大学物理实验数据处理-弦振动
F 固定均匀弦振动的研究
实验名称:固定均匀弦振动的研究学生学号:_______________ 学生姓名:_______________ 学院专业班级:_______________ 上课时间:_______________ 指导教师:_______________ 实验报告成绩:_______________一、注意事项(课前认真阅读)1. 调节定滑轮高度使弦线成水平,并使得弦线和音叉腿成一条直线,不能是折线。
2. 测量时应使驻波波形稳定,且波节清晰,振幅分布稳定,砝码不要晃动,因保持静态。
3. 使用米尺前应确认是否有零点误差,测量时注意读取数据的精度。
4. 电振音叉不起振或不使用时,应将触点断开。
5. 实验完毕,应立即将所有砝码取下放好,整理并归置好仪器。
二、预习思考题(课前完成)1. 观看仪器介绍并掌握其使用方法及注意事项;2. 仔细阅读课本,初步了解实验并且能够独立回答问题;3. 左侧问题预习前完成,右侧空白处实验后完善与总结。
1.相干波源需要满足什么条件?波的干涉现象的特点是什么?2.实验中对于在拉紧的弦线上传播的横波,其传播速度与哪些因素相关?3.请完成以下与弦振动实验装置相关的问题,电振音叉的构造如图1所示:图1 游标卡尺构造图1)请在图上标出任意一波节与波腹。
2) L指:__ __ _____ 。
4. 简要推导出:①驻波各点振幅A x的表达式。
②利用驻波现象测量波长的计算公式。
③均匀弦线上弦振动频率f的计算公式。
5. 讨论如何利用作图法研究均匀弦线上横波的波长与弦线张力、波动频率之间的关系。
四、实验思考及自我拓展(课后完成)1. 实验中可能存在哪些误差?该如何减小误差?2. 若用来产生张力的砝码太重或太轻,则会对实验结果产生什么样的影响?3. 本实验中,改变音叉频率,会使波长变化还是波速变化?改变弦线长时,频率、波长、波速中哪个量随之变化?改变砝码质量情况又怎样?4. 调出稳定的驻波后,欲增加半波数的个数,应增加砝码还是减少砝码?是增长还是缩短弦线长度?五、实验数据记录(课堂完成)1.按照实验要求测量数据并记录在下面表格中;2.原始实验数据每小组一份,小组各成员签名后由指导教师审核签字;3.原始实验数据不能用铅笔记录,实验数据不能任意涂改,发现错误应重新完成实验。
大学物理实验讲义~弦振动和驻波研究方案
⼤学物理实验讲义~弦振动和驻波研究⽅案弦振动与驻波研究【实验⽬的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张⼒的关系; 3.学习对数作图和最⼩⼆乘法进⾏数据处理。
【实验原理】在⼀根拉紧的弦线上,其中张⼒为T ,线密度为µ,则沿弦线传播的横波应满⾜下述运动⽅程:2222xyT t y ??=??µ (1) 式中x 为波在传播⽅向(与弦线平⾏)的位置坐标,y 为振动位移。
将(1)式与典型的波动⽅程 22222x y V t y ??=?? 相⽐较,即可得到波的传播速度: µTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张⼒及线密度之间的关系为:µλTf1=(2)为了⽤实验证明公式(2)成⽴,将该式两边取对数,得:11lg lg lg lg 22T f λµ=-- (3)固定频率f 及线密度µ,⽽改变张⼒T ,并测出各相应波长λ,作lg λ-lg T 图,若得⼀直线,计算其斜率值(如为21),则证明了λ∝21T的关系成⽴。
弦线上的波长可利⽤驻波原理测量。
当两个振幅和频率相同的相⼲波在同⼀直线上相向传播时,其所叠加⽽成的波称为驻波,⼀维驻波是波⼲涉中的⼀种特殊情形。
在弦线上出现许多静⽌点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】1、可调频率数显机械振动源;2、振动簧⽚;3、弦线(铜丝);4、可动⼑⽚⽀架;5、可动⼑⼝⽀架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌图1 实验装置⽰意图图2 可调频率数显机械振动源⾯板图(1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指⽰)实验装置如图1所⽰,⾦属弦线的⼀端系在能作⽔平⽅向振动的可调频率数显机械振动源的振簧⽚上,频率变化范围从0-200Hz 连续可调,频率最⼩变化量为0.01Hz ,弦线⼀端通过定滑轮⑦悬挂⼀砝码盘⑧;在振动装置(振动簧⽚)的附近有可动⼑⽚⽀架④,在实验装置上还有⼀个可沿弦线⽅向左右移动并撑住弦线的可动⼑⼝⑤。
大学物理《弦振动》实验报告
大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
大学物理设计性试验弦线振动法测定液体密度
评分:大学物理实验设计性实验实验报告实验题目:弦线振动法测定液体密度班级:姓名:学号:指导教师:《弦线振动法测定液体密度实验》实验提要实验课题及任务《弦线振动法测定液体密度实验》实验课题任务是:研究弦线振动时波长λ的大小与弦线受到的张力T 有关,在其它条件不变的情况,改变弦线受到的张力即可改变波长λ,通过比较同一砝码在空气中与在待测液体中时分别产生的张力不同,而产生不同的波长λ,进一步求出待测液体的密度。
