物理竞赛中的数学知识

合集下载

初中物理竞赛教师指导

初中物理竞赛教师指导

第一讲:运动的基本概念、匀变速直线运动【知识要点】平均速度:ts t x x v =-=0 瞬时速度:t sv t ∆=→∆0lim 平均加速度:tv a ∆∆= 瞬时加速度:t va t ∆∆=→∆0lim速度公式:at v v t +=0 位移公式:2021at t v s +=推论公式:as v v t 222+= 平均速度:20tv v t s v +== 【例题选讲】例1、如图所示,相距L=20m 的两个小球A 、B 沿同一直线同时向右运动,A 球以速度v0=2.0m/s 匀速运动,B 球以加速度a=-2.5m/s 2减速运动,B 球初速度多大时,恰能赶上A 球。

例2、一点有物体甲,在甲的正上方距地面H 高处有物体乙,在从静止开始释放乙的同时,给甲一个初速度竖直上抛,问(1)为使甲在上升阶段与乙相遇,初速度v 0为多大?(2)为使甲在下落阶段与乙相遇,初速度v 0又为多大?例3:一质点沿直线运动,其速度随时间变化的关系图像恰好是与坐标轴相切的14圆弧,如图所示,则质点在这20S 内的位移x 为多少?质点在10s 的加速度a例4:已知一质点做变加速直线运动,初速度为v 0,其加速度随位移线性减小的关系即加速过程中加速度与位移之间的关系满足条件a=a 0-ks ,式中a 为任一位置处的加速度,s 为位移,a 0、k 为常量,求当位移为s 0时质点的瞬时速度。

例5:将一小球以30m/s 的初速度竖直上抛,以后每隔1s 抛出一小球(空气阻力可以忽略不计),空中各球不会相碰,问: (1) 最多能有几个小球同时在空中?(2) 设在t=0时第一个小球被抛出,那么它应该在哪些时刻和以后抛出的小球在空中相遇而过?(取g=10m/s 2)t (s )【练习】1、 在一条笔直的公路上依次设置三盏交通信号灯L 1、L 2和L 3,L 2与L 1相距80m ,L 3与L 1相距120m 。

