第6章 51单片机总线系统与扩展

合集下载

51单片机课后习题答案孙育才东南大学

51单片机课后习题答案孙育才东南大学

第一章:1.目前微型计算机正沿着哪两个分支迅速发展?为什么会形成单片机这一分支?答:(1)目前微型计算机正沿着通用计算机系统和嵌入式系统这两个分支迅速发展。

(2)为了满足更广泛的实时应用的需要,从微型计算机家族中形成单片机这一分支。

2.什么是单片微型计算机?它与典型微型计算机在结构上有和区别?答:(1)见书P1。

(在一块单晶芯片内集成了……,简称单片机。

)(2)与典型微型计算机在结构上的区别是:单片机采用哈佛结构,存储器ROM和RAM 是严格区分、相互独立的,程序和数据存储器独立编址,而典型微机采用冯.诺依曼结构,程序和数据存储器统一编址。

3.单片机具有哪些突出优点?答:单片机的突出优点:体积小、重量轻、单一电源、功耗低、功能强、价格低廉、运算速度快、抗干扰能力强、可靠性高。

4.MCS-51系列各档单片机各有什么特点?同一档次的8051、8751、8031又有何区别?答:(1)不同型号MCS-51单片机CPU处理能力和指令系统完全兼容,只是存储器、定时器、中断源和I/O接口的配置有所不同。

(2)8051:片内含有掩膜ROM型程序存储器;只能由生产厂家代为用户固化;批量大、永久保存、不修改时用。

8751:片内含EPROM型程序存储器;用户可固化,可用紫外线光照射擦除;但价格高。

8031:片内无程序存储器,可在片外扩展;方便灵活,价格便宜。

5.何谓工业级产品?单片机有几级产品?如何合理选择?答:(1)工作环境介于民用级和军用级之间的产品。

(2)单片机芯片分有三级产品:民用级、工业用级和军品级。

(3)选用单片机时应注意与构成系统的其他元器件相匹配,并满足相关技术要求。

第二章:1.MCS-51系列单片机从制造工艺、功能结构上分为哪几种类型和产品?答:见书P10。

(倒数第三段部分)2.MCS-51系列单片机内部包含哪些主要逻辑功能部件?答:见书P10-11。

3.为了更好地适应“面向控制”的应用特点,MCS-51单片机的CPU作了哪些独特的改进?答:为了更好地适应“面向控制”的应用特点,MCS-51单片机的CPU具有一般微机ALU所不具备的位处理功能。

项目 一 汽车单片机原理应用(任务五 MCS-51单片机系统扩展)

项目 一 汽车单片机原理应用(任务五 MCS-51单片机系统扩展)

(3) MCS-51单片机系统地址空间的分配 系统空间分配:通过适当的地址线产生各外部扩展器件的片 选/使能等信号就是系统空间分配。
编址:编址就是利用系统提供的地址总线,通过适当的连接, 实现一个编址惟一地对应系统中的一个外围芯片的过程。编 址就是研究系统地址空间的分配问题。
片内寻址:若某芯片内部还有多个可寻址单元,则称为片内 寻址。
2)全地址译码法
利用译码器对系统地址总线中未被外扩芯片用到的高位 地址线进行译码,以译码器的输出作为外围芯片的片选信 号。常用的译码器有:74LS139,74LS138,74LS154等。 优点是存储器的每个存储单元只有惟一的一个系统空间地 址,不存在地址重叠现象;对存储空间的使用是连续的, 能有效地利用系统的存储空间。缺点是所需地址译码电路 较多,。全地址译码法是单片机应用系统设计中经常采用 的方法。
1。程序和数据之和不大于 存储器总容量。 2。程序必须存放在低地址,
数据存放在高地址。
三、并行I/O口扩展 MCS-51单片机具有四个并行8位I/O口原理均可用做双向并行 I/O接口,但在实际应用中,可提供给用户使用的I/O口只有P1 口和部分P3口线及作为数据总线用的P0口。在单片机的I/O口 线不够用的情况下,可以借助外部器件对I/O口进行扩展 (1)概述 1)单片机I/O口扩展方法 并行I/O口扩展的目的:为外围设备提供一个输入输出通道。 ①并行总线扩展的方法 ②串行口扩展方法(只介绍总线扩展方式下I/O接口扩展方法) ③I/O端口模拟串行方法
二、存储器的扩展 存储器是计算机系统中的记忆装置,用来存放要运行的程 序和程序运行所需要的数据。单片机系统扩展的存储器可分为 程序存储器和数据存储器两种类型。
(1)MCS-51单片机对外部存储器的扩展应考虑的问题

单片机原理及应用第2版课后答案第6章习题答案

单片机原理及应用第2版课后答案第6章习题答案

单片机原理及应用第2版课后答案第6章习题答案1.异步通信和同步通信的主要区别是什么?MCS-51串行口有没有同步通信功能?答案:异步通信因为每帧数据都有起始位和停止位,所以传送数据的速率受到限制。

