惯性导航基本原理PPT课件

合集下载

导航系统-惯性导航PPT课件

导航系统-惯性导航PPT课件
Rh Rh
VE
R hcos
V sin
R hcos
N VN
ψ
沿东向轴的变化: 沿北向轴的变化: 沿垂直轴向的变化:
E
VN Rh
V cos
Rh
N
cos
V sin
Rh
Z
sin
V R
h
sin
tg
2021年3月17日
导航系统
V VE E
23
导航系统--区域导航 地理坐标系相对于惯性系的运动角速度
导航系统--区域导航
导航系统课程内容
传统导航
➢ 仪表导航 ➢ 无线电导航
区域导航
➢ 简单区域导航(DME/DME、DME/VOR)
➢ 惯性导航
所需导航性能
➢ RNP参数
基于性能的导航(PBN)
2021年3月17日
导航系统
1
导航系统--区域导航
惯性导航概述
惯性导航系统功能
➢ 自动测量飞机各种导航参数及飞机控制参数,供飞行员使用 ➢ 与飞机其他控制系统相配合完成对飞机的人工或自动控制
2021年3月17日
导航系统
13
导航系统--区域导航
机体系与地理系之间的关系
地理系向机体系转换:
俯仰 XB
XG
γ:倾斜 XB
YG
:俯仰
YB
ZG ψ:真航向
ZB
倾斜 YB
XB 偏航
2021年3月17日
导航系统
ZB ZB
YB
14
导航系统--区域导航
坐标系变换
V
x
y
V
'
x' y'
则 V ' CV

惯性导航原理课件

惯性导航原理课件

未来惯性导航系统将更加注重 小型化、低功耗和集成化设计 ,以满足各种便携式和嵌入式 设备的需求。
惯性导航技术与其他导航技术 的融合将进一步深化,形成更 加高效、精准、可靠的导航解 决方案。
THANKS 感谢观看
由于制造工艺和环境因素的影响,陀螺仪 的测量结果会存在误差,需要进行误差补 偿。
加速度计的测量结果也会受到多种因素的 影响,需要进行误差补偿。
积分误差
外部干扰误差
由于积分运算本身的误差累积效应,惯性 导航系统在长时间工作时误差会逐渐增大 ,需要进行定期校准。
载体运动过程中受到的外部干扰(如风、 水流等)会影响惯性导航系统的测量结果 ,需要进行相应的误差补偿。
06 总结与展望
本课程总结
01
介绍了惯性导航的基本原理和实现方法,包括陀螺仪
和加速度计的工作原理、误差模型和标定技术等。
02
重点讲解了卡尔曼滤波器在惯性导航系统中的应用,
以及如何进行系统状态估计和误差修正。
03
结合实际案例,分析了不同场景下惯性导航系统的优
缺点和适用性。
惯性导航技术发展趋势
随着传感器技术和微电子技术的不断发展,惯性导航系统的精度和稳定性将得到进 一步提升。
角速度测量
陀螺仪实时测量载体的角速度 ,并输出角速度数据。
加速度测量
加速度计实时测量载体的加速 度,并输出加速度数据。
运动参数计算
控制系统根据角速度和加速度 数据,通过积分运算计算载体 位置、姿态等运动参数。
控制输出
控制系统将计算得到的运动参 数输出到执行机构,以控制载
体运动。
误差分析
陀螺仪误差
加速度计误差
民用领域应用
01
02