学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《物体在液体中的运动研究》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。
设计要求⑴ 通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。
⑵ 选择实验的测量仪器,画出实验装置原理图,设计出实验方法和实验步骤,要具有可操作性。
⑶ 写出浸入待测液体中的物体体积的测量可行方法;⑷ 用最小二乘法进行线性拟合,计算出待测液体的密度ρ。
⑸ 分析讨论实验结果。
实验仪器弦振动实验仪一套、电子天平等主要仪器实验提示物体浸没在液体中受到的浮力大小为:V f 液ρ=弦线在振动时频率ν、波长λ、张力T 及弦线的线密度μ有如下关系:μνλT1=当频率ν与线密度μ一定时,上式左右两边同时取对数,得到下式后还可以进一步简化。
νμλlog log 21log 21log --=T 评分参考 (10分)⑴ 正确的写出实验原理和计算公式,3分;⑵ 正确的选用仪器和测量方法,2分; ⑶ 写出实验内容及步骤,1分; ⑷ 电子天平的调零和使用,1分;⑸ 写出完整的实验报告,3分;(其中实验数据处理,2分、实验结果,0.5分,整体结构,0.5分)学时分配实验验收,4学时,在实验室内完成;教师指导(开放实验室)和开题报告1学时。
弦振动规律研究实验指导书
弦振动规律研究实验指导书俸用格一:注意事项二:弦振动规律研究实验基本原理三:弦振动规律研究综合实验仪操作指南四:参考表格海南大学物理实验室一:注意事项1.进入实验室不可移动、摆弄实验台/桌上的所有仪器用具。
以免拉断仪器间的连接电缆/线、改变教师设置好的各种实验参数!2.实验结束后必需经任课教师检查你所使用的实验仪器与用具,器具完好无损方可离开实验室!3.实验过程中不可盲目转动示波器面板各旋钮,连线时务必正确使用探笔以免损坏探笔探针和内部芯线!4.实验过程中不可用手触碰弦线和电磁传感器线圈表面!5.实验过程中千万不可接错驱动传感器和接收传感器!6.实验过程中驱动与接收传感器不可靠得太近,以免相互产生干扰,通过观察示波器中的接收波形可以检验干扰的存在。
当他们靠得太近时,波形会改变。
为了得到较好的测量结果,至少两传感器的距离应大于cm10。
7.悬挂,、更换砝码以及砝码杆水平调节时务必动作轻巧,以免使弦线崩断,造成砝码坠落而发生事故。
二:弦振动规律研究实验基本原理【实验目的】1、巩固示波器的使用方法和操作技巧。
2、了解驻波形成的基本条件与弦振动的基本规律。
3、测量不同弦长和不同张力时弦振动的共振频率。
4、测量弦线的线密度。
5、测量弦振动时波的传播速度。
【实验仪器】301FB 型弦振动研究实验仪与弦振动实验信号源各1台,双踪示波器1台。
【实验原理】正弦波沿着拉紧的弦传播,可用式(1)来描述:)(2cos 1λπxt f y y m -⨯= (1)如果弦的一端被固定,那么当波到达固定端时会反射回来,反射波可表示为:)(2cos 1λπxt f y y m +⨯= (2)在保证这些波的振幅不超过弦所能承受的最大振幅时,两束波叠加后的波方程为: )2cos()/2cos(2t f x y y m ⋅⋅⋅=πλπ (3)等式的特点:当时间固定为0t 时,弦的形状是振幅为)2cos(20t f y m ⋅⋅π的正弦波形。
大学物理实验讲义-弦振动与驻波研究
大学物理实验讲义-弦振动与驻波研究弦振动与驻波研究【实验目的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张力的关系; 3.学习对数作图和最小二乘法进行数据处理。
【实验原理】在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程:2222x yT t y ∂∂=∂∂μ(1)式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。
将(1)式与典型的波动方程22222x y V t y ∂∂=∂∂相比较,即可得到波的传播速度: μTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张力及线密度之间的关系为:μλTf1=(2)为了用实验证明公式(2)成立,将该式两边取对数,得:11lg lg lg lg 22T f λμ=-- (3)固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作lg λ-lg T 图,若得一直线,计算其斜率值(如为21),则证明了λ∝21T的关系成立。
弦线上的波长可利用驻波原理测量。
当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。
