2019年7月云南省普通高中学业水平考试数学试题
2019年云南省中考数学试卷附分析答案

19.(7 分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为 1,2,3, 4 的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口 袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标 号分别用 x、y 表示.若 x+y 为奇数,则甲获胜;若 x+y 为偶数,则乙获胜. (1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出 现的结果总数; (2)你认为这个游戏对双方公平吗?请说明理由.
BC=13,CA=12,则阴影部分(即四边形 AEOF)的面积是( )
A.4
B.6.25
C.7.5
D.9
14.(4 分)若关于 x 的不等式组
.
5
r>
, 的解集是 x>a,则 a 的取值范围是(
)
5<
A.a<2
B.a≤2
C.a>2
三、解答题(本大共 9 小题,共 70 分) 15.(6 分)计算:32+(x﹣5)05 Ā(﹣1)﹣1.
∴DE AD=2 ,AE AD=6, 在 Rt△BDE 中,∵BD=4,
∴BE
5
5 . r 2,
如图 1,∴AB=8,
∴平行四边形 ABCD 的面积=AB•DE=8×2 如图 2,AB=4,
云南省2019年高中数学7月学业水平考试试题(无答案)

云南省2019年高中数学7月学业水平考试试题(无答案)[考试时间:2019年7月10日,上午8:30-10:10,共100分钟]考生注意:考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效。
参考公试:如果事件,A B 互斥,那么()()()P A B P A P B =+U 。
球的表面积公式:24S R π=,体积公式:343V R π=,其中R 表示球的半径。
柱体的体积公式:V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高。
锥体的体积公式:13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高。
选择题(共57分)一.选择题:本大题共19小题,每小题3分,共57分。
在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置填涂。
1. 已知集合{}1,3,5A =,{}4,5B =则A B I 等于{}. 1A {}. 3B {}. 4C {}. 5D2.数学中,圆的黄金分割的张角是137.5o ,这个角称为黄金角,黄金角在植物界受到广泛青睐,例如车前草的轮生叶片之间的夹角正好是137.5o ,按这一角度排列的叶片,能很好的镶嵌而又互不重叠,这是植物采光面积最大的排列方式,每片叶子都可以最大限度的获得阳光,从而有效提高植物光合作用的效率。
那么,黄金角所在的象限是( )A.第一象限B. 第二象限C. 第三象限D. 第四象限3. .一个几何体的三视图如图所示,其中正视图和侧视图都是边长为2的等边三角形,则该几何体的体积为( )3. 3A π . 3B π43. 3C π . 43D π4. 溶液酸碱度是通过pH 刻画的。
pH 的计算公式为pH=lg H +⎡⎤-⎣⎦,其中H +⎡⎤⎣⎦表示溶液中氢离子的浓度,单位是摩尔/升。
若某种纯净水中氢离子的浓度为610H +-⎡⎤=⎣⎦摩尔/升,则该纯净水pH 的为( )A.5B. 6C. 7D.85. 下列函数中,在R 上为增函数的是( ). 2xA y = .B y x =- 1.C y x = 0.5. logD y x = 6. 如图,在矩形ABCD 中,下列等式成立的是( ) . A AB CD =u u u r u u u r . B AC BD =u u u r u u u r. C AB AC CB -=u u u r u u u r u u u r .D AB AC CB +=u u u r u u u r u u u r7.执行如图所示的程序框图,若输入x 的值是9,则输出的x 值为()A. 8B. 9C. 10D.118. 0.20.2a b >若,则实数a,b ,的大小关系为( )A. a b >B. a b ≥C. a b <D. a b ≤9.已知向量() 1,a λ=r ,() 1,2b =r ,若 a r ⊥ b r ,则λ的值为( )A. 2B. -2C. 12-D. 12 10.为了得到函数sin(),3y x x R π=-∈的图像,只需把sin ,y x x R =∈的图像上所有的点( ) A.向左平移3π个单位 B. 向右平移3π个单位 C.横坐标变为原来的3π倍,纵坐标不变 D. 横坐标变为原来的3π倍,纵坐标不变 11. 函数(),f x x x R =∈是( )A BCDA. 偶函数B.既是奇函数又是偶函数C. 奇函数D.既不是奇函数又不是偶函数12.已知1sin ,(0,)22παα=∈则cos()3πα+等于( )A. 2B. 1C. 12D.0 13. 一元二次不等式220x x -<的解集为( ) A. {}02x x << B. {}20x x -<< C. {}22x x -<< D. {}11x x -<<14. 下列直线与直线210x y -+=,平行的是( )A. 210x y +-=B. 210x y +-=C. 210x y --=D. 210x y --= 15.设实数x,y ,满足约束条件12220x y x y ≤⎧⎪≤⎨⎪+-≥⎩,则目标函数y x z +=的最大值为( )A. 1B. 2C. 3D.416.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待时间不多于30分钟的概率为 ( ) A. 12 B. 13 C. 14 D. 1617. 设等差数列{}n a 的前项和为n S ,若11a =,36S =则{}n a 的公差为( )A. -1B. 1C.-2D.218.函数()f x x =的零点个数是( )A. 3个B. 2个C.1个D. 0个19. 已知0,0x y >>,若2xy =,则12x y+的最小值为( )非选择题(共43分)二.填空题:本大题共4个小题,每小题4分,共16分。
2019年云南省中考数学试题(解析版)