每盏信号灯显示绿色的时间间隔都是20s ,显示红色的时间间隔都是40s 。

全国中学生物理竞赛内容提要.doc

全国中学生物理竞赛内容提要.doc

全国中学生物理竞赛内容提要一,理论基础力1,运动学参照系.质点运动的位移和路程,速度,加速度.相对速度. 矢量和标量.矢量的合成和分解. 匀速及匀速直线运动及其图象.运动的合成.抛体运动.圆周运动. 刚体的平动和绕定轴的转动. 2,牛顿运动定律力学中常见的几种力牛顿第一,二,三运动定律.惯性参照系的概念. 摩擦力. 弹性力.胡克定律. 万有引力定律.均匀球壳对壳内和壳外质点的引力公式(不要求导出) .开普勒定律.行星和人造卫星的运动. 3,物体的平衡共点力作用下物体的平衡.力矩.刚体的平衡.重心. 物体平衡的种类. 4,动量冲量.动量.动量定理. 动量守恒定律. 反冲运动及火箭. 5,机械能功和功率.动能和动能定理. 重力势能. 引力势能. 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出) . 弹簧的弹性势能. 功能原理.机械能守恒定律. 碰撞. 6,流体静力学静止流体中的压强. 浮力. 7,振动简揩振动.振幅.频率和周期.位相. 振动的图象. 参考圆.振动的速度和加速度. 由动力学方程确定简谐振动的频率. 阻尼振动.受迫振动和共振(定性了解) . 8,波和声横波和纵波.波长,频率和波速的关系.波的图象. 波的干涉和衍射(定性) . 声波.声音的响度,音调和音品.声音的共鸣.乐音和噪声.热1,分子动理论原子和分子的量级. 分子的热运动.布朗运动.温度的微观意义. 分子力. 分子的动能和分子间的势能.物体的内能. 2,热力学第一定律热力学第一定律. 3,气体的性质热力学温标. 理想气体状态方程.普适气体恒量. 理想气体状态方程的微观解释(定性) . 理想气体的内能. 理想气体的等容,等压,等温和绝热过程(不要求用微积分运算) . 4,液体的性质流体分子运动的特点. 表面张力系数. 浸润现象和毛细现象(定性) . 5,固体的性质晶体和非晶体.空间点阵. 固体分子运动的特点. 6,物态变化熔解和凝固.熔点.熔解热. 蒸发和凝结.饱和汽压.沸腾和沸点.汽化热.临界温度. 固体的升华. 空气的湿度和湿度计.露点. 7,热传递的方式传导,对流和辐射. 8,热膨胀热膨胀和膨胀系数.电1,静电场库仑定律.电荷守恒定律. 电场强度.电场线.点电荷的场强,场强叠加原理.均匀带电球壳壳内的场强和壳外的场强公式(不要求导出) .匀强电场. 电场中的导体.静电屏蔽. 电势和电势差.等势面.点电荷电场的电势公式(不要求导出) .电势叠加原理. 均匀带电球壳壳内和壳外的电势公式(不要求导出) . 电容.电容器的连接.平行板电容器的电容公式(不要求导出) . 电容器充电后的电能. 电介质的极化.介电常数. 2,恒定电流欧姆定律.电阻率和温度的关系. 电功和电功率.电阻的串,并联. 电动势.闭合电路的欧姆定律. 一段含源电路的欧姆定律. 电流表.电压表.欧姆表. 惠斯通电桥,补偿电路. 3,物质的导电性金属中的电流.欧姆定律的微观解释. 液体中的电流.法拉第电解定律. 气体中的电流.被激放电和自激放电(定性) . 真空中的电流.示波器. 半导体的导电特性.P型半导体和N 型半导体. 晶体二极管的单向导电性.三极管的放大作用(不要求机理) . 超导现象. 4,磁场电流的磁场.磁感应强度.磁感线.匀强磁场. 安培力.洛仑兹力.电子荷质比的测定.质谱仪.回旋加速器. 5,电磁感应法拉第电磁感应定律. 楞次定律. 自感系数. 互感和变压器. 6,交流电交流发电机原理.交流电的最大值和有效值. 纯电阻,纯电感,纯电容电路. 整流和滤波. 三相交流电及其连接法.感应电动机原理. 7,电磁振荡和电磁波电磁振荡.振荡电路及振荡频率. 电磁场和电磁波.电磁波的波速,赫兹实验. 电磁波的发射和调制.电磁波的接收,调谐,检波.光1,几何光学光的直进,反射,折射.全反射. 光的色散.折射率与光速的关系. 平面镜成像.球面镜成像公式及作图法.薄透镜成像公式及作图法. 眼睛.放大镜.显微镜.望远镜. 2,波动光学光的干涉和衍射(定性) 光谱和光谱分析.电磁波谱. 3,光的本性光的学说的历史发展. 光电效应.爱因斯坦方程. 波粒二象性.原子和原子核1,原子结构卢瑟福实验.原子的核式结构. 玻尔模型.用玻尔模型解释氢光谱.玻尔模型的局限性. 原子的受激辐射.激光. 2,原子核原子核的量级. 天然放射现象.放射线的探测. 质子的发现.中子的发现.原子核的组成. 核反应方程. 质能方程.裂变和聚变. 基本粒子.二、数学基础1,中学阶段全部初等数学(包括解析几何) . 2,矢量的合成和分解.极限,无限大和无限小的初步概念. 3,不要求用微积分进行推导或运算.二,实验基础1,要求掌握国家教委制订的《全日制中学物理教学大纲》中的全部学生实验. 2,要求能正确地使用(有的包括选用)下列仪器和用具:米尺.游标卡尺.螺旋测微器.天平.停表.温度计.量热器.电流表.电压表.欧姆表.万用电表. 电池.电阻箱.变阻器.电容器.变压器.电键.二极管.光具座(包括平面镜, 球面镜,棱镜,透镜等光学元件在内) . 3, 有些没有见过的仪器. 要求能按给定的使用说明书正确使用仪器. 例如: 电桥,电势差计,示波器,稳压电源,信号发生器等. 4,除了国家教委制订的《全日制中学物理教学大纲》中规定的学生实验外,还可安排其它的实验来考查学生的实验能力,但这些实验所涉及到的原理和方法不应超过本提要第一部分(理论基础) ,而所用仪器就在上述第2,3 指出的范围内. 5,对数据处理,除计算外,还要求会用作图法.关于误差只要求:直读示数时的有效数字和误差;计算结果的有效数字(不做严格的要求) ;主要系统误差来源的分析.三,其它方面物理竞赛的内容有一部分要扩及到课外获得的知识.主要包括以下三方面: 1, 物理知识在各方面的应用. 对自然界, 生产和日常生活中一些物理现象的解释. 2,近代物理的一些重大成果和现代的一些重大信息. 3,一些有重要贡献的物理学家的姓名和他们的主要贡献. 参考资料: 1, 全国中学生物理竞赛委员会办公室主编的历届《全国中学生物理竞赛参考资料》. 2,人民教育出版社主编的《高级中学课本(试用)物理(甲种本). 》专题一力【扩展知识】 1.重力物体的重心与质心重心:从效果上看,我们可以认为物体各部分受到的重力作用集中于一点,这一点叫做物体的重心. 质心:物体的质量中心. 设物体各部分的重力分别为G1,G2……Gn,且各部分重力的作用点在oxy 坐标系中的坐标分别是(x1,y1) x2,y2)……(xn,yn),物体的重心坐标xc,yc ( 可表示为物体的平衡xc = ∑G x ∑G i i i = G1 x1 + G2 x 2 + + Gn x n ∑Gi yi = G1 y1 + G2 y 2 + + Gn y n , yc = G1 + G2 + + Gn G1 + G2 + + Gn ∑Gi 2.弹力胡克定律:在弹性限度内,弹力 F 的大小与弹簧伸长(或缩短)的长度x 成正比, 即F=k x,k 为弹簧的劲度系数. 两根劲度系数分别为k1,k2 的弹簧串联后的劲度系数可由后劲度系数为k=k1+k2. 3.摩擦力最大静摩擦力:可用公式 F m=μ0FN 来计算.FN 为正压力,μ0 为静摩擦因素,对于相同的接触面,应有μ0>μ(μ为动摩擦因素) 摩擦角:若令μ0= 1 1 1 = + 求得,并联k k1 k 2 Fm =tanφ,则φ称为摩擦角.摩擦角是正压力FN 与最大静摩擦FN 力 F m 的合力与接触面法线间的夹角. 4.力的合成与分解余弦定理:计算共点力F1 与F2 的合力 F F= F1 2 + F2 2 + 2 F1 F2 cos θφ=arctan F2 sin θ(φ为合力 F 与分力F1 的夹角) F1 + F2 cos θ三角形法则与多边形法则:多个共点共面的力合成,可把一个力的始端依次画到另一个力的终端,则从第一个力的始端到最后一个力的终端的连线就表示这些力的合力. 拉密定理:三个共点力的合力为零时,任一个力与其它两个力夹角正弦的比值是相等的. 5.有固定转动轴物体的平衡力矩:力 F 与力臂L 的乘积叫做力对转动轴的力矩.即M=FL , 单位:Nm. 平衡条件:力矩的代数和为零.即M1+M2+M3+……=0. 6.刚体的平衡刚体:在任何情况下形状大小都不发生变化的力学研究对象. 力偶,力偶矩:二个大小相等,方向相反而不在一直线上的平行力称为力偶.力偶中的一个力与力偶臂(两力作用线之间的垂直距离)的乘积叫做力偶矩.在同一平面内各力偶的合力偶矩等于各力偶矩的代数和. 平衡条件:合力为零,即∑F=0;对任一转动轴合力矩为零,即∑M=0. 7.物体平衡的种类分为稳定平衡,不稳定平衡和随遇平衡三种类型. 稳度及改变稳度的方法:处于稳定平衡的物体,靠重力矩回复原来平衡位置的能力,叫稳度.降低重心高度,加大支持面的有效面积都能提高物体的稳度;反之, 则降低物体的稳度.【典型例题】例题1:求如图所示中重为G 的匀均质板(阴影部分)的重心O 的位置. 例题2:求如图所示中的由每米长质量为G 的7 根匀质杆件构成的平面衍架的重心. 例题3: 如图所示, 均匀矩形物体的质量为m, 两侧分别固定着轻质弹簧L1 和L2, 它们的劲度系数分别为k1 和k2, 先使L2 竖立在水平面上, 此时L1 自由向上伸着, L2 被压缩.待系统竖直静止后,再对L1 的上端 A 施一竖直向上和力F,使L2 承受的压力减为重的3/4 时,A 端比加 F 之前上升的高度是多少? 例题4: 图中的BO 是一根质量均匀的横梁, 重量G1=80N. 的一端安在 B 点, BO 可绕通过 B 点且垂直于纸面的轴转动,另一端用钢绳AO 拉着.横梁保持水平, 与钢绳的夹角θ=30°.在横梁的O 点挂一重物,重量G2=240N.求钢绳对横梁的拉力F1.专题二直线运动【扩展知识】一.质点运动的基本概念 1.位置,位移和路程位置指运动质点在某一时刻的处所,在直角坐标系中,可用质点在坐标轴上的投影坐标(x,y,z)来表示.在定量计算时,为了使位置的确定与位移的计算一致,人们还引入位置矢量(简称位矢)的概念,在直角坐标系中, 位矢r 定义为自坐标原点到质点位置P(x,y,z) 所引的有向线段, 故有r= x 2 + y 2 + z 2 ,r 的方向为自原点O 点指向质点P,如图所示. 位移指质点在运动过程中, 某一段时间t 内的位置变化, 即位矢的增量s = r(t + t ) _ rt , 它的方向为自始位置指向末位置,如图 2 所示,路程指质点在时间内通过的实际轨迹的长度. 2.平均速度和平均速率平均速度是质点在一段时间内通过的位移和所用时间之比v平= s ,平均速度是矢量,方向与位移s 的方向相同. t 平均速率是质点在一段时间内通过的路程与所用时间的比值,是标量. 3.瞬时速度和瞬时速率瞬时速度是质点在某一时刻或经过某一位置是的速度,它定义为在时的平均速度的极限,简称为速度,即v = lim s . t →0 t 瞬时速度是矢量,它的方向就是平均速度极限的方向.瞬时速度的大小叫瞬时速率,简称速率. 4.加速度加速度是描述物体运动速度变化快慢的物理量,等于速度对时间的变化率,即a= v ,这样求得的加速度实际上是物体运动的平均加速度,瞬时加速度应为t v a = lim .加速度是矢量. t →0 t 二,运动的合成和分解 1.标量和矢量物理量分为两大类:凡是只须数值就能决定的物理量叫做标量;凡是既有大小, 又需要方向才能决定的物理量叫做矢量.标量和矢量在进行运算是遵守不同的法则: 标量的运算遵守代数法则; 矢量的运算遵守平行四边形法则(或三角形法则) . 2.运动的合成和分解在研究物体运动时,将碰到一些较复杂的运动,我们常把它分解为两个或几个简单的分运动来研究.任何一个方向上的分运动,都按其本身的规律进行,不会因为其它方向的分运动的存在而受到影响,这叫做运动的独立性原理.运动的合成和分解包括位移,速度,加速度的合成和分解,他们都遵守平行四边形法则. 三,竖直上抛运动定义:物体以初速度v0 向上抛出,不考虑空气阻力作用,这样的运动叫做竖直上抛运动. 四,相对运动物体的运动是相对于参照系而言的,同一物体的运动相对于不同的参照系其运动情况不相同,这就是运动的相对性.我们通常把物体相对于基本参照系(如地面等)的运动称为"绝对运动" ,把相对于基本参照系运动着的参照系称为运动参照系,运动参照系相对于基本参照系的运动称为"牵连运动" ,而物体相对于运动参照系的运动称为"相对运动" .显然绝对速度和相对速度一般是不相等的,它们之间的关系是:绝对速度等于相对速度与牵连速度的矢量和.即v绝= v相+ v 或v甲对地= v甲对乙+ v乙对地【典型例题】例题1:A,B 两车沿同一直线同向行驶.A 车在前,以速度v1 做匀速直线运动; 当两车相距为 d 时(B 车在后) , B 车在后, 先以速度v 2 做匀速直线运动( v2 v1 ). 车开始做匀减速运动,加速度的大小为 a.试问为使两车不至于相撞,d 至少为多少? 例题2:河宽d=100m,水流速度v1 =4m/s,船在静水中的速度v 2 =3m/s,要使航程最短,船应怎样渡河? 例题3:有A, B 两球,A 从距地面高度为h 处自由下落,同时将 B 球从地面以初速度v0 竖直上抛,两球沿同一条竖直线运动.试分析: (1)B 球在上升过程中与A 球相遇; (2) 球在下落过程中与 A 球相遇.B 两种情况中 B 球初速度的取值范围. 专题三牛顿运动定律【扩展知识】非惯性参照系凡牛顿第一定律成立的参照系叫惯性参照系,简称惯性系.凡相对于惯性系静止或做匀速直线运动的参照系,都是惯性系.在不考虑地球自转,且在研究较短时间内物体运动的情况下,地球可看成是近似程度相当好的惯性系.凡牛顿第一定律不成立的参照系统称为非惯性系,一切相对于惯性参照系做加速运动的参照系都是非惯性参照系.在考虑地球自转时,地球就是非惯性系.在非惯性系中, 物体的运动也不遵从牛顿第二定律,但在引入惯性力的概念以后,就可以利用牛顿第二定律的形式来解决动力学问题. 一, 直线系统中的惯性力简称惯性力,例如在加速前进的车厢里,车里的乘客都觉得自己好象受到一个使其向后倒得力,这个力就是惯性力,其大小等于物体质量m 与非惯性系相对于惯性系的加速度大小 a 的乘积, 方向于 a 相反. 用公式表示, 这个惯性力 F 惯=-ma, 不过要注意:惯性力只是一种假想得力,实际上并不存在,故不可能找出它是由何物所施,因而也不可能找到它的反作用力.惯性力起源于物体惯性,是在非惯性系中物体惯性得体现. 二, 转动系统中的惯性力简称惯性离心力,这个惯性力的方向总是指向远离轴心的方向.它的大小等于物体的质量m 与非惯性系相对于惯性系的加速度大小 a 的乘积.如果在以角速度ω转动的参考系中,质点到转轴的距离为r,则: F 惯=mω2r. 假若物体相对于匀速转动参照系以一定速度运动,则物体除了受惯性离心力之外, 还要受到另一种惯性力的作用,这种力叫做科里奥利力,简称科氏力,这里不做进一步的讨论.【典型例题】例题1: 如图所示, 一轻弹簧和一根轻绳的一端共同连在一个质量为m 的小球上. 平横时,轻绳是水平的,弹簧与竖直方向的夹角是θ.若突然剪断轻绳,则在剪断的瞬间,弹簧的拉力大小是多少?小球加速度方向如何?若将弹簧改为另一轻绳, θ则在剪断水平轻绳的瞬间,结果又如何? 例题2: 如图所示,在以一定加速度 a 行驶的车厢内,有一长为l,质量为m 的棒AB 靠在光滑的后壁上,棒与箱底面之间的动摩擦因数μ,为了使棒不滑动,棒与竖直平面所成的夹角θ应在什么范围内? a θ例题 3 :如图所示,在一根没有重力的长度l 的棒的中点与端点上分别固定了两个质量分别为m 和M 的小球, 棒沿竖直轴用铰链连接, 速度ω匀速转动,试求棒与竖直轴线间的夹角θ. θω棒以角o m ωM 例题4: 长分别为l1 和l2 的不可伸长的轻绳悬挂质量都是m 的两个小球,如图所示,它们处于平衡状态.突然连接两绳的中间小球受水平向右的冲击(如另一球的碰撞) ,瞬间内获得水平向右的速度V0,求这瞬间连接m2 的绳的拉力为多少? 0 l1 m1 l2 m2 V0专题四曲线运动【拓展知识】一,斜抛运动(1)定义:具有斜向上的初速v0 且只受重力作用的物体的运动. (2)性质:斜抛运动是加速度a=g 的匀变速曲线运动. (3)处理方法:正交分解法:将斜抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,然后用直角三角形求解.如图所示(4)斜抛运动的规律如下: 任一时刻的速度v x = v0 cosθ, v y = v 0 sin θ-gt. 任一时刻的位置x = v0 cosθt , y = v0 sin θt 1 2 gt . 2 竖直上抛运动,平抛运动可分别认为是斜抛运动在θ= 90 0 和θ= 0 0 时的特例. 斜抛运动在最高点时v y = 0, t 上= 2v sin θv0 sin θ, t 上= t 下,t总= t 上+ t 下= 0 g g 水平方向的射程斜抛物体具有最大的射程s = v 0 cos θt总= v sin 2 θ斜抛物体的最大高度H = 0 2g 2 v0 sin 2θg 2 斜抛运动具有对称性,在同一段竖直位移上,向上和向下运动的时间相等;在同一高度上的两点处速度大小相等,方向与水平方向的夹角相等;向上,向下的运动轨迹对称. (二) ,圆周运动 1.变速圆周运动在变速圆周运动中,物体受到的合外力一般不指向圆心,这时合外力可以分解在法线(半径方向)和切线两个方向上.在法线方向有Fn = mv 2 = mω 2 R 充当向心力R ,产生的法向加速度 a n 只改变速度的方向;切向分力Fτ= maτ产生(即Fn = F向) 的切向加速度aτ只改变速度的大小.也就是说, Fn 是F合的一个分力, Fn F合,且满足F合= F 2 n + F 2 τ 2.一般的曲线运动:在一般的曲线运动中仍有法向力Fn = m v2 式中R 为研究处曲R 线的曲率半径,即在该处附近取一段无限小的曲线,并视为圆弧,R 为该圆弧的曲率半径,即为研究处曲线的曲率半径.【典型例题】例题1:如图所示,以水平初速度v0 抛出的物体,飞行一段时间后,垂直地撞在倾角为30 0 的斜面上,求物体完成这段飞行的时间是多少? 例题2:如果把上题作这样的改动:若让小球从斜面顶端 A 以水平速度抛出,飞行一段时间后落在斜面上的 B 点,求它的飞行时间为多少(已知θ= 30 0 )? 例题3:斜向上抛出一球,抛射角α= 60 0 ,当t=1 秒钟时,球仍斜向上升,但方向(1)球的初速度v0 是多少?(2)球将在什么时候达到最已跟水平成β= 450 角. 高点? 例题4:以v0 = 10m / s 的初速度自楼顶平抛一小球,若不计空气阻力,当小球沿曲求小球下降的高度及所在处轨迹的曲率半径线运动的法向加速度大小为5m / s 2 时, R.专题五万有引力定律【扩展知识】1.均匀球壳的引力公式由万有引力定律可以推出,质量为M,半径为R 的质量均匀分布的球壳,对距离球心为r,质量为m 的质点的万有引力为F=0 F= GMm r2 (r<R) (r>R) 2.开普勒三定律【典型例题】例题1:若地球为均匀的球体,在地球内部距地心距离为r 的一物体m 受地球的万有引力为多大?(已知地球的质量为M,半径为R) 例题2:一星球可看成质量均匀分布的球体,其半径为R,质量为M.假定该星球完全靠万有引力维系, 要保证星球不散开, 它自转的角速度不能超过什么限度? 例题3: (全国物理竞赛预赛题)已知太阳光从太阳射到地球需要8min20s,地球公转轨道可以近似看作圆轨道,地球半径约为 6.4×106m,试估算太阳质量M 与地球质量m 之比M/m 为多大?(3×105) 例题4: (全国物理竞赛预赛题)木星的公转周期为12 年.设地球至太阳的距离为1AU(天文单位) ,则木星至太阳的距离约为多少天文单位?(5.2AU) 例题5: 世界上第一颗人造地球卫星的长轴比第二颗短8000km, 第一颗卫星开始绕地球运转时周期为96.2min,求: (1)第一颗人造卫星轨道的长轴. (1.39×107m) (2)第二颗人造卫星绕地球运转的周期.已知地球质量M=5.98×1024kg. (191min)专题六动量【扩展知识】 1.动量定理的分量表达式I 合x=mv2x-mv1x, I 合y=mv2y-mv1y, I 合z=mv2z-mv1z. 2.质心与质心运动 2.1 质点系的质量中心称为质心.若质点系内有n 个质点,它们的质量分别为m1,m2,……mn,相对于坐标原点的位置矢量分别为r1,r2,……rn,则质点系的质心位置矢量为mr m1 r1 + m2 r1 + + mn rn ∑i i i =1 rc= = m1 + m2 + + mn M 若将其投影到直角坐标系中,可得质心位置坐标为n xc = ∑m x i =1 i n i M , yc = ∑m y i =1 i n i M , zc= ∑m z i =1 n i i M . 2.2 质心速度与质心动量相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度. p r vc= c = 总= t M ∑m v i =1 n i i M , pc=Mvc= ∑mi vi . i =1 n 作用于质点系的合外力的冲量等于质心动量的增量I 合= ∑I i =pc-pc0=mvc-mvc0 . i =1 n 2.3 质心运动定律作用于质点系的合外力等于质点总质量与质心加速度的乘积.F合=Mac.. 则质点系的质心加速度对于由n 个质点组成的系统, 若第i 个质点的加速度为ai, 可表示为ac = ∑m a i =1 i n i M .【典型例题】1.将不可伸长的细绳的一端固定于天花板上的 C 点,另一端系一质量为m 的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示.已知A,B 为某一直径上的两点,问小球从 A 点运动到 B 点的过程中细绳对小球的拉力T 的冲量为多少? C θ A m B O 2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示.求下落的绳离钉子的距离为x 时,钉子对绳另一端的作用力是多少? x 3.一长直光滑薄板AB 放在平台上,OB 伸出台面,在板左侧的 D 点放一质量为m1 的小铁块,铁块以速度v 向右运动.假设薄板相对于桌面不发生滑动,经过时间T0 后薄板将翻倒.现让薄板恢复原状,并在薄板上O 点放另一个质量为m2 的m1 v m2 A 小物体, 如图所示. 同样让m1 从 D 点开始以速度v 向右运动, 并与m2 发生正碰. D O B 那么从m1 开始经过多少时间后薄板将翻倒?专题七机械能【扩展知识】一,功 1. 恒力做功 2.变力做功 1 (1)平均值法如计算弹簧的弹力做功,可先求得 F = k ( x1 + x 2 ) ,再求出弹力 2 W=Fscosα当物体不可视为质点时,s 是力的作用点的位移. 做功为W= F (x2-x1)= 1 1 2 2 kx 2 kx1 2 2 (2)图像法当力的方向不变,其大小随在力的方向上的位移成函数关变化时, , "面作出力—位移图像(即F—s 图) 则图线与位移坐标轴围成的积"就表示力做的功.如功率—时间图像. (3)等效法功. (4)微元法通过因果关系,如动能定理,功能原理或Pt 等效代换可求变力做二,动能定理 1. 对于单一物体(可视为质点) ∑W = E k2 E k 1 只有在同一惯性参照系中计算功和动能, 动能定理才成立. 当物体不能视为质点时, 则不能应用动能定理. 2. 对于几个物体组成的质点系,因内力可以做功,则∑W 外+ ∑W内= ∑ E k 2 ∑ E k 1 同样只适用于同一惯性参照系. 3. 在非惯性系中, 质点动能定理除了考虑各力做的功外, 还要考虑惯性力做的功, 其总和对应于质点动能的改变.此时功和动能中的位移,速度均为相对于非惯性参照系的值.三,势能 1. 弹性势能 2. 引力势能(1) 质点之间Ep = G m1 m 2 r E p = G Mm r Ep = 1 2 kx 2 (2) 均匀球体(半径为R)与质点之间(r≥R) (3) 均匀球壳与质点之间 E p = G Mm (r≥R) r Mm E p = G (r<R) R四,功能原理物体系外力做的功与物体系内非保守力做的功之和,等于物体系机械能的增量.即∑W外+ ∑W非保守= ∑ E 2 ∑E1【典型例题】例题1:如图所示,在倾角θ=30°,长为L 的斜面顶部放一质量为m 的木块.当斜面水平向右匀速移动s = 3 L 3 时,木块沿斜面匀速地下滑到底部.试求此过程中木块所受各力所做的功及斜面对木块做的功. m 30°例题2:用锤击钉,设木板对钉子的阻力跟钉子进入木板的深度成正比,每次击钉时对钉子做的功相同,已知击第一次时,钉子进入板内1cm,则击第二次时,钉子进入木板的深度为多少?例题3:质量为M 的列车正沿平直轨道匀速行驶,忽然尾部有一节质量为m 的车厢脱钩,待司机发现并关闭油门时,前部车厢已驶过的距离为L.已知列车所受的,列车启动后牵引力不变.问前后两车都停阻力跟质量成正比(设比例系数为k) 下后相距多远.例题4:如图所示,沿地球表面与竖直方向成α角的方向,发射一质量为m 的导弹.其初速度v0 = GM ,M 为地球的质量,R 为地球半R αR v0 径,忽略空气阻力和地球自转的影响.求导弹上升的最大高度.例题5:长为l 的细线一端系住一质量为m 的小球,另一端固定在 A 点,AB 是过 A 的竖直线.E 为AB 上一点,且AE=l/2.过 E 作水平 A m 线EF,在EF 上钉一铁钉D,如图所示,线能承受的最大拉力是9mg. 现将系小球的悬线拉至水平, 然后由静止释放.若小球能绕钉子在竖直平面内做圆周运动,求 E D x F B 钉子的位置在水平线上的取值范围.不计线与钉子碰撞时的能量损失.专题八振动和波【扩展知识】1.参考圆可以证明,做匀速圆周运动的质点在其直径上的投影的运动,是以圆心为平衡位置的简谐运动.通常称这样的圆为参考圆. 2. 简谐运动的运动方程及速度,加速度的瞬时表达式振动方程:x=Acos(ωt +φ). 速度表达式: v =-ωAsin(ωt +φ). 加速度表达式:a =-ω2Acos(ωt +φ). 3. 简谐运动的周期和能量振动的周期:T =2π振动的能量:E = 4.多普勒效应设v 为声速,vs 为振源的速度,v0 是观察者速度,f0 为声音实。