《惯性导航系统》课件

《惯性导航系统》课件

软件温度补偿
通过算法对温度变化引起的误差进 行估计和补偿,提高导航精度。
混合温度补偿
结合硬件和软件温度补偿的优势, 进一步提高导航精度。
05
惯性导航系统发展现状与 趋势
国内外研究现状
国内研究现状
国内在惯性导航系统领域的研究起步较晚,但近年来发展迅速,取得了一系列重要成果。国内的研究 主要集中在技术研发、系统集成和实际应用等方面,涉及的领域包括航空、航天、航海、机器人等。
陀螺仪的精度和稳定性对惯性导航系 统的性能有着至关重要的影响。
它通过高速旋转的陀螺仪能够感知方 向的变化,并将这些变化转化为电信 号,以供其他组件使用。
不同类型的陀螺仪(如机械陀螺仪、 光纤陀螺仪、激光陀螺仪等)具有不 同的特点和应用场景。
加速度计
01
加速度计用于测量物体在惯性参 考系下的加速度。
动态调整初始对准过程中的参数。
动态误差与扰动误差
要点一
动态误差与扰动误差
在动态环境下,惯性导航系统会受到各种扰动因素的影响 ,如车辆颠簸、气流扰动等。这些扰动因素会导致系统输 出数据出现偏差,从而影响导航精度。为了减小这些误差 ,可以采用多种技术手段,如滤波算法、卡尔曼滤波等。
要点二
卡尔曼滤波
卡尔曼滤波是一种基于状态方程和观测方程的递归滤波算 法,可以对系统状态进行最优估计。通过将卡尔曼滤波算 法应用于惯性导航系统中,可以有效减小由于动态环境和 扰动因素引起的误差。此外,还可以采用其他先进的滤波 算法,如扩展卡尔曼滤波、粒子滤波等,根据实际情况选 择最适合的算法来减小动态误差与扰动误差。
案例分析:无人机导航系统
案例背景介绍
介绍无人机导航系统的应用场景和需求,阐述其重要性和挑战。

惯导PPT第一章

惯导PPT第一章
在飞机上模拟惯性坐标系或地理坐标系 – 利用三自由度自由陀螺或定位陀螺来模拟惯性系或地 理系 坐标系转换关系 – 地理坐标系与机体坐标系的关系(姿态角) – 地理坐标系与惯性坐标系的关系(位置) – 地球坐标系与惯性坐标系的关系
2017年8月4日
惯导
29
地理坐标系与机体坐标系的关系
• 设起始时地理坐标系与机体坐标系重合。
Yaw YB
2017年8月4日
大气数据与惯导
31
地理坐标系与惯性坐标系的关系
地理坐标系相对惯性坐标系的运动组成:
– 地球自转 – 飞机运动
几种主要导航方法简介:
无线电导航:多普勒雷达导航;卫星导航;天文导航;惯性导航
惯性导航基本原理
惯性导航系统的基本组成
加速度计,陀螺仪; 稳定平台(机械的或数字的); 导航计算机; 控制显示器;
惯性导航的特点
工作自主性强; 提供导航参数多; 抗干扰力强,适用条件宽;
惯性导航与惯性制导的区别
1、惯性制导(Inertial Guidance)与惯性导航(1nertial Navigation)其原理是 相同的,都基于牛顿运动第二定律,以测量载体加速度为其最基本的 信息源;其组成也是基本相同的,都有陀螺、加速度计和稳定平台( 对平台式惯性制导系统而言);都有平台式和捷联式两种类型;输出 参数也基本相同。 2、二者区别主要是工作方式不同。惯性导航可以工作在两种不同的状态: 一种是根据惯性导航系统输出的位置、航向等导航参数,驾驶员可以 人工自由操纵并引导飞机按预定航线飞向目的地,此时惯导系统可以 说是一个导航参数测量装置,输出这些信息后即完成它的任务;另一 种是根据惯性导航系统输出的导航参数,直接传递给飞行自动控制系 统,通过控制系统解算,形成控制信号,直接操纵飞机自动按预定航 线飞向目的,这时的惯性导航系统相当于飞行控制系统(或自动驾驶仪 )中的一个敏感测量环节,由飞控系统实施闭环控制,驾驶员仅仅起到 一个监控作用,不参与飞机操纵。习惯上把第一种工作方式称为惯导 工作于指示状态,第二种工作方式称为自动导航状态。

惯导PPT第一章.

