哲学家就餐问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机操作系统哲学家进餐问题的研究
姓名:陆文静
学号: 1310750012 指导老师:杨婷婷
专业班级:软件工程1301班完成时间: 2015年5月4日
哲学家进餐问题研究
摘要:
一、问题的描述
哲学家就餐问题是一种典型的同步问题,它是由Dijkstra提出并解决的。该问题描述如下:有五个哲学家共用一张圆桌,分别坐在周围的五张椅子上,在圆桌上有五个碗和五只筷子,他们的生活方式是交替的进行思考和进餐。设五个哲学家分别编号为A,B,C,D,E,桌子上放着五只筷子,筷子分别编号为0,1,2,3,4,桌子中央有一盘饭菜,一个哲学家进行思考,饥饿时便试图取用其左右最靠近他的筷子,只有在他拿到两只筷子时才能进餐。进餐毕,放下筷子继续思考。
二、解决问题的方案
1、算法描述
semaphore chopstick[5]={1,1,1,1,1};
do{
wait(room);
wait(chopstick[i]);
wait(chopstick[(i+1)%5]);
eat();
signal(chopstick[i]);
signal(chopstick[(i+1)%5]);
signal(room);
Think;
} while[ture];
以上描述中,可保证不会有两个相邻的哲学家同时进餐,但却有可能引起死锁。假如五位哲学家同时饥饿而各自拿起左边的筷子时,就会使五个信号量chopstick均为0;当他们试图拿右边的筷子时,豆浆因无筷子可拿而无限期地等待,进入死锁状态。
2、改进算法描述
描述一种没有人饿死算法,考虑了四种实现的方式(A、B、C、D)
A.原理:至多只允许四个哲学家同时进餐,以保证至少有一个哲学家能够进餐,
最终总会释放出他所使用过的两支筷子,从而可使更多的哲学家进餐。以下将room 作为信号量,只允许4 个哲学家同时进入餐厅就餐,这样就能保证至少有一个哲学家可以就餐,而申请进入餐厅的哲学家进入room 的等待队列,根据FIFO 的原则,总会进入到餐厅就餐,因此不会出现饿死和死锁的现象。
伪码:semaphore chopstick[5]={1,1,1,1,1};
semaphore room=4;
void philosopher(int i)
{
while(true)
{
think();
wait(room); //请求进入房间进餐
wait(chopstick[i]); //请求左手边的筷子
wait(chopstick[(i+1)%5]); //请求右手边的筷子
eat();
signal(chopstick[(i+1)%5]); //释放右手边的筷子
signal(chopstick[i]); //释放左手边的筷子
signal(room); //退出房间释放信号量room
}
}
B.原理:仅当哲学家的左右两支筷子都可用时,才允许他拿起筷子进餐。
方法1:利用AND 型信号量机制实现:根据课程讲述,在一个原语中,将一段代码同时需要的多个临界资源,要么全部分配给它,要么一个都不分配,因此不会出现死锁的情形。当某些资源不够时阻塞调用进程;由于等待队列的存在,使得对资源的请求满足FIFO 的要求,因此不会出现饥饿的情形。
伪码:semaphore chopstick[5]={1,1,1,1,1};
void philosopher(int I)
{
while(true)
{
think();
Swait(chopstick[(I+1)]%5,chopstick[I]);
eat();
Ssignal(chopstick[(I+1)]%5,chopstick[I]);
}
}
方法2:利用信号量的保护机制实现。通过信号量mutex对eat()之前的取左侧和右侧筷子的操作进行保护,使之成为一个原子操作,这样可以防止死锁的出现。伪码:semaphore mutex = 1 ;
semaphore chopstick[5]={1,1,1,1,1};
void philosopher(int i)
{ while(true)
{ think();
wait(mutex);
wait(chopstick[(i+1)]%5);
wait(chopstick[i]);
signal(mutex);
eat();
signal(chopstick[(i+1)]%5);
signal(chopstick[i]);
}
}
C、原理:规定奇数号的哲学家先拿起他左边的筷子,然后再去拿他右边的筷子;而偶数号的哲学家则相反.按此规定,将是1,2号哲学家竞争1号筷子,3,4号哲学家竞争3号筷子.即五个哲学家都竞争奇数号筷子,获得后,再去竞争偶数号筷子,最后总会有一个哲学家能获得两支筷子而进餐。而申请不到的哲学家进入阻塞等待队列,根FIFO原则,则先申请的哲学家会较先可以吃饭,因此不会出现饿死的哲学家。
伪码:semaphore chopstick[5]={1,1,1,1,1};
void philosopher(int i)
{
while(true)
{
think();
if(i%2 == 0) //偶数哲学家,先右后左。
{
wait (chopstick[ i + 1 ] mod 5) ;
wait (chopstick[ i]) ;
eat();
signal (chopstick[ i + 1 ] mod 5) ;
signal (chopstick[ i]) ;
}
else //奇数哲学家,先左后右。
{
wait (chopstick[ i]) ;
wait (chopstick[ i + 1 ] mod 5) ;
eat();
signal (chopstick[ i]) ;
signal (chopstick[ i + 1 ] mod 5);
}
}
* 进一步改进B方法一的操作
算法设计了一个test过程,如果通过了text过程,线程可进入吃饭过程,否则让,线程进入等待状态。通过text过程,则该哲学家左右筷子设置为不可用标志,阻止其相邻哲学家通过text过程,这实际上表示该哲学家需要的两只筷子已指定给他,即预先分配全部资源,公用信号量mutex作用的范围仅限text过程,大大小于改进之前的方法。
改进算法描述如下:
Semabore chopstick[0]=chopstick[1]=chopstick[2]=chopstick[3]= chopstick[4]=1; Semaphore mutex=1;
Boolean chop[0]=chop[1]=chop[2]=chop[3]=chop[4]=ture;
Philosopher i’
While(ture){
思考;
While(!Test(i)){等待};//如果测试不通过,处于等待状态,知道测试通过