测量
加速度计实时测量载体的加速 度,并输出加速度数据。
运动参数计算
控制系统根据角速度和加速度 数据,通过积分运算计算载体 位置、姿态等运动参数。
控制输出
控制系统将计算得到的运动参 数输出到执行机构,以控制载
体运动。
误差分析
陀螺仪误差
加速度计误差
民用领域应用
01
02
《惯性导航系统》课件
软件温度补偿
通过算法对温度变化引起的误差进 行估计和补偿,提高导航精度。
混合温度补偿
结合硬件和软件温度补偿的优势, 进一步提高导航精度。
05
惯性导航系统发展现状与 趋势
国内外研究现状
国内研究现状
国内在惯性导航系统领域的研究起步较晚,但近年来发展迅速,取得了一系列重要成果。国内的研究 主要集中在技术研发、系统集成和实际应用等方面,涉及的领域包括航空、航天、航海、机器人等。
陀螺仪的精度和稳定性对惯性导航系 统的性能有着至关重要的影响。
它通过高速旋转的陀螺仪能够感知方 向的变化,并将这些变化转化为电信 号,以供其他组件使用。
不同类型的陀螺仪(如机械陀螺仪、 光纤陀螺仪、激光陀螺仪等)具有不 同的特点和应用场景。
加速度计
01
加速度计用于测量物体在惯性参 考系下的加速度。
动态调整初始对准过程中的参数。
动态误差与扰动误差
要点一
动态误差与扰动误差
在动态环境下,惯性导航系统会受到各种扰动因素的影响 ,如车辆颠簸、气流扰动等。这些扰动因素会导致系统输 出数据出现偏差,从而影响导航精度。为了减小这些误差 ,可以采用多种技术手段,如滤波算法、卡尔曼滤波等。
要点二
卡尔曼滤波
卡尔曼滤波是一种基于状态方程和观测方程的递归滤波算 法,可以对系统状态进行最优估计。通过将卡尔曼滤波算 法应用于惯性导航系统中,可以有效减小由于动态环境和 扰动因素引起的误差。此外,还可以采用其他先进的滤波 算法,如扩展卡尔曼滤波、粒子滤波等,根据实际情况选 择最适合的算法来减小动态误差与扰动误差。
案例分析:无人机导航系统
案例背景介绍
介绍无人机导航系统的应用场景和需求,阐述其重要性和挑战。
《惯性导航原理》课件
课程目标
01
掌握惯性导航的基本原理和技术 特点。
02
了解惯性导航在各个领域的应用 情况。
探讨惯性导航的未来发展趋势和 挑战。
03
提高学生对导航技术的兴趣和认 知水平,为未来的学习和职业发
展打下基础。
在深空探测任务中,惯性导航系统为 航天器提供连续、高精度的位置和速 度信息,确保航天器在深空中的精确 导航和科学数据采集。
地球物理学研究
在地球物理学研究中,利用惯性导航 系统进行地震数据采集和地壳运动监 测,推动地质灾害预警和地球科学研 究。
05
惯性导航技术发展
技术现状
惯性导航技术已广泛应用于军事、航 空、航海等领域。
与其他导航手段融合
研究如何更好地将惯性导航与其他导 航手段(如GPS、北斗等)进行融合 ,实现优势互补。
人工智能与大数据的应用
讨论如何利用人工智能和大数据技术 对惯性导航数据进行处理和分析,提 高导航性能。
THANKS
感谢观看
潜艇导航
在潜艇导航中,惯性导航系统用于长时间隐蔽航行,提供连续的定 位信息,保障潜艇作战和战略威慑能力。
无人机导航
无人机依靠惯性导航系统进行长航程、长时间飞行,实现复杂环境 下的精确导航和任务执行。
民用应用
航空交通管制
在航空交通管制中,惯性导航系统为飞机提供精确的位置和速度 信息,确保空中交通安全有序。
的组合方法。
陀螺仪与加速度计
深入探讨了陀螺仪和加速度计的工作 原理、分类及优缺点。
误差分析与校正
讨论了惯性导航中常见的误差来源及 其校正方法。
惯性导航课件
三、惯导3系.1平统台式的惯分导系类统
图3.1 惯导平台弹