惯导PPT第一章.
– XT and YT are in the equator plane, XT is in the intersection of the equator plane and the Greenwich meridian – ZT is the same axis as the earth rotation axis
XT
YT
返回
2018年8月10日
惯导
24
Space-fixed or Inertial Frame(惯性 坐标系)
Z
– Space-fixed or inertial frame (Galilean)- (a) or (I) or (X,Y,Z)
– X and Y are in the equator plane, X pointing certain star
第一章 惯性导航中的地球、重力和坐标系
第一节 导航和惯性导航
导航及其种类
导航(Navigation),就是引导航行的简称,是指将载体从一个位置引 导到另一个位置的过程。通常将飞机、舰船、导弹、坦克及宇宙飞行 器等,统称载体,于是也就有了航空导航、舰船导航、陆地导航及航 天制导之分。 导航的基本要素:即时位置(坐标)、航行速度、航行方位(航向)或飞过 距离等。
• 80年代以后到90年代初,以激光陀螺、光纤陀螺为代表的捷联式惯导 系统,得到极其迅速的发展和非常广泛的应用。 • 90年代惯性技术的发展,在系统方面主要是广泛应用惯导与GPS全球 定位系统,以及惯导与其它导航系统的双重和多重组合。
惯性技术的重要性及发展方向
惯性技术的发展表明,作为导航和制导,使用惯性系统有着其它导 航和制导技术无法比拟的优点,尤其自主性、抗干扰性和输出参数的 全面性等,对于军事用途的飞机、舰艇、导弹等有着十分重要的意义。 例如,惯性制导的中远程导弹,一般来说命中精度70%取决于惯性系 统的精度,它基本上决定了导弹是否能打准的问题。对于核潜艇,由 于潜航时间长,其位置和速度是变化的,而这些数据又是发射导弹的 初始状态参数,直接影响导弹的命中精度,因而需要提供高精度的位 置、速度等信号,而唯一能满足这一要求的导航设备就是惯性导航系 统。又如,战略轰炸机,由于要求它经过长时间远程飞行后,仍能保 证准确投放(发射)武器而命中目标,只有使用惯性导航系统才是最为 合适的,因为这样不依赖外界信息,隐蔽性好,不易受到外界干扰, 又不会因沿途经海洋,过沙漠而影响导航精度。

《惯性导航原理》课件

《惯性导航原理》课件
本课程旨在介绍惯性导航的基本原理、技术特点、应用场景和发展趋势,为学生和 从业人员提供全面深入的学习资料。
课程目标
01
掌握惯性导航的基本原理和技术 特点。
02
了解惯性导航在各个领域的应用 情况。
探讨惯性导航的未来发展趋势和 挑战。
03
提高学生对导航技术的兴趣和认 知水平,为未来的学习和职业发
展打下基础。
在深空探测任务中,惯性导航系统为 航天器提供连续、高精度的位置和速 度信息,确保航天器在深空中的精确 导航和科学数据采集。
地球物理学研究
在地球物理学研究中,利用惯性导航 系统进行地震数据采集和地壳运动监 测,推动地质灾害预警和地球科学研 究。
05
惯性导航技术发展
技术现状
惯性导航技术已广泛应用于军事、航 空、航海等领域。
与其他导航手段融合
研究如何更好地将惯性导航与其他导 航手段(如GPS、北斗等)进行融合 ,实现优势互补。
人工智能与大数据的应用
讨论如何利用人工智能和大数据技术 对惯性导航数据进行处理和分析,提 高导航性能。
THANKS
感谢观看
潜艇导航
在潜艇导航中,惯性导航系统用于长时间隐蔽航行,提供连续的定 位信息,保障潜艇作战和战略威慑能力。
无人机导航
无人机依靠惯性导航系统进行长航程、长时间飞行,实现复杂环境 下的精确导航和任务执行。
民用应用
航空交通管制
在航空交通管制中,惯性导航系统为飞机提供精确的位置和速度 信息,确保空中交通安全有序。
的组合方法。
陀螺仪与加速度计
深入探讨了陀螺仪和加速度计的工作 原理、分类及优缺点。
误差分析与校正
讨论了惯性导航中常见的误差来源及 其校正方法。

