运筹学黄皮版习题答案(第一章)

合集下载

运筹学1至6章知识题参备考资料答案解析

运筹学1至6章知识题参备考资料答案解析

运筹学1至6章习题参考答案第1章 线性规划1.1 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:【解设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。

已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。

1~6月份产品A 的单件成本与售价如表1-25所示。

(2)当1月初库存量为零并且要求6月底需要库存200件时,模型如何变化。

运筹学习题答案(1)

运筹学习题答案(1)

第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。

(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。

Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。

(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。

运筹学习题答案(第一章)

运筹学习题答案(第一章)
运筹学教程(第二版) 习题解答
第一章习题解答
1.1 用图解法求解下列线性规划问题。并指出问
题具有惟一最优解、无穷多最优解、无界解还是无可 行解。
min Z 2x1 3x2
(1)
st
4 .2
x1 x1
6x2 2x2
6 4
x1, x2 0
max Z x1 x2
(3)
st
6 .
x1 10x2 5 x1
唯一最优解,x1 10, x2 6, Z 16
max Z 5x1 6x2
(4)
st.22xx11
x2 3x2
2
2
x1, x2 0
该问题有无界解
第一章习题解答
1.2 将下述线性规划问题化成标准形式。
min Z 3x1 4x2 2x3 5x4
4x1 x2 2x3 x4 2
max Z 10x1 5x2
(1)
st.35xx11
4 x2 2 x2
9 8
x1, x2 0
第一章习题解答
max Z 2x1 x2
(2)
st.63xx11
5x2 2x2
15 24
x1, x2 0
第一章习题解答
,讨论l.5c,上d的题值(1如)中何,变若化目,标使函该数问变题为可m行ax域Z的=每cx个1 +顶d点x2 依次使目标函数达到最优。
第一章习题解答
解:上界对应的模型如下(c,b取大,a取小)
max Z 3x1 6x2
st
.21xx1142xx22
12 14
x1, x2 0
最优值(上界)为:21
第一章习题解答
解:下界对应的模型如下( c,b取小,a取大)

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。

2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。

二、填空题1. 线性规划问题的基本假设是______。

答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。

答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。

解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。

具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。

第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。

2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。

二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。

答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。

运筹学基础章节习题详解

运筹学基础章节习题详解

章节习题详解第1章导论1.区别决策中的定性分析和定量分析,试各举出两例。

答:决策中的定性分析是决策人员根据自己的主观经验和感受到的感觉或知识对决策问题作出的分析和决策,在许多情况下这种做法是合适的。

例1 在评定“三好生”的条件中,评价一个学生是否热爱中国共产党,尊敬师长,团结同学,热爱劳动等属于定性分析,它依赖于评价者对被评价者的感知、喜好而定。

在“德”、“智”、“体”这三个条件中规定“德”占30%、“智”占40%、“体”占30%,这种比例是决策者们通过协商和主观意识得出的,它也属于定性分析的范畴。

决策中的定量分析是借助于某些正规的计量方法去作出决策的方法,它主要依赖于决策者从客观实际获得的数据和招待所采用的数学方法。

例2 在普通高等学校录取新生时,通常按该生的入学考试成绩是否够某档分数线而定,这就是一种典型的定量分析方法。

另外,在评价一个学生某一学期的学习属于“优秀”、“良好”、“一般”、“差”中的哪一类时,往往根据该生的各科成绩的总和属于哪一个档次,或者将各科成绩加权平均后视其平均值属于哪一个档次而定。

这也是一种典型的定量分析方法。

2.构成运筹学的科学方法论的六个步骤是哪些?答:运用运筹学进行决策过程的几个步骤是:1.观察待决策问题所处的环境;2.分析和定义待决策的问题;3.拟定模型;4.选择输入资料;5.提出解并验证它的合理性;6.实施最优解。

3.简述运筹学的优点与不足之处。

答:运用运筹学处理决策问题有以下优点:(1)快速显示对有关问题寻求可行解时所需的数据方面的差距;(2)由于运筹学处理决策问题时一般先考察某种情况,然后评价由结局变化所产生的结果,所以不会造成各种损失和过大的费用;(3)使我们在众多方案中选择最优方案;(4)可以在建模后利用计算机求解;(5)通过处理那些构思得很好的问题,运筹学的运用就可以使管理部门腾出时间去处理那些构思得不好的问题,而这些问题常常要依赖于足够的主观经验才能解决的;(6)某些复杂的运筹学问题,可以通过计算机及其软件予以解决。

运筹学题库第一章

运筹学题库第一章

运筹学题库第⼀章1 求解下述线性规划问题≥=-≥++-=0,1524..43min21212121x x x x x x t s x x z2 设某种动物每天⾄少需要700g 蛋⽩质、30g 矿物质、100mg 维⽣素,现有五种饲料可供选择,每种饲料每公⽄营养成分的含量及单价如表所⽰。

3某医院昼夜24h 各时段内需要的护⼠数量如下:2:00—6:00 10⼈,6:00—10:00 15⼈,10:00—14:00 25⼈,14:00—18:00 20⼈,18:00—22:00 18⼈,22:00—2:00 12⼈。