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类物理竞赛需要哪些知识?物理竞赛力学部分需要哪些数学?首先,为了理解力学一开始的匀加速直线运动和变加速直线运动,对于一元函数的简单微积分是必不可少的,当然主要集中在多项式函数的求导和积分上,实际操作起来十分容易。

此后,当运动范围被拓展到二维,运动形式成为曲线时,矢量代数、解析几何、参数方程、斜率、曲率半径等数学概念被融入到物理模型中,用来理解抛体、圆周、一般曲线运动。

这时微积分的应用也被拓展到更为复杂的函数范围,例如三角函数。

随着运动和力的关系——牛顿第二定律的引入,我们逐渐意识到光理解运动是不够的,运动背后的机理——力的作用,以及力的效果,才是我们要研究的。

动量定理、动能定理的引入,实际上反映了力在时空的积累效果,而牛顿方程本身,也是物理学家特别喜欢的形式——微分方程。

对于矢量和微积分更综合的运用体现在一种伴随物理学发展史的特殊运动形式——简谐振动当中。

而振动在介质当中的扩散效应——波动,又引出了波动方程、波函数这一时空函数的概念。

总结下来,力学部分所需要的数学是一元函数的微积分、矢量代数、解析几何、常微分方程、对二元函数的运用。

物理竞赛热学部分需要哪些数学?虽然高中热学部分涉及气体定律和热力学第一定律的内容比较容易,一般不需要微积分,但如果深入学习,热力学过程、各种态函数(内能、熵)、热力学第二定律,那么由于热力学体系变量多,适当的偏微分基础知识是必要的。

热力学是宏观的理论,而其背后有着分子动理论作为基础,它们之间的联系是通过对大量粒子系统的统计来实现的,因此,概率统计的知识就显得十分必要了。

总结下来,热学部分所需要的数学是简单的偏微分和概率统计。

物理竞赛电磁学部分需要哪些数学?依照往年的经验,电磁学是最容易让高考学生放弃物理、竞赛学生放弃物理竞赛的困难内容。

原因是因为数学不到位,非但理解不了场的概念,而且容易产生记忆模型和公式,套例题做习题的固有思维模式,最终对于电磁学可谓是“一点没学会”!从静电场开始,如果仅仅按高中的要求来学习,对于场的理解是空洞的,仅仅是唯像的概念,对于电场线、电势、静电平衡、介质极化等概念无法做到深入掌握,那就更别提解答赛题了。

