公式法解一元二次方程教学反思

合集下载

初中数学《公式法求解一元二次方程》教案基于学科核心素养的教学设计及教学反思

初中数学《公式法求解一元二次方程》教案基于学科核心素养的教学设计及教学反思
初中数学《公式法求解一元二次方程》教案基于学科核心素养的教学设计及教学反思
基于学科核心素养的教学设计
课程名称:《公式法求解一元二次方程》
姓名
教师姓名
任教学科
九年级数学
学校
学校名称
教龄
14年
教学内容分析
教学内容
21.2.2公式法求解一元二次方程
教学目标
会将方程整理成一般式,根据根的判别式,利用求根公式求出方程的解。
2、通过研究例题,初步掌握公式法解一元二次方程的一般步骤。
3、通过自我检测,找出自己的不足之处,听老师讲解,从而完善自己。
把课堂交给学生,以学生自我学习为主,教师总结不足,充分发挥学生的自主学习能力。
板书设计
1、根的判别式:b2-4ac
2、应用公式法解一元二次方程的关键是:确定a,b,c的值
3、利用求根公式解一元二次方程的一般步骤:
预设学生活动
设计意图
布置任务
1、小组自学交流课本9-10页(目的:了解什么是根的判别式及求根公式)
2、看例题课本11页,教师巡视。(目的:初步掌握公式法解一元二次方程的一般步骤)
3、学生自我检测课本12页练习题(目的:观察学生掌握情况,教师根据出现问题做强调补充)
4、作业:课本17页第5题
1、学生合作交流,初步了解什么是根的判别式及求根公式。
(1)化:将方程化为一般形式;
(2)定:确定a、b、c的值;
(3)算:计算判别式的值;
(4)当判别式的数值大于或等于0时,代入求根公式(x=[-b±√(b^2-4ac)]/(2a)
)求根;若判别式的数值小于0,此方程无算可以,有将近半数的学生能够正确的做对简单题型;本节知识难点在于公式,需要学生课后多记、多背,要让学生更好的掌握本节知识需再花一节课时间巩固;今后时不时的布置点这类计算题穿插在家庭作业中,反复巩固,这样有利于学生长期掌握。

2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法

2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法

21.2 解一元二次方程21.2.2 公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程 (一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274x x -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭, 2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=,112x =+212x =-2. 用配方法解一元二次方程的步骤?(出示课件3) 学生口答:化:把原方程化成 x 2+px +q = 0 的形式. 移项:把常数项移到方程的右边,如x 2+px =-q. 配方:方程两边都加上一次项系数一半的平方. x 2+px +(2p )2=-q +(2p)2 开方:根据平方根的意义,方程两边开平方. (x+2p )2=-q +(2p )2 求解:解一元一次方程. 定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知 探究一 公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5) 学生答:ax 2+bx +c=0(a ≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c. 二次项系数化为1,得x 2+b a x=-ca. 配方,得x 2+b a x+2()2b a =-ca+2()2b a ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?谈谈你的看法. 师生共同完善认知:(出示课件7)20,40,≠>a a当240,-b ac ≥.2b x a +=±x 1=-b+√b 2-4ac 2a , x 2=-b -√b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a ,b ,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac ≥0时,将a ,b ,c 代入式子x=2b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0; (出示课件9) 学生思考后,共同解答如下: 解:∵a=1,b=-4,c=-7, ∴b 2-4ac=(-4)2-4×1×(-7)=44>0.=x∴12=+x 22=-x(2)2x 2x+1=0;(出示课件10) 教师问:这里的a 、b 、c 的值分别是什么?解:2, 1.==-=a b c224(4210.△=-=--⨯⨯=b ac则方程有两个相等的实数根:122==-=-=b x x a(3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --= 1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根46.10±===x12464611,.10105+-====-x x(4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=ac b △方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac >0时,一元二次方程有两个不相等的实数根; ⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根; ⑶当∆=b 2-4ac <0时,一元二次方程没有的实数根. 教师问:用公式法解一元二次方程的步骤是什么? 学生思考后,共同总结如下:(出示课件14) 用公式法解一元二次方程的一般步骤: 1.将方程化成一般形式,并写出a ,b ,c 的值. 2.求出 ∆ 的值.3. (1)当 ∆ >0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答. 解:a=3, b=-6, c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.=x1=x 2=x探究二 一元二次方程的根的情况 出示课件16:用公式法解下列方程:(1)x 2+x -1=0;(2)x 2-+3=0;(3)2x 2-2x +1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗? ⑴x 2+2x -8=0; ⑵x 2=4x -4; ⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根. 教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解. 师生共同总结如下:(出示课件18) 一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac >0 时,有两个不等的实数根:12,;x x ==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a -== (3)当b 2-4ac<0时,没有实数根.一般的,式子 b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1 不解方程,判断下列方程根的情况: (1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x ²-2mx+4(m-1)=0. 师生共同讨论解答如下: 解:⑴a =﹣1,b=,c =﹣6, ∵△= b 2-4ac=24-4×(﹣1)×(-6)=0. ∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4 ,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3 ,c=1,∵△= b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m ,c=4(m-1),∵△= b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D ⑵D出示课件23:例2 m 为何值时,关于x 的一元二次方程 2x 2-(4m+1)x+2m 2-1=0:(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?学生思考后,教师板演解题过程: 解:a=2,b=-(4m+1),c=2m 2-1,b 2-4ac=〔-(4m+1)〕2-4×2(2m 2-1)=8m+9.(1)若方程有两个不相等的实数根,则b 2-4ac >0,即8m+9>0,∴m >98-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=98-;(3)若方程没有实数根,则b2-4ac <0即8m+9<0, ∴m <98-.∴当m >98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m <98-时,方程没有实数根.出示课件24:m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b 2−4ac=[−(m −1)]2−4[−3(m+3)] =m 2+10m+37 =m 2+10m+52−52+37 =(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0, ∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根. (三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m ≥1B .m ≤1C .m >1D .m <12.解方程x 2﹣2x ﹣1=0.3.方程x 2-4x +4=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等 的实根,则k 的取值范围是( )A.k>-1B.k>-1且k ≠ 0C.k<1D.k<1且k ≠05.已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.参考答案: 1.D2.解:a=1,b=﹣2,c=﹣1, △=b 2﹣4ac=4+4=8>0, 所以方程有两个不相等的实数根,2x 12±===±1211x x ==-3.B4.B5.证明:∵没有实数根,∴ 4-4(1-m)<0, ∴m<0.对于方程 x 2+mx =1-2m ,即. ,∵,∴△>0.∴x 2+mx =1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。