护⼠分别于2:00,6:00,10:00,14:00,18:00,22:00分6批上班,并连续⼯作8⼩时。

试建⽴模型,要求既满⾜值班需要,⼜使护⼠⼈数最少。

4 某⼈有⼀笔30万元的资⾦,在今后三年内有以下投资项⽬:(1)三年内的每年年初均可投资,每年获利为投资额的20%,其本利可以起⽤于下⼀年投资;(2)只允许第⼀年年初投⼊,第⼆年年末可收回,本利合计为投资额的150%,但此类投资限额不超过15万元;(3)于三年内第⼆年初允许投资,可于第三年末收回,本利合计为投资额的160%,这类投资限额20万元。

(4)于三年内的第三年初允许投资,⼀年回收,可获利40%,投资限额为10万元。

试为该⼈确定⼀个使第三年末本利和为最⼤的投资计划。

⽹上下载部分:某航空公司为满⾜客运量⽇益增长的需要,正考虑购置⼀批新的远程、中程、短程的喷⽓式客机。

每架远程的喷⽓式客机价格670万元,每架中程的喷⽓式客机价格500万元,每架短程的喷⽓式客机价格350万元。

该公司现有资⾦15000万元可以⽤于购买飞机。

根据估计年净利润每架远程客机42万元,每架中程客机30万元,每架短程客机23万元。

设该公司现有熟练驾驶员可⽤来配备30架新的飞机。

维修设备⾜以维修新增加40架短程的喷⽓式客机,每架中程客机的维修量相当于4/3架短程客机,每架远程客机的维修量相当于5/3架短程客机。

胡运权《运筹学教程》习题答案(第一章)[1]

胡运权《运筹学教程》习题答案(第一章)[1]

第一章习题解答1.1 用图解法求解下列线性规划问题。

并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。

+=32min 21x x Z +=23max 21x x Z ⎪⎩⎪⎨⎧≥≥+≥+0,422664.)1(212121x x x x x x st ⎪⎩⎪⎨⎧≥≥+≤+0,124322.)2(212121x x x x x x st ⎪⎩⎪⎨⎧≤≤≤≤≤++=85105120106.max )3(212121x x x x st x x Z ⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答无穷多最优解,,422664.32min )1(21212121⎪⎩⎪⎨⎧≥≥+≥++=x x x x x x st x x Z 是一个最优解3,31,121===Z x x 该问题无解⎪⎩⎪⎨⎧≥≥+≤++=0,124322.23max )2(21212121x x x x x x st x x Z 第一章习题解答85105120106.max )3(212121⎪⎩⎪⎨⎧≤≤≤≤≤++=x x x x st x x Z 唯最优解16,6,1021===Z x x 唯一最优解,该问题有无界解⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答1.2 将下述线性规划问题化成标准形式。

1422245243min )1(432143214321⎪⎪⎧≤+−+−=−+−+−+−=x x x x x x x x x x x x Z .,0,,23243214321⎪⎪⎩⎨≥≥−++−无约束x x x x x x x x st ⎪⎩⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min )2(x x x x x x x x x st x x x Z 第一章习题解答.2321422245243min )1(4321432143214321⎪⎪⎪⎨⎧≥−++−≤+−+−=−+−+−+−=x x x x x x x x x x x x st x x x x Z ,0,,4321⎪⎩≥无约束x x x x ⎪⎪⎩⎪⎪⎨⎧≥=−+−++−=+−+−+=−+−+−+−+−=0,,,,,232142222455243max 64241321642413215424132142413214241321x x x x x x x x x x x x x x x x x x x x x x x st x x x x x Z 第一章习题解答⎪⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min)2(x x x x x x x x x st x x x Z ⎩⎪⎩⎪⎨⎧≥=++−+=−++−+−+=0,,,,6243322max 43231214323121323121323121x x x x x x x x x x x x x x st x x x x Z第一章习题解答634334max )3(3212121⎪⎪⎧=−+=++=x x x x x st x x Z 517,0,1,59,524,,1,0424321421=====⎪⎪⎩⎨=≥=++Z x x x x j x x x x j 该题是唯一最优解:)("第一章习题解答⎪⎧≤++−≤++++=151565935121510max 321321x x x x x x x x x Z 该题无可行解。