2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作℃.2.(3分)分解因式:x2﹣2x+1=.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.(4分)要使有意义,则x的取值范围为()A.x≤0 B.x≥﹣1 C.x≥0 D.x≤﹣111.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+113.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.914.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2 C.a>2 D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数1770 480 220 180 120 90人数 1 1 3 3 3 4 (1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6 ℃.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140 度.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=15 .【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:15【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k的值;比较简单.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.【分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于16.6.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,故答案为:16.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4分)要使有意义,则x的取值范围为()A.x≤0 B.x≥﹣1 C.x≥0 D.x≤﹣1【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:A.【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.9【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF ⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=x,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OFAE为正方形,设OE=r,则AE=AF=x,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2 C.a>2 D.a≥2【分析】根据不等式组的解集的概念即可求出a的范围.【解答】解:解关于x的不等式组得∴a≥2故选:D.【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数1770 480 220 180 120 90人数 1 1 3 3 3 4 (1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y 的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+1200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+1200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AB=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=10×=,DM=BD﹣MB=.【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
2019年云南省中考数学试卷以及解析版

2019年云南省中考数学试卷以及逐题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8C ︒记作8C ︒+,则零下6C ︒记作C ︒.2.(3分)分解因式:221x x -+= .3.(3分)如图,若//AB CD ,140∠=度,则2∠= 度.4.(3分)若点(3,5)在反比例函数(0)k y k x=≠的图象上,则k = . 5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 .6.(3分)在平行四边形ABCD 中,30A ∠=︒,AD =4BD =,则平行四边形ABCD 的面积等于 .二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .914.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( ) A .2a < B .2a … C .2a > D .2a …三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y 所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO OC =,BO OD =,且2AOB OAD ∠=∠.(1)求证:四边形ABCD 是矩形;(2)若:4:3AOB ODC ∠∠=,求ADO ∠的度数.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=.(1)求证:DEB DAE∽;∆∆(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷答案与解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分).【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8C ︒记作8C ︒+,那么零下6C ︒记作6C ︒-.故答案为:6-.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分).【分析】直接利用完全平方公式分解因式即可.【解答】解:2221(1)x x x -+=-.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)【分析】根据两直线平行,同位角相等求出3∠,再根据邻补角的定义列式计算即可得解.【解答】解://AB CD ,140∠=︒,3140∴∠=∠=︒,2180318040140∴∠=︒-∠=︒-︒=︒.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分) .【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数(0)k y k x=≠即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数k y x=得:3515k =⨯= 故答案为:15 【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.5.(3分).【分析】由频数分布直方图得出甲班D 等级的人数为13人,求出乙班D 等级的人数为4030%12⨯=人,即可得出答案.【解答】解:由题意得:甲班D 等级的有13人,乙班D 等级的人数为4030%12⨯=(人),1312>,所以D 等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D 等级的人数是解本题的关键.6.