将陀螺仪和加速度等惯性元件通过万向支架 角运动隔离系统与运动载物固联的惯性导航系 统。早期的惯导系统由于采用了机械式精密稳 定平台,被称为平台惯式性导惯航 导系统,它不仅体积
三、惯导系统的分类
3.2捷联式惯导系统
捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的, 计算机的发展,激光陀螺仪技术的成熟 ,使捷联惯导系统逐步取 代了平台惯导系统。 捷联惯导系统除了具有结构简单 成本低 体积 重量小 准备时间短 MTBF长等优点
光纤陀螺的主要优点在于高可靠性、长寿命、快速启动、耐冲 击和振动、对重力 g 不敏感、大动态范围等。
目前光纤陀螺的精度已可达到0.0002º/h[18],同时从上世纪90 年代起,0.1º/h的中精度干涉型光纤陀螺IFOG 已投入批量生产。光 纤陀螺技术领域,美国在理论、测量技术和光纤元器件开发上领先 的单位是斯坦福大学和MIT。
(1)红外定位技术
(2)蓝牙定位技术惯性导航
四、惯性技术的应用
通过使用智能手机中的加速度传感器来测量行走的步长和步数, 方向传感器测量行走的角度。在用户行走的路径上布设NFC标签, 触碰NFC标签来对用户当前所在的位置进行校正,将这三种传感器 结合起来,形成了基于多传感器的导航定位流程图。
4.2 NFC+惯导系图统结构图
惯性导航
五、惯性导航发展趋势
5.1惯性测量传感器的发展趋势 惯性测量传感器的发展须要权衡以下几个因素:精确性、连续 性、可靠性、成本、体积/重量、功耗。
5.1 惯性传感器考虑因素
惯性导航
五、惯性导航发展趋势
5.2惯性导航系统发展方向
惯性导航系统发展方向: ① 必须针对并满足应用的需求② 实际 的应用环境是最大的挑战③ 提高惯性导航系统的通用性,拓展应 用领域。
惯性导航技术
f
i
C
i b
f
b
第二章 惯性导航原理
3.2 惯性坐标系机械编排
第二章 惯性导航原理
3.2 惯性坐标系机械编排
比力 哥氏加速度 向心力加速度 当地质量引力加速度
dve dt
i
f
ωie ve
ωie (ωie r) g
g1 g ie [ie r]
重力矢量
vi f i ωi vi gi
3.捷联惯性导航机械编排
2)哥氏定理 哥氏定理:用于描述矢量的绝对变化率与相对变化率间
的关系。设有矢量 r , m, n 是两个作相对旋转的坐标
系,则哥氏定理可描述为:
dr dt
m
dr dt
n
ωnm
r
根据哥氏定理,有
dr dt
e
dr dt
i
ωie
r
即 ve vi ωie r
第二章 惯性导航原理
则
xR yR
c11 c21
c12 c22
c13 c23
xr yr
C
R b
yxbb
zR c31 c32 c33 zr
zb
C 称 R 为方向余旋矩阵,或坐标变换矩阵。 b
第二章 惯性导航原理
4.捷联姿态计算
反之则有:
xb yb
c11 c12
c21 c22
c31 c33
第二章 惯性导航原理
1.惯性导航概述
比力的概念: 加速度计 并不能直接测量载体相对惯 性空间的加速度,而测量的 是比力,即惯性空间加速度 与引力加速度之差。量值是 作用在敏感器上的每单位质 量的非万有引力。 陀螺仪测量的是运载体相 对于惯性空间姿态变化或转 动速率。
惯性导航系统讲解
ALIGN FAULT
ON DC
DC FAIL
ALIGN FAULT
ON DC
DC FAIL
4. 惯导的基本原理
(一) 平台工作原理
陀螺稳定平台是利用 陀螺的稳定性和进动 性直接或间接地使某 一物体对地球或惯性 空间保持给定位置或 按照给定规律改变起 始位置的一种陀螺装 置
图10.4 由三自由度陀螺组成的三轴稳定平台
检查飞行中的航线数据
单独提供姿态基准信号
6.