但异步通信不需要传送同步脉冲,字符帧的长度不受限制,对硬件要求较低,因而在数据传送量不很大。

同步通信一次可以连续传送几个数据,每个数据不需起始位和停止位,数据之间不留间隙,因而数据传输速率高于异步通信。

但同步通信要求用准确的时钟来实现发送端与接收端之间的严格同步。

MCS-51串行口有同步通信功能。

2.解释下列概念:(1)并行通信、串行通信。

(2)波特率。

(3)单工、半双工、全双工。

(4)奇偶校验。

答案:(1)并行通信:数据的各位同时进行传送。

其特点是传送速度快、效率高,数据有多少位,就需要有多少根传输线。

当数据位数较多和传送距离较远时,就会导致通信线路成本提高,因此它适合于短距离传输。

串行通信:数据一位一位地按顺序进行传送。

其特点是只需一对传输线就可实现通信,当传输的数据较多、距离较远时,它可以显著减少传输线,降低通信成本,但是串行传送的速度慢。

(2)波特率:每秒钟传送的二进制数码的位数称为波特率(也称比特数),单位是bp(bitperecond),即位/秒。

(3)单工:只允许数据向一个方向传送,即一方只能发送,另一方只能接收。

半双工:允许数据双向传送,但由于只有一根传输线,在同一时刻只能一方发送,另一方接收。

全双工:允许数据同时双向传送,由于有两根传输线,在A站将数据发送到B站的同时,也允许B站将数据发送到A站。

(4)奇偶校验:为保证通信质量,需要对传送的数据进行校验。

对于异步通信,常用的校验方法是奇偶校验法。

采用奇偶校验法,发送时在每个字符(或字节)之后附加一位校验位,这个校验位可以是“0”或“1”,以便使校验位和所发送的字符(或字节)中“1”的个数为奇数——称为奇校验,或为偶数——称为偶校验。

接收时,检查所接收的字符(或字节)连同奇偶校验位中“1”的个数是否符合规定。

MCS51单片机总线系统与IO口扩展

MCS51单片机总线系统与IO口扩展

6.2.2 单片机总线扩展的编址技术
OE
LE
Dn
Qn
L
H
H
H
L
H
L
L
L
L
L
Qn-1
L
L
H
Qn-1
H
×
×
Z
地址锁存器74LS373
CLR D0-D7Q0-Q7 4 6 2 6 74LS24474LS273 E 0123456789E GG 12Q0-Q7CLKD0-D7AAAAAAAAAAA10A11A12I/O0I/O1I/O2I/O3I/O4I/O5I/O6I/O7OWCE1CE2 56? UUU P0.0-P0.7P0.0-P0.7 +5V 11 01234567 E >> QQQQQQQQ O 01234567 E DDDDDDDDL 2 U74LS373 012 YYY ABC 3 U74LS138 R AD E R P20P07P21P06P22P05P23P04P24P03P25P02P26P01P27P00 W ALE 89C51 1 U
MOV
DPTR,#0FEFFH ;确定扩展芯片地址
MOVX
A,@DPTR
;将扩展输入口内容读入累加器A
当与74LS244相连的按键都没有按下时,输入全为1,若按下某键,则所在线 输入为0。
6.2.1 单片机I/O口扩展
输出控制信号由P2.0和相“或”后形成。当二者都为0后,74LS273的控制端 有效,选通74LS273, P0上的数据锁存到74LS273的输出端,控制发光二极管 LED , 芯 片 地 址 与 74LS244 的 选 通 地 址 相 同 ( 都 是 ×××× ×××0 ×××× ××××B,通常取为FEFFH)。当某线输出为0时,相应的LED发 光。

《单片机原理及应用》课后习题答案

《单片机原理及应用》课后习题答案
2.12 ALE信号有何功用?一般情况下它与机器周期的关系如何?在什么条件下ALE信号可用作外部设备的定时信号。
答案:ALE是地址锁存使能信号,是机器周期的二倍。当不使用单字节双周期的指令,如MOVX类指令时,可以作为外部设备的定时信号。
2.13 有那几种方法能使单片机复位?复位后各寄存器的状态如何?复位对内部RAM有何影响?
2.6 8051如何确定和改变当前工作寄存器组?
2.7 MCS-51单片机的程序存储器中0000H、0003H、000BH、0013H、001BH和0023H这几个地址具有什么特殊的功能?
2.8 8051单片机有哪几个特殊功能寄存器?可位寻址的SFR有几个?
2.9 程序状态寄存器PSW的作用是什么?常用标志有哪些位?作用是什么?
TH1、TL1、TH0、TL0的内容为00H,定时器/计数器的初值为0。
(TMOD)=00H,复位后定时器/计数器T0、T1为定时器方式0,非门控方式。
(TCON)=00H,复位后定时器/计数器T0、T1停止工作,外部中断0、1为电平触发方式。
(T2CON)=00H,复位后定时器/计数器T2停止工作。
可位寻址的SFR有11个。
2.9 程序状态寄存器PSW的作用是什么?常用标志有哪些位?作用是什么?
答案:PSW—程序状态字。主要起着标志寄存器的作用。常用标志位及其作用如下:
Cy——进(借)位标志,其主要作用是保存算术运算的进或借位并在进行位操作时做累加器。
在执行某些算术和逻辑指令时,可以被硬件或软件置位或清零。在算术运算中它可作为进位标志,在位运算中,它作累加器使用,在位传送、位与和位或等位操作中,都要使用进位标志位。
2.14 MCS-51的时钟振荡周期、机器周期和指令周期之间有何关系?