惯性导航ppt课件

惯性导航ppt课件

受任何干扰 、隐蔽性强 、输出信息量大 、输出信息实时性强
等优点 ,使其在军事领域和许多民用领域都得到了广泛的应
用 ,已被许多机种选为标准导航设备或必装导航设备 。
一、惯性导航技术的发展历史
图1.4 陀螺仪弹
惯性导航是一门涉及精密机械、计算机技术、微电子、光 学、自动控制、材料等多种学科和领域的综合技术。由于陀螺 仪是惯性导航的核心部件,因此,可以按各种类型陀螺出现的 先后、理论的建立和新型传感器制造技术的出现,将惯性技术 的发展划分为四代。
几种姿态结算是重点
三、惯导系统的分类
Bortz 和 Jordon 最早提出了等效旋转矢量概念用于陀 螺输出不可交换误差的修正, 从而在理论上解决了不可交换 误差的补偿问题, 其后的研究就主要集中在旋转矢量的求解 上 ,根据在相同姿态更新周期内 ,对陀螺角增量等间隔采样 数的不同 、有双子样算法、 三子样算法等 。为减少计算量 Gilmore 提出了等效旋转矢量双回路迭代算法Miller 讨论 了在纯锥运动环境下等效旋转矢量的三子样优化算法, 此后 ,在 Miller 理论的基础上 Jang G. Lee 和 Yong J.Yoon 对等效旋转矢量的四子样优化算法进行了研究。 Y.F.Jiang 对利用陀螺的角增量及前一更新周期采样值的算法进行了研究 , 研究结果表明, 采样阶数越高,更新速率越快 ,姿态更新 算法的误差就越小。 Musoff 提出了圆锥补偿算法的优化指 标, 分析了圆锥补偿后的算法误差与补偿周期幂次 r 的关系 。 这些理论研究奠定了姿态更新算法的经典理论基础 。
一、惯性导航技术的发展历史
图1.5 惯导技术发展历史
二、惯性传感器的最新发展现状
2.1陀螺仪 定义:传统意义上的陀螺仪是安装在框架中绕回转体的对

惯性导航基本原理PPT课件

惯性导航基本原理PPT课件
次积分而求得。要进行积分必须要知道初始条件: 初始速度,初始位置,初始姿态。而捷联惯导系统 中初始对准的另一个关键问题是要在较短的时间内 以一定的精度确定出从载体坐标系到地理坐标系的 初始变换矩阵。
21
2.对准要求 精确、快速。传感器精度高,同时对陀螺、加速
度计进行补偿
3.对准方法和过程 过程:分两步即粗对准和精对准 自主对准,不依赖外信息,受控式(依赖外信息) 方法:光的方法,天文的方法 粗对准:利用重力和地球自转角速率,直接估算
t
v i ( t ) v i ( t ) a i ( ) d 0 t0
t
r i ( t ) r i ( t ) v i ( u ) d u 0 t0
:视加速度,测量值;g :引力加速度。
12
平台式惯导系统组成
13
5捷联惯性导航工作原理
陀螺、加速度计固联在载体上。 测量载体相对于惯性系的旋转角速度、加速 度矢量(在载体坐标系中的值)。然后依据初始 时刻载体的位置、速度及姿态,计算出载体坐标 系相对于惯性系的姿态角、加速度,对加速度一 次(二次)积分得到速度(位置)。
14
Ri (t) Ri (t) b (t)
b
b
ib
33
33
33
f i(t) R i (t) f b(t)
b
31
31
0
z
y
b ib
z
0 x
y
x
0
其中
R i :b系至 i系的旋转变换矩阵; b
b :捷联陀螺测得的 b系相对于i系旋转角速度矢 ib
量在 b系中的值,、、 为其轴向分量。
2
0
x 1 f (t t )3
6

惯性导航系统概论惯性导航ppt课件

惯性导航系统概论惯性导航ppt课件
8
2.4 第四代发展阶段 当前,惯性技术目标是实现高精度、高可靠性、低成本、
小型化、数字化、应用领域更加广泛的导航系统一方面,陀螺 的精度不断提高;另一方面,随着新型固态陀螺仪的逐渐成熟 ,以及高速大容量的数字计算机技术的进步。
9
10

2 我国惯导的发展历程 我国从“六五”开始,原国防科工委就把惯性技术纳人预先
11
3 惯性导航系统的发展方向
惯性导航系统的设计和发展须要考虑权衡的主要因素: 1)必须针对并满足应用的需求。其中导航性能和价格成本是
首要的两个特性指标。价格成本包含系统自身成本、维护 成本和使用寿命。因此对于很多导航应用,合理的价格仍 然被置于应用要求的最前面。导航性能包括:导航的精确 性、连续性、完整性、易用性。易用性是指系统易于使用 和维护、系统的自主性等。 2)实际的应用环境是最大的挑战。系统的体积、功耗、可靠 性和可用性会关系到惯性导航系统能否在具体的应用环境 中被采用。
基本导航参数即时位臵地速航向角航迹角航迹误差偏流角风速风向待飞时间待飞距离飞机姿态角角速率52惯性导航系统基本功能电子信息工程学院15基本导航参数电子信息工程学院16惯性导惯性导航组件航组件自动驾驶仪自动驾驶仪气象雷达气象雷达自动信自动信号引进号引进组件组件更新更新不更新不更新信号器信号器真航向磁航向真航向磁航向备用电池组件备用电池组件大气数据系统大气数据系统调协头调协头航路航路进近转换进近转换测距器测距器dmedme全向信标全向信标vorvor控制显控制显示组件示组件方式选方式选择组件择组件水平状水平状态指示态指示姿态指引姿态指引指示器指示器惯导系统与飞机其它系统的连接电子信息工程学院1753惯性导航系统基本组成和简要原理1
惯性导航原理
1
第五章惯导系统概论