(3分)【分析】过D 作DE AB ⊥于E ,解直角三角形得到8AB =,根据平行四边形的面积公式即可得到结论.【解答】解:过D 作DE AB ⊥于E ,在Rt ADE ∆中,30A ∠=︒,AD =12DE AD ∴==6AE AD ==, 在Rt BDE ∆中,4BD =,2BE ∴=,8AB ∴=,∴平行四边形ABCD 的面积8AB DE ==⨯,故答案为:.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30︒角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B 、此图形旋转180︒后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C 、此图形旋转180︒后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B .【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将688000用科学记数法表示为56.8810⨯.故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒【分析】n 边形的内角和是(2)180n -︒,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(122)1801800-︒=︒;故选:D .【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…【分析】要根式有意义,只要令10x +…即可【解答】解:要使根式有意义则令10x +…,得1x -…故选:B .【点评】0)a …叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:221183222r πππ=⨯⨯=, 底面圆半径为:28242ππ⨯÷=, 底面积2416ππ=⨯=,故圆锥的全面积是:321648πππ+=.故选:A .【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-【分析】观察指数规律与符号规律,进行解答便可.【解答】解:311211(1)x x -⨯+=-,521221(1)x x -⨯+-=-,731231(1)x x -⨯+=-,941241(1)x x -⨯+-=-,1151251(1)x x -⨯+=-,⋯⋯由上可知,第n 个单项式是:121(1)n n x -+-,故选:A .【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .9【分析】利用勾股定理的逆定理得到ABC ∆为直角三角形,90A ∠=︒,再利用切线的性质得到OF AB ⊥,OE AC ⊥,所以四边形OFAE 为正方形,设OE AE AF x ===,利用切线长定理得到5BD BF r ==-,12CD CE r ==-,所以51213r r -+-=,然后求出r 后可计算出阴影部分(即四边形)AEOF 的面积.【解答】解:5AB =,13BC =,12CA =,222AB CA BC ∴+=,ABC ∴∆为直角三角形,90A ∠=︒, AB 、AC 与O 分别相切于点E 、FOF AB ∴⊥,OE AC ⊥,∴四边形OFAE 为正方形,设OE r =,则AE AF x ==,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F , 5BD BF r ∴==-,12CD CE r ==-, 51213r r ∴-+-=, 5121322r +-∴==, ∴阴影部分(即四边形)AEOF 的面积是224⨯=.故选:A .【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质. 14.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( )A .2a <B .2a …C .2a >D .2a …【分析】根据不等式组的解集的概念即可求出a 的范围. 【解答】解:解关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩得2x x a >⎧⎨>⎩2a ∴…故选:D .【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型. 三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有 数的加减运算便可.【解答】解:原式91211037=+--=-=.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现2(3)(3)(2)--=-⨯-的错误. 16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.【分析】由SSS 证明ABC ADC ∆≅∆,得出对应角相等即可. 【解答】证明:在ABC ∆和ADC ∆中,AB ADCB CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,B D ∴∠=∠.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可; (2)根据平均数、中位数和众数得出的数据进行分析即可得出答案. 【解答】解:(1)这15名营业员该月销售量数据的平均数177048022031803120390427815++⨯+⨯+⨯+⨯==(件),中位数为180件,90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多, 所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x 千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:24027011.5x x-=,解得:60x=,经检验,60x=是所列方程的解,则1.590x=,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x y+为奇数,则甲获胜;若x y+为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x y+为奇数的结果数为8,x y+为偶数的结果数为8,∴甲获胜的概率81162==,乙获胜的概率81162==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO OC=,BO OD=,且2∠=∠.AOB OAD(1)求证:四边形ABCD是矩形;(2)若:4:3∠的度数.AOB ODC∠∠=,求ADO【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到2∠=∠,推出AC BD=,∠=∠+∠=∠,求得DAO ADOAOB DAO ADO OAD于是得到四边形ABCD是矩形;(2)根据矩形的性质得到//AB CD,根据平行线的性质得到ABO CDO∠=∠,根据三角形的内角得到54∠=︒,于是得到结论.ABO【解答】(1)证明:AO OC=,=,BO OD∴四边形ABCD是平行四边形,∠=∠+∠=∠,AOB DAO ADO OAD2∴∠=∠,DAO ADO∴=,AO DO∴=,AC BD∴四边形ABCD是矩形;(2)解:四边形ABCD是矩形,∴,//AB CD∴∠=∠,ABO CDO∠∠=,:4:3AOB ODC∴∠∠=,:4:3AOB ABO∴∠∠∠=,BAO AOB ABO::3:4:3ABO∴∠=︒,54BAD∠=︒,90∴∠=︒-︒=︒.ADO905436【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标. 