惯导系统的精度及特点
惯导系统精度:漂移误差0.001度/秒 惯导系统特点: (1)自主式导航系统,全球、全天候导航 (2)系统校准后短时定位精度高 (3)体积小,精度高,操作简便,可与航道HSI,FDS 交连直观显示飞机位置和飞行姿态。
返回
返回
§2 惯性导航系统操作程序
飞行前
VOR/DME 有精确坐标的位置点(NDB台、机场上空、显著地标等)
航站区域飞行:截获ILS前,可根据选定的电台提供非
精密导航操作。
惯导的其他功能
顺逆风显示 平行航线飞行 距离现在航迹400nm的范围内,利用惯性导航系 统可以执行平行偏离原航线飞行。使用自动驾驶 仪时,飞机自动转向偏离航线的平行航迹上。
惯性导航系统的自校准 引入现在飞机位置(经纬度),对飞机进行校准 要求:校准过程中不能开车,移动。校准完成后不能断开 惯性导航系统电源。 引进航路导航计划(9个航路点) 依次引进航路点的经纬度坐标,人工编排飞行计划。 人工输入VOR/TAC台站的数据(9个) 经纬度坐标 频率 标高 磁差 检查航线数据 为防止编排的航线计划出错,可以使用遥控功能检查航线 距离、待飞时间和航线角
导航原理惯性导航休拉调谐分解课件
处理单元将解算得到的控制指令输出 给执行机构,对载体进行控制和调整 。
A/D转换
处理单元将陀螺仪和加速度计的模拟 信号转换为数字信号,便于计算机处 理。
03
休拉调谐原理
休拉调谐的概念
惯性导航系统
惯性导航系统是一种通过测量物体的 加速度和角速度来确定物体位置、速 度和姿态的导航系统。
休拉调谐原理
休拉调谐是惯性导航系统中一种重要 的调谐方法,通过调整惯性传感器的 安装位置和方向,以减小惯性传感器 对导航性能的影响。
陆地导航
车辆导航(Vehicle Navigation)
在复杂的城市道路和高速公路上,惯性导航系统可以提供精确的车辆位置、速度和航向 信息,为驾驶者提供实时的道路指引。
机器人导航(Robot Navigation)
在工业自动化和智能服务领域,惯性导航系统可以帮助机器人实现精确的移动和定位, 提高工作效率和安全性。
采用先进的滤波算法和数据处理技术,对惯性传感器数据进行优化处理,以提高 导航精度。
小型化、集成化
微型化设计
通过采用微型化设计,将惯性传 感器和导航计算机等组件集成在 一个小型封装中,实现更小体积 和更轻重量。
集成化技术
采用先进的集成电路技术和微加 工技术,将多个组件集成在一个 芯片上,实现更小体积、更轻重 量和更低功耗。
休拉调谐的原理
惯性传感器安装位置
在休拉调谐中,惯性传感器的安装位置应尽量远离运动物体,以减小运动物体 对惯性传感器的影响。
惯性传感器安装方向
惯性传感器的安装方向应尽量与导航坐标系的方向一致,以减小惯性传感器对 导航性能的影响。
休拉调谐的实现方法
选择合适的安装位置
在安装惯性传感器时,应选择远离运动物体、尽量与导航坐标系 一致的位置。
惯性导航原理
第二章 惯性导航原理
1.惯性导航概述
1.3 惯性导航发展历程
17世纪,牛顿确定了力学定律和万有引力定律; 1852年,傅科( Foucault) 发现了陀螺效应;同时代科 学家都在研究地球的转动和转动动力学的演示验证,利用转盘 的旋转轴能保持空间不变的特性; 1890 年, G. H. 布雷安( Bryan) 教授发现了圆筒的振 鸣,这一重要现象后来用于固态陀螺仪; 20 世纪初,出现了用做方向基准的陀螺罗经。其基本原 理是,通过在其摆性效应和携带罗盘的回转座的角动量之间建 立平衡关系,来指示真北。