第六章 MCS-51系统扩展技术2(8255、74LS)

第六章  MCS-51系统扩展技术2(8255、74LS)

3、MCS-51系统扩展示意图 、 系统扩展示意图
单 片 微 型 机 原 理 与 应 用
为了唯一地选中外部某一存储单元(I/O接口芯片已作为数据存储器的一 接口芯片已作为数据存储器的一 为了唯一地选中外部某一存储单元 部分),必须进行两种选择:一是必须选择出该存储器芯片(或 接口芯片 接口芯片), 部分 ,必须进行两种选择:一是必须选择出该存储器芯片 或I/O接口芯片 , 称为片选;二是必须选择出该芯片中的某一存储单元(或 接口芯片中的寄 称为片选;二是必须选择出该芯片中的某一存储单元 或I/O接口芯片中的寄 存器),称为字选。 存器 ,称为字选。 常用的选址方法有两种:线选法和译码法, 常用的选址方法有两种:线选法和译码法,其中译码法又分为全译码和 部分译码两种。 部分译码两种。
四、部分译码法
单 片 微 型 机 原 理 与 应 用
以上也可采用全译码法, 以上也可采用全译码法,电路更简单
五、扩展存储器时应考虑的几个问题
1. 地址锁存器的选用 2. MCS-51对存储容量的要求 对存储容量的要求 3. 地址线的连接和地址译码方式 4. 工作速度匹配
单 片 微 型 机 原 理 与 应 用
第二节 程序存储器的扩展
一、 常用的程序存储器
单 片 微 型 机 原 理 与 应 用
1. EPROM芯片 芯片 ROM芯片分为 类,即掩膜 芯片分为3类 即掩膜ROM、可编程 芯片分为 、可编程PROM和可擦除 和可擦除 可编程ROM(包括 包括EPROM和E2PROM)。前面两组在实际中使用 可编程 包括 和 。 得很少,因此这里只介绍最常用的可擦除可编程ROM。 得很少,因此这里只介绍最常用的可擦除可编程 。 EPROM芯片:可通过专用的紫外线光源进行照射以擦除其 芯片: 芯片 原有内容,而后用专门的编程器向其写入新的内容。 原有内容,而后用专门的编程器向其写入新的内容。 E2PROM芯片:电可擦除 。 芯片: 芯片

单片机原理课程教案

单片机原理课程教案

(一)课程教学目的和要求随着科学技术的不断进步,计算机在社会各个领域中的应用也不断得以发展,本课程是信息类基础课程之一,是一门学生学习掌握计算机硬件知识和汇编语言程序设计的入门课程。

通过本课程的学习使学生从理论和实践两方面掌握单片机的基本结构、工作原理、汇编语言程序设计方法、接口电路及单片机应用系统的设计方法,以求达到初步的单片机软硬件设计开发能力。

并为以后从事电子控制类的设计奠定理论基础和实践能力。

《单片机原理及应用》是信息类专业的一门重要专业基础必修课,是一门理论与实际紧密结合并对学生进行工程训练的课程。

通过本课程的教学,学生应掌握51系列单片机CPU、定时/计数器、存储器、串行通信、中断系统、I/O口的硬件结构,能用汇编语言进行程序设计,具备应用单片机知识分析解决工程实际问题,设计较复杂的单片机应用系统能力。

(二)课程教学重点和难点1、重点:硬件结构;指令系统;系统扩展和应用;外围接口技术。

2、难点:指令系统;外围接口技术。

(三)教学方法理论与实验相结合(四)课时安排总课时:64课时,其中:理论课时48,实验课时16。

(五)考核方式本课程的考核采取平时的形成性考核和课程结束时的笔试闭卷考试相结合的考核办法。

平时的考核主要有三个方面:课堂、课外、实验。

课堂考核依据出勤率、听课态度、课堂讨论表现等;课外考核主要依据作业、平时测试、课外的创新和发明等;实验考核依据实验完成的质量和数量等情况来评定。

(六)参考教材刘湘涛.江世明编著《单片机原理与应用》.电子工业出版社. 2006.第一章单片机基础知识教研室:计算机教研室教师姓名:申寿云教学过程1、问题牵引、导入新课(1)单片机是什么?它的主要特点和应用的领域。

(2)计算机中数据有哪些表示?二进制、八进制、十进制、十六进制;原码、反码、补码;ASCII码、BCD码。

2、课程内容本章的主要知识点有:知识点1:单片机的概念。

知识点2:单片机主流机型。

知识点3:80C51系列简介。

第6章 MCS-51单片机系统扩展技术

第6章  MCS-51单片机系统扩展技术

6.3 数据存储器扩展
6.3.1 静态RAM扩展电路
6.3.2 动态RAM扩展电路
返回本章首页
6.3.1 静态RAM扩展电路
常用的静态RAM芯片有6116,6264,62256等,其 管脚配置如图6-13所示。
1.6264静态RAM扩展 额定功耗200mW,典型存取时间200ns,28脚双列直插 式封装。表6-1给出了6264的操作方式,图6-14为6264静 态RAM扩展电路。
图 6 9
A EEPROM
28 17
扩 展 电 路
写入数据
不是指令
查询 中断 延时
2.2864A EEPROM 扩展
2864A有四种工作方式: (1)维持方式 (2)写入方式 (3)读出方式 (4)数据查询方式
图 6 12
28 64
返回本节
A EEPROM
扩 展 电 路
串行E2PROM简介 串行E2PROM占用引线少、接线简单,适用于作为数据存储 器且保存信息量不大的场合。 以AT93C46/56/57/66为例,它是三线串行接口E2PROM, 能提供128×8、256×8、512×8或64×16、128×16、256×16 位,具有高可靠性、能重复擦写100,000次、保存数据100年 不丢失的特点,采用8脚封装。
第6章 MCS-51单片机系统扩展技术
6.1 MCS-51单片机系统扩展的基本概念
6.2 程序存储器扩展技术
6.3 数据存储器扩展 6.4 输入/输出口扩展技术
T0 T1
时钟电路
ROM
RAM
定时计数器
CPU
并行接口 串行接口 中断系统
P0 P1 P2 P3
TXD RXD
INT0 INT1