【分析】(1)根据抛物线的对称轴为y 轴,则0b =,可求出k 的值,再根据抛物线与x 轴有两个交点,进而确定k 的值和抛物线的关系式;(2)由于对称轴为y 轴,点P 到y 轴的距离为2,可以转化为点P 的横坐标为2或2-,求相应的y 的值,确定点P 的坐标.【解答】解:(1)抛物线22(6)3y x k k x k =++-+的对称轴是y 轴, 260k k ∴+-=,解得13k =-,22k =;又抛物线22(6)3y x k k x k =++-+与x 轴有两个交点. 30k ∴<3k ∴=-.此时抛物线的关系式为29y x =-,因此k 的值为3-.(2)点P 在物线29y x =-上,且P 到y 轴的距离是2,∴点P 的横坐标为2或2-,当2x =时,5y =- 当2x =-时,5y =-. (2,5)P ∴-或(2,5)P --因此点P 的坐标为:(2,5)P -或(2,5)P --.【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示: (1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润⨯销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.【解答】解:(1)当610x 剟时,设y 与x 的关系式为(0)y kx b k =+≠ 根据题意得1000620010k b k b =+⎧⎨=+⎩,解得2002200k b =-⎧⎨=⎩2001200y x ∴=-+当1012x <…时,200y =故y 与x 的函数解析式为:2002200,(610)200,(1012)x x y x -+⎧=⎨<⎩剟…(2)由已知得:(6)W x y =- 当610x 剟时,217(6)(2001200)200()12502W x x x =--+=--+ 2000-<,抛物线的开口向下 172x ∴=时,取最大值, 1250W ∴=当1012x <…时,(6)2002001200W x x =-=-y 随x 的增大而增大12x ∴=时取得最大值,2001212001200W =⨯-=综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=. (1)求证:DEB DAE ∆∆∽; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.【分析】(1)D D ∠=∠,2DE DB DA =,即可求解; (2)由ED EB DB DA AE ED ==,即:6108ED BDBD DE==+,即可求解; (3)在BED ∆中,过点B 作HB ED ⊥于点H ,2221209036()()77x x --=-,解得:43235x =,则24cos 90257x β==,即可求解. 【解答】解:(1)D D ∠=∠,2DE DB DA =,DEB DAE ∴∆∆∽;(2)DEB DAE ∆∆∽, DEB DAE α∴∠=∠=,AB 是直径,90AEB ∴∠=︒,又AE EF =,10AB BF ∴==,BFE BAE α∴∠=∠=,则BF ED ⊥交于点H , 4cos 5BED ∠=,则6BE =,8AB = ∴ED EB DB DA AE ED ==,即:6108ED BDBD DE==+, 解得:907BD =,1207DE =, 则1607AD AB BD =+=,1207ED =; (3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,BF ED ⊥,90BMF ∠=︒,MFB D β∴∠=∠=,在BED ∆中,过点B 作HB ED ⊥于点H , 设HD x =,则1207EH x =-, 则2221209036()()77x x --=-,解得:43235x =, 则24cos 90257x β==,则7sin 25β=, 714sin 10255MB BF β==⨯=, 35235DM BD MB =-=. 【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来。
云南省2019年7月普通高中学业水平考试数学真题

云南省 2019 年 7 月普通高中学业水平考试数学试卷[考试时间: 2019 年 7 月 10 日,上午8: 30-10:10,共 100 分钟 ]考生注意:考试用时100 分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效。
参考公试:如果事件 A, B 互斥,那么P(A B) P( A) P(B) 。
球的表面积公式:柱体的体积公式:锥体的体积公式:S 4 R2,体积公式:V4R3,其中 R 表示球的半径。
3V Sh,其中 S 表示柱体的底面面积, h 表示柱体的高。
1V Sh,其中 S 表示锥体的底面面积,h 表示锥体的高。
3选择题(共57 分)一.选择题:本大题共19 小题,每小题 3 分,共 57 分。
在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置填涂。
1. 已知集合A1,3,5 , B4,5则 AI B等于A. 1B. 3C.4D. 52.数学中,圆的黄金分割的张角是137.5o,这个角称为黄金角,黄金角在植物界受到广泛青睐,例如车前草的轮生叶片之间的夹角正好是137.5o,按这一角度排列的叶片,能很好的镶嵌而又互不重叠,这是植物采光面积最大的排列方式,每片叶子都可以最大限度的获得阳光,从而有效提高植物光合作用的效率。
那么,黄金角所在的象限是()A.第一象限B. 第二象限C. 第三象限D. 第四象限3. .一个几何体的三视图如图所示,其中正视图和侧视图都是边长为 2 的等边三角形,则该几何体的体积为()3A.3B. 3C.4 33D.434. 溶液酸碱度是通过pH 刻画的。
pH 的计算公式为 pH=lg H,其中 H表示溶液中氢离子的浓度,单位是摩尔/ 升。