(完整版)高中物理竞赛中的高等数学

(完整版)高中物理竞赛中的高等数学

高中物理竞赛中的高等数学一、微积分初步物理学研究的是物质的运动规律,因此经常遇到的物理量大多数是变量,而要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的.所以在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要.至于更系统和更深入地掌握微积分的知识和方法,可在通过高等数学课程的学习去完成. §1.函数及其图形1.1 函数 自变量和因变量 绝对常量和任意常量在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y ,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,那么称y 是x 的函数,并记作:y =f (x ),(A .1);其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把y =f (x )也记作y =y (x ).如果在同一个问题中遇到几个不同形式的函数,也可以用其它字母作为函数记号,如ϕ(x )、ψ(x )等等.①常见的函数可以用公式来表达,例如()32y f x x ==+,212ax bx +,c x,cos2x π,ln x ,x e 等等.在函数的表达式中,除变量外,还往往包含一些不变的量,如上面出现的13 2 2e π、、、、和a b c 、、等,它们叫做常量;常量有两类:一类如13 2 2e π、、、、等,它们在一切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a 、b 、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量.在数学中经常用拉丁字母中最前面几个(如a 、b 、c )代表任意常量,最后面几个(x 、y 、z )代表变量.当y =f (x )的具体形式给定后,就可以确定与自变量的任一特定值x 0相对应的函数值f (x 0).例如: (1)若y =f (x )=3+2x ,则当x =-2时y =f (-2)=3+2×(-2)=-1.一般地说,当x =x 0时,y =f (x 0)=3+2x 0.(2)若()cy f x x==,则当0x x =时,00()c f x x =.1.2 函数的图形在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于直观地了解一个函数的特征是很有帮助的.作图的办法是先在平面上取一直角坐标系,横轴代表自变量x ,纵轴代表因变量(函数值)y =f (x ).这样一来,把坐标为(x ,y )且满足函数关系y =f (x )的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌.图A -1便是上面举的第一个例子y =f (x )=3+2x 的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线.图A -2是第二个例子()cy f x x==的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:1(,4)4c 、1(,2)2c 、(1,)c 、(2,)2c 、(4,)4c ,各点连接成双曲线的一支.1.3 物理学中函数的实例反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的.下面举几个例子. (1)匀速直线运动公式:s =s 0+vt .(A .2)此式表达了物体作匀速直线运动时的位置s 随时间t 变化的规律,在这里t 相当于自变量x ,s 相当于因变量y ,s 是t 的函数.因此记作:s =s (t )=s 0+vt ,(A .3)式中初始位置s 0和速度v 是任意常量,s 0与坐标原点的选择有关,v 对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值.图A -3是这个函数的图形,它是一根倾斜的直线.易知它的斜率等于v .(2)匀变速直线运动公式:20012s s v t at =++,(A .4),v =v 0+at .(A .5)两式中s 和v 是因变量,它们都是自变量t 的函数,因此记作:2001()2s s t s v t at ==++,(A .6),v =v (t )=v 0+at ,(A .7)图A -4a 、4b 分别是两个函数的图形,其中一个是抛物线,一个是直线.(A .6)和(A .7)式是匀变速直线运动的普遍公式,式中初始位置s 0、初速v 0和加速度a 都是任意常量,它们的数值要根据讨论的问题来具体化.例如在讨论自由落体问题时,若把坐标原点选择在开始运动的地方,则s 0=0,v 0=0,a =g ≈9.8M /s 2,这时(A .6)和(A .7)式具有如下形式:21()2s s t gt ==,(A .8);v =v (t )=gt .(A .9);这里的g 可看作是绝对常量,式中不再有任意常量了.(3)玻意耳定律:PV =C .(A .10)上式表达了一定质量的气体,在温度不变的条件下,压强P 和体积V 之间的函数关系,式中的C 是任意常量.可以选择V 为自变量,P 为因变量,这样,(A .10)式就可写作:()CP P V V==,(A .11)它的图形和图A -2是一样的,只不过图中的x 、y 应换成V 、P .在(A .10)式中也可以选择P 为自变量,V 为因变量,这样它就应写成:()CV V P P==,(A .12) 由此可见,在一个公式中自变量和因变量往往是相对的. (4)欧姆定律:U IR =.(A .13)当讨论一段导线中的电流I 这样随着外加电压U 而改变的问题时,U 是自变量,I 是因变量,R 是常量.这时,(A .13)式应写作:()UI I U R==,(A .14);即I 与U 成正比. 应当指出,任意常量与变量之间的界限也不是绝对的.例如,当讨论串联电路中电压在各电阻元件上分配问题时,由于通过各元件的电流是一样的,(A .13)式中的电流I 成了常量,而R 是自变量,U 是因变量.于是U =U (R )=IR ,(A .15)即U 与R 成正比.但是当讨论并联电路中电流在各分支里的分配问题时,由于各分支两端具有共同的电压,(A .13)式中的U 就成了常量,而R 为自变量,I 是因变量,于是:()UI I R R==,(A .16)即I 与R 成反比.总之,每个物理公式都反映了一些物理量之间的函数关系,但是其中哪个是自变量,哪个是因变量,哪些是常量,有时公式本身反映不出来,需要根据所要讨论的问题来具体分析. §2.导数2.1 极限若当自变量x 无限趋近某一数值x 0(记作x →x 0)时,函数f (x )的数值无限趋近某一确定的数值a ,则a 叫做x →x 0时函数f (x )的极限值,并记作:0lim ()x x f x a →=,(A .17)(A .17)式中的“lim ”是英语“limit (极限)”一词的缩写,(A .17)式读作“当x 趋近x 0时,f (x )的极限值等于a ”.极限是微积分中的一个最基本的概念,它涉及的问题面很广.这里不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义.考虑下面这个函数:232()1x x y f x x --==-,(A .18),这里除x =1外,计算任何其它地方的函数值都是没有困难的.例如当0x =时,(0)2f =,当2x =,(2)8f =,等等.但是若问x =1时函数值f (1)=?,就会发现,这时(A .18)式的分子和分母都等于0,即0(1)0f =!用0去除以0,一般地说是没有意义的.所以表达式(A .18)没有直接给出f (1),但给出了x 无论如何接近1时的函数值来.下表列出了当x 的值从小于1和大于1两方面趋于1时f (x )值的变化情况:从上表看,x →1时f (x )的极限值. 其实计算f (x )值的极限无需这样麻烦,只要将(A .18)式的分子作因式分解:3x 2-x -2=(3x +2)(x -1),并在x ≠1的情况下从分子和分母中将因式(x -1)消去:(32)(1)()3 2 (1)1x x y f x x x x +-===+≠-;即可看出:x 趋于1时,函数f (x )的数值趋于:3×1+2=5.所以根据函数极限的定义,21132lim ()lim51x x x x f x x →→--==-. 2.2 几个物理学中的实例 (1)瞬时速度当一个物体作任意直线运动时,它的位置可用它到某个坐标原点O 的距离s 来描述.在运动过程中s 是随时间t 变化的,也就是说,s 是t 的函数:s =s (t ).函数s (t )表示的是这个物体什么时刻到达什么地方.形象一些说,假如物体是一列火车,则函数s (t )就是它的一张“旅行时刻表”.但是,在实际中往往不满足于一张“时刻表”,还需要知道物体运动快慢的程度,即速度或速率的概念.例如,当车辆驶过繁华的街道或桥梁时,为了安全,对它的速率就要有一定的限制;一个上抛体(如高射炮弹)能够达到怎样的高度,也与它的初始速率有关,等等.为了建立速率的概念,就要研究在一段时间间隔里物体位置的改变情况.假设考虑的是从t =t 0到t =t 1的一段时间间隔,则这间隔的大小为:△t =t 1-t 0.根据s 和t 的函数关系s (t )可知,在t 0和t 1=t 0+△t 两个时刻,s 的数值分别为s (t 0)和s (t 1)=s (t 0+△t ),即在t 0到t 1这段时间间隔里s 改变了:△s =s (t 1)-s (t 0)=s (t 0+△t )-s (t 0).在同样大小的时间间隔△t 里,若s 的改变量△s 小,就表明物体运动得慢, 所以就把s ∆与t ∆之比st∆∆叫做这段时间间隔里的平均速率,用v 来表示,则00()()s t t s t s v t t+∆-∆==∆∆,(A .19),举例说明如下. 对于匀变速直线运动,根据(A .4)式有2000001()2s t s v t at =++和2000001()()()2s t t s v t t a t t +∆=++∆++∆,22200000000000000111[()()]()()()()()12222s v t t a t t s v t at v at t a t s t t s t v v at a t t t t ++∆++∆-+++∆+∆+∆-====++∆∆∆∆;平均速率s v t ∆=∆反映了物体在一段时间间隔内运动的快慢,除了匀速直线运动的特殊情况外,st∆∆的数值或多或少与t ∆的大小有关;t ∆取得越短,s t ∆∆就越能反映出物体在0t t =时刻运动的快慢;通常就把0t ∆→时st∆∆的极限值叫做物体在t =t 0时刻的瞬时速率v ,即0000()()lim lim t t s t t s t sv t t ∆→∆→+∆-∆==∆∆,(A .20) 对于匀变速直线运动来说,0000001lim lim()2t t s v v at a t v at t ∆→∆→∆==++∆=+∆. 这就是熟悉的匀变速直线运动的速率公式(A .5).(2)瞬时加速度一般地说,瞬时速度或瞬时速率v 也是t 的函数:v =v (t ).但是在许多实际问题中,只有速度和速率的概念还不够,还需要知道速度随时间变化的快慢,即需要建立“加速度”的概念.平均加速度a 和瞬时加速度a 概念的建立与v 和v 的建立类似.在直线运动中,首先取一段时间间隔t 0到t 1,根据瞬时速率v 和时间t 的函数关系v (t )可知,在t =t 0和t =t 1两时刻的瞬时速率分别为v (t 0)和v (t 1)=v (t 0+△t ),因此在t 0到t 1这段时间间隔里v 改变了△v =v (t 0+△t )-v (t 0).通常把v t∆∆叫做这段时间间隔里的平均加速度,记作a ;00()()v t t v t v a t t +∆-∆==∆∆,(A .21) 举例来说,对于匀变速直线运动,根据(A .5)式有000()v t v at =+,000()()v t t v a t t +∆=++∆.所以平均加速度为000000()()[()]()v t t v t v a t t v at v a a t t t+∆-++∆-+∆====∆∆∆(常数). 对于一般的变速运动,a 也是与t ∆有关的,这时为了反映出某一时刻速度变化的快慢,就需要取vt∆∆在0t ∆→时的极限,这就是物体在t =t 0时刻的瞬时加速度a :0000()()lim lim t t v t t v t va t t∆→∆→+∆-∆==∆∆,(A .22)(3)应用举例水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动.为简单起见,假设水渠是直的,这时可以把x 坐标轴取为逆水渠走向的方向(见图A -5),于是各处渠底的高度h 便是x 的函数:h =h (x ).知道了这个函数,就可以计算任意两点之间的高度差.在修建水渠的时候,人们经常运用“坡度”的概念.譬如说,若逆水渠而上,渠底在100m 的距离内升高了20cm ,人们就说这水渠的坡度是0.221001000m m =,因此所谓坡度,就是指单位长度内的高度差,它的大小反映着高度随长度变化的快慢程度.如果用数学语言来表达,就要取一段水渠,设它的两端的坐标分别为x 0和x 1,于是这段水渠的长度为:△x =x 1-x 0.根据h 和x 的函数关系h (x )可知,在x 0和x 1=x 0+△x 两地h 的数值分别为h (x 0)和h (x 1)=h (x 0+△x ),所以在△x 这段长度内h 改变了:△h =h (x 0+△x )-h (x 0).根据上述坡度的定义,这段水渠的平均坡度为:00()()h x x h x h k x x+∆-∆==∆∆,(A .23) 前面所举例子,△x 采用了100米的数值.实际上在100米的范围内,水渠的坡度可能各处不同.为了更细致地把水渠在各处的坡度反映出来,应当取更小的长度间隔x ∆,x ∆取得越小,hx∆∆就越能精确反映出x =x 0处的坡度.所以在x =x 0处的坡度k 应是0x ∆→时的平均坡度k 的极限值,即0000()()lim lim x x h x x h x hk x x∆→∆→+∆-∆==∆∆,(A .24)2.3 函数的变化率——导数前面举了三个例子,在前两个例子中自变量都是t ,第三个例子中自变量是x .这三个例子都表明,在研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,即函数的“变化率”概念.当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量.增量,通常用代表变量的字母前面加个“△”来表示.例如,当自变量x 的数值由x 0变到x 1时,其增量就是△x ≡x 1-x 0.(A .25)与此对应.因变量y 的数值将由y 0=f (x 0)变到y 1=f (x 1),它的增量为△y ≡y 1-y 0=f (x 1)-f (x 0)=f (x 0+△x )-f (x 0).(A .26)应当指出,增量是可正可负的,负增量代表变量减少.增量比00()()f x x f x y x x+∆-∆=∆∆,(A .27) 可以叫做函数在x =x 0到x =x 0+△x 这一区间内的平均变化率,它在△x →0时的极限值叫做函数y =f (x )对x 的导数或微商,记作y ′或f ′(x ),0000()()()lim lim x x f x x f x yy f x x x∆→∆→+∆-∆''===∆∆,(A .28)除y '或()f x '外,导数或微商还常常写作dy dx 、df dx 、d dx等其它形式.导数与增量不同,它代表函数在一点的性质,即在该点的变化率.应当指出,函数f (x )的导数f ′(x )本身也是x 的一个函数,因此可以再取它对x 的导数,这叫做函数y =f (x )的二阶导数,记作y ''、()f x ''、22d y dx等;22()()()d y d dy dy f x f x dx dx dx dx '''''====,(A .29) 据此类推,则不难定义出高阶的导数来.有了导数的概念,前面的几个实例中的物理量就可表示为:瞬时速率:ds v dt =,(A .30);瞬时加速度:22dv d sa dt dt==,(A .31);水渠坡度:dh k dx =,(A .32).2.4 导数的几何意义在几何中切线的概念也是建立在极限的基础上的.如图A -6所示,为了确定曲线在P 0点的切线,先在曲线上P 0附近选另一点P 1,并设想P 1点沿着曲线向P 0点靠拢.P 0P 1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角α来描述.从图上不难看出,P 1点愈靠近P 0点,α角就愈接近一个确定的值α0,当P 1点完全和P 0点重合的时候,割线P 0P 1变成切线P 0T ,α的极限值α0就是切线与横轴的夹角.在解析几何中,把一条直线与横坐标轴夹角的正切tan α叫做这条直线的斜率.斜率为正时表示α是锐角,从左到右直线是上坡的(见图A -7a );斜率为负时表示α是钝角,从左到右直线是下坡的(见图A -7b ).现在来研究图A -6中割线P 0P 1和切线P 0T 的斜率.设P 0和P 1的坐标分别为(x 0,y 0)和(x 0+△x ,y 0+△y ),以割线P 0P 1为斜边作一直角三角形△P 0P 1M ,它的水平边P 0M 的长度为△x ,竖直边MP 1的长度为△y ,因此这条割线的斜率为:10tan MP y P M xα∆==∆. 如果图A -6中的曲线代表函数y =f (x ),则割线P 0P 1的斜率就等于函数在 0x x =附近的增量比yx∆∆,切线0PT 的低斜率0tan α是10P P →时,割线P 0P 1斜率的极限值,即10100tan lim tan lim ()P P P P yf x xαα→→∆'===∆;所以导数的几何意义是切线的斜率. §3.导数的运算在上节里只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来.3.1 基本函数的导数公式(1)y =f (x )=C (常量):00()()()lim lim 0x x f x x f x C C y f x x x ∆→∆→+∆--''====∆∆; (2)y =f (x )=x :000()()()()lim lim lim 1x x x f x x f x x x x x y f x x xx ∆→∆→∆→+∆-+∆-∆''=====∆∆∆; (3)y =f (x )=x 2:22000()()()()limlim lim(2)2x x x f x x f x x x x y f x x x x x x∆→∆→∆→+∆-+∆-''====+∆=∆∆; (4)y =f (x )=x 3:33222000()()()()limlim lim[33()]3x x x f x x f x x x x y f x x x x x x x x∆→∆→∆→+∆-+∆-''====+∆+∆=∆∆; (5)y =f (x )=1x :0()()()lim x f x x f x y f x x ∆→+∆-''===∆011lim x x x x x∆→-+∆=∆ 200()11lim lim ()()x x x x x x x x x x x x x∆→∆→-+∆-===-+∆⋅∆+∆;(6)y =f (x )000()()()limlim x x x f x x f x y f x x ∆→∆→∆→+∆-''====∆limlimx x ∆→∆→===上面推导的结果可以归纳成一个普遍公式:当ny x =时,1n n dx y nx dx-'==,(n 为任何数),(A .33). 例如:当1n =时,()y f x x ==,1dxy dx '==; 当2n =时,2()y f x x ==,22dx y x dx '==; 当3n =时,3()y f x x ==,323dx y x dx '==; 当1n =-时,11()y f x x x -===,2211()(1)d y x dx x x-'==-=-;当12n =时,12()y f x x ===1212y x -'===利用(A .33)式还可以计算其它幂函数的导数(见表A -2).除了幂函数n x 外,物理学中常见的基本函数还有三角函数、对数函数和指数函数.现在只给出这些函数的导数公式(见表A -2)而不推导,解题时可以直接引用.3.2 有关导数运算的几个定理定理一:[()()]d du dvu x v x dx dx dx ±=±,(A .34). 证明:00[()()]lim lim[]x x d u v u v du dvu x v x dx x x x dx dx∆→∆→∆±∆∆∆±==±=±∆∆∆. 定理二:[()()]()()d du dvu x v x v x u x dx dx dx ⋅=+,(A .35).证明:00[()][()]u(x)v(x)v()()[()()]lim lim x x d u x u v x v x u u x v u vu x v x dx x x∆→∆→+∆+∆-∆+∆+∆∆⋅==∆∆ 0lim[()()]()()x u v du dvv x u x v x u x x x dx dx∆→∆∆=+=+∆∆.定理三:2()()()[]()[()]du dv v x u x d u x dx dx dx v x v x -=,(A .36).证明:000()()()[()]()[()]()()()()()[]lim lim lim()[()]()[()]()x x x u x u u x d u x u x u v x v x v u x v x u u x v v x v v x dx v x x v x v v x xv x v v x x ∆→∆→∆→+∆-+∆-+∆∆-∆+∆===∆+∆∆+∆∆ 20()()()()lim [()]()[()]x u v du dv v x u x v x u x x x dx dx v x v v x v x ∆→∆∆--∆∆==+∆. 定理四:[()]d du dvu v x dx dv dx=⋅,(A .37). 证明:00[()][()]()()[()]lim lim[]x x d u v x x u v x u v v v v v u v x dx x v x ∆→∆→+∆-+∆-∆==⋅∆∆∆00()()lim[]lim[]x x u v v v v v du dvv x dv dx∆→∆→+∆-∆=⋅=⋅∆∆ 例1.求22y x a =±(a 为常量)的导数.解:22202dy dx da x x dx dx dx=±=±=. 例2.求ln x y a =(a 为常量)的导数. 解:ln ln 110dy d x d a dx dx dx x x=-=-=. 例3.求2y ax =(a 为常量)的导数. 解:222022dy da dx x a x a x ax dx dx dx=⋅+⋅=⋅+⋅=. 例4.求2x y x e =的导数. 解:22222(2)xx x x x dy dx de e x x e x e x x e dx dx dx=+=⋅+⋅=+. 例5.求23251x y x -=+的导数.解:2222222(32)(51)(51)(32)6(51)(32)515610(51)(51)(51)d x d x x x dy x x x x x dx dx dx x x x -++--⋅+--⋅++===+++. 例6.求tan y x =的导数.解:2222sin cos cos sin sin cos cos sin (sin )1(tan )()sec cos cos cos cos d x d x x xdy d d x x x x x dx dx x xdx dx dx x x x x -⋅-⋅-======. 例7.求cos()y ax b =+(a 、b 为常量)的导数.解:令v ax b =+,()cos y u v v ==,则(sin )sin()dy du dvv a a ax b dx dv dx=⋅=-⋅=-+.例8.求y =解:令21v x =-,()y u v ==2dy du dv x dx dv dx =⋅=例9.求22ax y x e -=(a 为常量)的导数.解:令v u e =,2v ax =-,则2222222(2)2(1)v ax dy dx du dvu x xu x e ax x ax e dx dx dv dx-=+⋅=+⋅⋅-=- §4.微分和函数的幂级数展开 4.1 微分自变量的微分,就是它的任意一个无限小的增量△x .用dx 代表x 的微分,则dx =△x .(A .38)一函数y =f (x )的导数f ′(x )乘以自变量的微分dx 即为该函数的微分,用dy 或df (x )表示,即dy =df (x )=f ′(x )dx ,(A .39) 所以()dyf x dx'=,(A .40)在之前曾把导数写成dydx的形式,是把它作为一个整体引入的.当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分.在引入微分的概念之后,就可把导数看成微分dy 与dx 之商(所谓“微商”),即一个真正的分数了.把导数写成分数形式,常常是很方便的,例如,把上节定理四(A .37)式的左端[()]d u v x dx 简写成du dx,则该式化为du du dvdx dv dx =⋅;此公式从形式上看和分数运算法则一致,很便于记忆.下面看微分的几何意义.图A -8是任一函数y =f (x )的图形,P 0(x 0,y 0)和P 1(x 0+△x ,y0+△y )是曲线上两个邻近的点,P 0T 是通过P 0的切线.直角三角形△P 0MP 1的水平边0P M x =∆,竖直边1MP y =∆(见图8A -).设0PT 与1MP 的交点为N ,则0tan MNMNNP M xPM ∠==∆,但0tan NP M ∠为切线P 0T 的斜率,它等于x =x 0处的导数f ′(x 0),因此00()tan dy f x x NP M x MN '=∆=∠⋅∆=.所以微分dy 在几何图形上相当于线段MN 的长度,它和增量1y MP ∆=相差1NP 一段长;从上一节计算导数时取极限的过程可以看出,dy 是y ∆中正比于x ∆的那一部分,而1NP 则是正比于(△x )2以及△x 更高幂次的各项之和[例如对于函数y =f (x )=x 3,△y =3x 2△x +3x (△x )2+(△)3,而d y =f ′(x )△x =3x 2△x ].当△x 很小时,(△x )2、(△x )3、…比△x 小得多,1NP 也就比dy 小得多,所以可以把微分dy 叫做增量y ∆中的线性主部.也就是说,若函数在x =x 0的地方像线性函数那样增长,则它的增量就是dy .4.2幂函数的展开已知一个函数f (x )在x =x 0一点的数值f (x 0),如何求得其附近的点x =x 0+△x 处的函数值f (x )=f (x 0+△x )? 若f (x )为x 的幂函数n x ,可以利用牛顿的二项式定理:23000000000(1)(1)(2)()()[1()]()[1()]()[1()()()]2!3!n n nn n x x x n n x n n n x f x x x x x f x f x n x x x x x ∆∆∆-∆--∆==+∆=+=+=++++⋅⋅⋅000(1)(1)()()!nmm n n n m x f x m x =-⋅⋅⋅-+∆=∑,(A .41)此式适用于任何n (整数、非整数、正数、负数等等).若n 为正整数,则上式中的级数在M =n 的地方截断,余下的项自动为0,否则上式为无穷级数.不过当△x <<x 0时,后面的项越来越小,只需保留有限多项就足够精确了.不要以为数学表达式越精确越好.如图A -9中A 、B 两点间的水平距离为l ,若将B 点竖直向上提高一个很小的距离a (a <<l)到达B ′,问AB ′之间的距离比AB 增加了多少?利用勾股定理易得距离的增加量为22l l a l ∆=+-.这是个精确的公式,但没有给出一个鲜明的印象,究竟△l 是随a 怎样变化的?若用二项式定理将它展开,只保留到最低级的非0项,则有12222221[1()1]{[1()]1}[1()1]()222a a a l a a l l l l l l l l l∆=+=+-=++⋅⋅⋅-≈=,即△l 是正比于a平方增长的,属二级小量.这种用幂级数展开来分析主要变化趋势的办法,在物理学里是经常用到的.4.3泰勒展开非幂函数(譬如s in x 、e x )如何作幂级数展开?这要用泰勒(Taylor)展开. 下面用一种不太严格,但简单明了的办法将它导出.假设函数f (x )在x =x 0处的增量△f =f (x )-f (x 0)能够展成△x =x -x 0的幂级数:001()()()mm m f x f x a x x ∞=-=-∑,(A .42)则通过逐项求导可得101()()m m m f x ma x x ∞-='=-∑;当x →x 0时,m >1的项都趋于0,于是有f ′(x 0)=a 1;再次求导,得202()(1)()m m m f x m m a x x ∞-=''=--∑,当x →x 0时,m >2的项都趋于0,于是有f (x 0)=2a 2;如此类推,一般地说,对于M阶导数有()0()!M M fx M a =;于是(A .42)式可以写为:()000()()()()!m m m Mf x f x f x x x m ∞=-=-∑,(A .43).若定义第0阶导数f (0)(x )就是函数f (x )本身,则上式还可进一步简写为:()000()()()!m m m f x f x x x m ∞==-∑,(A .44). 上述(A .43)或(A .44)式称为泰勒展开式,它在物理学中是非常有用的公式. 下面在表A -3中给出几个常见函数在x 0=0或1处的泰勒展开式.函数 展开式收敛范围12(1)x ± 234111113113512242462468x x x x ⋅⋅⋅⋅⋅⋅±-±-±⋅⋅⋅⋅⋅⋅⋅⋅⋅1x ≤ 32(1)x ± 234331311311312242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤52(1)x ± 234553531531112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 12(1)x -± 234113135135712242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <32(1)x -± 234335357357912242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 52(1)x -±2345575795791112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <1(1)x -±2341x x x x ±+±+±⋅⋅⋅1x < 2(1)x -±23412345x x x x ±+±+±⋅⋅⋅1x < sin x3573!5!7!x x x x -+-+⋅⋅⋅ x <∞ cos x24612!4!6!x x x -+-+⋅⋅⋅ x <∞ tan x 35791217623153152835x x x x x +++++⋅⋅⋅ x <∞x e 23411!2!3!4!x x x x +++++⋅⋅⋅ x <∞ln(1)x + 234234x x x x -+-+⋅⋅⋅11x -<≤ ln(1)x -234()234x x x x -++++⋅⋅⋅11x -≤<§55.1几个物理中的实例 (1)变速直线运动的路程大家都熟悉匀速直线运动的路程公式.若物体的速率是v ,则它在t a 到t b 一段时间间隔内走过的路程是s =v (t b -t a ),(A .45).对于变速直线运动来说,物体的速率v 是时间的函数:v =v (t ),函数的图形是一条曲线(见图A -10a ),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A -4b ).对于变速直线运动,(A .45)式已不适用.但是,可以把t =t a 到t =t b 这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的.这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a 到t b 这段时间里走过的总路程.设时间间隔(t b -t a )被t =t 1(=t a )、t 2、t 3、…、t n 、t b 分割成n 小段,每小段时间间隔都是△t ,则在t 1、t 2、t 3、…、t n 各时刻速率分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n ).若把各小段时间的速率v 看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t .于是,在整个(t b -t a )这段时间里的总路程是1231()()()()()nn i i s v t t v t t v t t v t t v t t ==∆+∆+∆+⋅⋅⋅+∆=∆∑,(A .46).现在再看看上式的几何意义.在函数v =v (t )的图形中,通过t =t 1、t 2、t 3、…、t n 各点垂线的高度分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n )(见图A -10b ),所以v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t 就分别是图中那些狭长矩形的面积,而1()ni i v t t=∆∑则是所有这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积.在上面的计算中,把各小段时间△t 里的速率v 看做是不变的,实际上在每小段时间里v 多少还是有些变化的,所以上面的计算并不精确.要使计算精确,就需要把小段的数目n 加大,同时所有小段的△t 缩短(见图A -10c ).△t 越短,在各小段里v 就改变得越少,把各小段里的运动看成匀速运动也就越接近实际情况.所以要严格地计算变速运动的路程s ,就应对(A .46)式取n →∞、△t →0的极限,即01lim ()ni t i n s v t t ∆→=→∞=∆∑,(A .47). 当n 越来越大,△t 越来越小的时候,图A -10中的阶梯状图形的面积就越来越接近v (t )曲线下面的面积(图A -10d).所以(A .47)式中的极限值等于(t b -t a )区间内v (t )曲线下的面积.总之,在变速直线运动中,物体在任一段时间间隔(t b -t a )里走过的路程要用(A .47)式来计算,这个极限值的几何意义相当于这区间内v (t )曲线下的面积. (2)变力的功当力与物体移动的方向一致时,在物体由位置s =s a 移到s =s b 的过程中,恒力F 对它所作的功为:A =F (s b -s a )(A .48);若力F 是随位置变化的,即F 是s 的函数:F =F (s ),则不能运用(A .48)式来计算力F 的功.此时,也需要象计算变速运动的路程那样,把(s b -s a )这段距离分割成n 个长度为△s 的小段(见图A -11):并把各小段内力F 的数值近似看成是恒定的,用恒力作功的公式计算出每小段路程△s 上的功,然后加起来取n →∞、△s →0的极限值.具体地说,设力F 在各小段路程内的数值分别为F (s 1)、F (s 2)、F (s 3)、…、F (s n ),则在各小段路程上力F 所作的功分别为F (s 1)△s 、F (s 2)△s 、F (s 3)△s 、…、F (s n )△s ,在(s b -s a )整段路程上力F 的总功A 就近似地等于1()ni i F s s =∆∑;因为实际上在每一小段路程上加F 都是变化的,所以严格地计算,还应取n →∞、△s →0的极值,即01lim ()ni t i n A F s s ∆→=→∞=∆∑,(A .49).同上例,这极限值应是(s b -s a )区间内F (s )下面的面积(见图A -12).5.2定积分以上两个例子表明,许多物理问题中需要计算象(A .47)和(A .49)式中给出的那类极限值.概括起来说,就是要解决如下的数学问题:给定一个函数f (x ),用x =x 1(=a )、x 2、x 3、…、x n 、b 把自变量x 在(b -a )区间内的数值分成n 小段,设每小段的大小为△x ,求n →∞、△x →0时1()ni i f x x =∆∑的极限;通常把这类形式的极限用符号()ba f x dx ⎰来表示,即01()lim ()nbi ax i n f x dx f x x ∆→=→∞=∆∑⎰,(A .50);()baf x dx ⎰叫做x a =到x b =区间内()f x 对x 的定积分,()f x 叫做被积函数,b 和a 分别叫做定积分的上限和下限.用定积分的符号来表示,(A .47)和(A .49)式可分别写为()b at t s v t dt =⎰,(A .51)、()bas s A F s ds =⎰,(A .52).在变速直线运动的路程公式(A .51)里,自变量是t ,被积函数是v (t ),积分的上、下限分别是t b 和t a ;在变力作功的公式(A .52)里,自变量是s ,被积函数是F (s ),积分的上、下限分别是s b 和s a .求任意函数定积分的办法有赖于下面关于定积分的基本定理:若被积函数f (x )是某个函数Ф(x )的导数,即f (x )=Ф′(x ),则在x =a 到x =b 区间内f (x )对x 的定积分等于Ф(x )在这区间内的增量,即()()()ba f x dxb a =Φ-Φ⎰,(A .53).下面来证明上述定理.在a ≤x ≤b 区间内任选一点x i ,首先考虑Ф(x )在x =x i 到x =x i +△x =x i+1区间的增量△Ф(x i )=Ф(x i+1)-Ф(x i ):()()i i x x x x ∆Φ∆Φ=⋅∆∆,当0x ∆→时,可用Ф(x )的导数()d x dx Φ'Φ=代替x∆Φ∆;但按照定理的前提,Ф′(x )=f (x ),故△Ф(x i )≈Ф′(x i )△x =f (x i )△x 式中≈表示“近似等于”,若取△x →0的极限,上式就是严格的等式.把a ≤x ≤b 区间分成n -1小段,每段长△x ;上式适用于每小段.根据积分的定义和上式,有:12112100()lim[()()()]lim[()()()]bn n ax x n n f x dx f x x f x x f x x x x x --∆→∆→→∞→∞=∆+∆+⋅⋅⋅+∆=∆Φ+∆Φ+⋅⋅⋅+∆Φ⎰2132110lim{[()()][()()][()()]}()()n n n x n x x x x x x x x -∆→→∞=Φ-Φ+Φ-Φ+⋅⋅⋅+Φ-Φ=Φ-Φ因x 1=a ,xn =b ,于是得(A .53)式,至此定理证毕.下面看看函数Ф(x )在f -x 图(见图A -13)中所表现的几何意义.如前所述,△Ф(x i )=Ф(x i+1)-Ф(x i )=f (x i )△x ,正是宽为△x 、高为()i i i f x x P =的一个矩形(即图13A -中的1i i i x x NP +)的面积.它和曲线段P i P i+1下面的梯形x i x i+1P i+1P i 的面积只是相差一小三角形P i NP i +1的面积.当△x →0时,可认为△Ф(x i )就是梯形x i x i+1P i+1P i 的面积.既然当x 由x i 变到x i+1时,Ф(x )的增量的几何意义是相应区间f -x 曲线下的面积,则Ф(x )本身的几何意义就是从原点O 到x 区间f -x 曲线下面的面积加上一个常量C =Ф(0).例如Ф(x i )的几何意义是图形Ox i P i P 0的面积加C ,Ф(x i +1)的几何意义是图形Ox i+1P i+1P 0的面积加C ,等等.这样,△Ф(x i )=Ф(x i+1)-Ф(x i )就是:(Ox i+1P i+1P 0的面积+C )-(Ox i P i P 0的面积+C )=x i x i+1P i+1P i 的面积,而Ф(b )-Ф(a )的几何意义是:(ObP b P 0的面积+C )-(OaP a P 0的面积+C )=abP b P a 的面积.它相当于定积分()ba f x dx ⎰的值.5.3不定积分及其运算在证明了上述定积分的基本定理之后,就可以着手解决积分的运算问题了.根据上述定理,只要求得函数Ф(x )的表达式,利用(A .53)式立即可以算出定积分()ba f x dx ⎰来,那么,给出了被积函数()f x 的表达式之后,怎样去求Ф(x )的表达式呢?上述定理说明,Ф′(x )=f (x ),所以这就相当于问f (x )是什么函数的导数.由此可见,积分运算是求导的逆运算.如果f (x )是Ф(x )的导数,可以称Ф(x )是f (x )的逆导数或原函数.求f (x )的定积分就可以归结为求它的逆导数或原函数.在上节里讲了一些求导数的公式和定理,常见的函数都可以按照一定的法则把它们的导数求出来.然而求逆导数的问题却不像求导数那样容易,而需要靠判断和试探.例如,知道了Ф(x )=x 3的导数Ф′(x )=3x 2,也就知道了F (x )=3x 2的逆导数是Ф(x )=x 3;这时,如果要问函数f (x )=x 2的逆导数是什么,那么就不难想到,它的逆导数应该是x 3/3;这里要指出一点,即对于一个给定的函数f (x )来说,它的逆导数并不是唯一的.Ф1(x )=x 3/3是f (x )=x 2的逆导数,Ф2(x )=x 3/3+1和Ф3(x )=x 3/3-5也都是它的逆导数,因为Ф1′(x )、Ф2′(x )、Ф3′(x )都等于x 2.一般说来,在函数f (x )的某个逆导数Ф(x )上加一任意常量C ,仍旧是f (x )的逆导数.通常把一个函数f (x )的逆导数的通式Ф(x )+C 叫做它的不定积分,并记作()f x dx ⎰,于是()()f x dx x C =Φ+⎰,(A .54).因在不定积分中包含任意常量,它代表的不是个别函数,而是一组函数.。