运筹学答案第一单元

运筹学答案第一单元

第1章训练题一.基本技能训练1.用图解法求解下列线性规划问题(1)⎪⎪⎩⎪⎪⎨⎧≥≤≥+≤++=0,41501053max 212212121x x x x x x x x x z (2)⎪⎩⎪⎨⎧≥≥+≥++=0,23364min 21212121x x x x x x x x z (3)⎪⎩⎪⎨⎧≥≤+--≥-+=0,25.0122max 21212121x x x x x x x x z (4)⎪⎩⎪⎨⎧≥-≤-≥-+=0,33022max 21212121x x x x x x x x z1.用图解法求解下列线性规划问题(1). 唯一最优解14,)4,2(**==z X T; (2). 唯一最优解9,)21,23(**==z X T ; (3). 无界解; (4). 无可行解;2.用单纯形法求解下列线性规划问题(1)⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,1823122453max 21212121x x x x x x x x z (2) ⎪⎪⎩⎪⎪⎨⎧≥≤-+≤+-≤+++-=0,,201026032max 321321321321321x x x x x x x x x x x x x x x z (3)⎪⎪⎩⎪⎪⎨⎧≥≤++-≤++-≤--++++=0,,,1032425823320446581026max 43214321432143214321x x x x x x x x x x x x x x x x x x x x z (4)⎪⎪⎩⎪⎪⎨⎧≥≥≥≤++≤+-≤++-++=3,2,11722044132246max 321321321321321x x x x x x x x x x x x x x x z (5)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤+≤++≤++++=0,,1234166482212322532max 3213231321321321x x x x x x x x x x x x x x x x z (6)⎪⎪⎩⎪⎪⎨⎧≥≤+++≤+++≤++++++=0,,,9005387800584548024821004016090max 43214321432143214321x x x x x x x x x x x x x x x x x x x x z(7)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤≤≥+≥+=0,4.126.18.018001000min 212121121x x x x x x x x x z (8)⎪⎩⎪⎨⎧≥≥+≥++++=0,,62382432min 32121321321x x x x x x x x x x x z (9)⎪⎪⎩⎪⎪⎨⎧≥≥++≤++-≤++++=0,,52151565935121510max 321321321321321x x x x x x x x x x x x x x x z (10)⎪⎪⎩⎪⎪⎨⎧≥=+++=++=++-++=0,,,1022052153232max 432143213213214321x x x x x x x x x x x x x x x x x x z (11)⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0,,0222622max 3213231321321x x x x x x x x x x x x x z (12) ⎪⎪⎩⎪⎪⎨⎧≥=++≤++≤++++=无约束,3213213213213210,101632182635max x x x x x x x x x x x x x x x z (13)⎪⎩⎪⎨⎧≥≤+≤+-=0,5623min 21212121x x x x x x x x z (14)⎪⎩⎪⎨⎧≥≤-≤++=0,1262385max 21212121x x x x x x x x z(15)⎪⎩⎪⎨⎧≥≤++≤++-+-=0,,1043223232min 321321321321x x x x x x x x x x x x z (16)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤-+≤+++-=0,,9362122max 32121321321321x x x x x x x x x x x x x x z(17)⎪⎪⎩⎪⎪⎨⎧≥≤++≤+-+≤-++-+--=0,,,41232642532min 4321431432143214321x x x x x x x x x x x x x x x x x x x z (18)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-≤+-≥+--≥---=0,16482623323min 212121212121x x x x x x x x x x x x z (19)⎪⎪⎩⎪⎪⎨⎧≥=++≤+≤+++=0,,132173132343max 3213213231321x x x x x x x x x x x x x z (20)⎪⎪⎩⎪⎪⎨⎧≥≤++-≥+-≥++-+=0,,452233min 32132121321321x x x x x x x x x x x x x x z(21)⎪⎪⎩⎪⎪⎨⎧≥=++≥++≤++++=0,,1 29002500350038007080 6560 670075008400min 321321321321321x x x x x x x x x x x x x x x z(22)⎪⎩⎪⎨⎧≥-=-+-=--++++=0,,,376284327432max 4321432143214321x x x x x x x x x x x x x x x x z(22). 唯一最优解5117,)57,0,0,534(**==z X T ; (23)⎪⎩⎪⎨⎧≥=+++=+++-+-=0,,,32274326325min 4321432143214321x x x x x x x x x x x x x x x x z(23). 唯一最优解3,)1,1,0,0(**-==z X T;(24)⎪⎩⎪⎨⎧≥≥+-=++-+=0,,10527532max 321321321321x x x x x x x x x x x x z(24). 唯一最优解7102,)0,74,745(**==z X T ;(25)⎪⎩⎪⎨⎧≥≥+≥++=0,7742min 21212121x x x x x x x x z (26) ⎪⎪⎩⎪⎪⎨⎧≥≥+++≥-+-≥++++++=0,,,1562522730542423min 43214321432143214321x x x x x x x x x x x x x x x x x x x x z(25). 1331,)1310,1321(**==z X T ; (26). 9,)0,0,0,3(**==z X T(27)⎪⎩⎪⎨⎧≥≤+++≤+++++=0,,,1222282652max 432143214314321x x x x x x x x x x x x x x x z (27). 唯一最优解44,)4,4,0,0(**==z X T;(28)⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++0,,4201013240085103001028321321321321321x x x x x x x x x x x x(28). 唯一最优解152029,)322,5116,15338(**==z X T ; (29)⎪⎩⎪⎨⎧≥≤++≤++++=0,,30222010127max 321321321321x x x x x x x x x x x x z(29). 唯一最优解220,)10,10,0(**==z X T;(30)⎪⎩⎪⎨⎧≥≤++≤++++=0,,30222061615max 321321321321x x x x x x x x x x x x z(30). 唯一最优解240,)0,15,0(**==z X T;(31)⎪⎪⎩⎪⎪⎨⎧≤+≤+--≤-+-+=无正负号限制32121321321321,,63445322max x x x x x x x x x x x x x x z(31). 唯一最优解211,)49,411,49(**=--=z X T ; (32)⎪⎩⎪⎨⎧≥≥++≤++++=0,,824322323max 321321321321x x x x x x x x x x x x z(32). 唯一最优解4,)0,2,0(**==z X T;(33)⎪⎩⎪⎨⎧≥≤≤-+-=++-+-=无正负号限制321321321321,0,06422min x x x x x x x x x x x x z(33). 唯一最优解12,)1,0,5(**-=--=z X T;(34)⎪⎩⎪⎨⎧≥=-=++0,,423232121321x x x x x x x x(34). 唯一最优解5,)1,0,2(**==z X T;(35)⎪⎩⎪⎨⎧≥-≤+≥+-+=0,2122min 21212121x x x x x x x x z(35). 无可行解;(36)⎪⎩⎪⎨⎧≤≤≤≤≤≤≤++≤++++=30,52,40233421422253max 321321321321x x x x x x x x x x x x z(36). 唯一最优解4123,)0,415,4(**==z X T ; (37)⎪⎩⎪⎨⎧≥≤--=++++=0,,40653025325max 321321321321x x x x x x x x x x x x z(37). 唯一最优解150,)0,0,30(**==z X T ;(38)⎪⎩⎪⎨⎧≥≤+++≤++++++=0,,,2023220322432max 4321432143214321x x x x x x x x x x x x x x x x z(38). 唯一最优解28,)4,4,0,0(**==z X T;(39)⎪⎩⎪⎨⎧≥≥++≥++++=0,,10536423425min 321321321321x x x x x x x x x x x x z(39). 唯一最优解3/22,)0,2,3/2(**==z X T;(40)⎪⎪⎩⎪⎪⎨⎧≥≥-≤+=--+=0,,28242max 321323232132x x x x x x x x x x x x z (40). 唯一最优解8,)2,4,10(**==z X T; 2.用单纯形法求解线性规划问题 (1). 唯一最优解36,)6,2(**==z X T; (2). 唯一最优解25,)0,5,15(**==z X T; (3). 无界解;(4). 有无穷多最优解,其一47,)7,25.2,5.5(**==z X T; (5). 唯一最优解5.16,)2,5.1,1(**==z X T; (6). 唯一最优解18000,)140,0,25,0(**==z X T; (7). 唯一最优解1640,)8.0,1(**==z X T;(8). 有无穷多最优解,其一7,)8.1,8.0(**==z X T; (9). 无可行解;(10). 唯一最优解15,)0,5.2,5.2,5.2(**==z X T; (11). 无界解;(12). 唯一最优解46,)4,0,14(**=-=z X T; (13). 唯一最优解9,)3,0(**-==z X T; (14). 唯一最优解24,)3,0(**==z X T; (15). 唯一最优解5.5,)0,3,5.0(**-==z X T; (16). 有无穷多最优解,其一12,)6,0,6(**==z X T; (17). 唯一最优解368,)4,0,38,0(**-==z X T ; (18). 无界解;(19). 唯一最优解41,)2,11,0(**==z X T; (20). 无可行解;(21). 有无穷多最优解,其一321700,)31,32,0(**==z X T 。