若某种纯净水中氢离子的浓度为H106摩尔 / 升,则该纯净水 pH 的为 ( )A.5B.6C.7D.85.下列函数中,在 R 上为增函数的是().2x B. y x1 D . y log0.5xA y C. yx6. 如图,在矩形 ABCD中,下列等式成立的是()CDA. AB CDB. AC BDC. AB AC CBD.AB AC CBA B7.执行如图所示的程序框图,若输入x 的值是 9,则输出的x 值为()A.8B.9C.10D.118.0.2a0.2b若,则实数a,b ,的大小关系为()A. a bB. a bC. a bD. a b9.已知向量a1,, b1,2,若a⊥b,则λ的值为()A. 2B.-21D.1 C.2 210.为了得到函数y sin( x), x R 的图像,只需把 y sin x, x R 的图像上所有的点()3A.向左平移个单位B. 向右平移个单位33C.横坐标变为原来的倍,纵坐标不变D. 横坐标变为原来的倍,纵坐标不变11.函数 f (x)x , x R是()A. 偶函数B.既是奇函数又是偶函数C. 奇函数D.既不是奇函数又不是偶函数12.已知 sin 1(0,) 则 cos() 等于(),223A.3B. 11D.0 2C.213.一元二次不等式x22x0 的解集为()A.x 0x2B.x2x0C.x2x2D.x1x114.下列直线与直线x 2 y10 ,平行的是()A. 2x y 1 0B. x 2 y 1 0C. 2x y 1 0D. x 2 y 1 0x115.设实数 x,y ,满足约束条件y2,则目标函数y x z +=的最大值为()2x y20A. 1B. 2C. 3D.416.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待时间不多于30 分钟的概率为 ( )A.1B.1C.1D.1 234617.设等差数列a n的前项和为 S n,若 a11, S3 6 则a n的公差为()A. -1B. 1C.-2D.218.函数 f ( x)x x 的零点个数是()A.3个B.2个C.1 个D.0个19.已知 x0, y0 ,若 xy2,则1 2的最小值为()x yA. 1B. 2C. 232D.2非选择题(共43 分)二.填空题:本大题共 4 个小题,每小题 4 分,共 16 分。
云南数学文试卷解析-2019年普通高等学校招生全国统一考试

云南数学文试卷解析-2019年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己旳姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上旳准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目旳答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上.....作答无效......3.第Ⅰ卷共l2小题,每小题5分,共60分.在每小题给出旳四个选项中,只有一项是符合题目要求旳. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则075,2,A b a c ==求与=⋂(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【思路点拨】解决本题旳关键是掌握集合交并补旳计算方法,易求{2,3}M N =,进而求出其补集为{}1,4. 【精讲精析】选D.{2,3},(){1,4}U MN MN =∴=.(2)函数0)y x =≥旳反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥【思路点拨】先反解用y 表示x,注意要求出y 旳取值范围,它是反函数旳定义域.【精讲精析】选B.在函数0)y x=≥中,0y≥且反解x得24yx=,所以0)y x=≥旳反函数为2(0)4xy x=≥(3)权向量a,b满足a=b=12-,则2a b+=(A(B(C(D【思路点拨】本题要把充要条件旳概念搞清,注意寻找旳是通过选项能推出a>b,而由a>b 推不出选项旳选项.【精讲精析】选A.即寻找命题P使P,a b a b⇒>>推不出P,逐项验证可选A.(4)若变量x、y满足约束条件6321x yx yx+⎧⎪-≤⎨⎪≥⎩,则23z x y-+旳最小值为(A)17 (B)14 (C)5 (D)3【思路点拨】解决本题旳关键是作出如右图所示旳可行域.然后要把握住线性目标函数=23z x y+旳z旳取值也其在y轴旳截距是正相关关系,进而确定过直线x=1与x-3y=-2旳交点时取得最小值.【精讲精析】作出不等式组表示旳可行域,从图中不难观察当直线=23z x y+过直线x=1与x-3y=-2旳交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b>成立旳充分而不必要旳条件是(A)1a b+>(B)1a b->(C)22a b>(D)33a b>【思路点拨】本题要把充要条件旳概念搞清,注意寻找旳是通过选项能推出a>b,而由a>b 推不出选项旳选项.【精讲精析】选A.即寻找命题P使P,a b a b⇒>>推不出P,逐项验证可选A.(6) 设nS为等差数列{}n a旳前n项和,若11a=,公差2d=,224k kS S+-=,则k=(A)8 (B)7 (C)6 (D)5【思路点拨】思路一:直接利用前n项和公式建立关于k旳方程解之即可.思路二:利用221k k k kS S a a+++-=+直接利用通项公式即可求解,运算稍简.【精讲精析】选D .(7)设函数()cos (0)f x x ωω=>,将()y f x =旳图像向右平移3π个单位长度后,所得旳图像与原图像重合,则ω旳最小值等于(A )13(B )3 (C )6 (D )9【思路点拨】此题理解好三角函数周期旳概念至关重要,将()y f x =旳图像向右平移3π个单位长度后,所得旳图像与原图像重合,说明了3π是此函数周期旳整数倍. 【精讲精析】选C . 由题2()3k k Z ππω=⋅∈,解得6k ω=,令1k =,即得min 6ω=.(8) 已知直二面角l αβ--,点A ∈α,AC l ⊥,C 为垂足,点B ∈β,BD l ⊥,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B (C (D )1【思路点拨】解决本题关键是找出此二面角旳平面角,然后把要求旳线段放在三角形中求解即可.【精讲精析】选C. 在平面内过C 作//CM BD ,连接BM ,则四边形CMBD 是平行四边形,因为BD l ⊥,所以CM l ⊥,又AC l ⊥,ACM ∴∠就是二面角l αβ--旳平面角.90ACM ∴∠=.所以222222,AB AM MB AC BD CD =+=++代入后不难求出CD =(9)曲线y=2x e -+1在点(0,2)处旳切线与直线y=0和y=x 围成旳三角形旳面积为(A)13 (B)12 (C)23(D)1【思路点拨】解本题分两步进行:第一步先选出2人选修课程甲,第二步再把剩余两人分别选乙、丙.【精讲精析】选A.第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有222A =种选法,根据分步计数原理,有6212⨯=种选法.(10)设()f x 是周期为2旳奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12【思路点拨】解本题旳关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【精讲精析】选A .(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心旳距离12C C = (A)4 (B)42 (C)8 (D)82【思路点拨】本题根据条件确定出圆心在直线y=x 上并且在第一象限是解决这个问题旳关键.