《一元二次方程》教学反思范文(通用9篇)

《一元二次方程》教学反思范文(通用9篇)

《一元二次方程》教学反思《一元二次方程》教学反思范文(通用9篇)在发展不断提速的社会中,我们需要很强的课堂教学能力,反思指回头、反过来思考的意思。

我们该怎么去写反思呢?以下是小编为大家收集的《一元二次方程》教学反思范文(通用9篇),仅供参考,希望能够帮助到大家。

《一元二次方程》教学反思1今天上了《一元二次方程的解法》一课,课后根据听课老师的反馈意见及自己对上课的一些情况的了解进行了反思:一、本节课采用了“先学后教、合作探究、当堂达标”的课堂教学模式,先由学生课外自学,了解用因式分解法解一元二次方程的解法,并会求一些简单的一元二次方程的解;其次,在课堂中通过合作探究、小组交流、学生展示、教师点评进一步掌握一元二次方程的解法;第三,通过当堂练习、讲评,进一步巩固解一元二次方程的解题方法与技巧。

通过本课的授课情况及听、评课教师的反馈来看,基本上达到了课前设计的教学目的。

二、一些问题与想法:1、不管是自己外出听类似的公开教学,还是自己在实际操作中都会遇到同样的一个问题:学生数学语言运用得不好!很多时候,上台来展示的学生讲完后,我往下看看台下的学生,都是是一脸的茫然,不知道台上的同学在说什么。

特别是在讲解一些问题、解题技巧时,上面讲解的同学常常会采用一些自创的语言来描述。

好吧,能让下面的同学听懂也行。

只是大多时候都是让台下的同学听得云里雾里,摸不着头脑。

2、新的课堂教学要求体现学生的主体地位,教师只起到引导作用。

在本课的教学过程中,因要用到因式分解的方法来解一元二次方程,在实际教学环节中,我花了一些时间对初二的因式分解进行了复习。

课后的教师评课中,有老师讲到这一环节处理得不是很理想,我个人感觉也是如此,因式分解作为初二学习过的旧知识,完全可以让学生利用课余时间自己完成,教师在授课过程中可以直接检查学生完成的情况,视情况进行点评即可。

节省下来的时间用在后面的课堂小结和当堂达标上会让本节课的时间安排更加合理、充分。

关于公式法解一元二次方程的教学反思

关于公式法解一元二次方程的教学反思

公式法解一元二次方程的教学反思关于公式法解一元二次方程的教学反思关于公式法解一元二次方程的教学反思篇一闪光之处:以回顾上节所学的配方法解一元二次方程的步骤,自然而然的引入如何利用配方法解一元二次方程一般式,从而产生一元二次方程根的几种情况,并在不同情况下求出相应的根。

学生很容易投入到新课的探究中来,课堂整体非常流畅,绝大部分学生接受效果非常好!本节公式法主要就是要掌握公式,所以在讲解例题时,特别注重书写格式,要求做每道题时都要把公式书写一遍,用以加强对公式的记忆。

实质上,公式熟练以后,完全可以直接将a,b,c的值代入公式,但是对初学者来说,公式还记不熟,而有些学生就会自己编公式,这样就没有达到教学的目的,所以应硬性要求学生每次在解题过程中都把公式写一遍,以加强记忆,避免代入公式出错。

从课后作业和试卷中可以看到,在公式记忆上,的确起到了非常好的效果。

败笔之处:练习时间短,学生做题速度慢,没能将课后6道计算题都展现出来并讲评改错,只能在课后和后面的习题联系中来补充提高了。

再教设计:在做练习时,控制好时间,先给学生一点时间独立完成,在整体完成一多半的时候,再找个别同学板书展示自己的解题过程,这样既避免有个别同学偷懒等别人答案的情况,又节省了不必要的时间,不要等大家都做完了再叫学生板书,这样可以节约点时间,最后老师和学生给出评价,利于同学们改错完善自己的过程,争取课堂的有效环节!篇二:不足的是:1、对于字母系数的`方程,因为比较抽象,学生在用配方法解比较陌生,需要过多的时间,使得本节课未能完全按计划完成任务。

2、学生在用公式法解题时主要存在如下问题:(1)a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号。

(2)当b的值是负数时,在代入公式时,往往漏掉公式中b前面的“-”号。

(3)部分学生在实际运用中,没有先计算ba,b,c的相应的数值代入公式求根。

其实在做题过程中提醒学生先确认a,b,c的相应的数值准确后,再检验一下判别式,这是很关键的两步,不要过于着急待入求值,在教学中,这一点还是需要进一步强调的。

用公式法求解一元二次方程教学设计

用公式法求解一元二次方程教学设计

第二章一元二次方程3.用公式法求解一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。

所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。

其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。

为此,本节课的教学目标是:①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。

②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。

④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力三、教学过程分析本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。