惯性导航原理ppt课件

惯性导航原理ppt课件
四元数的表示
由一个实单位和三个虚数单位 i, j, k 组成的数
q 1 P1i P2 j P3k
或者省略 1,写成
q P1i P2 j P3k
i, j, k 服从如下运算公式:
10
四元数 组成部分
i, j, k 服从如下运算公式
i i j j k k 1 i j ji k j k k j i k i i k j
22
为特征四元数 (范数为 1 )
四元数既表示了转轴方向,又表示了转角大小(转动四元数)
16
四元数表示转动 矢量旋转
如果矢量 R 相对固定坐标系旋转,旋转四元数为 q,转动后 的矢量为 R’,则这种转动关系可通过四元数旋转运算来实现
1.四元数加减法
qM ( v) (P1 1 )i (P2 2 ) j (P3 3 )k
或简单表示为
q M v, P
12
四元数基本性质 乘法
2.四元数乘法
q M ( P1i P2 j P3k)(v 1i 2 j 3k)
所在位置的东向、北向和垂线方向的坐标 系。地理坐标系的原点选在飞行器重心处, x指向东,y指向北,z沿垂线方向指向天 (东北天)。
5
4. 导航坐标系—— Ox n yn zn 导航坐标系是在导航时根据导航系统工作
的需要而选取的作为导航基准的坐标系。 指北方位系统:导航坐标系与地理坐标系 重合;自由方位系统或游动自由方位系统:
(v P11 P2 2 P33 )
( 1 P1v P2 3 P32 )i
( 2 P2v P31 P13 ) j
( 3 P3v P12 P2 1 )k

惯性导航基本原理课件

惯性导航基本原理课件
03
坐标系及转换
01
02
03
地理坐标系
以地球中心为原点,地球 表面为基准的坐标系。
导航坐标系
以航行载体中心为原点, 载体运动方向为基准的坐 标系。
转换关系
利用旋转矩阵将地理坐标 系下的位置和速度转换为 导航坐标系下的位置和速 度。
陀螺仪和加速度计的工作原理
陀螺仪
通过角动量守恒原理,测量载体在三个轴向的角速度。
• 实时性:惯性导航系统可以提供实时的位置、速 度和姿态信息。
惯性导航技术的优势与不足
不足
误差积累:由于惯性导航系统 依赖于陀螺仪和加速度计等传 感器的测量数据,长时间工作
后会产生误差积累。
精度受限于传感器性能:惯性 导航系统的精度受到传感器性 能的影响,包括陀螺仪和加速 度计的精度、稳定性和交叉耦 合效应等。
惯性导航系统组成
惯性导航系统主要由惯性传感器、数 据处理单元和显示单元等组成。
数据处理单元对传感器数据进行积分 、滤波等处理,计算得到载体的速度 、位置和姿态等运动参数。
惯性传感器包括陀螺仪和加速度计等 ,用于测量载体在三个轴向的角速度 和加速度。
显示单元将运动参数实时显示给用户 ,以便用户了解载体运动状态。
捷联惯导算法
要点一
概述
捷联惯导算法是一种实时性较高的惯性导航算法,通过陀 螺仪和加速度计的测量数据,计算出物体的姿态、速度和 位置等信息。捷联惯导算法不需要外部信息源的辅助,可 以在短时间内实现较精确的导航。
要点二
实现过程
捷联惯导算法通过建立姿态、速度和位置的更新方程,结 合陀螺仪和加速度计的测量数据,进行实时计算。姿态更 新方程包括对加速度计测量值的补偿、速度更新方程包括 对陀螺仪测量值的补偿、位置更新方程包括对速度和时间 的积分。捷联惯导算法需要解决的主要问题是陀螺仪和加 速度计的误差补偿以及导航信息的初始对准。