初中的学科竞赛知识点归纳

初中的学科竞赛知识点归纳

初中的学科竞赛知识点归纳在初中阶段,学科竞赛对于学生的学习、思维能力和解决问题的能力有着积极的促进作用。

无论是学科奥赛、数学竞赛还是英语竞赛,都需要学生熟练掌握各学科的知识点。

以下是各学科常见的竞赛知识点的归纳。

一、数学竞赛知识点归纳1. 数与式- 自然数、整数、有理数与无理数的性质- 分数的计算与比较- 除数、倍数与公倍数、公约数与最大公约数、最小公倍数的计算- 代数式的基本性质和化简2. 等式与方程- 一次方程的解法和应用- 二次根式的计算- 一元一次方程组和二元一次方程组的解法3. 几何基础- 线段、角的概念和性质- 平行线与垂直线的性质- 三角形、四边形的性质- 相似三角形的判定与性质4. 几何关系- 镜面对称、轴对称的判定和性质- 直角三角形与勾股定理的应用- 圆的周长与面积的计算5. 统计与概率- 数据的收集与整理- 平均数、中位数、众数的计算- 事件概率的计算二、物理竞赛知识点归纳1. 力学基础- 物体运动的描述与分析- 力的作用、力的合成与分解- 牛顿三定律的运用- 弹力与斜面上的物体2. 电学基础- 电路的构成与电流的定义- 并联电路与串联电路- 电阻与电流的关系- 电压的定义与计算3. 光学基础- 光的传播与反射定律- 凸透镜与凹透镜的成像原理- 光的折射与光密介质、光疏介质之间的关系 - 球面镜与反射望远镜的成像原理4. 热学基础- 温度与热能的传递- 热平衡与热传导- 热膨胀与热收缩- 热量计算和热效率计算三、化学竞赛知识点归纳1. 物质与变化- 物质的性质与分类- 常见物质的溶解与凝固- 物质的化学变化与化学反应- 典型的酸碱中和反应2. 元素与化合物- 原子结构与元素周期表- 元素间的化学键和化合物的性质- 碳及其化合物的性质和应用- 金属与非金属元素的性质与反应3. 反应反应速率- 化学方程式与反应热- 反应速率与活化能- 酸碱滴定反应的应用- 电解质的电离和电解质溶液的电解4. 化学能与电化四、生物竞赛知识点归纳1. 细胞与生物- 细胞的基本结构和功能- 镜下观察- 细胞的分裂与遗传- 调节和保持动态平衡2. 植物的生殖与发育- 植物的多样性与分类- 植物的营养与代谢- 植物的生殖和发育- 环境与植物的适应3. 动物的生殖与发育- 动物的结构与生活方式- 动物体内外的调节- 动物的生殖与发育- 进化和生物技术的应用4. 生物与环境的关系- 生物与物质循环- 生物多样性和生物保护- 生物与人类的利益和协调- 生态系统的保护和管理以上是初中各学科竞赛中常见的知识点的归纳。

高中物理竞赛_话题1:重心与质心的确定

高中物理竞赛_话题1:重心与质心的确定

话题1:重心与质心的确定一、平行力的合成与分解物体所受的几个力的作用线彼此平行,且不作用于一点,即为平行力(系)。

在平行力的合成或分解的过程中,必须同时考虑到力的平动效果和转动效果,后者要求合力和分力相对任何一个转轴的力矩都相同。

两个同向平行力的合力其方向与两个分力方向相同,其大小等于分力大小之和。

其作用线在两个分力作用点的连线上。

合力作用点到分力作用点的距离与分力的大小成反比。

例如:两个同向平行力A F 和B F ,其合力的大小A B F F F =+,合力作用点O 满足A B AO F BO F ⋅=⋅的关系。

两个反向平行力的合力其方向与较大的分力方向相同,其大小等于分力大小之差。

其作用线在两个分力作用点的连线的延长线上,且在较大的分力的外侧。

合力作用点到分力作用点的距离与分力的大小成反比。

例如:两个反向平行力A F 和B F 的合成其合力的大小B A F F F =-(假如B A F F >,则F 和B F 同向)其合力的作用点满足A B AO F BO F ⋅=⋅的关系。

一个力分解成两个平行力,是平行力合成的逆过程。

二、重心和质心重心是重力的作用点。

质心是物体(或由多个物体组成的系统)质量分布的中心。

物体的重心和质心是两个不同的概念,当物体远离地球而不受重力作用时,重心这个概念就失去意义,但质心却依然存在。

对于地球上体积不太大的物体,由于重力与质量成正比,重心与质心的位置是重合的。

但当物体的高度和地球半径比较不能忽略时,两者就不重合了,如高山的重心比质心要低一些。

在重力加速度g 为常矢量的区域,物体的重心是惟一的(我们讨论的都是这种情形),BF AF FO BA BF AF F OBA重心也就是物体各部分所受重力的合力的作用点,由于重力与质量成正比,重力合力的作用点即为质心,即重心与质心重合。