第一环节;回忆巩固活动内容:①用配方法解下列方程:(1)2x 2+3=7x (2)3x 2+2x+1=0全班同学在练习本上运算,可找位同学上黑板演算②由学生总结用配方法解方程的一般方法:第一题: 2x2+3=7x解:将方程化成一般形式: 2x2-7x +3=0两边都除以一次项系数:2 023272=+-x x配方:加上再减去一次项系数一半的平方 0231649)47(2722=+-+-x x即: 01625)47(2=--x1625)47(2=-x两边开平方取“±” 得:4547±=-x 4547±=x写出方程的根 ∴ x1=3 , x2=21第二题: 3x2+2x+1=0解:两边都除以一次项系数:3 031322=++x x配方:加上再减去一次项系数一半的平方 02391)31(3222=+-++x x即: 01825)31(2=++x1825)31(2-=+x ∵01825<-∴原方程无解活动目的:(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。

公式法解一元二次方程---教案

公式法解一元二次方程---教案

《公式法解一元二次方程》教案一、教学内容解析1.具体内容:《公式法解一元二次方程》这个内容在人教版教材中对应的是九年级上册第一章第三节《公式法》.本节主要研究一元二次方程的公式解法,一元二次方程的求根公式是用配方法得到的,可以说,公式法是配方法的一般化和程式化,利用求根公式可以更为便捷地解一元二次方程.本节课的教学内容包括以下三个方面:①承接上节内容,提出用配方法求解方程ax2+bx+c=0(a≠0)的问题,进而推导求根公式;②用公式法求解一元二次方程,同时体会用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程;③通过对b2-4ac的讨论,得出根的判别式与方程根的情况之间的关系.《课标》中对本节课的要求是能用公式法解数字系数的一元二次方程,会用一元二次方程个根的判别式判别方程是否有实数根和两个实数根是否相等.2.教育价值:在思想方法上,求根公式的推导运用了配方法,其基本思想是降次,通过配方法转化为可直接开方的形式,推导过程中还涉及分类讨论的思想.数学思想方法凝聚着数学的精髓和灵魂,尽管学生走上社会后,数学知识似乎渐渐淡忘了,但留存的应是那种铭刻在心头的数学思想、数学思维方式.从运算的角度看,公式包含了初中阶段所学过的全部六种代数运算:加、减、乘、除、乘方、开方,体现了公式的和谐统一.各级运算的顺序自动决定了一元二次方程的解题顺序.开平方运算不是总能进行的,要根据判别式的符号来判断方程是否有实数根,如果有实数根,则由三个系数来确定.通过运算可以完美地解决根的存在性、根的个数、根的求法三个问题,可以说是“万能”求根公式.它向我们展示了抽象性、一般性和简洁性等数学的美和魅力.3.与相关内容的联系:方程是初中数学的核心概念,在初中数学中占有重要的地位.在学习一元二次方程之前学生已经学会了解一元一次方程、二元一次方程和分式方程等,积累了一定的解方程的经验,体会到解分式方程时需要通过去分母将分式方程转化为整式方程,渗透了转化的数学思想,为研究一元二次方程的解法奠定了基础.,同时一元二次方程的“公式法”是在学习了直接开方法和配方法之后必须掌握的另一种解一元二次方程的方法,是配方法的一般化和程式化,利用它可以更便捷地解一元二次方程.另外,一元二次方程的解法为高中阶段学习二元二次方程组和一元高次方程的解法提供了方法的引领,发挥着重要的作用.从知识的发展来看,学生通过一元二次方程的学习,不仅是对已经学过的实数、整式、二次根式等知识的巩固,也为今后学习二次函数以及高中阶段的算法等知识奠定基础,起到了承上启下的作用.二、教学目标1.经历一元二次方程的求根公式的推导过程,领悟其基本思想(降次化归)与基本方法(配方法);2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况,能够运用公式法求解一元二次方程(数字系数);3.通过推导求根公式,加强推理技能训练,发展逻辑思维能力和善于发现问题的思维素质.三、学生学情分析学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;学生原有的认知结构中已有的知识是直接开平方法解一元一次方程以及用配方法解数字系数的一元二次方程,学生通过直接开平方法、配方法解一元二次方程的学习,对于降次化归的理论依据(开平方)以及基本思路(将一元二次方程转化为两个一元一次方程)已比较熟悉.这节课可以借助学生已有的配方经验,从具体到抽象,得到一元二次方程一般形式的解,即求根公式.但是九年级学生的思维水平处于具体形象思维向抽象思维过渡阶段,对于一般形式的一元二次方程求解过程以及公式法求解一元二次方程本质的理解仍然存在一定的困难.具体体现在以下几个方面:1.学生独自运用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式的过程会遇到困难.2.在用配方法进行公式推导时,忽视对b 2-4ac 取值的讨论是学生的易错点,也是难点,此讨论又是分类思想的渗透,判别式的应用也在此得以体现.3.对 2244-2a ac b a b x ±=+的化简也会存在问题,有些学生会对由2244-2a ac b a b x ±=+到aac b a b x 2422-±=+的变化不理解. 4.用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程,只要确定系数a 、b 、c 的值,代入公式就能求出方程的根,学生对这个本质的理解会存在困难.四、教学策略分析策略1——课前通过用配方法解数字系数的一元二次方程,回忆用配方法解一元二次方程的一般步骤,为本节课中的用配方法推导一元二次方程的求根公式奠定理论基础,同时为了降低学生解字母系数的一元二次方程的难度,将推导的过程分为两个环节,第一环节以填空题的形式,让学生明确二次项系数化为1、移项、配方等过程,掌握每一步的具体做法以及变形的依据.第二环节则采用小组讨论和全班共同探索的方式进行,这样就解决了学生独立推导求根公式所面临着种种困难的问题.策略2——当推导到22a 4ac 4-b )a 2b (=+2x 这一步时,通过设计问题串引发学生的思考,逐步意识到只有当配方的结果是一个非负数时才能进行开方运算,于是针对22a 4ac4-b 展开进一步的探讨,渗透分类讨论的数学思想,此环节采用小组交流的方式进行,避免了学生独立思考时思维的局限性.策略3——对2244-2a ac b a b x ±=+ 进行化简时可能会出现两种情况,一部分学生会误认为2244a acb -的化简结果就是a 2ac 4-b 2,没有考虑到4a 2开方的结果是a 2,缺少分类讨论的思想;还有一部分是对aac b a b x 2422-±=+不会化简,为了突破这个难点,在教学设计时采用采用多媒体课件及板书的结合,以填空的形式引发学生的思考,∵a ≠0,当a >0时2244-2a ac b a b x ±=+ ,当a <0时aac b a ac b a b x 2424222-=--±=+ ∴无论a >0还是a <0 ,都有2244-2a ac b a b x ±=+ ,这样也就解决了学生在推导公式过程中的又一个难题.策略4——为了强化学生对用公式法求解一元二次方程本质的理解,在教学活动中不是直接告诉学生这个过程就是代数式求值的过程,而是通过具体的例题展示和练习让学生自己经历先确定系数a 、b 、c ,再判断b 2-4ac ,最后代入公式求解一元二次方程的过程,亲身感受到用公式法求解一元二次方程本质就是一个代数式求值的过程.另外,为了便于学生理解,教学环节中又设计了一个程序图来表示用公式法解一元二次方程的步骤,更能直观形象地反映这一本质,同时揭示了“神器”的奥秘,引申出高中阶段要学习的算法知识,体现了知识的前后联系.五、教学过程第一环节情境引入活动内容:数学竞赛,比一比看谁做的又快又准.用配方法解下列方程:(1)2x2-3x+1=0; (2)3x2-6x+4=0.