单片微型计算机原理及应用_课后习题答案

单片微型计算机原理及应用_课后习题答案

《单片微型计算机原理及应用》习题参考答案姜志海刘连鑫王蕾编著电子工业出版社目录第1章微型计算机基础 (2)第2章半导体存储器及I/O接口基础 (4)第3章MCS-51系列单片机硬件结构 (11)第4章MCS-51系列单片机指令系统 (16)第5章MCS-51系列单片机汇编语言程序设计 (20)第6章MCS-51系列单片机中断系统与定时器/计数器 (26)第7章MCS-51系列单片机的串行口 (32)第8章MCS-51系列单片机系统扩展技术 (34)第9章MCS-51系列单片机键盘/显示器接口技术 (36)第10章MCS-51系列单片机模拟量接口技术 (40)第11章单片机应用系统设计 (44)第1章微型计算机基础1.简述微型计算机的结构及各部分的作用微型计算机在硬件上由运算器、控制器、存储器、输入设备及输出设备五大部分组成。

运算器是计算机处理信息的主要部分;控制器控制计算机各部件自动地、协调一致地工作;存储器是存放数据与程序的部件;输入设备用来输入数据与程序;输出设备将计算机的处理结果用数字、图形等形式表示出来。

通常把运算器、控制器、存储器这三部分称为计算机的主机,而输入、输出设备则称为计算机的外部设备(简称外设)。

由于运算器、控制器是计算机处理信息的关键部件,所以常将它们合称为中央处理单元CPU(Central Process Unit)。

2.微处理器、微型计算机、微型计算机系统有什么联系与区别?微处理器是利用微电子技术将计算机的核心部件(运算器和控制器)集中做在一块集成电路上的一个独立芯片。

它具有解释指令、执行指令和与外界交换数据的能力。

其内部包括三部分:运算器、控制器、内部寄存器阵列(工作寄存器组)。

微型计算机由CPU、存储器、输入/输出(I/O)接口电路构成,各部分芯片之间通过总线(Bus)连接。

以微型计算机为主体,配上外部输入/输出设备、电源、系统软件一起构成应用系统,称为微型计算机系统。

第6章 89c51系列单片机的扩展

第6章 89c51系列单片机的扩展

74LS373,直接从P0口送到数据总线上。
2. 最小系统工作时序
如下图所示:
一个机器周期 S1 ALE
一个机器周期
S2 S3
S4
S5
S6
S1
S2 S3
S4
S5
S6
PSEN
P2 PCH输出
PCH输出
PCH输出
PCH输出
PCH输出
PCH输出
输入
PCL
输出
指令 输入
PCL
输出
指令 输入
PCL
输出
指令 输入
PCL
输出
PCL输出有效
PCL输出有效
PCL输出有效
PCL输出有效
最小系统的工作时序
PCL 输出 有效
P2口送PCH 信息,P0口送PCL 信息和输 入指令。在每一个Tcy中,ALE两次有效, PSEN两次有效。ALE第一次发生在S1P2和 S2P1期间,在S2状态周期内,ALE下降沿将P0 口低8位地址信息PCL锁入74LS373。在S4状 态周内,PSEN上升沿将指令读入CPU。
VppVccCE GND
A7 A8 23 22 A10 19
I/O
74LS373 8Q 8D
GND G OE
A0
2716
28 39 O0 . . O7 OE 20
32
P0口具有分时传送低8位地址和8位数据 信息的复用功能。通过ALE信号与地址锁存
器配合使用,从而使得地址信息和数据信息
区分开。
工作原理如下:
2. 具体应用
使用单片E2PROM扩展外部程序存储器
一 片 2864E2PROM 和 地 址 锁 存 器
74LS373构成MCS-51系列单片机中8031

第六章mcs-51单片机IO端口(1)