第二章 惯性导航原理
2.惯性导航参考坐标系
3)当地地理坐标系(t系) 原点位于导航系统所处的位置P 点,坐标轴指向北、东和当地垂 线方向(向下)。导航坐标系相对 于地球固连坐标系的旋转角速率 取决于P点相对于地球的运动, 通常称为转移速率。
4)游动方位坐标系(w系) 5) 载体坐标系(b系)
第二章 惯性导航原理
3.捷联惯性导航机械编排
3.1 三维捷联导航系统基本分析 1)相对于惯性系的导航
比力:
导航方程
第二章 惯性导航原理
3.捷联惯性导航机械编排
2)哥氏定理
哥氏定理:用于描述矢量的绝对变化率与相对变化率间
的关系。设有矢量 ,
是两个作相对旋转的坐标
系,则哥氏定理可描述为:
根据哥氏定理,有 即
第二章 惯性导航原理
第二章 惯性导航原理
1.惯性导航概述
马克斯·舒勒(Max Schuler) 教授研制了一种带垂直安装 系统的仪表,能确定一个精确的垂直基准。该仪表调谐到由
确定的无阻尼振荡自然周期,约为84min 。其中R 是地球半径, g 是地球引力产生的加速度。 20 世纪上半叶, 研制了舰炮火控系统稳定平台,提出了惯 性导航系统的基本概念。博伊科( Boykow) 发现,利用加 速度计和陀螺仪可构建一个完整的惯性导航系统。 第二次世界大战中,德国科学家在V1 和V2 火箭上演示验 证了惯性制导的原理,使用了带反馈的系统,从而实现了精确 导引。
导航原理-惯性导航-休拉调谐分解说课材料
惯导系统工作原理的数学描述如下:
设一飞行器以一定的加速度a 运动,其初始速
度为V(t0)。其速度可以表示为:
v(tk)v(t0)
tka(t)dt
t0
飞行器的瞬时位置可表示为:
r(tk)r(t0)tt0kv(t)dt
式中,r (t0 ) 为飞机的初始位置向量。
若在载体运动过程中,利用陀螺使平台始终 跟踪当地水平面,三个轴始终指向东、北、 天方向。在这三个轴上分别安装上加速度计 测量东加速度 ae 、北向加速度an、天向加 速度au。将这三个方向上的加速度分量进行 积分,便可得到载体沿三个方向的速度分量 为:
JR
•
即
l J mR
,由于R是地球半径,所以l很小,
不易实现,为了使l尽量大,必须在摆的质量m
一定的条件下转动惯量J最大。根据这些限制条
件进行了计算:物理摆设计成环状是最佳方案,
假设环半径r=0.5m,环的质量全部集中在
•
圆周上,可计算出
l J m2r0.04m
mR mR
4.3.2单轴惯导系统和休拉调谐的实现
(t)(0)co ss t (0 s)sin st (7)
其中 s
g
R 称为休拉频率,(0)和 (0)为摆的初始偏差角
和偏差角变化率初值。
根据休拉频率,可以计算出对应角频率 s 期:
g R
的振荡周
Ts 2s 2
R26371 80.40 m0in(8)
g
9.81
称为地球上的休拉周期。
从式7可以看出,如果,(0)0和 (0)0则不论
运载体的运动状态如何,摆都能正确指示地垂线, 这种摆称为休拉摆。实现休拉摆的条件(8)称 为休拉调谐条件。
惯性导航基础
③ 当扁率e 0 时,RN RE Re,地球为圆球体。
作业思考题
1. 推导垂线偏差公式,简要分析垂线偏差对 导航精度的影响。
2. 为什么惯性导航在进行导航参数解算时, 不能将地球近似为圆球体?