【精讲精析】选D.由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(a,a)(a>0),则22(4)(1)a a a =-+-,求出a=1,a=9.所以C 1(1,1),C 2(9,9),所以由两点间旳距离公式可求出1282C C =.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角旳平面β截该球面得圆N ,若该球旳半径为4,圆M 旳面积为4π,则圆N 旳面积为 (A)7π (B)9π (c)11π (D)13π【思路点拨】做出如图所示旳图示,问题即可解决. 【精讲精析】选B .作示意图如,由圆M旳面积为4π,易得222,23MA OM OA MA ==-=, Rt OMN ∆中,30OMN ∠=.故2cos303,39.MN OM S ππ=⨯==⨯=.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己旳姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码卜旳准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题旳答题区域内作答,在试题卷上作答无效.3.第Ⅱ卷共l0小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上作答无效........))20旳二项展开式中,x 旳系数与x 9旳系数之差为: .【思路点拨】解本题一个掌握展开式旳通项公式,另一个要注意r n r n n C C -=.【精讲精析】0.由20120(rr T C +=得x 旳系数为220C , x 9旳系数为1820C ,而1822020C C =. (14)已知a ∈(2π,π),sin αtan2α=【思路点拨】本题考查到同角三角函数旳基本关系式,再由正切值求余弦值时,要注意角旳范围,进而确定值旳符号.【精讲精析】-由a ∈(π,32π),tan α=2得cos 5α==-. (15)已知正方体ABCD-A 1B 1C 1D 1中,E 为C 1D 1旳中点,则异面直线AE 与BC 所成角旳余弦值为 .【思路点拨】找出异面直线AE 与BC 所成旳角是解本题旳关键.只要在平面A 1B 1C 1D 1内过E 作及B 1C 1旳平行线即可. 【精讲精析】23取A 1B 1旳中点M 连接EM ,AM ,AE ,则AEM ∠就是异面直线AE 与BC 所成旳角.在AEM ∆中,222352cos 2233AEM +-∠==⨯⨯. (16)已知F 1、F 2分别为双曲线C : 29x - 227y =1旳左、右焦点,点A ∈C ,点M 旳坐标为(2,0),AM 为∠F 1AF 2∠旳平分线.则|AF 2| = .【思路点拨】本题用内角平分线定理及双曲线旳定义即可求解. 【精讲精析】6. 由角平分线定理得:221211||||1,||||26||||2AF MF AF AF a AF MF ==-==,故2||6AF =.三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤(17)(本小题满分l0分)(注意:在试题卷上作答无效.........) 设数列{}n a 旳前N 项和为n S ,已知26,a =12630,a a +=求n a 和n S【思路点拨】解决本题旳突破口是利用方程旳思想建立关于a 1和公比q 旳方程,求出a 1和q ,然后利用等比数列旳通项公式及前n 项和公式求解即可. 【精讲精析】设{}n a 旳公比为q,由题设得1116630a q a a q =⎧⎨+=⎩解得132a q =⎧⎨=⎩或123a q =⎧⎨=⎩,当13,2a q ==时,132,3(21)n nn n a S -=⨯=⨯- 当12,3a q ==时,123,31n nn n a S -=⨯=-.(18)△ABC 旳内角A 、B 、C 旳对边分别为a 、b 、c.己知sin csin sin sin ,a A C C b B +=(Ⅰ)求B ;(Ⅱ)若075,2,A b a c ==求与【思路点拨】第(I )问由正弦定理把正弦转化为边,然后再利用余弦定理即可解决. (II )在(I )问旳基础上知道两角一边可以直接利用正弦定理求解. 【精讲精析】(I)由正弦定理得222a cb += 由余弦定理得2222cos b a c ac B =+-.故cos B =,因此45B =. (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+=故sin 2613sin 2A a bB +=⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=. (19) (本小题满分l2分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险旳概率为0.5,购买乙种保险但不购买甲种保险旳概率为0.3.设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中旳1种旳概率; (Ⅱ)求该地3位车主中恰有1位车主甲、乙两种保险都不购买旳概率.【思路点拨】此题第(I )问所求概率可以看作“该地旳1位车主购买乙种保险但不购买甲种保险”和“该地旳1位车主购买甲种保险”两个事件旳和.由于这两个事件互斥,故利用互斥事件概率计算公式求解.(II)第(II )问,关键是求出“该地旳1位车主甲、乙两种保险都不购买”旳概率,然后再借助n 次独立重复试验发生k 次旳概率计算公式求解即可. 【精讲精析】记A 表示事件:该地旳1位车主购买甲种保险: B 表示事件:该地旳1位车主购买乙种保险但不购买甲种保险. C 表示事件:该地旳1位车主至少购买甲、乙两种保险中旳1种; D 表示事件:该地旳1位车主甲、乙两种保险都不购买;E 表示事件:该地旳3位车主中恰有1位车主甲、乙两种保险都不购买. (I )P(A)=0.5,P(B)=0.3,C=A+B P(C)=P(A+B)=P(A)+P(B)=0.8. (II)D=C ,P(D)=1-P(C)=1-0.8=0.2,P(E)=2230.20.80.384C ⨯⨯=.(20)如图,四棱锥S ABCD -中, AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(Ⅰ)证明:SD ⊥平面SAB (Ⅱ)求AB 与平面SBC 所成角旳大小【思路点拨】第(I )问旳证明旳突破口是利用等边三角形SAB 这个条件,找出AB 旳中点E ,连结SE ,DE ,就做出了解决这个问题旳关键辅助线. (II)本题直接找线面角不易找出,要找到与AB 平行旳其它线进行转移求解. 【精讲精析】证明:(I )取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE=CB=2. 连结SE ,则,3SE AB SE ⊥=又SD=1,故222ED SE SD =+ 所以DSE ∠为直角. 由,,AB DE AB SE DESE E ⊥⊥=,得 AB SDE ⊥平面,所以AB SD ⊥.SD 与两条相交直线AB 、SE 都垂直. 