求重心,也就是求一组平行力的合力作用点。

相距L ,质量分别为12,m m 的两个质点构成的质点组,其重心在两质点的连线上,且与12,m m 相距分别为1L ,2L :1122m L m L = 12L L L +=2112m LL m m =+1212m LL m m =+均匀规则形状的物体,其重心在它的几何中心,求一般物体的重心,常用的方法是将物体分割成若干个重心容易确定的部分后,再用求同向平行力合力的方法找出其重心。

物理竞赛数学知识——微积分

物理竞赛数学知识——微积分
则 ,令 ,得
利润为 ,比遵守协议多 ,可见违约金至少为
[变化]成本为c,生产能力足够,价格由商家决定,而顾客根据价格是否购买。顾客购买量商家1产品的量 , ,购买商家2产品的量 。商家的利润定义为 。两商家都足理性,追求利益最大化。格有一个心理极限,只要价格低于这个极限就会购买,如果有两个商品价格都小于心理极限,则会随机购买一个。再假设所有人的心理价格是从0到M均匀分布的
例题精讲
【例2】判定下列函数在其定义域内是否有极值,求出极值并说明是否极大值、极小值。
; ; ; ,
【答案】 1 极小:x=0,y=0
2 极小: ,
3极小: ,极大:
4极值: ,不是极大也不是极小
4极大:
【例3】求下列函数在各自区间上的最大值和最小值(自学)
; ;
【答案】 1 极值点:极小: ,不在区间内。边界点 ;由于函数连续,有下界无上界,所以有最小值点,就在是边界取到:
B

不招

(8,8)
(10,1)
不招
(10,1)
(2,2)
[解析]
/*段子纳什均衡年轻的男性数学、物理工作者要做点成就出来,动力往往跟女人有关。纳什这家伙也不例外。纳什很有才,二十多岁就当上了教授,但是还是单身。一天他和一群狐朋狗友一起去酒吧喝酒,看见了一位漂亮mm,于是大家都想搭讪。别人都在想怎样搭讪才能成功,此时纳什的天赋表现出来了:他想,如果大家一拥而上一起搭讪,mm必然愤怒,大家都失败;如果让一个人搭讪,其他人帮腔,成功概率就会大得多,然后每次去酒吧大家轮流来,每人都有好处。由此出发他提出了著名的纳什均衡理论,大体意思是说每人都以自己利益最大化为标准,最后团体必然会形成一个稳定的策略。然后呢…然后纳什就疯了…直到几十年后他被授予了诺贝尔经济学奖才好一点。具体的情况推荐大家看《美丽心灵》,不看人生不完整*/

2023年大同杯物理竞赛专题专题运动

2023年大同杯物理竞赛专题专题运动

专题8 运动【知识补充】1. 速度是描述物体运动快慢的物理量。

速度v=s/t。

2. 相对运动。

两物体同向运动,相对速度为其速度之差;两物体反向运动,相对速度为其速度之和。

3. 平均速度是指在某段时间内物体运动的路程与所用时间的比值。

△s/△t = 平均速度。

但假如是匀变速运动,那么尚有一种公式=(初速度+末速度)/24. 加速度是速度变化量与发生这一变化所用时间的比值(△V/△t),是描述物体速度改变快慢的物理量,通常用a表达,单位是m/s2。

5.初速为0的匀变速运动的路程公式。

S=1/2 at26.速度的合成:当一个物体受多个力在几个方向都有速度时,合速度遵循平行四边形法则。

【例题】1.降落伞在无风时以4米/秒的速度匀速下降,假如吹起水平方向的风,风速为3米/秒,则降落伞落地时的速度大小为_____________。

2. (2023大同杯预赛)小轿车匀速行驶在公路上,坐在副驾驶位置的小青观测到轿车速度盘的指针始终在100km/h位置处,在超越相邻车道上同向匀速行驶的另一辆普通轿车的过程中,小青发现该轿车通过自己的时间恰好为1秒,则该轿车的车速范围为()A.15~20m/s B.20~25 m/s C.25~30 m/s D.30~35 m/s3.(2023大同杯复赛)一列车由北向南在雨中行驶,坐在窗口的乘客看到雨滴相对车窗竖直下落,则()A.窗外有风,但无法判断风的方向B.窗外有风,并且是由北向南的风C.窗外有风,并且是由南向北的风D.窗外没有风,站在铁轨边的人看到雨滴是竖直下落的4. (2023大同杯预赛)下列数据中最接近实际情况的是()A.人正常步行的平均速度为10米/秒B.光在真空中的传播速度为340米/秒C.无线电波在空气中的传播速度约为3×108米/秒D.“神舟七号”飞船进入太空轨道时的速度约为3×108米/秒5.(2023大同杯预赛)如图所示,杠杆上有两个质量不等的球m1>m2,杠杆在水平位置平衡,杠杆自重不计.假如两球以相同的速度向支点运动,则杠杆()A.仍能平衡B.不能平衡,右侧将下沉C.不能平衡,左侧将下沉D.条件不够,无法判断6.(2023大同杯预赛)某人骑车向正东方向行驶,看到插在车上的小旗向正南方向飘动,假设风速保持不变,骑车人沿正南方向行驶时,小旗的飘动方向也许的是()A.正东方向B.正北方向C.东偏南方向D.东偏北方向7.(2023大同杯预赛)著名数学家苏步青年轻时有一次访问德国,本地一名数学家在电车上给他出了一道题:甲、乙两人相对而行,相距50千米.甲每小时走3千米,乙每小时走2千米.甲带一条狗,狗每小时走4千米,同甲一起出发,碰到乙后又往甲方向走,碰到甲后它又往乙方向走,这样连续下去,直到甲乙两人相遇时,这条狗一共走了()A.50千米B.40千米C.30千米D.20千米8.(2023大同杯预赛)一般情况下,河水越靠近河的中央,水速越大;越靠近河岸,水速越小,如图所示.假设水速与离河岸的距离成正比,一艘船船头始终垂直河岸方向(船相对水的速度不变),从河岸A点向对岸驶去并到达对岸下游处的B点.则在下列示意团中,能合理描述其行进途径的是()A.B.C.D.9. (2023大同杯复赛)摩托车做奔腾障碍物的表演时为了减少落地时向前翻车的危险,则落地时应采用的措施是()A仅前轮制动B仅后轮制动C前、后两轮均制动D前、后轮均不制动10. (2023大同杯复赛)2023年9月25日21时10分“神舟”七号飞船载着三名航天员飞上蓝天,实行太空出舱活动等任务后于28日17时37分安全返回地球。

物理竞赛中的数学知识

物理竞赛中的数学知识

物理竞赛中的数学知识一、重要函数1.指数函数2.三角函数3.反三角函数反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。

二、数列、极限1.数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n项。

数列的一般形式可以写成a1,a2,a3,…,a n,a(n+1),… 简记为{an},通项公式:数列的第N项a n 与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。

2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

通项公式a n =a 1+(n-1)d ,前n 项和11(1)22n n a a n n S n na d +-==+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数叫做等比数列的公比,公比通常用字母q 表示。

通项公式a n =a 1q (n-1),前n 项和11(1)(1)11n n n a a q a q S q q q --==≠-- 所有项和1(1)1n a S q q=<- 3. 求和符号 4. 数列的极限: 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作Aa n n =∞→lim 否则称数列{}n a 发散或nn a ∞→lim 不存在.三、函数的极限:在自变量x 的某变化过程中,对应的函数值f (x )无限接近于常数A ,则称常数A 是函数f (x )当自变量x 在该变化过程中的极限。

高中物理竞赛微积分基础

高中物理竞赛微积分基础

高中物理竞赛微积分基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、常用等价无穷小关系(0x →) 小量近似①sin x x = ;②tan x x = ;③211cos 2x x -= ;④()ln 1x x += ;⑤1x e x -= 2、基本函数的导数公式 小量比值(1)y =f (x )=C (常量)(2)y=f (x )=x(3)y =f (x )=x 2⑴ 导数的四则运算①d(u±v)d t =du d t ± dv d t ③d(u v )d t = du d t ·v - u ·dv d t u v v 2②d(u ·v)d t =du d t ·v + u ·dv d t u v ⑵ 常见函数的导数①dC dt =0(C 为常数); ②dt n dt =nt n-1 (n 为实数); ③dsint dt =cost ; ④ dcost dt =-sint ;⑶ 复合函数的导数在数学上,把u=u(v(t))称为复合函数,即以函数v(t)为u(x)的自变量。

du(v(t))d t =du(v(t))d v(t) ·dv(t)d t导数的数学意义:变化率导数的几何意义:图线切线斜率导数的物理意义:定义物理量(速度、加速度等)3、定积分 小量累计函数,b 和a 分别叫做定积分的上限和下限。

f(x)是Ф(x)的导数,Ф(x)是f(x)的逆导数或原函数。

求f(x)的定积分就可以归结为求它的逆导数或原函数(不定积分)。

4、不定积分通常把求一个导函数f(x)的逆导数的通式Ф(x)+C叫做它的不定积分。

高中物理竞赛-电阻等效方法ABC

高中物理竞赛-电阻等效方法ABC

x
RAB

2 21 21
r
3
田字形电阻丝网络如图所示,每小段电阻丝的电
解: 阻均为R,试求网络中A、B两点间的等效电阻RAB.
I RAB
R
O


I 2

I 24


R


I 8

5I 24

2R
B
I I 5I I 2 24 24 8
A
RAB

29 24
R
O B
R
O
B
2A
R3


5 6
3
r

2 3

125 234
r
递推到分割n次后的图形
Rn

2 3

5 6
n
r
A r
B
r 5r 2 6
5r

5 6
21r2
读题 C
如图所示的平面电阻丝网络中,每一直
线段和每一弧线段电阻丝的电阻均为r.试求A、B两点间
的等效电阻.
解:
B
B
A
B
B就在这个背景下研究按谢尔宾斯基镂垫图形的各边构成的电阻网络的 等如效图2电所阻示问的题图:形设,如其图中1所每示个的 小三 三角 角形形A边B长C边的长电L阻0的是电原阻三均角为形rA;B经C的一边次长分的割电得阻到r 的二分之一;经二次分割得到如图3所示的图形,其中每个小三角形边长的电阻 是原三角形ABC的边长的电阻r的四分之一;三次分割得到如图4所示的图形,其 中每个小三角形边长的电阻是原三角形ABC的边长的电阻r的八分之一.
RAB
452R54c

物理竞赛初中数学试卷答案

物理竞赛初中数学试卷答案

一、选择题(每题5分,共20分)1. 下列哪个物理量在国际单位制中的单位是千克?()A. 力B. 速度C. 时间D. 质量答案:D解析:质量在国际单位制中的单位是千克(kg)。

2. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,3秒后它的速度是多少?()A. 6m/sB. 9m/sC. 12m/sD. 18m/s答案:B解析:根据公式 v = at,代入 a = 2m/s²,t = 3s,得v = 2m/s² × 3s = 6m/s。

3. 一个物体在水平面上受到一个斜向上的拉力,如果拉力与物体所受摩擦力的合力为0,则下列哪个说法是正确的?()A. 物体一定处于静止状态B. 物体一定处于匀速直线运动状态C. 物体的运动状态可能改变D. 物体的运动状态一定不变答案:D解析:当拉力与摩擦力的合力为0时,根据牛顿第一定律,物体可能处于静止状态或匀速直线运动状态,但运动状态不会改变。

4. 下列哪个物理现象属于光的折射?()A. 彩虹B. 镜子成像C. 日食D. 月食答案:A解析:彩虹是由于光在雨滴中发生折射和反射而形成的。

5. 一个电阻的电阻值为10Ω,通过它的电流为2A,则该电阻的电压是多少?()A. 5VB. 10VC. 20VD. 50V答案:B解析:根据欧姆定律 U = IR,代入I = 2A,R = 10Ω,得U = 2A × 10Ω =20V。