找男生代表和女生代表到前面板演,其余同学在题单上运算.设计意图:与本节课有实质性联系的内容是前一节的配方法,以此为新知识的生长点呈现练习题:用配方法解两个上述方程,即激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.使学生认识到每一个数字系数的一元二次方程都可以用配方法来求解,同时体验到配方法的局限性.由此产生疑难和困惑,感悟到具体的配方法已经不够了.思考:(1)回忆用配方法解一元二次方程的基本思路是什么?体现了哪种数学思想?设计意图:通过提问,一方面加深对学生数学思想方法的渗透,另一方面,与本节课公式法解一元二次方程的本质形成对比,增强学生对知识的理解和掌握.(2)用配方法解一元二次方程的一般步骤有哪些?设计意图:复习用配方法解一元二次方程的步骤为后面用配方法推导一元二次方程的求根公式做铺垫.(3)所有的一元二次方程都能用配方法求解吗?你喜欢配方法吗?为什么?(4)能否有更简便和更一般的方法求一元二次方程的根呢? 出示 “计算神器”,指出只要知道a 、b 、c 就能很快判断出方程根的情况,并且很快计算出方程的根.用“计算神器”计算上面两个一元二次方程,并让学生随机说出一个一元二次方程,进行求解.设计意图:借助“计算神器”,一方面激发学生学习数学的兴趣,调动积极性;另一方面,使学生初步感受到一元二次方程的根的情况就是由系数a 、b 、c 决定的.特别是计算神器的原理又是高中阶段的算法的程序图,这样处理体现知识的前后联系.第二环节 新知探究活动1:推导求根公式.用配方法解一元二次方程:ax 2+bx +c =0(a ≠0)学生阅读题单上小亮同学的用配方法解方程ax 2+bx +c =0(a ≠0)时的一部分过程,请将横线上的部分补充完整,并指出每一步的依据.解:∵a ≠0∴方程两边都除以a 得0ac x a b x 2=++ ,得 ac x a b x 2-=+ 配方,得 222ac x a b x ) () (+-=++ 即: 2x )____(+=思考:(1)按照配方法的步骤,下一步应该做什么呢?(2)现在能直接两边开平方吗?如果能开平方,写出开平方后的结果,如果不能,说明理由.(学生小组内讨论)(3)什么情况下 04422≥-a ac b? 引导学生分析∵ a ≠0∴ 4a 2>0 要使04422≥-aac b 只要 b 2-4ac ≥0即可.当b 2-4ac ≥0时,两边开平方取“±” 得:2244-2a ac b a b x ±=+ (4)如何2244-2a ac b a b x ±=+对进行化简呢? (学生先独立思考再小组交流讨论)PPT 呈现:对2244-2a ac b a b x ±=+化简结果进行分析∵a ≠0当a >0时aac b a b x 2422-±=+ 当a <0时aac b a ac b a b x 2424222-=--±=+ ∴无论a >0还是a <0 ,都有aac b a b x 2422-±=+ 最后得出aac b b x 242-±-=设计意图:由于用配方法推导求根公式是本节课的一个难点,为了突破这个难点,于是将公式的推导过程分为两个部分,第一部分,只要学生知道配方法的步骤及每一步对应的依据就能很快完成推导过程,但是后一部分对开方的条件的判断以及对2244a ac b ab x -±=+的化简结果的讨论都是本节课上学生的困难所在,于是采用多媒体课件及板书的结合,以填空的形式引发学生的思考,大大降低了推导公式的难度,达到让学生跳一跳就能摘到桃子的效果.(5)如果b 2-4ac <0时,会出现什么问题?归纳:我们把a ac b b x 242-±-=称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.设计意图:理解一元二次方程求根公式中各字母代表的意义及条件,理解公式的结构特征,突出数学问题的本质.活动2:典例示范.例:用公式法解方程:2x 2-3x +1=0 .板书示范 解:这里 a =2, b =-3, c =1.b 2-4ac =(-3)2-4×2×1=1>0.413221)3(±=⨯±--=x ,即,11=x , 212=x . 思考:例题与第一环节中的第(1)题对比,哪种解法更简捷? 设计意图:回到情境中的练习,运用求根公式解方程2x 2-7x +3=0,使学生体会到求根公式的优越性,感悟从特殊到一般、发现提出问题的方法.请模仿例题完成下面的做一做做一做:用公式法解下列方程(1)2x2-22x+1=0 ;(2)5x²-3x=x+1 ; (3)x2+17=8x .思考:(1)第(2)题与第一环节中的第(2)题对比,哪种解法更简捷?(2)通过例题与练习题的学习,请思考用公式法求解一元二次方程的一般步骤有哪些?(3)观察这三道题,你还有什么发现?归纳:对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac>0时,一元二次方程实数根;当b2-4ac=0时,一元二次方程实数根;当b2-4ac<0时,一元二次方程实数根.一元二次方程ax2+bx+c=0(a≠0)的根的情况由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ来表示.设计意图:通过解方程使学生进一步体会求根公式的实质是代数式求值的过程,并归纳用求根公式解一元二次方程的基本思路.使学生运用求根公式解方程的同时,体验判别式与根的个数的关系,特别是判别式小于0时直接得到无实数根而不用代入求根公式,概括出在用求根公式解一元二次方程时可以先确定判别式的值代入求根公式,从而丰富和优化学生的认知结构.第三环节 巩固应用1.判断下列方程根的情况:(1)x 2+5x +6=0 (2)9x ²+12x+4=0设计意图:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度.第四环节 感悟收获谈谈本节课的收获和体会?你还有哪些问题?学生发言,互相补充,教师点评完善. 既要关注知识的整理与归纳,更要关注本节课研究问题的过程以及运用的数学思想方法.设计意图:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,引导学生建立知识之间的内在联系,概括本节课的核心知识及运用的数学思想和研究方法,旨在使学生生成组织良好的数学认知结构网络.另外,用程序图表示用公式法解一元二次方程的步骤,揭开神器的秘密,学生的好奇心得到满足.第五环节 当堂检测1.一元二次方程y 2+3y -4=0的根的情况为( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定2.已知关于x 的一元二次方程x ²+2x +a =0有两个相等的实数根,则a 的值是( ) A. 1 B. -1 C. 41 D. 413.用公式法解方程4x2+9=12x设计意图:紧扣目标点设计达标测评题,全面了解学生学习水平,及时发现学生认识中存在的问题,给予有效指导,保证当堂落实.第六环节布置作业必做题:习题2.5 知识技能第1、2、3题选做题:尝试用不同种方法解一元二次方程2x²-3x+1=0,通过解答过程谈一谈每种解法的优势与不足.六、教学反思本节课的设计目标明确,重点突出,课前以数学竞赛(用配方法解一元二次方程)引入,调动了学生学习数学的积极性,同时激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.公式的推导过程本来是本节课的难点所在,课前设计的各种为了突破难点的策略都发挥了极大的作用,学生在问题的引导下,同伴的互助下很顺利地推导出了一元二次方程的求根公式.公式的训练、落实有效,对判别式的归纳从特殊到一般思路很清晰,归纳也条理.在整个课堂教学活动中,不仅关注数学知识与能力的发展,同时也重视数学思想方法的渗透;不仅有学生独立思考解决问题的环节,同时也关注了学生之间的合作交流,培养了学生之间的合作精神,不仅注重了对学生基础知识和基本技能的评价,同时又注重了对学生情感态度的评价.。