运筹学习题答案(第一章)

运筹学习题答案(第一章)

c
x1
j
1
1 0
0 0
-2/14 10/35 -5/14d+2/14c 3/14d-10/14c
School of Management
page 13 15 June 2013
运筹学教程
第一章习题解答
当c/d在3/10到5/2之间时最优解为图中的A点;当 c/d大于5/2且c大于等于0时最优解为图中的B点;当c/d 小于3/10且d大于0时最优解为图中的C点;当c/d大于 5/2且c小于等于0时或当c/d小于3/10且d小于0时最优解 为图中的原点。
x1 0 0 0
x2 3 0 0
基可行解 x3 x4 x5 0 0 3.5 1.5 0 0 3 8 5
x6 0 0 0
Z 3 3 0
0.75
page 9 15 June 2013
0
0
0
2
2.25
2.25
School of Management
运筹学教程
第一章习题解答
min Z 5 x 1 2 x 2 3 x 3 2 x 4 (2) x1 2 x 2 3 x 3 4 x 4 7 st 2 x 1 2 x 2 x 3 2 x 4 3 x j 0 , ( j 1, 4 )
该题是无穷多最优解。 最优解之一: x1 9 5 , x2 4 5 , x3 0, Z 6
page 19 15 June 2013
School of Management
运筹学教程
第一章习题解答
max Z 4 x 1 x 2 3 x1 x 2 3 4 x1 3 x 2 x 3 6 st x 2 x2 x4 4 1 x j 0( j 1, , 4) ,

解答-运筹学-第一章-线性规划及其单纯形法习题

解答-运筹学-第一章-线性规划及其单纯形法习题

项目 X1 X2 X3 X4
X5
X4 6 (b) (c) (d) 1 0
X5 1 -1
3 (e) 0 1
Cj-ZJ
(a) -1 2
00
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-ZJ
0
-7A (j) (k) (l)
25
首先由于x1、x5为基变量,故g=1, h=0, l = 0
检验数j
14M 4M-2 6M-3 2M-1 -M -M
A
0
0
18
Cj
-2 -3 -1 0 0 -M -M 比
CB XB
b x1 x2 x3 x4 x5 x6 x7 值
-M x6 8 1 4 2 -1 0 1 0 2
-M x7 6 3 2 0 0 -1 0 1 3
检验数j 14M 4M-2 6M-3 2M-1 -M -M 0 0
5 x2 15
s
t
.
6
x1 x1
2 x2 x2
24 5
x 1 , x 2 0
A
10
Cj
10 5 0 0 比
CB XB
b
x1
x2
x3
x4

0 x3
9
3
4
1
0 9/3=3
0 x4
8
5
20
1
8/5
检验数j 0 10 5 0 0
0 x3 21/5 0 14/5 1 -3/5 3/2
10 x1 8/5 1 2/5 0 1/5
4
x
2
12
x 1, x 2 0 无可行解
m ax Z x1 x2