二、填空题(每题10分,共30分)6. 物体的质量是3kg,受到的合力是15N,则物体的加速度是______m/s²。

答案:5解析:根据牛顿第二定律 F = ma,代入F = 15N,m = 3kg,得 a = 15N / 3kg = 5m/s²。

7. 一个物体在水平面上做匀速直线运动,受到的摩擦力是5N,则该物体所受的推力是______N。

答案:5解析:由于物体做匀速直线运动,根据牛顿第一定律,物体所受的推力与摩擦力大小相等,方向相反,所以推力也是5N。

幂级数应用于物理竞赛中的近似计算

幂级数应用于物理竞赛中的近似计算

幂级数应用于物理竞赛中的近似计算幂级数是一种重要的数学工具,它在物理竞赛中被广泛应用于近似
计算。

以下是幂级数在物理学竞赛中的几个应用:
一、光学求解
幂级数在光学中的应用非常广泛。

一些复杂的光学问题可以通过幂级
数的展开来近似解决。

例如,波导光纤的色散可以用幂级数展开来求解,获得更准确的数据和计算结果。

此外,幂级数还可以用于计算光
线的传播路径、折射和反射等问题。

二、热力学计算
幂级数也被广泛应用于热力学中的计算,例如计算气体的热容和内能。

这些计算通常需要通过幂级数展开来进行近似计算。

通过计算幂级数
的前几项,可以获得可靠的近似值。

三、量子力学计算
在量子力学中,幂级数也被广泛应用。

例如,在量子力学的微扰理论中,幂级数可以用于计算微扰对量子态的影响。

此外,在矩阵力学中,幂级数也可以用于计算能量的预测值。

四、电学计算
在电学中,幂级数主要用于电磁场的计算。

通过幂级数展开,我们可以计算电磁场的位势和磁势。

此外,幂级数也可以用于电容、电感和电阻等电学元件的计算。

五、粒子物理计算
幂级数在粒子物理中也有重要应用。

例如,幂级数可以用于计算质子的磁矩和电矩。

此外,幂级数还可以用于计算原子核的结构和性质。

总结
幂级数是物理学竞赛中重要的数学工具,它可以用于解决各种物理学问题。

通过幂级数的展开和计算,我们可以获得更准确的数据和计算结果。

在物理学竞赛中,熟练掌握幂级数的应用和计算方法,可以有效地提高竞赛成绩。

物理竞赛微元法

物理竞赛微元法

三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法;用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化;在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解;使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用;赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走;设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动;解析:该题不能用速度分解求解,考虑采用“微元法”;设某一时间人经过AB 处,再经过一微小过程Δt Δt →0,则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于ΔS AA ′= v Δt 则人影顶端的移动速度:v C =CC t 0S lim t '∆→∆∆=AA t 0H S H h lim t '∆→∆-∆=H H h -v 可见v c 与所取时间Δt 的长短无关,所以人影的顶端C 点做匀速直线运动;例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ ;试求铁链A 端受的拉力T ;解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况;在铁链上任取长为ΔL 的一小段微元为研究对象,其受力分析如图3—2—甲所示;由于该元处于静止状态,所以受力平衡,在切线方向上应满足:T θ + ΔT θ = ΔGcos θ + T θ ,ΔT θ = ΔGcos θ = ρg ΔLcos θ由于每段铁链沿切线向上的拉力比沿切线向下的拉力大ΔTθ,所以整个铁链对A端的拉力是各段上ΔTθ的和,即:T = ΣΔTθ = ΣρgΔLcosθ = ρgΣΔLcosθ观察ΔLcosθ的意义,见图3—2—乙,由于Δθ很小,所以CD⊥OC ,∠OCE = θΔLcosθ表示ΔL在竖直方向上的投影ΔR ,所以ΣΔLcosθ = R ,可得铁链A端受的拉力:T = ρgΣΔLcosθ = ρgR例3:某行星围绕太阳C沿圆弧轨道运行,它的近日点A离太阳的距离为a ,行星经过近日点A时的速度为v A ,行星的远日点B离开太阳的距离为b ,如图3—3所示,求它经过远日点B时的速度v B的大小;解析:此题可根据万有引力提供行星的向心力求解;也可根据开普勒第二定律,用微元法求解;设行星在近日点A时又向前运动了极短的时间Δt ,由于时间极短可以认为行星在Δt时间内做匀速圆周运动,线速度为v A,半径为a ,可以得到行星在Δt时间内扫过的面积:v A Δt⋅aS a =12同理,设行星在经过远日点B时也运动了相同的极短时间Δt ,则也有:v BΔt⋅bS b =12由开普勒第二定律可知:S a = S b ;即得:v B =av Ab此题也可用对称法求解;例4:如图3—4所示,长为L的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒;设人在走动过程中的Δt时间内为匀速运动,则可计算出船的位移;设v1、v2分别是人和船在任何一时刻的速率,则有:mv1= Mv2①两边同时乘以一个极短的时间Δt , 有:mv1Δt = Mv2Δt ②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为Δs1 = v1Δt ,Δs2 = v2Δt由此将②式化为:mΔs1 = MΔs2③把所有的元位移分别相加有:mΣΔs1 = MΣΔs2④即:ms1 = Ms2⑤此式即为质心不变原理;其中s1、s2分别为全过程中人和船对地位移的大小,又因为:L = s1 + s2⑥由⑤、⑥两式得船的位移:s 2 =m M m +L 例5:半径为R 的光滑球固定在水平桌面上,有一质量为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若平衡时弹性绳圈长为2πR ,求弹性绳圈的劲度系数k ;解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段Δm 两端受的拉力就是弹性绳圈内部的弹力F ;在弹性绳圈上任取一小段质量为Δm 作为研究对象,进行受力分析;但是Δm 受的力不在同一平面内,可以从一个合适的角度观察;选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系;从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙;先看俯视图3—5—甲,设在弹性绳圈的平面上,Δm 所对的圆心角是Δθ ,则每一小段的质量:Δm =2∆θπM Δm 在该平面上受拉力F 的作用,合力为: T = 2Fcos 2π-∆θ= 2Fsin 2∆θ 因为当θ很小时,sin θ≈θ ,所以:T = 2F2∆θ= F Δθ ① 再看正视图3—5—乙,Δm 受重力Δmg ,支持力N ,二力的合力与T 平衡;即:T = Δmg ⋅tan θ现在弹性绳圈的半径为:r =2R 2ππ=22R 所以:sin θ =r R =22,θ = 45°,tan θ = 1 因此:T = Δmg =2∆θπMg ② 将①、②联立,有:2∆θπMg = F Δθ ,解得弹性绳圈的张力为:F =Mg 2π 设弹性绳圈的伸长量为x ,则:x =2πR -πR =2-1 πR 所以绳圈的劲度系数为:k =F x =2Mg 2(21)R -π=2(21)Mg 2R+π例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T,求此圆环可以绕几何轴旋转的最大角速度;解析:因为向心力F = mr ω2 ,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω ,r 应取最大值;如图3—6所示,在圆环上取一小段ΔL ,对应的圆心角为Δθ ,其质量可表示为Δm =2∆θπM ,受圆环对它的张力为T ,则同上例分析可得:2Tsin 2∆θ= Δmr ω2 因为Δθ很小,所以:sin2∆θ≈2∆θ,即:2T ⋅2∆θ=2∆θπM r ω2 解得最大角速度:ω =2T Mrπ 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力;根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化;由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同;我们取某一时刻一小段链条微元作为研究对象,就可以将变速冲击变为恒速冲击;设开始下落的时刻t = 0 ,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ ;由题意可知,链条落至地面后,速度立即变为零;从t 时刻起取很小一段时间Δt ,在Δt 内又有ΔM = ρΔx 落到地面上静止;地面对ΔM 作用的冲量为:F -ΔMg Δt = ΔI因为ΔMg ⋅Δt ≈0 ,所以:F Δt = ΔM ⋅v -0 = ρv Δx ,解得冲力:F = ρv x t ∆∆,其中x t ∆∆就是t 时刻链条的速度v ,故F = ρv 2 ,链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即:v 2 = 2gx代入F 的表达式中,得:F = 2ρgx此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力;所以在t 时刻链条对地面的总压力为:N = 2ρgx + ρgx = 3ρgx =3Mgx L例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解;如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为12l -x ,速度v =2gx ,右边绳长为12l+x 又经过一段很短的时间Δt 以后,左边绳子又有长度12v Δt 的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉力T 和它本身的重力12v Δt λg λ =m l 为绳子的线密度 根据动量定理,设向上方向为正,有:T -12v Δt λg Δt = 0--12v Δt λ⋅v由于Δt 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略,所以有:T =12v 2λ = gx λ因此钉子对右边绳端的作用力为:F =12l + x λg + T =12mg1 +3x l 例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m ;设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度;解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力;因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解;在与圆盘接触的半圆形中取一小段绳元ΔL ,ΔL 所对应的圆心角为Δθ ,如图3—9—甲所示,绳元ΔL两端的张力均为T ,绳元所受圆盘法向支持力为ΔN ,因细绳质量可忽略,法向合力为零,则由平衡条件得:ΔN = Tsin 2∆θ+ Tsin 2∆θ= 2T 2∆θ 当Δθ很小时,sin2∆θ≈2∆θ,故ΔN = TΔθ ;又因为 ΔL = RΔθ ,则绳所受法向支持力线密度为:n =N L ∆∆=T R ∆θ∆θ=T R ① 以M 、m 分别为研究对象,根据牛顿定律有:Mg -T = Ma ②T -mg = m a ③由②、③解得:T =2Mmg M m+将④式代入①式得:n =2Mmg (M m)R + 例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切;若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解;如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α ,当α有微小增量时,则大小圆环上对应微小线元:ΔL 1 = R ⋅2Δα ,ΔL 2 = r ⋅2Δα其对应的质量分别为:Δm 1 = ρ1Δl 1 =ρ1R ⋅2Δα ,Δm 2 = ρ2Δl 2 =ρ2r ⋅2Δα由于Δα很小,故Δm 1 、Δm 2与m 的距离可以认为分别是:r 1 = 2Rcos α ,r 2 = 2rcos α所以Δm 1 、Δm 2与m 的万有引力分别为:ΔF 1 =121Gm m r ∆=12G R 2m (2R cos )ρ⋅∆αα,ΔF 2 =222Gm m r ∆=22G R 2m (2r cos )ρ⋅∆αα 由于α具有任意性,若ΔF 1与ΔF 2的合力为零,则两圆环对m 的引力的合力也为零, 即:12G R 2m (2R cos )ρ⋅∆αα=22G R 2m (2r cos )ρ⋅∆αα 解得大小圆环的线密度之比为:12ρρ=R r 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v,那么火箭发动机的功率是多少解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率;选取在Δt 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有:F Δt = Δm ⋅v因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有:F = Mg即:Mg ⋅Δt = Δm ⋅v ,或者:Δt =m v Mg∆⋅ 对同样这一部分气体用动能定理,火箭对它做的功为:W =12Δmv 2所以发动机的功率:P =W t∆=21mv 2mv Mg ∆∆=12Mgv 例12:如图3—11所示,小环O 和O ′分别套在不动的竖直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′= α时,环O 的速度;解析:O 、O ′之间的速度关系与O 、O ′的位置有关,即与α角有关,因此要用微元法找它们之间的速度关系;设经历一段极短时间Δt ,O ′环移到C ′,O 环移到C ,自C ′与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出; OC =OD cos α,O ′C ′=O D cos ''α,因此: OC + O ′C ′=OD O D cos ''+α ① 因Δα极小,所以EC ′≈ED ′,EC ≈ED ,从而:OD + O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故:OO ′- CC ′= O ′C ′ ③由以上三式可得:OC + O ′C ′=O C cos ''α,即:OC = O ′C ′1cos α-1 等式两边同除以Δt 得环O 的速度为:v 0 = v1cos α-1 例13: 在水平位置的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状侧面向外凸出,过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算;已知水银密度ρ = ×103kg/m 3 ,水银的表面张力系数σ = m ;当圆饼的半径很大时,试估算其厚度h 的数值大约为多少取1位有效数字即可解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h ;现用微元法求解;在圆饼的侧面取一个宽度为Δx ,高为h 的体积元,,如图3—12—甲所示,该体积元受重力G 、液体内部作用在面积Δx ⋅h 上的压力F ,则:F =P S =12ρgh ⋅Δxh =12ρgh 2⋅Δx 还有上表面分界线上的张力F 1 = σΔx 和下表面分界线上的张力F 2 = σΔx ;作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出;由力的平衡条件有:F -F 1cos θ-F 2 = 0即:12ρgh 2⋅Δx -σΔx ⋅cos θ-σΔx = 0解得:h =2(1cos )g σ+θρ= ×10-31cos +θ 由于0<θ<2π,所以:1<1cos +θ<2,故:×10-3m <h <×10-3m 题目要求只取1位有效数字,所以水银层厚度h 的估算值为3×10-3m 或4×10-3m ; 例14:把一个容器内的空气抽出一些,压强降为p ,容器上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示;问空气最初以多大初速度冲进容器外界空气压强为p 0 、密度为ρ解析:该题由于不知开始时进入容器内分有多少,不知它们在容器外如何分布,也不知空气分子进入容器后压强如何变化,使我们难以找到解题途径;注意到题目中“最初”二字,可以这样考虑:设小孔的面积为S ,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为ΔL ,因ΔL 很小,所以其质量Δm 进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了;由以上分析,得:F = p 0-pS ①对进入的Δm 气体,由动能定理得:F ⋅ΔL =12Δmv 2 ②而 Δm = ρS ΔL ③联立①、②、③式可得:最初中进容器的空气速度:v =02(p p)-ρ 例15:电量Q 均匀分布在半径为R 的圆环上如图3—14所示,求在圆环轴线上距圆心O 点为x 处的P 点的电场强度;解析:带电圆环产生的电场不能看做点电荷产生的电场,故采用微元法,用点电荷形成的电场结合对称性求解;选电荷元Δq = R ΔθQ 2R π,它在P 点产生的电场的场强的x 分量为:ΔE x = k 2q r ∆cos α = k 22R Q 2R(R x )∆θπ+⋅22x R x +根据对称性:E = ΣΔE x =223kQx 2(R x )π+Σθ =223kQx2(R x )π+⋅2π =223kQx (R x )+由此可见,此带电圆环在轴线P 点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P 点产生的场强大小,方向是沿轴线的方向;例16:如图3—15所示,一质量均匀分布的细圆环,其半径为R ,质量为m ;令此环均匀带正电,总电量为Q ;现将此环平放在绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁场方向竖直向下;当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向旋转时,环中的张力等于多少设圆环的带电量不减少,不考虑环上电荷之间的作用解析:当环静止时,因环上没有电流,在磁场中不受力,则环中也就没有因磁场力引起的张力;当环匀速转动时,环上电荷也随环一起转动,形成电流,电流在磁场中受力导致环中存在张力,显然此张力一定与电流在磁场中受到的安培力有关;由题意可知环上各点所受安培力方向均不同,张力方向也不同,因而只能在环上取一小段作为研究对象,从而求出环中张力的大小;在圆环上取ΔL = RΔθ圆弧元,受力情况如图3—15—甲所示;因转动角速度ω而形成的电流:I =Q 2ωπ,电流元I ΔL 所受的安培力:ΔF = I ΔLB =R 2ωπQB Δθ 圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,故: 2Tsin 2∆θ-ΔF = Δm ω2R 当Δθ很小时,sin2∆θ≈2∆θ,故有: T Δθ-R QB 2ωπΔθ = Δm ω2R ∵Δm =m 2πΔθ ,∴T Δθ-R QB 2ωπΔθ =2m R 2ωπΔθ 解得圆环中张力为:T =R 2ωπQB + m ω 例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电阻,其他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面;现给金属杆一个水平向右的初速度v 0 ,然后任其运动,导轨足够长,试求金属杆在导轨上向右移动的最大距离是多少解析:水平地从a 向b 看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位移的题,用我们已学过的知识好像无法解决,其实只要采用的方法得当仍然可以求解;设杆在减速中的某一时刻速度为v ,取一极短时间Δt ,发生了一段极小的位移Δx ,在Δt 时间内,磁通量的变化为:Δφ = BL Δx ,I =R ε=R t ∆Φ∆=BL x R t ∆∆ 金属杆受到安培力为:F 安 = BIL =22B L x R t∆∆ 由于时间极短,可以认为F 安为恒力,选向右为正方向,在Δt 时间内,安培力F 安的冲量为:ΔI =-F 安Δt =-22B L x R ∆ 对所有的位移求和,可得安培力的总冲量为:I = Σ -22B L x R ∆ =-22B L Rx ① 其中x 为杆运动的最大距离,对金属杆用动量定理可得: I = 0-mv 0 ② 由①、②两式得:x =022mv R B L 例18:如图3—17所示,电源的电动热为E ,电容器的电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同一水平面上的平行光滑长导轨,它们的电阻可以忽略不计,两导轨间距为L ,导轨处在磁感应强度为B的均匀磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方向;L 1和L 2是两根横放在导轨上的导体小棒,质量分别为m 1和m 2 ,且m 1<m 2 ;它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在导轨上;现将开关S 先合向1 ,然后合向2 ;求:1两根小棒最终速度的大小;2在整个过程中的焦耳热损耗;当回路中有电流时,该电流所产生的磁场可忽略不计解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大;1设两小棒最终的速度的大小为v ,则分别为L 1 、L 2为研究对象得:F i Δt i = m 11v '-m 1v 1 ,有:ΣF i1Δt i1 = m 1v ① 同理得:ΣF i2Δt i2 = m 2v ② 由①、②得:ΣF i1Δt i1 + ΣF i2Δt i2 = m 1 + m 2v又因为 F i1 = Bli 1 ,F i1 = Bli 1 ,Δt i1 =Δt i2 ,i 1 + i 2 = i所以:ΣBLi 1Δt i1 + ΣBLi 2Δt i2 = BL Σ i 1 + i 2 Δt i = BL Σi Δt i = BLQ -q = m 1 + m 2v 而Q = CE ,q = CU ′= CBLv所以解得小棒的最终速度:v =2212BLCE (m m )CB L ++ 2因为总能量守恒,所以:12CE 2 =12⋅2q C +12 m 1 + m 2v 2 + Q 热即产生的热量:Q 热 =12CE 2-12⋅2q C -12m 1 + m 2v 2 =12CE 2-12⋅1C CBLv 2-12 m 1 + m 2v 2 =12CE 2-12CB 2L 2-m 1 + m 22212BLCE (m m )CB L ++ =2122212(m m )CE 2(m m B L C)+++。