人教九上数学21.2.2公式法解一元二次方程教案

人教九上数学21.2.2公式法解一元二次方程教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-运用求根公式计算出一元二次方程的解,并理解其意义。
-根据判别式的值分析一元二次方程的根的情况(有两个不相等的实数根、两个相等的实数根、没有实数根)。
举例解释:以方程3x^2 - 5x + 2 = 0为例,重点讲解如何识别a、b、c的值(a=3, b=-5, c=2),并引导学生通过求根公式计算出具体的解(x1,2 = (5±√(25-4*3*2))/(2*3)),强调这一过程是解决一元二次方程的关键。
在小组讨论环节,虽然大部分同学都能够积极参与,但仍有个别同学显得较为沉默。我想在之后的课堂中,更多地关注这些同学,鼓励他们发表自己的观点,提高他们的自信心和表达能力。
最后,从整体来看,学生们对于一元二次方程的求解方法和应用有了基本的了解。但在教学过程中,我也意识到需要不断调整和优化教学方法,以提高教学效果。例如,增加课堂互动,让学生更多地参与到课堂教学中来;加强对重点难点的讲解,确保学生真正理解并掌握这些知识点。
3.增强学生的数据分析能力,使其能够根据判别式的值分析一元二次方程的根的情况,进而对问题进行深入理解与解决。在教学过程中,关注学生对于公式的理解与应用,引导他们形成系统的数学思维和方法。
三、教学难点与重点
1.教学重点
-理解并掌握一元二次方程求根公式的推导过程。
-能够准确地将一元二次方程转换为标准形式,识别出a、b、c的值。

一元二次方程教学反思(通用10篇)

一元二次方程教学反思(通用10篇)

一元二次方程教学反思一元二次方程教学反思(通用10篇)身为一名优秀的人民教师,课堂教学是重要的任务之一,我们可以把教学过程中的感悟记录在教学反思中,教学反思应该怎么写呢?以下是小编精心整理的一元二次方程教学反思范文,希望对大家有所帮助。

一元二次方程教学反思篇11、观察、归纳、证明是研究事物的科学方法。

此节课在研究方程的根与系数关系时,先从具体例子观察、归纳其规律,并且先从二次项系数是1的方程入手,然后提出二次项系数不是1的,由此,猜想一般的一元二次方程ax2+bx+c=0(a≠0)的根与系数关系,最后对此猜想的正确性作出证明。