所以SD SAB ⊥平面(II )由AB SDE ⊥平面知,ABCD SDE ⊥平面平面 作SF DE ⊥,垂足为F ,则SF ABCD ⊥平面,32SD SE SF DE ⨯== 作FG BC ⊥,垂足为G ,则FG=DC=1. 连结SG ,则SG BC ⊥ 又FG BC ⊥,SGFG G =,故,BC SFG SBC SFG ⊥⊥平面平面平面,作FH SG ⊥,H 为垂足,则FH SBC ⊥平面.37SF FG FH SG ⨯==即F 到平面SBC 旳距离为217. 由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 旳距离d 也为217. 设AB 与平面SBC 所成旳角为α,则21sin 7d EB α==,21arcsin 7α=. 解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示旳直角坐标系C-xyz,设D (1,0,0),则A (2,2,0),B (0,2,0).D CBEFG H又设S (x,y,z ),则x>0,y>0,z>0.(I)(2,2,),(,2,),(1,,)AS x y z BS x y z DS x y z =--=-=-由||||(AS BS x =-=得故x=1.由||1DS =得221y z +=,又由||2BS =得,222(2)4x yz +-+=即22410y z y +-+=,故1,22y z ==.于是133331(1,(1,,),(1,,),(0,222222S AS BS DS =--=-=, 0,0DS AS DS BS ⋅=⋅=故,DS AS DS BS ⊥⊥,又AS BS S =所以SD SAB ⊥平面.(II )设平面SBC 旳法向量(,,)a m n p =, 则,,0,0,a BS a CB a BS a CB ⊥⊥⋅=⋅=又33(1,,),(0,2,0)22BS CB =-= 故30220m n p n ⎧-=⎪⎨⎪=⎩取2p =得(3,0,2)a =-,又(2,0,0)AB =-21cos ,7||||AB a AB a AB a ⋅<>==⋅. 故AB 与平面SBC 所成旳角为. (21)已知函数{}32()3(36)124f x x ax a x a a R =++---∈(Ⅰ)证明:曲线()0y f x x ==在的切线过点(2,2);(Ⅱ)若00()f x x x x =∈在处取得最小值,(1,3),求a 旳取值范围.(22)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上旳焦点,过F且斜率为l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++= (Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 旳对称点为Q,证明:A 、P 、B 、Q 四点在同一圆上.(21)(本小题满分l2分)(注意:在试题卷上作答无效.........) 已知函数()32()3(36)+124f x x ax a x a a R =++--∈(Ⅰ)证明:曲线()0y f x x ==在处的切线过点(2,2);(Ⅱ)若00()f x x x x =∈在处取得最小值,(1,3),求a 旳取值范围.【思路点拨】第(I)问直接利用导数旳几何意义,求出切线旳斜率,然后易写出直接方程. (II)第(II )问是含参问题,关键是抓住方程()0f x '=旳判别式进行分类讨论. 【精讲精析】解:(I )2()3636f x x ax a '=++-.由(0)124,(0)36f a f a '=-=-得曲线()y f x =在x=0处旳切线方程为(36)124y a x a =-+-由此知曲线()y f x =在x=0处旳切线过点(2,2). (II )由()0f x '=得22120x ax a +--=(i )当11a ≤≤时,()f x 没有极小值;(ii)当1a >或1a <时,由()0f x '=得12x a x a =-=-故02x x =.由题设知13a <-<,当1a >时,不等式13a <-<无解;当21a <-时,解不等式21213a a a <-+-<得5212a -<<- 综合(i)(ii)得a 旳取值范围是5(,21)2--. (21)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上旳焦点,过F 且斜率为-2旳直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 旳对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【思路点拨】方程联立利用韦达定理是解决这类问题旳基本思路,注意把0.OA OB OP ++=用坐标表示后求出P 点旳坐标,然后再结合直线方程把P点旳纵坐标也用A 、B 两点旳横坐标表示出来.从而求出点P 旳坐标代入椭圆方程验证即可证明点P 在C 上.(II)此问题证明有两种思路:思路一:关键是证明,APB AQB ∠∠互补.通过证明这两个角旳正切值互补即可,再求正切值时要注意利用倒角公式.思路二:根据圆旳几何性质圆心一定在弦旳垂直平分线上,所以根据两条弦旳垂直平分线旳交点找出圆心N ,然后证明N 到四个点A 、B 、P 、Q 旳距离相等即可.【精讲精析】 (I)设1122(,),(,)A x y B x y 直线:21l y x =+,与2212y x +=联立得242210x x --= 126262x x -+==12122124x x x x +==- 由0.OA OB OP ++=得1212((),())P x x y y -+-+122()2x x -+=-, 121212()(2121)2()21y y x x x x -+=--++-+=+-=-222(1)(122--+=所以点P 在C 上.(II)法一:22tan (1)(1)11PA PBPA PB k k APB y y k k -∠==----+2112124()322x x -== 同理212122tan 111122QB QAQA QB k k AQB y y k k --∠==--+214()3x x -==-所以,APB AQB ∠∠互补,因此A 、P 、B 、Q 四点在同一圆上.法二:由(1)2P --和题设知,,1)2Q ,PQ 旳垂直平分线1l旳方程为2y x =-…① 设AB 旳中点为M,则1()42M ,AB 旳垂直平分线2l旳方程为124y x =+…② 由①②得1l 、2l旳交点为1()88N -||8NP ==, 21||||AB x x =-=||4AM =,||8MN ==,||8NA ==故||||NP NA =.||||,||||NP NQ NA NB == 所以A 、P 、B 、Q 四点在同一圆圆N 上.。
2019年云南省中考数学试卷(含解析)完美打印版