物理竞赛中的数学方法与物理方法-于强

物理竞赛中的数学方法与物理方法-于强

例 4 质量为 m 的小球自 A 点以水平速度 v0 抛出,在重力和空气阻力作用下,经一段时 间落到地面上。小球在运动中受到的空气阻力为 f kv ,其中 k 为正的常量,v 为小球在 运动中的速度。试求解小球在任一时刻的速度。[3][4] 分析与解 本题中小球除了受到重力以外还受到空气阻力, 这是一个大小和方向都随着速度变化的变力,难以列方程求解。 这里我们把 v0 分解为两个分速度
l 1 N sin ml 2 2 12
研究与地面的接触点 P,地面系中其加速度必沿水平方向, 竖直方向加速度分量为零
an cos at sin aC
其中 an
2
l l , at r 2 2
又根据质心动力学方程有
联立以上三式,将
mg N maC
2mgr 3 J mr 2 2mgr 3 J mr 2
条件为
u
解法二 本题也可以先求出圆盘沿切向方向给甲虫的作用力,求出该力所做的功,运用 动能定理求解。
对甲虫 M 受力分析如图所示,有
F mg sin mr
利用动力学方程
F mg sin
mr 2 J mg sin mg sin 2 J mr J mr 2
恰为零。根据临界条件,写能量方程 临界条件:当甲虫与竖直轴夹角 / 2 时,
1 WF mgr mu 2 2
解得 u
2
2mgr 3 ,即应满足 u J mr 2
2mgr 3 J mr 2
2 寻找动力学与运动学关系,化简求导和微分运算 运用求导和微分计算速度和加速度,思路清晰,不易出错。但若遇到计算量较大,或需 要一定的技巧的情况时,可以寻找动力学方程和运动学关系使问题简化。 “绳拉小船”是一个常见问题,小船速度很容易求解,加 速度则比较难。下面用两种方法求小船的加速度。 例 2 在离水面高度为 h 的岸边,有人用绳子拉船靠岸,若 人收绳的速率恒为 v0 ,试求船在离岸边距离 s 处时的加速度大 小为多少? 解法一 本题直接利用加速度与速度的导数关系求解如下: 设船速为 v ,加速度为 a ,均沿水平方向; 为绳与水平面夹角,有

物理竞赛大纲

物理竞赛大纲

物理竞赛大纲力学1. 运动学参考系坐标系直角坐标系※平面极坐标※自然坐标系矢量和标量质点运动的位移和路程速度加速度匀速及匀变速直线运动及其图像运动的合成与分解抛体运动圆周运动圆周运动中的切向加速度和法向加速度曲率半径角速度和※角加速度相对运动伽里略速度变换2.动力学重力弹性力摩擦力惯性参考系牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式不要求导出※非惯性参考系※平动加速参考系中的惯性力※匀速转动参考系惯性离心力、视重☆科里奥利力3.物体的平衡共点力作用下物体的平衡力矩刚体的平衡条件☆虚功原理4.动量冲量动量质点与质点组的动量定理动量守恒定律※质心※质心运动定理※质心参考系反冲运动※变质量体系的运动5.机械能功和功率动能和动能定理※质心动能定理重力势能引力势能质点及均匀球壳壳内和壳外的引力势能公式不要求导出弹簧的弹性势能功能原理机械能守恒定律碰撞弹性碰撞与非弹性碰撞恢复系数6.※角动量冲量矩角动量质点和质点组的角动量定理和转动定理角动量守恒定律7.有心运动在万有引力和库仑力作用下物体的运动开普勒定律行星和人造天体的圆轨道和椭圆轨道运动8.※刚体刚体的平动刚体的定轴转动刚体绕轴的转动惯量平行轴定理正交轴定理刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学静止流体中的压强浮力☆连续性方程☆伯努利方程10.振动简谐振动振幅频率和周期相位振动的图像参考圆简谐振动的速度线性恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成阻尼振动受迫振动和共振定性了解11.波动横波和纵波波长频率和波速的关系波的图像※平面简谐波的表示式波的干涉※驻波波的衍射定性声波声音的响度、音调和音品声音的共鸣乐音和噪声前3项均不要求定量计算※多普勒效应热学1. 分子动理论原子和分子大小的数量级分子的热运动和碰撞布朗运动※压强的统计解释☆麦克斯韦速率分布的定量计算;※分子热运动自由度※能均分定理;温度的微观意义分子热运动的动能※气体分子的平均平动动能分子力分子间的势能物体的内能2.气体的性质温标热力学温标气体实验定律理想气体状态方程道尔顿分压定律混合理想气体状态方程理想气体状态方程的微观解释定性3.热力学第一定律热力学第一定律理想气体的内能热力学第一定律在理想气体等容、等压、等温、绝热过程中的应用※多方过程及应用※定容热容量和定压热容量※绝热过程方程※等温、绝热过程中的功※热机及其效率※卡诺定理4.热力学第二定律※热力学第二定律的开尔文表述和克劳修斯表述※可逆过程与不可逆过程※宏观热力学过程的不可逆性※理想气体的自由膨胀※热力学第二定律的统计意义☆热力学第二定律的数学表达式☆熵、熵增5.液体的性质液体分子运动的特点表面张力系数※球形液面两边的压强差浸润现象和毛细现象定性6.固体的性质晶体和非晶体空间点阵固体分子运动的特点7.物态变化熔化和凝固熔点熔化热蒸发和凝结饱和气压沸腾和沸点汽化热临界温度固体的升华空气的湿度和湿度计露点8.热传递的方式传导※导热系数对流辐射※黑体辐射的概念※斯忒番定律※维恩位移定律9.热膨胀热膨胀和膨胀系数电磁学1.静电场电荷守恒定律库仑定律电场强度电场线点电荷的场强场强叠加原理匀强电场均匀带电球壳内、外的场强公式不要求导出※高斯定理及其在对称带电体系中的应用电势和电势差等势面点电荷电场的电势电势叠加原理均匀带电球壳内、外的电势公式电场中的导体静电屏蔽,※静电镜像法电容平行板电容器的电容公式※球形、圆柱形电容器的电容电容器的连联接※电荷体系的静电能,※电场的能量密度,电容器充电后的电能☆电偶极矩☆电偶极子的电场和电势电介质的概念☆电介质的极化与极化电荷☆电位移矢量2.稳恒电流欧姆定律电阻率和温度的关系电功和电功率电阻的串、并联电动势闭合电路的欧姆定律一段含源电路的欧姆定律※基尔霍夫定律电流表电压表欧姆表惠斯通电桥补偿电路3.物质的导电性金属中的电流欧姆定律的微观解释※液体中的电流※法拉第电解定律※气体中的电流※被激放电和自激放电定性真空中的电流示波器半导体的导电特性p型半导体和n型半导体※P-N结晶体二极管的单向导电性※及其微观解释定性三极管的放大作用不要求掌握机理超导现象☆超导体的基本性质4.磁场电流的磁场※毕奥-萨伐尔定律磁场叠加原理磁感应强度磁感线匀强磁场长直导线、圆线圈、螺线管中的电流的磁场分布定性※安培环路定理及在对称电流体系中的应用※圆线圈中的电流在轴线上和环面上的磁场☆磁矩安培力洛伦兹力带电粒子荷质比的测定质谱仪回旋加速器霍尔效应5. 电磁感应法拉第电磁感应定律楞次定律※感应电场涡旋电场自感和互感自感系数※通电线圈的自感磁能不要求推导6.交流电交流发电机原理交流电的最大值和有效值☆交流电的矢量和复数表述纯电阻、纯电感、纯电容电路感抗和容抗※电流和电压的相位差整流滤波和稳压☆谐振电路☆交流电的功率☆三相交流电及其连接法☆感应电动机原理理想变压器远距离输电7.电磁振荡和电磁波电磁振荡振荡电路及振荡频率赫兹实验电磁场和电磁波☆电磁场能量密度、能流密度电磁波的波速电磁波谱电磁波的发射和调制电磁波的接收、调谐、检波光学1. 几何光学※费马原理光的传播反射折射全反射光的色散折射率与光速的关系平面镜成像球面镜成像公式及作图法※球面折射成像公式※焦距与折射率、球面半径的关系薄透镜成像公式及作图法眼睛放大镜显微镜望远镜※其它常用光学仪器2.波动光学光程※惠更斯原理定性光的干涉现象双缝干涉光的衍射现象※夫琅禾费衍射※光栅※布拉格公式※分辩本领不要求导出光谱和光谱分析定性※光的偏振※自然光与偏振光※马吕斯定律※布儒斯特定律近代物理1.光的本性光电效应※康普顿散射光的波粒二象性光子的能量与动量2.原子结构卢瑟福实验原子的核式结构玻尔模型用玻尔模型解释氢光谱※用玻尔模型解释类氢光谱原子的受激辐射激光的产生定性和特性3.原子核原子核的尺度数量级天然放射性现象原子核的衰变半衰期放射线的探测质子的发现中子的发现原子核的组成核反应方程质能关系式裂变和聚变质量亏损4.粒子“基本粒子”轻子与夸克简单知识四种基本相互作用实物粒子具有波粒二象性※物质波※德布罗意关系※不确定关系5.※狭义相对论爱因斯坦假设洛伦兹变换时间和长度的相对论效应多普勒效应☆速度变换相对论动量相对论能量相对论动能相对论动量和能量关系6.※太阳系,银河系,宇宙和黑洞的初步知识.单位制国际单位制与量纲分析数学基础1.中学阶段全部初等数学包括解析几何.2.矢量的合成和分解,矢量的运算,极限、无限大和无限小的初步概念.3.※微积分初步及其应用:含一元微积分的简单规则;微分:包括多项式、三角函数、指数函数、对数函数的导数,函数乘积和商的导数,复合函数的导数;积分:包括多项式、三角函数、指数函数、对数函数的简单积分;。

数学物理竞赛知识点总结

数学物理竞赛知识点总结

数学物理竞赛知识点总结一、数学竞赛知识点总结1. 不等式(1) 已知不等式性质(2) 不等式的计算(3) 不等式的应用(如证明、应用)2. 函数(1) 函数的性质(2) 函数的运算(如复合函数、反函数)(3) 函数的图像与性质(如一次函数、二次函数、三角函数)3. 数列(1) 等差数列和等比数列的性质(2) 数列的求和(3) 数列的应用(如证明、应用)4. 极限(1) 极限的概念及性质(2) 极限的运算规则(3) 极限的应用(如证明、变量法)5. 微分与积分(1) 微分的概念及性质(2) 积分的概念及性质(3) 微分与积分的应用(如证明、变量法)6. 组合与排列(1) 组合与排列的概念及性质(2) 组合与排列的公式与计算(3) 组合与排列的应用(如证明、变量法)7. 概率(1) 概率的概念及性质(2) 概率的计算公式(3) 概率的应用(如证明、变量法)8. 数论(1) 数论的基本概念(2) 数论的性质与定理(3) 数论的应用(如证明、变量法)9. 平面几何(1) 平面几何的基本概念(2) 平面几何的性质与定理(3) 平面几何的应用(如证明、变量法)10. 空间几何(1) 空间几何的基本概念(2) 空间几何的性质与定理(3) 空间几何的应用(如证明、变量法)11. 解析几何(1) 解析几何的基本概念(2) 解析几何的性质与定理(3) 解析几何的应用(如证明、变量法)12. 复变函数(1) 复变函数的基本概念(2) 复变函数的性质与定理(3) 复变函数的应用(如证明、变量法)13. 加速度表达式(1) 加速度表达式的概念及性质(2) 加速度表达式的计算规则(3) 加速度表达式的应用(如证明、变量法)14. 群论(1) 群论的基本概念(2) 群论的性质与定理(3) 群论的应用(如证明、变量法)15. 常数(1) 常数的概念及性质(2) 常数的计算规则(3) 常数的应用(如证明、变量法)二、物理竞赛知识点总结1. 运动学(1) 位移、速度、加速度的等物理量的概念及性质(2) 运动图象的绘制及分析(3) 运动规律的应用2. 动力学(1) 牛顿定律的表述及应用(2) 动量、动能、功率的概念及计算(3) 动力学定律的应用3. 静力学(1) 物体的平衡条件(2) 施力与受力的关系(3) 静力学的应用(如证明、变量法)4. 物态方程(1) 理想气体状态方程的概念及性质(2) 理想气体状态方程的计算及应用(3) 理想气体状态方程的变化规律5. 热力学(1) 热力学的基本概念(2) 热力学的性质与定理(3) 热力学的应用(如证明、变量法)6. 电学(1) 电荷、电场、电势的概念及性质(2) 电路、电流、电阻的计算(3) 电学的应用(如证明、变量法)7. 光学(1) 几何光学与波动光学的基本概念(2) 光学现象的分析与计算(3) 光学的应用(如证明、变量法)8. 声学(1) 声波的基本概念(2) 声学现象的分析与计算(3) 声学的应用(如证明、变量法)9. 原子物理(1) 原子结构的基本概念(2) 原子核的结构及性质(3) 原子物理的应用(如证明、变量法)10. 核物理(1) 核反应的基本概念(2) 放射性物质的性质及应用(3) 核物理的应用(如证明、变量法)11. 量子物理(1) 量子力学的基本概念(2) 量子物理的性质与定理(3) 量子物理的应用(如证明、变量法)12. 统计物理(1) 统计物理的基本概念(2) 统计物理的性质与定理(3) 统计物理的应用(如证明、变量法)13. 电磁学(1) 电场、磁场、电磁感应的基本概念(2) 电磁学现象的应用与计算(3) 电磁学的应用(如证明、变量法)14. 物理实验(1) 实验的设计及操作(2) 实验结果的分析及应用(3) 实验的应用(如证明、变量法)15. 分子物理(1) 分子结构的基本概念(2) 分子物理的性质及应用(3) 分子物理的应用(如证明、变量法)总结:数学物理竞赛知识点包括数学和物理两个方面,内容涉及不等式、函数、数列、极限、微分与积分、组合与排列、概率、数论、平面几何、空间几何、解析几何、复变函数、加速度表达式、群论、常数等数学知识,运动学、动力学、静力学、物态方程、热力学、电学、光学、声学、原子物理、核物理、量子物理、统计物理、电磁学、物理实验、分子物理等物理知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档