运筹学课后习题答案

运筹学课后习题答案

第一章线性规划1、由图可得:最优解为2、用图解法求解线性规划:Min z=2x1+x2解:由图可得:最优解x=1.6,y=6.43用图解法求解线性规划:Max z=5x1+6x2解:由图可得:最优解Max z=5x1+6x2, Max z= +4用图解法求解线性规划:Maxz = 2x 1 +x 2 由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.6将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’7将线性规划模型化为标准形式Min Z =x1+2x2+3x3解:令Z’ = -z,引进松弛变量x4≥0,引进剩余变量x5≥0,得到一下等价的标准形式。

x2’=-x2 x3=x3’-x3’’Z’ = -min Z = -x1-2x2-3x39用单纯形法求解线性规划问题:Max Z =70x1+120x2解: Max Z =70x1+120x2单纯形表如下Max Z =3908.11.解:(1)引入松弛变量X4,X5,X6,将原问题标准化,得max Z=10X1+6X2+4X3X1+X2+X3+X4=10010 X1+4X2+5X3+X5=6002 X1+2X2+6X3+X6=300X1,X2,X3,X4,X5,X6≥0得到初始单纯形表:(2)其中ρ1 =C1-Z1=10-(0×1+0×10+0×2)=10,同理求得其他根据ρmax =max{10,6,4}=10,对应的X1为换入变量,计算θ得到,θmin =min{100/1,600/10,300/2}=60,X5为换出变量,进行旋转运算。

(3)重复(2)过程得到如下迭代过程ρj≤0,迭代已得到最优解,X*=(100/3,200/3,0,0,0,100)T,Z* =10×100/3+6×200/3+4×0 =2200/3。

运筹学作业(清华版第一章习题)答案

运筹学作业(清华版第一章习题)答案

运筹学作业(清华版第一章习题)答案运筹学作业(第一章习题)答案1.1用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

(2)12121212m ax 322..34120,0z x x x x s t x x x x =++≤??+≥??≥≥?解:先画出问题的可行区域:如右图所示,两条边界直线所围成的区域没有公共部分,即可行区域是空的。

故该问题无可行解。

1.2将下述线性规划问题化成标准形式:(1)12341234123412341234m in 3425422214..232,,0,z x x x x x x x x x x x x s t x x x x x x x x =-+-+-+-=-??+-+≤??-++-≥??≥?无约束, 解:由于4x 无约束,故引进两个新变量,即444x x x '''=-代入原问题,并对方程2和方程3分别引入新变量5x 和6x ,则此问题的标准形式为: 12344123441234451234461234456m ax ()342554222214..232,,,,,,0z x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x '''-=-+-+'''-+-+=-??'''+-+-+=??'''-++-+-=??'''≥?1.4分别用图解法和单纯型法求解下述线性规划问题,并对照指出单纯表中的各基可行解对应图解法中可行区域的哪一顶点。

(1)12121212m ax 105349....5280,0z x x x x s t s t x x x x =++≤??+≤??≥≥? 解:图解法:先画出可行区域K ,如右图所示,K 即为OABC ,B 点为最优解。

运筹学第一章习题完整版

运筹学第一章习题完整版

-1/2 3 1/6 4 -1/3 -8
0 点(0,0,15,24)
A 点(4,0,3,0)
Zmax=8
10.解 1)要使 A(0,0)成为最优解则需 C ≤ 0 且 d ≤ 0; 2)要使 B(8/5,0)成为最优解则 C ≥ 0 且 d=0 或 C>0 且 d<0 或 C/d ≥ 5/2 且 Cd>0; 3)要使 C(1,3/2)成为最优解则 -5/2 ≤ -C/d ≤ -3/4 且 Cd>0;即 5/2 ≥ C/d ≥ 3/4 且 Cd>0; 4)要使 D(0,9/4)成为最优解则 C<0 且 d>0 或 C=0,d>0
y5=(0,0,-5/2,8,0,0)T
y6=(0,0,3/2,0,8,0)T
y7=(1,0,-1/2,0,0,3)T
y8=(0,0,0,3,5,0)T
y9=(5/4,0,0,-2,0,15/4)T
y10=(0, 3,-7/6,0,0,0)T
y11=(0,0,-5/2,8,0,0)T
y12=(0,0,-5/2,3,5,0)T
x1,x2,x3,x'4,x"4,x'5,x 6 ≥ 0
(2)
max
z'
=
2 x1'
+
2 x2

3x
' 3
+
3x"3
+
0x
4
st. x1'
+
x
2
+
x
' 3

x"3 = 4
2x1' + x2 − x'3 + x"3 +x 4 = 6

运筹学第一章作业答案

运筹学第一章作业答案

第一章作业1.对于下列线性规划模型,找出顶点和约束之间的对应关系(图解法)122121212 max 25156224..50,0z x x x x x s t x x x x =+≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩(答案略: 任何一个顶点对应两个约束的交点)2.用单纯形法求解线性规划模型12121212 max 2324..50,0z x x x x s t x x x x =++≤⎧⎪+≥⎨⎪≥≥⎩(答案略:最好两阶段法和大M 法均练习一遍)3.通过观察,判断下列线性规划模型有无最优解、在有解的情况下是否为无界解(说明理由)(1)12121212 max 25..2280,0z x x x x s t x x x x =++≥⎧⎪+≤⎨⎪≥≥⎩因为 125x x +≥和12228x x +≤是两个矛盾的条件,所以问题无解(2)12312312312 max 225..32580,0z x x x x x x s t x x x x x =++-+≥⎧⎪--≥⎨⎪≥≥⎩ 因为(M ,0,0)是模型的一个可行解,所以可认为问题为无界解。