这个全过程对培养学生正确的思考方法很有价值。

2、教学设计中补充了“简化的一元二次方程”的定义,对根与系数关系的叙述可以方便些。

教学设计中还把根与系数关系作为两个互逆的定理提出,可加深理解两个性质的不同功能。

韦达定理的原定理的功能是:若已知一元二次方程,则可写出些方程的两根之和的值及两极之积的值。

而其逆定理的功能是:若已知一元二次方程的两个根,可写出这个方程。

3、本节课教学设计注重开发学生的思维能力,但是学生动手能力略显不足,在今后的教学中应注意加强。

一元二次方程教学反思篇2反思这节课的教学过程,我始终把分析问题、寻找等量关系作为重点进行教学,不断对学生引导、启发,努力使学生掌握解题思路和方法,却忽视了和学生的沟通和交流,学生活动较少,没有放手让学生自己去探索、去发现,哪怕是错误的,也是学生思考的结果,大不了再纠正,学生也会更加牢固的掌握。

比如探究2:学生在我的引导下能准确地列出方程,在进行小结公式a(1±x)2=b之后,在做后面的巩固练习和应用拓展时就应该让学生自己去分析解决问题,而我看学生分析困难,忍不住加以提示。

虽然学生很快列出方程了,但我一点都没有成就感。

以后的教学中一定要培养学生自主探索的思维习惯,不能越俎代庖。

学生要理解题意,分析条件与条件之间,条件与问题之间的各种数量关系,要通过分析、综合,找到解题的途径和方法。

一元二次方程的解法教学反思10篇

一元二次方程的解法教学反思10篇

一元二次方程的解法教学反思10篇精华一元二次方程的解法教学反思10篇作为一名优秀的人民教师,我们要在教学中快速成长,在写教学反思的时候可以反思自己的教学失误,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的一元二次方程的解法教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

一元二次方程的解法教学反思1一元二次方程是九年级上册第二单元内容,是今后学习二次函数的基础,是初中数学教材的一个重要内容。

一、课前思考。

1、学生基础。

在七八年级学生已经学习过一元一次方程、二元一次方程组、分式方程的知识,有着很好的解题基础。

2、教学重点应放在解题方法上,让学生通过观察发现每一种解法的特征,是学生能够根据特征选择合适的解题方法。

3、应注意培养学生的解题技能,解题速度、解题的准确率,特别是利用配方法界一元二次方程时,必须让学生区分方程的配方与式子配方的不同。

4、每节课必须实行小测验,可根据题的难易水准不同,将题量控制在3——5道之间。

二、教学过程中学生出现的主要问题。

1、学生不善于观测,特别是在将四种方法全部学习完之后,学生不能很好的选择合适的方法。

例如:能用直接开平方的题,确将其展开再配方;能利用十字相乘法分解因式的,却选择公式法等。

2、对符号处理的不准确,贴别是一个负的无理分数和一个分数相加时,总是将负号放在分数线的前面。

3、十字相乘法中,常数项分解为两个数相乘时,出现符号错误。

4、用配方法计算时错误率较高。

5、用公式法计算时,没有将b2——4ac的.结果放在根号下。

三、教后反思1、今后在将四种方法讲完之后,要用两节课的时间实行综合练习,第一节课能够采用让学生练习解题的方式,第二节课能够采用让学生说解法、让学生找解题错误之处方法实行。

2、增加小测验的力度,能够将题量减小,次数增加。

这样不但能够增加学生的信心,也能够通过持续的重复,增强学生的熟练水准。

3、为了让学生学会选择合适的方法解题,能够采用同桌互相按要求出题的方法,达到学生对各种解法特征的目的。

一元二次方程数学教学反思

一元二次方程数学教学反思

一元二次方程数学教学反思一元二次方程数学教学反思1利用求根公式解一元二次方程的一般步骤:1、找出a,b,c的相应的数值2、验判别式是否大于等于03、当判别式的数值符合条件,可以利用公式求根、学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多、1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号2、求根公式本身就很难,形式复杂,代入数值后出错很多、其实在做题过程中检验一下判别式这一步单独提出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入、在今后的教学中注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果、通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:本节课第一个例题,我在引导解决此题之后,总结了利用求根公式解一元二次方程的一般步骤,不仅关注结果更关注过程,让学生养成良好的解题习惯。

例2、3是例1的变式与提高,通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。

课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。

总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大。

需要改进的方面,由于怕完不成任务,教师讲的还是多了些,以后应最大限度的发挥学生的主体作用。

一元二次方程数学教学反思2用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型——方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。

初中数学_用公式法解一元二次方程教学设计学情分析教材分析课后反思

初中数学_用公式法解一元二次方程教学设计学情分析教材分析课后反思

第八章第3节用公式法解一元二次方程教学目标:1、知道一元二次方程的求根公式。

2.能用求根公式解一元二次方程。

教学重难点:知道一元二次方程的求根公式,能用求根公式解一元二次方程。

教学过程:一、复习导入:1、用配方法解方程(1)3x2-6x-8=0; (2)4x2+3x-52=02、配方法解一元二次方程的步骤?二、质疑互辩三、精讲点拨1、求根公式的推导过程中,b 2-4ac 的取值范围2、用公式法解一元二次方程的解题步骤四、跟踪训练:环节一:基础训练用公式法解方程题组一(1)x 2-3x+1=0 (2)-x 2-x+12 =0 (3)2t 2+3=7t题组二:(1)(2)(x+1)(3x-1)=1.(3) 4x2+4x+10 =1-8x环节二:拓展训练:(1)已知方程9x2+6x+c =0,b2-4ac=0,求c 和x .(2)若关于x 的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m 的值为多少?五、课堂小结:本节课的收获?六、达标测评:1.一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是_____,当b 2-4ac<0时,方程_________.2.用公式法解方程x 2=-8x-15,其中b 2-4ac=_______,x 1=_____,x 2=________.3.当x=______时,代数式x 2-8x+12的值是-4.4.(m 2 -n 2 )(m 2 -n 2 -2)-8=0,则m 2 -n 2 的值是 .5.已知等腰三角形的底边长为9,腰是方程x2-10x+24=0的一个根,求这个三角形的周长. 32x +=学情分析大部分学生有学习目标,学习态度端正,学习积极性高,有一定的理解能力和分析判断推理能力,但学习自主性不太强,基础较薄弱,通过七、八年级的精心培养,学生们已经养成了良好的学习习惯和行为习惯。