第六章mcs-51单片机IO端口(1)
第六章mcs-51单片机IO端口(1)
准双向口:从图中结构看,引脚上的外部信号既加在三态缓 冲器的输入端上,又加在输出级FET2的漏极上,若此FET2 是导通的(相当于曾输出锁存过数据0),则引脚上的电位始 终被钳位在0电平上(除非外部信号源有极大的负载能力), 输入数据不可能正确地读入。因此P0口是一个准双向口,即 在输入数据时,应先把口置1,也就是锁存器的~Q为0,这样 使输出级的2个FET都截止,引脚处于悬浮状态,可作高阻抗 输入。这就是所谓的准双向口。
下图为P0口的某位P0.n(n=0~7)结电路和一个输出控 制电路组成。输出驱动电路由一对FET(场效应管)组成,其 工作状态受输出控制电路的控制,后者包括:1个与门、1个反 相器和1个模拟转换开关(MUX)。
读锁存器
内部总线 写锁存器
地址/数据 VCC 控制
第六章 MCS-51的I/0
第六章mcs-51单片机IO端口(1)
单片机I/O口的使用
对单片机的控制,其实就是对I/O口的控制,无论单片机 对外界进行何种控制,或接受外部的控制,都是通过I/O 口进行的。51单片机总共有P0、P1、P2、P3四个8位双 向输入输出端口,每个端口都有锁存器、输出驱动器和输 入缓冲器。4个I/O端口都能作输入输出口用,其中P0和 P2通常用于对外部存储器的访问。
读锁存器
地址/数据 VCC 控制
内部总线 写锁存器
DQ CLK Q
T1
P0.n P0口
T2
引脚
MUX
读引脚
第六章mcs-51单片机IO端口(1)
2、P0作为地址/数据总线
当P0口作为地址/数据总线使用时,可以分为两种情况。一种情况 是从P0输出地址或数据,这时CPU发出的控制信号应为高电平1, 转换开关把反相器输出端与下拉FET接通,同时与门开锁。输出的 地址或数据信号即通过与门去驱动上拉FET,又通过反相器去驱动 下拉FET。另一种情况是从P0输入数据,这时信号仍应从输入缓冲 器进入内部总线。

单片机原理与应用第6章

单片机原理与应用第6章

三、系统扩展及总线结构
80C51
图5.2
P0口分时复用
D0~n ~ P0 ALE R/W 单片机 ALE
锁 存 地 址 地址 采 样 数 据 采 样 数 据 Di Qi G 地址锁存器
A0~n ~
R/W 存储器
锁 存 地 址
P0
地址
R/W
三、系统扩展及总线结构
地址锁存器
MCS-51单片机的P0口是地址线/数据线分时复用的,实现 这一功能需要引入地址锁存器。常用的地址锁存器的芯片一 般有两类:一类是8D触发器,如74LS273、7474LS377等,另 一类是位锁存器,如74LS373、8282等。
74LS373
8031
6264的地址分配表
P2.7 P2.6 1 1 0 1 0 1
P2.5 0 1 1
选中芯片 6264(1) 6264(2) 6264(3)
地 址 范 围 C000--DFFFH A000--BFFFH 6000--7FFFH
存储容量 8K 8K 8K
例3:某微机系统用62128构成64K存储系统,试将其与 8051进行连接
第6章 单片机系统扩展
6-1 系统扩展及总线结构 6-2 数据存储器扩展 6-3 程序存储器扩展 6-4 I/O扩展 I/O扩展
6-1 系统扩展及总线结构 一、单片机内部资源
8位CPU; 位 ; 4KB字节掩膜 字节掩膜ROM程序存贮器(8031无); 程序存贮器( 字节掩膜 程序存贮器 无 128字节内部 字节内部RAM数据存贮器; 数据存贮器; 字节内部 数据存贮器 21个特殊功能寄存器 个特殊功能寄存器(SFR); 个特殊功能寄存器 ; 2个16位的定时器 计数器; 位的定时器/计数器 个 位的定时器 计数器; 1个全双工的异步串行口 个全双工的异步串行口; 个全双工的异步串行口 4个8位并行 口; 位并行I/O口 个 位并行 5个中断源、2级中断优先级的中断控制器; 个中断源、 级中断优先级的中断控制器 级中断优先级的中断控制器; 个中断源

51单片机练习题附答案

51单片机练习题附答案

51单片机练习题附答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(51单片机练习题附答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为51单片机练习题附答案的全部内容。

377第一、二章单片机概述与结构一、填空题1.单片机复位后,SP、PC和I/O口的内容分别为 07H\000H\FFH 。

2.单片机有四个工作寄存器区,由PSW状态字中的RS1和RS0两位的状态来决定。

单片机复位后,若执行SETB RS0指令,此时只能使用 1 区的工作寄存器,地址范围是08H—-—0FH 。

3.51单片机驱动能力最强的并行端口为 P0端口。

4.51单片机PC的长度为16位,SP的长度为___8____位,DPTR的长度为_16__位。

5.访问51单片机程序存储器地址空间、片内数据存储器地址、片外数据存储器地址的指令分别为__movc_____,MOV和_movx______.6.若A中的内容为63H,那么P标志位的值为 1 。

7.当扩展外部存储器或I/O口时,P2口用作高八位地址总线。

8.51单片机内部RAM区有 4 个工作寄存器区。

9.51单片机内部RAM区有 128 个位地址.10.外部中断1()的中断入口地址为 0013 ;定时器1的中断入口地址为001B .11.51单片机有 4 个并行I/O口, P0~P3是准双向口,所以由输出转输入时必须先写入 1 。