4.判断题(说明理由)1.最优解不唯一,那么一定有两个最优基可行解。

错误。

最优解不唯一,可能存在一个基可行解,也可能存在r(r ≥2)个基可行解。

举一例子进行反驳即可。

(注意区分基可行解和可行解)2.在最优单纯形表中,如果某个非基变量的检验数值为0,且相应的技术系数均小于等于0,则相应的线性规划有无界解。

错误。

判定无界解的原则有二:(1)某一单纯表中某一非基变量的检验数为正(目标函数求最大值时,求最小值时正好相反),而该变量的技术向量P ≤0;(2)某一单纯表中某一非基变量的技术向量P ≤0,而该变量的价值系数又大于0(目标函数求最大值时,求最小值时正好相反)。

(注意:区分无界解和无穷多最优解) 5 线性规划问题max ,,0z CX AX b X ==≥,如果*X 是该问题的最优解,又0λ>为一常数,分别讨论下述情况时最优解的变化:(a ) 目标函数变为 max z CX λ= 方法1: 使用检验数进行讨论最优单纯表中, 变量X 的检验数为1B C C B A σ-=-, 显然 10B C C B A --≤设这时的最优解为*X . 当价值系数变为C λ时, *X 仍然是新问题的可行解,但变量X 的检验数变为111()B B C C B A C C B A σλλλ--=-=-仍有10σ≤, 因而两个问题具有同样的最优基, 进而有同样的最优解,仅仅最优目标函数值变化了λ倍.方法2: 设*X 为原问题的一个最优解, X 是原问题的任意一个可行解因而必有*CX CX ≥由于*X 和X 均也为新问题的可行解,由于0λ≥, 因而 *CX CX λλ≥ 因而*X 也是新问题的最优解.(b ) 目标函数变为 max ()z C X λ=+提示: 通过选择具体的例子, 分析目标函数的变化, 最优解可能发生改变, 也可能不变. 6.已知线性规划问题1122331111221334121122223352max ..01,2,3,4jz c x c x c x a x a x a x x b s t a x a x a x x b x j =++⎧+++=⎪+++=⎨⎪≥ =⎩试确定模型中各参数的值 解法1: 直接使用矩阵变换.解法2: 使用B 和1B -解题(关键知识点), 具体略.11/201/61/3B -⎡⎤=⎢⎥-⎣⎦7. (证明题)线性规划问题max ,,0z CX AX b X ==≥,设0X 是问题的最优解,若目标函数中用*C 替换C 后,问题的最优解为*X ,则必有**()()0C C X X --≥证明:对于原问题,由于0X 和*X 均为可行解,0X 为最优解,因而有0*CX CX ≥ (7.1)对于替换后的问题,由于0X 和*X 均为可行解,*X 为最优解,因而有 ***C X C X ≥ (7.2) 结合(7.1)和(7.2)命题成立.8.(选做题)对于大M 法和两阶段法下面线性规划需要引入m 个人工变量, 你是否可以设计一种方法只引入一个人工变量就可112211112211211222221122 m i n .................0,1,2,...,n n n n n n m m mn n mi z c x c x c x a x a x a x b a x a x a x b s t a x a x a x bx i n=++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪≥=⎪⎩ 9.(选做题)证明标准的线性规划模型,要么不存在可行解,要么至少存在一个基可行解。

运筹学1至6章习题参考答案

运筹学1至6章习题参考答案
5
-6
-7
0
0
0
0
* Big M
-2
-6
2
1
0
0
0
X2
-6
1/5
1
-3/5
-1/5
0
1/5
0
3
M
S2
0
31/5
0
32/5
-6/5
1
6/5
0
38
95/16
A3
M
4/5
0
[8/5]
1/5
0
-1/5
1
2
5/4
C(j)-Z(j)
31/5
0
-53/5
-6/5
0
6/5
0
* Big M
-4/5
-1/2
17/2
-7/4
0
0
0
-5/4
X5
0
32
0
15
0
1
11
-1
120
M
X2
1
5
1
5/2
0
0
2
-1/2
10
10
X4
5
8
0
7/2
1
0
3
-1/2
20
M
C(j)-Z(j)
-43
0
-23
0
0
-17
3
因为λ7=3>0并且ai7<0(i=1,2,3),故原问题具有无界解,即无最优解。
(3)
【解】
C(j)
3
2
-0.125
0
-3
1
6
0.75
C(j)-Z(j)