第五章 惯性导航系统(PPT-70)

第五章  惯性导航系统(PPT-70)
OENζ相对惯性坐标系的转动 角速度应包括两个部分:相 对角速度,它是由于飞机相 对于地球运动而形成的;牵 连角速度,它是地球相对惯 性坐标系运动形成的。
地理坐标系
第五章 惯性导航系统
二、有关知识
当地地理坐标系的绝对角速度
以飞机水平飞行的情况进行讨论:设 飞机所在地的纬度为 ,飞行高度 为h,速度为v,航向角为ψ。把飞行 速度分解为沿地理北向和地理东向两 个分量 v N v cos
加、加速度计
加速度计的类型
在摆式加速度计中,检测质量做成单 摆形式。当飞机有沿负x轴加速度a时, 则敏感质量摆感受到a引起的惯性力 F=-ma,其方向与a相反。摆锤在F作 用下,绕转轴y产生转矩Ma和转角a 。 由于转轴转动使弹簧变形而产生弹性 力矩Ms=-ka,Ms与Ma方向相反。又 由于摆锤偏离z轴方向,重力形成与 弹性力矩方向相同的mglsinα力矩分 量,摆式加速度计平衡如下图所示。 当稳态时力矩平衡方程为
用传感器输出电压,取u=k2α,可得输出 电压为
u k1k 2 k a a
可见,只要测量出输出电压,就可知道被 测加速度。
加速度计的力学模型
第五章 惯性导航系统
三、加速度计
加速度计的类型
按加速度计活动系统的支承方式分类,可分为轴承支承摆式加速度计、 挠性支承加速度计、悬浮(例如静电、永磁体等)加速度计等。 按加速度计信号传感器的种类可分为电位计式加速度计、电容式加速度 计、电感或差动变压器式加速度计、振动弦式加速度计等。 按测量方式分有开环加速度计和闭环加速度计(力反馈式加速度计)。
第五章 惯性导航系统
四、加速度测量问题
比力
设加速度计检测质量m仅受到沿敏感 轴(输入端)方向的引力mG(G为 引力加速度),则检测质量将沿引力 作用方向相对壳体位移,拉伸弹簧。 当位移达一定值时,弹簧形成的确弹 簧力kxG(xG为位移量)恰与引力mG 相等,稳态时,有如下等式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
8
(3)加速度计测量原理
S
f
a
S 0 刻划
(不受外力)
0 刻划 g
.
9
地球
加速度计不能敏感引力加速度
.
10
加速度计
.
11
4 平台式惯性导航工作原理
Z平
az
ay Y平
ax
X平 平台式惯导系统示意图
.
12
测量载体在惯性坐标系中的加速度,然后一次积分 得到速度,二次积分得到位置。
av i ( t )
变化等。 结论:惯导误差随时间迅速增加。
应对措施:建立惯导误差模型,测试标定模型参 数,然后对惯导系统进行补偿。
.
21
7 惯性导航初始对准
1.为何要对准
惯导家族成员均是由加速度计测得的加速度经两 次积分而求得。要进行积分必须要知道初始条件: 初始速度,初始位置,初始姿态。而捷联惯导系统 中初始对准的另一个关键问题是要在较短的时间内 以一定的精度确定出从载体坐标系到地理坐标系的 初始变换矩阵。
v f i(t)
gv i ( t )
vv i ( t ) vv i ( t ) t av i ( ) d 0 t0
rv i ( t ) rv i ( t ) t vv i ( u ) d u 0
t0
其中
v f
:视加速度,测量值;gv
:引力加速度。
.
13
平台式惯导系统组成
.
14
5捷联惯性导航工作原理
.
5
2 惯性导航的组成
1惯性导航组件 加速度计 陀螺仪 主要完成导航参数的测量和计算 (1)平台式 一个三轴空间平台,2、3个高精度陀螺仪以及三个 高精度的加速度计,一部数字计算机,其他电子线 路板 (2)捷联式 三个高精度陀螺仪以及三个高精度的加速度计一部 数字计算机,其他电子线路板没有实际的陀螺稳定 平台,将加速度计和陀螺仪直接与飞机机体链接, 用导航计算机计算数学平台。