12.51单片机的堆栈建立在内部RAM 内开辟的区域。

二、选择题1.访问片外部数据存储器时,不起作用的信号是( C)。

A./RD B./WE C./PSEN D.ALE2.51单片机P0口用作输出时,应外接( A )。

51单片机总线扩展 io口扩展

51单片机总线扩展 io口扩展

三:单片机与Flash的其他扩展方式
1:线选法
如图,由P2.4~P2.0和P0口组成14位地址线,用P2.7和P2.6进行存 储器芯片选择。
2:地址译码法译码法
采用译码器的方法选片,能够扩展多片存储器。
二:单片机与Flash扩展的时序
74LS373是三态8位D透明触发器,当锁存允许端 EN为高电平时,输出 OUT随输入数据 D 而变。当 EN为低电平时,输出被锁存在已建立的输 入数据电平 。 (1)指令读取的时序 在指令读取时,P2口输出16位地址的高8位。P0口首先输出地址的低8 位数据,在ALE有效时(低电平),地址的低8位数据被锁存在74LS373 的输出端,与P2口袋8位数据共同组成了完整的16位地地址,
2:数据总线(DB) 数据总线宽度为8位,由P0口提供。 3:控制总线(CB) 控制总线由第二状态下的P3口和4根独立控制线组 成。 四根控制线为: ——/PSEN : 外部取指控制。在访问外部ROM时, /PSEN信号会自动产生。 ——ALE : ALE是地址锁存允许信号。在访问外部存储 器(RAM或ROM)时,通常用它的下降沿来锁存P0口 送出的低8位地址信号。 ——/EA : /EA是访问外部存储器的控制信号。当/EA 无效(高电平)时,访问内部ROM;当/EA有效(低 电平)时,访问外部ROM。 ——RST : RST是复位信号输入端。
Flash简介
Flash介绍:
flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦 写和再编程。 Intel于1988年首先开发出NOR Flash 技术,紧接着,1989年,东芝 公司发表了NAND Flash 结构。 NOR Flash 的特点是芯片内执行,这样应用程序可以直接在Flash闪 存内运行,不必再把代码读到系统RAM中。NOR 的传输效率很高,在 1~4MB的小容量时具有很高的成本效益。NAND的结构能提供极高的 单元密度,可以达到高存储密度。应用NAND的困难在于Flash的管理 和需要特殊的系统接口。通常NOR的速度比NAND稍快一些,而NAND 的写入速度比NOR快很多。闪存只是用来存储少量的代码,这时NOR 闪存更适合一些;而NAND则是高数据存储密度的理想解决方案。 NOR/ NAND Flash 比较 • 1 NOR的读速度比NAND稍快一些。 • 2 NAND的写入速度比NOR快很多。 • 3 NAND擦除速度远比NOR快。 • 4 NOR Flash上数据线和地址线是分开的;NAND Flash上数据线和地址 线是共用的 (所以单片机可以对NOR Flash扩展)。

51单片机总线时序

51单片机总线时序

51单片机总线时序
一、总线概述
计算机系统是以微处理器为核心的,各器件要与微处理器相连,且必须协调
工作,所以在微处理机中引入了总线的概念,各器件共同享用总线,任何时候
只能有一个器件发送数据(可以有多个器件同时接收数据) 。

计算机的总线分为控制总线、地址总线和数据总线等三种。

而数据总线用于
传送数据,控制总线用于传送控制信号,地址总线则用于选择存储单元或外设。

二、单片机的三总线结构
51 系列单片机具有完善的总线接口时序,可以扩展控制对象,其直接寻址能力达到64k( 2 的16 次方) 。

在总线模式下,不同的对象共享总线,独立编址、分时复用总线,CPU 通过地址选择访问的对象,完成与各对象之间的信息传递。

单片机三总线扩展示意如图1 所示。

1、数据总线
51 单片机的数据总线为P0 口,P0 口为双向数据通道,CPU 从P0 口送出和读回数据。

2、地址总线
51 系列单片机的地址总线为16 位。

为了节约芯片引脚,采用P0 口复用方式,除了作为数据总线外,在ALE 信号时序匹配下,通过外置的数据锁存器,在总线访问前半周期从P0 口送出
低8 位地址,后半周期从P0 口送出8 位数据。