运筹学教材习题答案

运筹学教材习题答案

教材习题答案部分有图形的答案附在各章PPT文档的后面,请留意。

第1章线性规划第2章线性规划的对偶理论第3章整数规划第4章目标规划第5章运输与指派问题第6章网络模型第7章网络计划第8章动态规划第9章排队论第10章存储论第11章决策论第12章对策论习题一1.1 讨论下列问题:(1)在例1.1中,假定企业一周内工作5天,每天8小时,企业设备A有5台,利用率为0.8,设备B有7台,利用率为0.85,其它条件不变,数学模型怎样变化.(2)在例1.2中,如果设x j(j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(3)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路.(4)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(5)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.1.2 工厂每月生产A、B、C三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-22所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:【解】设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为14112342567891036891112132347910121314min 2300322450232400232346000,1,2,,14jj j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩∑ 用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为134131412342567891036891112132347910121314min 0.60.30.70.40.82300322450232400232346000,1,2,,14j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j =+++++⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩ 用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。

胡运权《运筹学教程》习题答案(第一章)

胡运权《运筹学教程》习题答案(第一章)

第一章习题解答
max Z = 10x1 + 15x2 + 12x3 ⎧5x1 + 3x2 + x3 ≤ 9 ⎪− 5x + 6 x + 15x ≤ 15 (4) ⎪ 1 2 3 st ⎨ ⎪2 x1 + x2 + x3 ≥ 5 ⎪ x j ≥ 0, j = 1, ,3) ( ⎩ 该题无可行解。
第一章习题解答
(1) min Z = 2 x1 + 3 x 2 ⎧ 4 x1 + 6 x 2 ≥ 6 ⎪ st .⎨ 2 x1 + 2 x 2 ≥ 4 ⎪ x ,x ≥ 0 1 2 ⎩
(1)
( 2)
max Z = 3 x1 + 2 x 2 ⎧ 2 x1 + x 2 ≤ 2 ⎪ st .⎨3 x1 + 4 x 2 ≥ 12 ⎪x , x ≥ 0 ⎩ 1 2
(1 ) (1 )
(2)
也是可行解,且
(2) (2) (2)
C T X = C T aX = C aX
T
+ C T (1 − a ) X − aC X
T
b=2, c=4, d=-2, g=1, h=0, f=3, i=5, e=2, l=0, a=3, j=5, k= -1.5
+ CT X
=C X
T
(2)
, 所以 X 也是最优解。
第一章习题解答
1.10 线性规划问题max Z=CX,AX=b,X≥0,设 X0为问题的最优解。若目标函数中用C*代替C后,问题 的最优解变为X*,求证 * * 0 (C -C)(X -X )≥0
X 0是 max Z = CX 的最优解 故 的最优解,故 CX 0 − CX * ≥ 0; X *是 max Z = C * X 的最优解,故 C * X * − C * X 0 ≥ 0; (C * − C )( X * − X 0 ) = C(X 0 − X *) + C*(X * − X 0) ≥ 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优值(上界) 最优值(上界)为:21
page 17 16 January 2011
17
School of Management
运筹学教程
第一章习题解答
取小, 取大 取大) 解:下界对应的模型如下( c,b取小,a取大) 下界对应的模型如下( 取小
max Z = x1 + 4 x 2 3 x1 + 5 x 2 ≤ 8 st . 4 x1 + 6 x 2 ≤ 10 x ,x ≥ 0 1 2
运筹学教程
同样适合 第三版黄皮版
page 1 16 January 2011
1
School of Management
运筹学教程
运筹学教程(第二版) 运筹学教程(第二版) 习题解答
安徽大学管理学院
洪 文
电话:5108157(H), 5107443(O) page 2 E-mail: 16 January 2011 Hongwen9509_cn@
min Z = 5 x1 − 2 x 2 + 3 x 3 + 2 x 4 x1 + 2 x 2 + 3 x 3 + 4 x 4 = 7 st 2 x1 + 2 x 2 + x 3 + 2 x 4 = 3 x ≥ 0 , ( j = 1, ⋯ 4 ) j
9
(1)
(2)
page 9 16 January 2011
page 5 16 January 2011
5
School of Management
运筹学教程
第一章习题解答
1.2 将下述线性规划问题化成标准形式。 将下述线性规划问题化成标准形式。
min Z = − 3 x1 + 4 x 2 − 2 x3 + 5 x 4 4 x1 − x 2 + 2 x3 − x 4 = − 2 x + x − x + 2 x ≤ 14 2 3 4 st 1 . − 2 x1 + 3 x 2 + x3 − x 4 ≥ 2 x1 , x 2 , x3 ≥ 0, x 4 无约束
x1 0 0 0 0.7 page 10 16 January 2011 5
x2 3 0 0 0
基可行解 x3 x4 x5 0 0 3.5 1.5 0 8 0 3 5 0 0 2