语言文明,思想健康,积极、认真、扎实。

2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案

2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案

21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。

九年级数学一元二次方程教学反思

九年级数学一元二次方程教学反思

九年级数学一元二次方程教学反思身为一位优秀的老师,教学是我们的任务之一,写教学反思能总结教学过程中的很多讲课技巧,那么你有了解过教学反思吗?以下是店铺精心整理的九年级数学一元二次方程教学反思(通用8篇),欢迎大家分享。

九年级数学一元二次方程教学反思篇1方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。

这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:本节课的整体过程是这样的,通过三个例题让学生掌握一元二次方程根的判别式及根与系数关系的应用,总的来说,虽然课堂上同学们总结错误不少,总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了。

学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。

在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

九年级数学一元二次方程教学反思篇21.注重知识的发生过程与思想方法的应用《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。

这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

北师大数学九年级教案公式法解一元二次方程

北师大数学九年级教案公式法解一元二次方程

【课题】公式法解一元二次方程过渡语:本节课我们学习用公式法解一元二次方程,请大家默读学习目标。

【教学目标】1.学会推导一元二次方程的求根公式2.会熟练用求根公式解一元二次方程【重点、难点、考点】重点:一元二次方程的求根公式难点:用b2-4ac判断一元二次方程根的情况考点:公式法解一元二次方程易错点:求根公式符号【课前准备】1.准备好学习用具2.看座位周围是否有垃圾3.调整凳子和桌子的间距【问题预设】1.部分学生解方程时计算错误2.部分学生求根公式中符号出错3.部分学生把方程配方时会出错4.部分学生解题格式不规范5.部分学生系数化为1时会出错过渡语:大家了解了本节课的学习目标,请迅速完成知识铺垫。

【知识铺垫】1.用配方法解方程x2-7x-18=02.用配方法解方程ax2+bx+c=o(a≠0)解:移项得_____________方程两边都除以a得______________配方得(x+ ___ )2=________x 1=_____, x2=________教师引领:把a 、 b当做已知数总结:上面这个式子称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法。

当b2-4ac>0时方程有2个不相等的实数根;b2-4ac=0时方程有2个相等的实数根;b2-4ac<0时方程无实数根。

操作:1.阅读理解(学生自主学习,学生演板,学生评价演板,老师点拨)2.小组交流3.问题展示4.解答与引领过渡语:大家在知识铺垫这个环节表现的很棒,接下来请完成教材解读里的例题,请4位同学把你的答案展示到黑板上。

【教材解读】例:用配方法解方程(1) 3x2-9x+2=0 (2)2 x2+6=7x(3) 5x2 -18=9x (4)(8-2x)(5-2x)=18操作:1.阅读理解(学生自主学习,学生演板,学生评价演板,老师点拨)2.小组交流3.问题展示4.解答与引领【巩固练习】用公式法解方程(1)2x2-9x+8=0 (2)16x2+8x=3 (3)9x2+6x+1=0操作:1.阅读理解(学生自主学习,学生演板,学生评价演板,老师点拨)2.小组交流3.问题展示4.解答与引领【课堂小结】过渡语:本节课我们学习了用公式法解一元二次方程,下面进行小结。

用公式法解一元二次方程教学反思

用公式法解一元二次方程教学反思

用公式法解一元二次方程教学反思1. 引言说到一元二次方程,大家可能会想:“哎呀,又是那个x² 加上个 bx 再加个 c 等于零的公式。

”其实,这个公式就像我们生活中的一个万能钥匙,能打开很多问题的大门。

今天,我想和大家聊聊用公式法解一元二次方程的教学,顺便分享一些个人的反思和小趣事。

2. 教学过程中的趣味2.1 初识方程当我第一次带学生们进入一元二次方程的世界时,他们的眼神就像是看见外星人一样——既好奇又害怕。

毕竟,x²、bx、c这几个字母看上去就像是天书,谁能想到它们能帮我们解决实际问题呢?于是,我决定用一些简单易懂的例子来打破这种隔阂,比如说,假设我们有一个抛物线,它就像一个小球从空中掉下来,问它几秒钟后能落到地面上?看,瞬间就把数学和现实连接起来了,学生们的眼中闪现出一丝明亮的光芒。

2.2 公式的魅力接着,我介绍了著名的求根公式——“x 等于负 b 加减根号下b² 减去 4ac,全过2a。

”听起来像绕口令,但学生们却被这神奇的公式吸引住了。

有同学甚至调皮地说:“老师,这就像是魔法公式嘛!”哈哈,没错,我也是这么觉得的。

为了让他们更好地理解,我用几个具体的例子,让他们亲自动手算。

果然,公式的魅力在于它的实用性,计算出来的根都是那么清晰可见,仿佛学生们也感受到了一丝成就感。

3. 学生的反馈与反思3.1 课堂互动在课堂上,学生们开始积极参与,争相提出问题。

这让我感到无比欣慰。

有个同学问:“老师,如果 b 和 c 都是负数,那会发生什么?”这时,我忍不住笑了,心里想着,真是个有趣的问题!我告诉他们,负数的情况并不会影响公式的使用,反而能让我们看到更丰富的数学世界。

每当看到学生们恍若豁然开朗的表情,我就知道我的教学是成功的。

3.2 小插曲不过,课堂上也不乏一些小插曲。

有一次,一位同学把公式背错了,变成了“x 等于负 b 加减根号下 4ac 全过 2a。

”全班哄堂大笑,甚至连我也忍不住笑了。

一元二次方程解法教学反思(10篇)