高8 位地址则通过P2 口送出。

51单片机外部存储器的扩展

51单片机外部存储器的扩展
即存储器芯片的选择和存储器芯片内部 存储单元的选择。
一、地址线的译码
存储器芯片的选择有两种方法:线选法和译码法。
1、线选法。所谓线选法,就是直接以系统的地址线作为 存储器芯片的片选信号,为此只需把用到的地址线与存储 器芯片的片选端直接相连即可。 2、译码法。所谓译码法,就是使用地址译码器对系统的 片外地址进行译码,以其译码输出作为存储器芯片的片选 信号。译码法又分为完全译码和部分译码两种。
MCS-51系列单片机片内外程序存储器的空 间可达64KB,而片内程序存储器的空间只有 4KB。如果片内的程序存储器不够用时,则需 进行程序存储器的扩展。
MCS-51存储器的扩展
存储器扩展的核心问题是存储器的编址 问题。所谓编址就是给存储单元分配地址。
由于存储器通常由多个芯片组成,为此 存储器的编址分为两个层次:
扩展数据存储器常用静态RAM 芯片: 6264(8K×8位)、62256(32K×8位)、 628128(128K×8位)等。
MCS-51存储器的扩展
P2.7~P2.0
ALE P0.0~P0.7 8031
EA PSEN
A15~A8 高8位地址
CLK Q7~Q0 A7~A0 I0~I7 地址锁存器
D0~D 7
二、以P2口作为高8位的地址总线
P0口的低8位地址加上P2的高8位地址就可以形成16位的 地址总线,达到64KB的寻址能力。
实际应用中,往往不需要扩展那么多地址,扩展多少用 多少口线,剩余的口线仍可作一般I/O口来使用。
三、控制信号线 ALE:地址锁存信号,用以实现对低8位地址的锁存。 PSEN:片外程序存储器读选通信号。 EA:程序存储器选择信号。为低电平时,访问外部程序存储 器;为高电平时,访问内部程序存储器。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 单片机总线信号的定义
由图可见: 1)由P0分时传送地址/数据信息,在接口电路中, 通常配置地址锁存器,有ALE信号锁存低8位地 址A0-A7,以分离地址和数据信息。 2)P2口传送高8位地址A8-A15。 3)PSEN为程序存储器的控制信号,是在取指令 码时或执行MOVC指令时变为有效。 RD、WR为数据存储器和I/O口的读、写控 制信号。是执行MOVX指令时变为有效。
6.1 单片机总线信号的定义
片选:片选引脚的连接方法三种: 1)片选引脚接单片机用于片内寻址剩下的高位 地址线某几根;此法称为线选法,或称线译码。 用于外围芯片不多的情况,是最简单,最低廉的 方法。见右图 2)片选引脚接高位地址线进行译码后的输出。 译码可采用部分译码或全译码法,所谓部分 译码就是用片内寻址剩下的高位地址线中的几根 进行译码,所谓全译码就是用片内寻址剩下的所 有的高位地址线进行译码。该法的缺点是要增加 地址译码器。全译码法的优点是地址唯一。见右
6.1 单片机总线信号的定义
地址线的连接 如前面所述,和单片机接口的专用芯片会有N根 地址线引脚,用于选择片内的存储单元或端口,称为 字选或片内选择;为区别同类型的不同芯片,外围芯 片通常都有一个片选引脚,仅当该引脚为有效电平 (通常为低电平)该片才被选中。 一个芯片的某个单元或某个端口的地址由片选的 地址和片内字地址共同组成,因此字选和片选引脚均 应接到单片机的地址线上。连线的方法是: 字选:外围芯片的字选(片内选择)地址线引脚直接 接单片机的从A0开始的低位地址线
6.3
数据存储器的扩展
写外部RAM的操作时序与读外部RAM的时序差 别在于:其一,/WR有效代替/RD有效,以表明这 是写数据RAM的操作;其二,在P0输出低8位地址 A0-A7后,P0立即处于输出状态,提供要写入外部 RAM的数据供外部RAM取走。 由以上时序分析可见,访问外部数据RAM的操作 与从外部程序存储器取指令的过程基本相同,只是 前者有读有写,而后者只有读而无写;前者用/RD或 /WR选通,而后者用/PSEN选通;前者一个机器周期 中ALE两次有效,后者则只有一次有效。因此,不难 得出51单片机和外部RAM的连接方法。
单片机微型计算机与 接口技术
第6章 单片机总线与 系统扩展
本章介绍的主要内容
• • • • 单片机的总线信号 程序存储器的扩展 数据存储器的扩展 I/O接口的扩展
MCS51系列单片机的特点就是体积小,功能全, 系统结构紧凑,硬件设计灵活。对于简单的应用, 最小系统即能满足要求。
所谓最小系统是指在最少的外部电路条件下, 形成一个可独立工作的单片机应用系统。
6.1 单片机总线信号的定义 6.1.1 系统扩展的连线原则 系统的扩展归结为三总线的连接,连接的方法很 简单,连线时应遵守下列原则: 1)连接的双方数据线连数据线,地址线连地址线,控 制线连控制线。要特别注意的是: 程序存储器接PSEN; 数据存储器接RD和WR 2)控制线相同的地址线不能相同, 地址线相同的控制线不能相同。 3)片选信号有效的芯片才选中工作,当一类芯片仅一 片时片选端可接地。
但在很多复杂的应用情况下,单片机内的 RAM ,ROM和I/O接口数量有限,不够使用,这种 情况下就需要进行扩展。因此单片机的系统扩展 主要是指外接数据存贮器、程序存贮器或I/O接口 等,以满足应用系统的需要。
6.1 单片机总线信号的定义 单片机是通过地址总线,数据总线和控制总线与外 部交换信息的。MCS-51单片机的总线接口信号见图
在ALE的上升沿,把外部程序存储器的指令读 入后就开始了对片外RAM的读过程。 ALE高电平期间,在P0处于高阻三态后,根据 指令间址提供的地址,P2口输出外部RAM的高8位 地址A15-A8 ,P0端口输出低8位地址A7-A0 ;在 ALE下跳沿,P0输出的低8位地址被锁存在锁存器 中,随后P0又进入高阻三态,RD信号有效后,被 选中的RAM的数据出现在数据总线上,P0 处于输 入状态,CPU从P0读入外部RAM的数据 。