惯性导航系统
惯性导航系统
第一讲 惯性导航概述
教学内容
一、导航基本概念 二、惯性导航的基本原理 三、惯性导航的应用与发展
导航基本概念
定义: 将载体从一个位置引导到另一个位置的 过程。
要素: 即时位置(坐标)、航行速度、航行方位 (航向)、姿态、高度、距目标点的待飞 距离、待飞时间、偏航距等。
导航基本概念
按载体分
惯导基本原理
加速度分解及速度参数计算
VE VE0
t
0 aE dt
t
VN VN0
0 aN dt
VU VU0
t
0 aU dt
惯导基本原理
位置参数计算
0
t
VE
dt
0 (R h) cos
0
t VN dt 0 Rh
h h0
t
0VU dt
惯导基本原理
基本原理
惯导基本原理
舰船导航
分类: 陆地导航
航空导航 航天导航
按技术分
惯性导航 无线电导航 多普勒雷达导航 卫星导航 天文导航 地形辅助导航 组合导航
惯导基本原理
基本概念 利用惯性测量元件(陀螺、加速度计)测
量载体相对惯性空间的角运动参数和线运动 参数,在给定运动初始条件下,经导航解算 得到载体速度、位置及姿态和航向的一种导 航方法。
②将(4)代入(11)有:
RE
xe
《惯性导航系统》课件
轨道监测。
惯较高的测量精度,适用于精密导航和定位。
可靠性
不受外界环境干扰,适用于复杂环境和恶劣条件。
鲁棒性
不受信号遮挡和干扰,适用于密集城市和山区等特殊环境。
惯性导航系统的发展趋势
1
集成化
将惯性传感器和导航算法集成在一起,提高系统性能。
2
精度提升
《惯性导航系统》PPT课
件
本课件介绍了惯性导航系统的定义、组成和原理,以及在航空、航海、矿业
和地震勘探等领域的应用场景。
什么是惯性导航系统
惯性导航系统是一种利用惯性传感器测量和计算对象运动状态和位置的系统。
惯性导航系统的应用场景
1
航空 ✈️
2
飞机、无人机等飞行器的导航和姿态控
航海 ⛵️
船舶的导航、位置定位和目标跟踪。
引入更精密的传感器技术和导航算法,提高导航精度。
3
多源数据融合
融合其他导航系统数据,提高位置和姿态的准确性。
惯性导航系统的应用前景
航空航天领域
工业制造领域
军事领域
飞行器导航、姿态控制和自主
机器人导航、定位和轨迹规划
武器系统导航、目标跟踪和战
导航技术的重要组成部分。
的关键技术。
场监测的重要手段。
结论
惯性导航系统在现代导航领域具有重要作用,随着技术的不断发展,其应用
前景将更加广泛。
制。
3
矿业 ⛏️
地下矿场的测量和导航。
4
地震勘探
地震仪的定位和震源分析。
惯性导航系统与其他导航系统的比较
GPS
北斗卫星导航系统
轨道测量系统
全球卫星定位系统,依赖卫
中国自主建设的卫星导航系
惯性导航基本原理课件
坐标系及转换
01
02
03
地理坐标系
以地球中心为原点,地球 表面为基准的坐标系。
导航坐标系
以航行载体中心为原点, 载体运动方向为基准的坐 标系。
转换关系
利用旋转矩阵将地理坐标 系下的位置和速度转换为 导航坐标系下的位置和速 度。
陀螺仪和加速度计的工作原理
陀螺仪
通过角动量守恒原理,测量载体在三个轴向的角速度。
• 实时性:惯性导航系统可以提供实时的位置、速 度和姿态信息。
惯性导航技术的优势与不足
不足
误差积累:由于惯性导航系统 依赖于陀螺仪和加速度计等传 感器的测量数据,长时间工作
后会产生误差积累。
精度受限于传感器性能:惯性 导航系统的精度受到传感器性 能的影响,包括陀螺仪和加速 度计的精度、稳定性和交叉耦 合效应等。
惯性导航系统组成
惯性导航系统主要由惯性传感器、数 据处理单元和显示单元等组成。
数据处理单元对传感器数据进行积分 、滤波等处理,计算得到载体的速度 、位置和姿态等运动参数。