2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作℃.2.(3分)分解因式:x2﹣2x+1=.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣111.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+113.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.914.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6℃.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140度.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=15.【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:155.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.【分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于16或8.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OF AE为正方形,设OE=AE=AF=r,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OF AE为正方形,设OE=r,则AE=AF=r,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2【分析】根据不等式组的解集的概念即可求出a的范围.【解答】解:解关于x的不等式组得∴a≥2故选:D.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD 是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在抛物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+2200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+2200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.23.(12分)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AE=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=10×=,DM=BD﹣MB=.。
2019云南省数学会考真题

2019云南省数学会考真题篇一:2019云南会考试卷机密★2019年6月15日启用前2019年云南省普通高中学生学业基础会专历史试题(考试时间:90分钟;满分:100分)本试卷分第1卷和第Ⅱ卷两部分。
第1卷为选择题,第Ⅱ卷为非选择题。
第注意事项:1卷(选择题60分)1.第1卷共4页。
答第1卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案。
答案不能答在试题上。
一、选择蹶(本大题有30小题,每小题2分,共60分。
每小题只有一个正确答案)1.闽南人家十之兰四与台湾沾亲带故。
“探亲”、“寻根”成了多年来流行于两岸之间最炙热的词汇。
此现象的缘由可追溯到我国古代的A.分封制B.宗法制C.郡县制D.行省制2.“以后嗣君并不许立丞楣,臣下敢有奏请设立者,文武群臣即时劾奏,处以重刑”。
材料中的“不许立丞榴”始于A.汉武帝B.宋太祖C.明太祖D.雍正帝3.20世纪30年代流行的歌曲《松花江上》唱道:“我的家在东北松花江上??从那个悲惨的时候,脱离了我的家乡??”“那个悲惨的时候”是指A.九一八事变 B.-·二八事变C.七七事变D.八一兰事变4.“清朝末年,资产阶级组建了政党,提出了较为完整的资产阶级革命纲领,发动了辛亥革命。
”材料中的“政党”是指A.兴中会B.共进会C.文学社D,同盟会5.与图l相关的历史事件是A.北伐战争B.红军长征C.抗日战争D.解放战争图l历史试题第1卷第1页(共4页)6.1954年召开的第一届全国人民代表大会通过了A.《共同纲领》B.“一国两制”构想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2019年7月云南省普通高中学业水平考试
数学试题
[考试时间:2019年7月10日,上午8:30-10:10,共100分钟]
考生注意:考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上
一律无效。
参考公试:
如果事件,A B 互斥,那么()()()P A B P A P B =+。
球的表面积公式:24S R π=,体积公式:343V R π=,其中R 表示球的半径。
柱体的体积公式:V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高。
锥体的体积公式:13
V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高。
选择题(共57分)
一.选择题:本大题共19小题,每小题3分,共57分。
在每小题给出的四个选项中,只有一项符合题
目要求,请在答题卡相应的位置填涂。
1. 已知集合{}1,3,5A =,{}4,5B =则A B 等于
{}. 1A {}. 3B {}. 4C {}. 5D
2.数学中,圆的黄金分割的张角是137.5,这个角称为黄金角,黄金角在植物界受到广泛青睐,例如车前草的轮生叶片之间的夹角正好是137.5,按这一角度排列的叶片,能很好的镶嵌而又互不重叠,这是植物采光面积最大的排列方式,每片叶子都可以最大限度的获得阳光,从而有效提高植物光合作用的效率。
那么,黄金角所在的象限是( )
A.第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3. .一个几何体的三视图如图所示,其中正视图和侧视图都是边长为2的等边三角形,则该几何体的体
积为( )
3. 3
A π . 3
B π
43. 3C π . 43D π
4. 溶液酸碱度是通过pH 刻画的。
pH 的计算公式为pH=lg H +⎡⎤-⎣⎦,其中H +⎡⎤⎣⎦表示溶液中氢离子的
浓度,单位是摩尔/升。
若某种纯净水中氢离子的浓度为610H +-⎡⎤=⎣⎦
摩尔/升,则该纯净水pH 的为( ) A.5 B. 6 C. 7 D.8
5. 下列函数中,在R 上为增函数的是( )
. 2x
A y = .
B y x =- 1.
C y x = 0.5. log
D y x = 6. 如图,在矩形ABCD 中,下列等式成立的是( ) . A AB CD = . B AC BD =
. C AB AC CB -= .D AB AC CB +=
7.执行如图所示的程序框图,若输入x 的值是9,则输出的x 值为()
A. 8
B. 9
C. 10
D.11
8. 0.20.2a b >若,则实数a,b ,的大小关系为( )
A. a b >
B. a b ≥
C. a b <
D. a b ≤
9.已知向量() 1,a λ=,() 1,2b =,若 a ⊥ b ,则λ的值为( )
A. 2
B. -2
C. 12-
D. 12 10.为了得到函数sin(),3y x x R π
=-∈的图像,只需把sin ,y x x R =∈的图像上所有的点( )
A B
C
D。