6.2 程序存储器的扩展
1、ALE(地址锁存信号)在一个程序存储器读周期内两次有效; 2、在ALE第1个下降沿将P0口输出的低8位地址存入地址锁存器; 3、同时高8位地址由P2口直接送到程序存储器; 4、(程序存储器读控制信号)在低电平时有效,便将数据读出; 5、读出的数据通过P0口送回单片机。
6.2 程序存储器的扩展 由于只扩展了一片2732,因此2732的片选端接地。 /PSEN与2732的输出允许信号/OE相连,/PSEN的上升 沿使/OE有效,打开2732中由A0-A11指定的地址单元,该 单元中的指令码从2732的O0-O7输出,被正好处于读入状 态的P0端口输入到单片机内, 经译码执行。这就是从外存 指定地址单元中取出1字节指令并加以执行的整个过程。
6.4 I/O接口的扩展
MCS-51单片机共有4个8位并行I/O口, 在外部扩展 时, P0和P2口做为总线使用,因而提供给用户的I/O口就 只有P1或P3口的部分口线,如所接的外设较多时, 就必 须扩展I/O接口。
MCS-51单片机扩展的I/O口和外部数据存储器统一 编址、 采用相同的控制信号、相同的寻址方式和相同 的指令。 扩展I/O所用的芯片有通用可编程芯片 ( 如8251, 8155, 8255等)和TTL, CMOS锁存器,缓冲器(如273, 377, 244, 245等),用户可根据系统对输入输出的要求适当选 择芯片。
1、外部数据存储器读周期时序 ① 在地址锁存信号ALE下降沿,P0口输出的低8位地址A7~A0被锁存; ② P2口此时也将高8位地址直接送出; ③ 读控制信号(低电平有效)到来,数据就从数据存储器中被读了出来; ④ 读出来的数据经过P0口输入到单片机中,完成了一次读操作工作。
6.3
数据存储器的扩展
6.3
数据存储器的扩展
2. 外部数据RAM的写周期 当执行MOVX @Ri,A 或 MOVX @DPTR,A指令时进入外部数据 存储器的写周期,其写周期时序如下:
① 在地址锁存信号ALE下降沿,P0口输出的低8位地址A7~A0被锁存; ② P2口此时也将高8位地址直接送出; ③ 写控制信号(低电平有效)到来,数据就从单片机中被写出来; ④ 写出来的数据经过P0口输出到数据存储器中,完成了一次写操作工作。
6.1 单片机总线信号的定义
6.1.2 系统扩展的方法 通常和单片机接口的专用芯片也具备三总 线引脚,即数据线、地址线和读、写控制线,此 外还有片选线。其中地址线的根数因芯片不同而 不同,取决于片内存储单元的个数或I/O接口内 寄存器(又称为端口)的个数,N根地址线和单 N 元的个数的关系是:单元的个数= 。CPU、MCU 2 和这些芯片的连接的方法是对应的线相连。规律 如下: 数据线的连接: 外接芯片的数据线D0-D7接单片机的数据线 的D0-D7,对于并行接口,数据线通常为8位、各 位对应连接就可以了。
8XX51内部有ROM, 不用扩展外部程序存储器, 所以P0口作为双 向数据线连在数据端。
273、244有相同的地址FEFFH(实际上只要保证P2.0=0,其他地 址位无关紧要), 然而由于使用不同的控制信号/RD或/WR ,它们地 址相同却不会发生数据传送冲突。 例如将244的输入数据从273输出只需使用如下指令 MOV DPTR, #0FEFFH ;DPTR 指向扩展I/O地址 MOVX A, @DPTR ;从244读入数据 MOVX @DPTR,A ;向273输出数据
6.3
数据存储器的扩展
MCS-51单片机内只有128字节的数据RAM,当 应用中需要更多的RAM时,只能在片外扩展。可扩 展的最大容量为64KB 当执行指令 MOVX A,@Ri 或 MOVX A,@DPTR时进入外部数据RAM 是的读周期。
6.3
数据存储器的扩展
1. 外部数据RAM的读周期时序
6.1 单片机总线信号的定义 控制线的连接
外接程序存储器:
由于程序存储器只读,通常使用状态是读操作,因 此只需连/OE引脚。由于/PSEN为程序存储器的选通控制 信号,因此单片机的PSEN连接ROM的输出允许端/OE; 外接数据存储器和I/O口:
由于数据存储器可读可写,而/RD(P3.7)和 /WR(P3.6)为数据存储器(RAM)和I/O口的读写控制信 号,因此单片机的/RD应连接扩展芯片的/OE (输出允许) 或/RD端,单片机的/WR应连接扩展芯片的/WR或/WE端。
6.2 程序存储器的扩展
根据取指时序,单片机扩展程序存储器2732的电路如下
6.2 程序存储器的扩展
图中,74LS373为8D锁存器,其主要特点在于: /G为下跳沿时D0-D7的状态被锁存在Q0-Q7上。控制 端为高电平时,输出Q0-Q7复现输入D0-D7的状态; 当把ALE与/G相连后,ALE的下跳沿正好把P0端口上 此时出现的PC寄存器的低8位指令地址A0-A7锁存在 74LS373的Q0-Q7上,PC的高4位地址A8-A11则直接 由P2.0-P2.3输出。
系统扩展中的原则是,使用相同控制信号的芯片之 间,不能有相同的地址,使用相同地址的芯片之间,控 制信号不能相同。
6.2 程序存储器的扩展 6.2.1 EPROM的扩展 程序存储器扩展电路的安排应满足单片机从外存取 指令的时序要求。从时序图中分析ALE、/PSEN、P0和 P2怎样配合使程序存储器完成取指操作,从而得出扩展 程序存储器的方法。 单片机一直处于不断的取指令码-执行-取指令码 -执行的工作过程中,在取指令码时和执行MOVC指令 时/PSEN会变为有效,和其它信号配合完成从程序存储 器读取数据。
A0~An
n
. . . An
A0 CE
(a)
Ax
A0~An An+1 A15 译 . . . . . . 码 A14 器
n
. . . An
A0 CE
(b)
6.1 单片机总线信号的定义
3)片选端可直接接地。
相关文档
最新文档