惯性传感器包括陀螺仪和加速度计等 ,用于测量载体在三个轴向的角速度 和加速度。
显示单元将运动参数实时显示给用户 ,以便用户了解载体运动状态。
捷联惯导算法
要点一
概述
捷联惯导算法是一种实时性较高的惯性导航算法,通过陀 螺仪和加速度计的测量数据,计算出物体的姿态、速度和 位置等信息。捷联惯导算法不需要外部信息源的辅助,可 以在短时间内实现较精确的导航。
要点二
实现过程
捷联惯导算法通过建立姿态、速度和位置的更新方程,结 合陀螺仪和加速度计的测量数据,进行实时计算。姿态更 新方程包括对加速度计测量值的补偿、速度更新方程包括 对陀螺仪测量值的补偿、位置更新方程包括对速度和时间 的积分。捷联惯导算法需要解决的主要问题是陀螺仪和加 速度计的误差补偿以及导航信息的初始对准。
第五章 惯性导航系统(PPT-70)
地理坐标系
第五章 惯性导航系统
二、有关知识
当地地理坐标系的绝对角速度
以飞机水平飞行的情况进行讨论:设 飞机所在地的纬度为 ,飞行高度 为h,速度为v,航向角为ψ。把飞行 速度分解为沿地理北向和地理东向两 个分量 v N v cos
加、加速度计
加速度计的类型
在摆式加速度计中,检测质量做成单 摆形式。当飞机有沿负x轴加速度a时, 则敏感质量摆感受到a引起的惯性力 F=-ma,其方向与a相反。摆锤在F作 用下,绕转轴y产生转矩Ma和转角a 。 由于转轴转动使弹簧变形而产生弹性 力矩Ms=-ka,Ms与Ma方向相反。又 由于摆锤偏离z轴方向,重力形成与 弹性力矩方向相同的mglsinα力矩分 量,摆式加速度计平衡如下图所示。 当稳态时力矩平衡方程为
用传感器输出电压,取u=k2α,可得输出 电压为
u k1k 2 k a a
可见,只要测量出输出电压,就可知道被 测加速度。
加速度计的力学模型
第五章 惯性导航系统
三、加速度计
加速度计的类型
按加速度计活动系统的支承方式分类,可分为轴承支承摆式加速度计、 挠性支承加速度计、悬浮(例如静电、永磁体等)加速度计等。 按加速度计信号传感器的种类可分为电位计式加速度计、电容式加速度 计、电感或差动变压器式加速度计、振动弦式加速度计等。 按测量方式分有开环加速度计和闭环加速度计(力反馈式加速度计)。
第五章 惯性导航系统
四、加速度测量问题
比力
设加速度计检测质量m仅受到沿敏感 轴(输入端)方向的引力mG(G为 引力加速度),则检测质量将沿引力 作用方向相对壳体位移,拉伸弹簧。 当位移达一定值时,弹簧形成的确弹 簧力kxG(xG为位移量)恰与引力mG 相等,稳态时,有如下等式
惯性导航原理第1讲绪论
2010-03-12
13
惯性技术在国防建设中的地位
ƒ对于远程巡航导弹,则惯性制导系统加 上地图匹配技术或其他末制导技术,可 保证它飞越几千公里后仍能以极高的精 度击中目标。 „惯性技术不仅在战略武器中占有极其重 要的地位,而且在战术武器中的应用也日 益广泛。反舰导弹、空空导弹、炮兵阵地 定位,坦克攻击定位、战术飞机导航攻击 及舰船导航。
2010-03-12 7
舰船的各种导航方法,在具体应用中相辅相成
观测舰位法
地文导航 天文导航
易受天候限制,定位精度较低; 但其所使用设备结构简单,使用方便,故障较少。 易受天候限制,如在潜艇上使用,需露出水 面观测、容易暴露目标; 但其定位精度较高。
无线电导航 作用距离较远,定位精度较高,且不受时间和天候的限制;
欢迎提出宝贵意见!
xhcheng@ 025-83792230 13601450958
2010-03-12
1
惯性导航系统原理
程向红
2010-03-12
2
绪论
Navigation
运动物体Any mobile vehicle
包括舰船、车辆、飞机、宇宙飞行器和卫星等,通 常叫做载体.