x6 Z 0 3 0 3 0 0 2.2 2.2 10 School Management 5 of5
运筹学教程
第一章习题解答
page 7 16 January 2011 7
School of Management
运筹学教程
第一章习题解答
(2) min st x 1 Z = 2 x1 − 2 x 2 + 3 x 3 − x1 + x 2 + x 3 = 4 − 2 x1 + x 2 − x 3 ≤ 6 ≤ 0 , x 2 ≥ 0 , x 3 无约束
3
( 3)
max Z = x1 + x 2 6 x1 + 10 x 2 ≤ 120 st . 5 ≤ x1 ≤ 10 5≤ x ≤8 2
( 4)
page 3 16 January 2011
School of Management
运筹学教程
第一章习题解答
(1) min Z = 2 x1 + 3 x 2 4 x1 + 6 x 2 ≥ 6 st . 2 x1 + 2 x 2 ≥ 4 x ,x ≥ 0 1 2 1 , Z = 3是一个最优解 3
page 11 16 January 2011
基可行解 x2 x3 x4 0.5 2 0 0 1 1 0 11/5 0
Z 5 5 43/5
11
School of Management
运筹学教程
第一章习题解答
1.4 分别用图解法和单纯形法求解下述 线性规划问题, 线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行域的哪一顶点。 可行解对应图解法中可行域的哪一顶点。
(1) max Z = 10 x1 + 5 x 2 3 x1 + 4 x 2 ≤ 9 st . 5 x1 + 2 x 2 ≤ 8 x ,x ≥ 0 1 2
page 12 16 January 2011
12
School of Management
运筹学教程
第一章习题解答
(2) max Z = 2 x1 + x 2 3 x1 + 5 x 2 ≤ 15 st . 6 x1 + 2 x 2 ≤ 24 x ,x ≥ 0 1 2
式中, ≤ 式中,1≤c1≤3, 4≤c2≤6, -1≤a11≤3, ≤ ≤ 2≤a12≤5, 8≤b1≤12, 2≤a21≤5, 4≤a22≤6, ≤ ≤ ≤ ≤ 10≤b2≤14,试确定目标函数最优值的下界和 ≤ 试确定目标函数最优值的下界和 上界。 上界。
page 16 16 January 2011 16
min st x 1 Z = 2 x1 − 2 x 2 + 3 x 3 − x1 + x 2 + x 3 = 4 − 2 x1 + x 2 − x 3 ≤ 6 ≤ 0 , x 2 ≥ 0 , x 3 无约束
6
(1)
(2)
page 6 16 January 2011
School of Management
8
School of Management
运筹学教程
第一章习题解答
对下述线性规划问题找出所有基解, 1.3 对下述线性规划问题找出所有基解, 指出哪些是基可行解,并确定最优解。 指出哪些是基可行解,并确定最优解。
max Z = 3 x1 + x 2 + 2 x 3 12 x1 + 3 x 2 + 6 x 3 + 3 x 4 = 9 8 x + x − 4 x + 2 x = 10 1 2 3 5 st 3 x1 − x 6 = 0 x j ห้องสมุดไป่ตู้ 0( j = 1, ⋯ , 6) ,
运筹学教程
第一章习题解答
minZ = −3x1 + 4x2 − 2x3 + 5x4 4x1 − x2 + 2x3 − x4 = −2 x + x − x + 2x ≤ 14 (1) 4 st 1 2 3 . − 2x1 + 3x2 + x3 − x4 ≥ 2 x1, x2 , x3 ≥ 0, x4无约束 max Z = 3 x1 − 4 x 2 + 2 x3 − 5 x 41 + 5 x 42 − 4 x1 + x 2 − 2 x3 + x 41 − x 42 = 2 x + x − x + 2 x − 2 x + x = 14 2 3 41 42 5 st 1 − 2 x1 + 3 x 2 + x3 − x 41 + x 42 − x6 = 2 x1 , x 2 , x3 , x 41 , x 42 , x 6 ≥ 0
无穷多最优解, x1 = 1, x 2 =
(2)
max Z = 3 x 1 + 2 x 2 2 x1 + x 2 ≤ 2 st . 3 x 1 + 4 x 2 ≥ 12 x , x ≥ 0 1 2
该问题无解
page 4 16 January 2011 4
School of Management
School of Management
运筹学教程
第一章习题解答
取大, 取小 取小) 解:上界对应的模型如下(c,b取大,a取小) 上界对应的模型如下( 取大
max Z = 3 x1 + 6 x 2 − 1 x1 + 2 x 2 ≤ 12 st . 2 x1 + 4 x 2 ≤ 14 x1 , x 2 ≥ 0
page 14 16 January 2011
x2 x1 σj
3/ 2 1
0 1 0
1 0 0
5/14 -2/14 5/14d+2/1
-3/4 10/35 3/14d- 14 School of Management 10/14c
运筹学教程
第一章习题解答
当 c/d在 3/10到 5/2之间时最优解为图中 在 到 之间时最优解为图中 大于5/2且 大于等于 大于等于0时最优解 的 A点 ; 当 c/d大于 且 c大于等于 时最优解 点 大于 为图中的B点 小于3/10且d大于 时最优 大于0时最优 为图中的 点;当c/d小于 小于 且 大于 解为图中的C点 ; 当 c/d大于 且 c小于等于 解为图中的 点 大于5/2且 小于等于0 大于 小于等于 时或当c/d小于 小于3/10且 d小于 时最优解为图中 小于0时最优解为图中 时或当 小于 且 小于 的原点。 的原点。
( 2)
max Z = 3 x1 + 2 x 2 2 x1 + x 2 ≤ 2 st .3 x1 + 4 x 2 ≥ 12 x , x ≥ 0 1 2 max Z = 5 x1 + 6 x 2 2 x1 − x 2 ≥ 2 st . − 2 x1 + 3 x 2 ≤ 2 x ,x ≥ 0 1 2
School of Management
运筹学教程
第一章习题解答
(1) max Z = 3 x1 + x 2 + 2 x 3 12 x1 + 3 x 2 + 6 x 3 + 3 x 4 = 9 8 x + x − 4 x + 2 x = 10 1 2 3 5 st 3 x1 − x 6 = 0 x j ≥ 0( j = 1, ⋯ , 6) ,
相关文档
最新文档