由角速度测量值及初始时刻转换矩阵、姿态角, 可以计算任意时刻转换矩阵、姿态角。
.
17
捷联式惯性导航系统的特点:
陀螺仪动态范围大; 导航计算量大; 结构简单、体积小、重量轻、成本低等。
.
18
6 误差分析
假设载体沿 y 轴方向做匀加速直线运动。
y′ y f
x′
ε
o
x
.
19
假设视加速度、角速度有常值误差 f、 ,则
.
23
8 功能与用途
1、功能
已知点的位置根据连续测得的运动体航向角和速
度推算出其下一点的位置,因而可连续测出运动体的当
前位置
2、用途
惯性导航系统用于各种运动机具中,包括飞机、
潜艇、航天飞机等运输工具及导弹,然而成本及复杂
性限制了其可以应用的场合。
惯性系统最先应用于火箭制导,二战期间经德国人冯
布劳恩改进应后,应用于 V-2火箭 制导。战后美国麻
惯性导航基本原理
.
1
主要内容
1 引言
2 惯性导航的组成
3 加速度计测量原理
4 平台式惯性导航基本原理
5 捷联惯性导航基本原理
6 误差分析
7 惯性导航初始对准航系统功能
测量载体相对于惯性坐标系的加速度、角速度,通过 积分计算获取载体的导航信息。
(2)惯性导航系统发展
.
22
2.对准要求
精确、快速。传感器精度高,同时对陀螺、加速 度计进行补偿
3.对准方法和过程
过程:分两步即粗对准和精对准
自主对准,不依赖外信息,受控式(依赖外信息)
方法:光的方法,天文的方法
粗对准:利用重力和地球自转角速率,直接估算
初始姿态矩阵。
精对准:精确校正计算参考坐标系n¢与真实参考 坐标系n之间的小失准角f。
a f y
v f g(t t )
y
0
y 1 f g(t t ) 2
2
0
g( t t ) 0
a f g g( t t )
x
0
v 1 f g g( t t ) 2
x
2
0
x 1 f g g( t t ) 3
6
0
结论:惯导误差随时间迅速增加。
.
20
三类误差:静态、动态、随机误差。 误差原因:惯性元件不尽完善,安装误差,温度
b
b
ib
3v 3
33
3v 3
f i (t) R i (t)gf b (t)
b
31
31
0
z
y
b ib
z
0 x
y
x
0
其中
R i :b系至 i系的旋转变换矩阵; b
v b :捷联陀螺测得的 b系相对于i系旋转角速度矢 ib
量在 b系中的值,、、 为其轴向分量。
x
y
z
.
16
i系: “数学平台”坐标系,b 系中的视加速度 测量值转换至该系,位置、速度参数在该 系中计算。
陀螺、加速度计固联在载体上。
测量载体相对于惯性系的旋转角速度、加速 度矢量(在载体坐标系中的值)。然后依据初始 时刻载体的位置、速度及姿态,计算出载体坐标 系相对于惯性系的姿态角、加速度,对加速度一 次(二次)积分得到速度(位置)。
.
15
g
R i ( t ) R i ( t )g b ( t )
省理工学院等研究机构及人员对惯性制导进行深入研
究,从而发展成应用飞机、火箭、航天飞机、潜艇的
现代惯性导航系统。
.
24
.
6
2、控制显示组件:包括导航参数的显示,初 始值的引入,系统实验故障显示和告警等。
3、方式选择组件:主要用来控制系统的工作 状态。
4、备用电池组件:特殊情况下供电。
.
7
3 加速度计测量原理
(1)加速度计功能
测量载体相对于惯性坐标系的视加速度在体坐标系中的值。
(2)加速度计分类
摆式、摆式积分陀螺加速度计……
以机械陀螺为敏感器件的惯性导航系统的发展; 以光学或微机电陀螺为敏感器件的惯性导航系统的发展。
.
3
(3)系统分类
平台式惯导系统 捷联式惯导系统
(4)系统组成
导航信息 计算机
陀螺 加速度计
.
4
(5)惯导优点
① 依靠自身测量信息进行连续定位; ② 不需接收外部信息,不受外界干扰; ③ 不向外部辐射能量,具有隐蔽性; ④ 可同时确定载体位置/速度/姿态信息。
相关文档
最新文档