但易受自然或人为的干扰和发射台的限制,潜艇处于 水下状态时不能使用。Байду номын сангаас
卫星导航
容易做到全球、全天候导航,定位精度高; 但不能实时连续导航。
2010-03-12
综合导航系统
8
推算舰位法
陀螺罗经、计程仪加上航迹自绘仪系统,使用比较广泛。 但是,长时间使用这些设备定位,容易产生积累误 差。迄今为止,很多计程仪只能测量舰船相对于海水 的速度,而不是相对于地面的速度,海水又有流向和 流速的变化,影响了测量精度。 为了提高导航精度,往往把它们组成综合导航系统。
惯性导航第四章讲解
间接陀螺稳定器
2019年1月14日 惯性导航系统 7
第三节 三轴陀螺稳定平台
三轴陀螺稳定平台具有三个稳定轴和三套稳定系 统。三套稳定系统分别承受作用在平台三个稳定轴上 的干扰力矩,所以平台能够在干扰力矩的作用下,相 对惯性空间稳定。 如果在平台中增加水平修正和方位修正系统,就 可以使平台不但跟踪地平面,而且跟踪子午线,做到 相对地球保持稳定。用来测量飞机的俯仰角、倾斜角 和航向角,并把信号送给飞机的其他设备。 高精度的三轴陀螺稳定平台是用来在飞机上建立 一个精确的导航坐标系,并把加速度计稳定在所需要 的方位上工作,是惯性导航系统的主要基础部件。
可承受较大的干扰力矩,精确测量输出角度
2019年1月14日
惯性导航系统
3
第二节 单轴惯性平台原理
利用陀螺力矩抵消干扰力矩 缺点: •长时间受到方向不变的干扰 力矩作用时,陀螺将失去稳 定性 •体积和重量大
直接陀螺稳定器
2019年1月14日 惯性导航系统 4
陀螺稳定平台-----单轴陀螺稳定平台
利用陀螺力矩和稳定电机力矩共 同抵消干扰力矩
2、陀螺1内环轴上有干扰力矩, 陀螺绕外环轴漂移,平台受陀 螺2控制,平台不跟踪陀螺1漂 移,陀螺1与平台方位发生。
陀螺1外环轴上信号器感受陀 螺绕外环轴的漂移并输出信号, 加给陀螺1内环轴上力矩器, 使陀螺1绕外环轴进动,消除 陀螺1绕平台的漂移。
2019年1月14日
惯性导航系统
15
1、当陀螺2由于内环轴上的干 扰力矩而引起他绕外环轴漂移, 陀螺1外环轴上的信号器有信 号输出,此信号送到陀螺2内 环轴上力矩器,从而产生修正 力矩,使平台绕方位轴的漂移 减小。 2、某时两陀螺漂移方向相反。 例如陀螺2绕外环轴顺时针漂 移,陀螺1绕外环轴逆时针漂 移,陀螺2使平台顺时针转, 陀螺1使平台逆时针转,相互 制约的结果减少平台的漂移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矢量 V 在新坐标系上 OX’Y’Z’ 的投影为
Vx'i'y'j'z'k'
则不变矢量 V 在两个坐标系上的投影之间存在如下关系:
Ve'q1Veq
式中 Ve xiyjzk Ve'x'iy'jz'k
分别称为矢量 V 在坐标系 OXYZ 和 OX’Y’Z’ 上的映像
四元数 映象图解
zn轴 一与个自z t 轴由重方合位,角而或游x 与n动x方t及位y角t 与。y n之间相差
5. 平台坐标系—— Oxp ypzp
平台坐标系是用惯导系统来复现导航坐标
系时所获得的坐标系,平台坐标系的坐标 原点位于飞行器的重心处。对于平台惯导 系统,平台坐标系是通过平台台体来实现 的;对于捷联惯导系统,平台坐标系是通 过存储在计算机中的方向余弦矩阵来实现 的。
Vx i y j zk Ve xiyjzk
Vx'i'y'j'z'k' Ve'x'iy'jz'k
四元数表示转动 方向余弦
Ve'q1Veq 将该投影变换式展开,也就是把
Ve xiyjzk Ve'x'iy'jz'k
qP 1iP 2jP 3kq 1P 1iP 2jP 3k
代入上述投影变换式
x'iy'jz'k
2(P 1P 3P 2) 2(P 2P 3P 1)
(P 1iP 2jP 3k)(xiyjzk)(P 1iP 2jP 3k)
进行四元数乘法运算,整理运算结果可得
四元数表示转动 方向余弦
x' x
y
'
C
y
z ' z
其中方向余弦矩阵 C
22 (P P 1 12 P 2 P 22P 3)P 32
2(P 1P 2P 3) 2P 22P 12P 32
或简单表示为
q M v , P
四元数基本性质 乘法