一元二次方程解法教学反思(10篇)

一元二次方程解法教学反思(10篇)一元二次方程解法教学反思第1篇(1)一元二次方程是研究现实世界数量关系和变化规律的重要模型,引课时从生活中常见的“梯子问题”出发,根据学生应用勾股定理时所列方程的不同,引导学生对所列方程的解法展开讨论,进而获得开平方法。

引课时力求体现“问题情境——建立数学模型——解释、应用与拓展”的模式,注重数学知识的形成与应用过程。

(2)如何配方是本节课的教学重点与难点,在进行这一块内容的教学时,教师提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的情况,从方程的配方讲到代数式的配方与证明,呈现形式丰富多彩,教学内容的编排螺旋式上升。

这既提高了学生的学习兴趣,又加深了对所学知识的理解。

一元二次方程解法教学反思第2篇一、配方法解方程教学反思本节共分3课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第3课时通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。

在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。

当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。

因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。

二、用公式法解一元二次方程教学反思通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。

用公式法解一元二次方程教学设计

用公式法解一元二次方程教学设计
三、教学重点及难点
重点:求根公式的推导和公式法的应用.
难点:一元二次方程的求根公式的推导.
四、教学过程
教师活动
设计意图
一、回顾旧知
用配方法解一元二次方程的步骤
解:移项,得
二次项系数化为1,得
配方,得
开方,得
ห้องสมุดไป่ตู้利用一道题具体回顾配方法解方程的步骤操作过程,为下一步解一般形式的一元二次方程作准备.
二、新课导入
方程有两个不相等的实数根
方程无实数根
设置的题目的根的情况不同,体会公式的用法,在利用公式之前要先计算Δ,感受层次递进的学习过程
四、总结
用公式法解一元二次方程的一般步骤
1. 将方程化成一般形式,并写出a,b,c 的值。
2. 求出 ∆ 的值。
3. (a)当 ∆ >0 时,代入求根公式 : 写出一元二次方程的根:
题目: 人教版 初中数学 九年级 21.2.2 用公式法解一元二次方程
一、教学目标
1、理解一元二次方程求根公式的推导过程,了解公式法的概念,会应用公式法解一元二次方程.
2、复习具体数字的一元二次方程配方法的解题过程,引入 (a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.
二、教材分析
方程是初中数学中的基础内容,在初中数学中占有重要地位,一元二次方程是一元一次方程、二元一次方程(组)的后继学习,主要让学生进一步体会方程的模型思想,会解一元二次方程,解方程的基本思想是化归思想,将“二次”方程转化成两个“一次”方程是解一元二次方程的基本方法.其中配方法是初中数学中的基本方法,通过对配方法的学习,探究出一元二次方程的求根公式,然后让学生体会数学来源于生活,通过学习进一步培养学生化实际问题为数学问题的能力和分析问题、解决问题的能力及应用数学的意识基于以上分析,确定本节课的教学重点是会用公式法解特殊的一元二次方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公式法解一元二次方程教学反思
公式法解一元二次方程是学生在学习配方法后,进一步探究学习的一种适用性强,应用较为广泛的解一元二次方程的方法,是每位学生通过学习完全可以掌握的一种方法,因此在教材处理上,教学方法的选择上都有一定难度,同时也是这节是否可以成功的先决条件,针对班级的实际情况和教材内容的特点,我在本课教学实施的过程中采用小组合作探究,先学后教的方式,整体感觉学生参与度较广,本节课目标基本完成,学生能够熟练掌握。

一、教学设计方面:
先复习具体数字的一元二次方程配方法的解题过程,引入利用配方法解一般形式的一元二次方程推导公式,在此步学习过程中,利用小组成员参差不齐的性质,要求1、2号独立推理,3号结合课本进行推理,4、5号完全看课本进行推理,让每位学生在此环节都有不同的参与,避免了5好同学游离于课堂之外的现象,在获取公式之后,采用了传统的记忆方法,边读边写记忆公式5遍,然后让学生自学课本例6,自我总结运用公式法解一元二次方程的步骤和注意事项,同时教师有目的的设计了四个小题,第一个符合一般形式,第二个须转化为一般形式,第三个有两个相等实数根,第四个无实数根,运用这四类型帮助学生归纳总结不同类型的方程处理方式,同时又设计了一个各项系数存在分数的方程,要求一名学生直接计算,另一名学生先将系数转化为整数在进行计算,目的让学生体会系数转化为整数可降低计算难度的问题,同时设计了一个又一个思考,同时这些思考就是一个又一个小课题,引导学生学会思考,学会探究。

二、教学实施方面:
1、学生利用配方法推导公式的过程难度很大,出现的问题很多,在今后的教学中如何处理,值得深思;
2、过于相信学生的自学能力和小组长的组织学习能力,缺少了教师的示范作用,导致解题过程不够规范,漏洞很多;
3、本节课的内容相对比较枯燥,在教学环节的设置上缺乏一些创新,学习的积极性调动不起来,对学生地鼓励性的语言过少。

4、练习量不够大,学生的解题熟练度还不够强。

虽然存在一些问题,但整节课的实施过程较顺利,学生对本课的知识掌握程度还不错,基本上达到本课的教学目的。

整体回想本课的教学,我对每一位学生的关注度好不够,但是在课堂内容的呈现过程和内容探索过程中没有注重学生间的交流,探究的问题还不够全面,例如在判别式相关内容的归纳时,应该给学生发现、观察、归纳的机会,不能只把关注点放在个别数学成绩好的学生身上,不要急于讲解,要相信学生的潜力是无穷的,给学生一个机会,学生会还我们一个奇迹。

通过以上的反思,我将在以后的教学中对自己存在的优点我会继续保持,针对不足我将会不断地改进,使自己的课堂教学逐步走上一个新的台阶。

相关文档
最新文档