2.四元数乘法
q M ( P 1 i P 2 j P 3 k ) v ( 1 i 2 j 3 k )
(v P 11 P 22 P 33 )
( 1 P 1 v P 2 P 13 )j
所在位置的东向、北向和垂线方向的坐标 系。地理坐标系的原点选在飞行器重心处, x指向东,y指向北,z沿垂线方向指向天 (东北天)。
4. 导航坐标系—— Oxn ynzn
导航坐标系是在导航时根据导航系统工作 的需要而选取的作为导航基准的坐标系。 指北方位系统:导航坐标系与地理坐标系 重合;自由方位系统或游动自由方位系统:
2. 地球坐标系—— Oxe yeze
地球坐标系是固连在地球上的坐标系,它相对惯 性坐标系以地球自转角速率 旋w转e ,地球坐标系的
原点在地球中心,Oz
轴与
e
Oz
轴i 重合,Oxe
ye
在赤道平面
内,x轴指向格林威治经线,y轴指向东经90度方
向。
3. 地理坐标系—— Oxt yt zt
地理坐标系是在飞行器上用来表示飞行器
一个坐标系或矢量相对参考坐标系旋转, 转角为θ,
转轴 n 与参考系各轴间的方向余弦值为cosα、cosβ、cosγ。
则表示该旋转的四元数可以写为
qcossincosisincosjsincosk
22
2
2
cossinn
22
为特征四元数 (范数为 1 )
四元数既表示了转轴方向,又表示了转角大小(转动四元数)
6. 机体坐标系——
Oxb ybzb
机体坐标系是固连在机体上的坐标系。机 体坐标系的坐标原点o位于飞行器的重心处, x沿机体横轴指向右,y沿机体纵轴指向前, z垂直于oxy,并沿飞行器的竖轴指向上。
3.2四元数理论
四元数 表示
四元数:描述刚体角运动的数学工具 (quaternions) 针对捷联惯导系统,可弥补欧拉参数在描述和解算方面的不足。
惯性导航原理
i
在惯性导航中常用的坐标系有 1. 地心惯性坐标系—— Oxi yi zi 地心惯性坐标系不考虑地球绕太阳的公转运
动,地心惯性坐标系的原点选在地球的中心,它 不参与地球的自转。惯性坐标系是惯性敏感元件 测量的基准,在导航计算时无需在这个坐标系中 分解任何向量,因此惯性坐标系的坐标轴的定向 无关紧要,但习惯上将z轴选在沿地轴指向北极的 方向上,而x、y轴则在地球的赤道平面内,并指 向空间的两颗恒星。
( 3 P 3 v P 12 P 21 )k
或简单表示为 q M v P v P P
※ 关于相乘符号
※ 关于交换律和结合律
四元数基本性质 共轭 范数
3.共轭四元数
仅向量部分符号相反的两个四元数
q(,P) 和 q*(,P) 互为共轭
可证明: (q)h*h*q*
q 4.四元数的范数
四元数表示转动 矢量旋转
如果矢量 R 相对固定坐标系旋转,旋转四元数为 q,转动后 的矢量为 R’,则这种转动关系可通过四元数旋转运算来实现
R' q Rq1
含义:矢量 R 相对固定坐标系产生旋转,转角和转轴由 q 决定
四元数表示转动 坐标系旋转
如果坐标系 OXYZ 发生 q 旋转,得到新坐标系 OX’Y’Z’ 一个相对原始坐标系 OXYZ 不发生旋转变换的矢量 V
定义 qq*q 2P 1 2P 2 2P 3 2
q 1 则称为规范化四元数
四元数基本性质 逆 除法
5.逆四元数
q 1 1 q * qq
当 q 1 时 q1 q*
6.四元数的除法
若 qhM 则 q Mh1 若 hqM 则 q h1M
不能表示为 q M (含义不确切 ) h
四元数表示转动 约定
λ 称作标量部分, P1iP2jP3k 称作矢量部分
四元数的另一种表示法 q , P P 泛指矢量部分
提示:四元数与刚体转动的关系
四元数基本性质 加减法
qP 1iP 2jP 3k
M v1 i2j3k
1.四元数加减法
qM
( v ) ( P 1 1 ) i ( P 2 2 ) j ( P 3 3 ) k
四元数的表示
由一个实单位和三个虚数单位 i, j, k 组成的数
q 1 P 1 iP 2jP 3 k
或者省略 1,写成
qP 1iP 2jP 3k
i, j, k 服从如下运算公式:
四元数 组成部分
i, j, k 服从如下运算公式
i ij jk k 1 ijjik jkkji kiikj
qP 1iP 2jP 3k