在弦线上出现许多静止点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】1、可调频率数显机械振动源;2、振动簧片;3、弦线(铜丝);4、可动刀片支架;5、可动刀口支架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌9123456781011图1 实验装置示意图图2 可调频率数显机械振动源面板图 (1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指示)实验装置如图1所示,金属弦线的一端系在能作水平方向振动的可调频率数显机械振动弦线上驻波实验仪电 源ON复位 幅度 调节上海复旦天欣科教仪器有限公司频率调节H Z1 2 3 45FD-SWE-II源的振簧片上,频率变化范围从0-200Hz 连续可调,频率最小变化量为0.01Hz ,弦线一端通过定滑轮⑦悬挂一砝码盘⑧;在振动装置(振动簧片)的附近有可动刀片支架④,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线的可动刀口⑤。
弦振动实验报告思考
一、实验背景与目的弦振动实验是大学物理力学实验中的一个基础实验,旨在通过实验观察和研究弦的振动现象,验证波动理论,并加深对弦振动原理的理解。
本次实验主要研究了弦的驻波形成、波长与张力的关系、频率与弦长、张力和线密度的关系等。
二、实验原理1. 驻波的形成:当两列振幅相同、频率相同、传播方向相反的波相遇时,它们会发生干涉现象。
在弦上,入射波和反射波相遇,形成驻波。
驻波的特点是波节和波腹的分布,波节处振动始终为零,波腹处振动最大。
2. 波长与张力的关系:根据波动理论,弦上横波的波长λ与弦的张力T成正比,即λ ∝ √T。
3. 频率与弦长、张力和线密度的关系:弦上横波的频率f与弦长L、张力T和线密度μ的关系为f = 1/(2L)√(T/μ)。
三、实验内容与步骤1. 实验器材:电动音叉、滑轮、弦线、砝码、钢卷尺、双踪示波器等。
2. 实验步骤:(1)将弦线固定在滑轮上,一端通过音叉与电动音叉相连,另一端悬挂砝码,调节弦的张力。
(2)开启电动音叉,观察弦线振动,调整砝码,使弦线形成驻波。
(3)用钢卷尺测量驻波的波长,记录数据。
(4)改变弦长,重复上述步骤,观察波长与弦长的关系。
(5)改变张力,重复上述步骤,观察波长与张力的关系。
(6)用双踪示波器观察弦振动的波形,记录数据。
四、实验结果与分析1. 实验结果显示,当弦长、张力改变时,驻波的波长也随之改变。
这与实验原理中的波长与张力的关系相符。
2. 实验结果显示,弦振动的频率与弦长、张力和线密度的关系符合理论公式。
当弦长增加时,频率降低;当张力增加时,频率增加;当线密度增加时,频率降低。
3. 通过双踪示波器观察弦振动的波形,可以清晰地看到波节和波腹的分布,进一步验证了驻波的形成。
五、实验思考与讨论1. 实验中,弦的张力对驻波的形成和波长、频率的影响至关重要。
在实际应用中,如何准确测量和调节弦的张力,是保证实验结果准确的关键。
2. 实验中,驻波的形成与弦线的振动方向有关。
大学物理弦振动实验报告
大学物理弦振动实验报告大学物理弦振动实验报告一、实验目的1.通过实验观察弦振动现象,了解弦振动的基本规律;2.学习使用振动测量仪器,掌握振动信号的测量方法;3.分析弦振动的影响因素,加深对振动理论的理解。
二、实验原理弦振动是指一根张紧的弦在垂直于弦的方向上做往返运动。
根据牛顿第二定律和胡克定律,可以得到弦振动的微分方程。
当弦的振动幅度较小时,可近似认为弦的质量分布是均匀的,此时弦振动的微分方程可简化为波动方程。
波动方程描述了波在弦上的传播过程,其解为一系列正弦波的叠加。
三、实验器材1.弦振动实验装置;2.振动测量仪器(如示波器、频率计等);3.砝码、尺子、计时器等辅助工具。
四、实验步骤1.预备工作:检查实验装置是否完好,调整弦的张紧程度,确保弦在垂直方向上做往返运动。
2.实验操作:(1)使用尺子测量弦的长度L和张紧力T,记录数据;(2)将振动测量仪器连接到弦振动实验装置上,调整仪器参数,使仪器正常工作;(3)在弦的端点施加一个初始扰动,使弦开始振动;(4)观察并记录弦的振动情况,如振幅、频率等;(5)改变弦的张紧力T或长度L,重复步骤(3)和(4),记录数据。
3.数据处理:整理实验数据,分析弦振动的影响因素。
4.实验总结:根据实验结果,得出实验结论。
五、实验结果与分析1.实验数据记录:2.实验结果分析:(1)由实验数据可知,当弦长L和张紧力T发生变化时,弦的振幅A 和频率f也会发生变化。
这说明弦的振动受到弦长和张紧力的影响。
(2)根据波动方程,弦振动的频率f与张紧力T和弦长L之间的关系为:f=1/2L√(T/μ),其中μ为弦的线性密度。
由实验数据可知,当张紧力T增大时,频率f增大;当弦长L增大时,频率f减小。
这与波动方程的预测结果相符。
(3)实验中还发现,当弦的振幅A较大时,弦的振动会出现非线性效应,如振幅衰减、频率变化等现象。
这说明在实际情况中,需要考虑非线性因素对弦振动的影响。
六、实验结论与讨论1.通过本次实验,我们观察到了弦振动的现象,了解了弦振动的基本规律。
大学物理实验论文
研究报告大学物理实验序号:11共振法观测弦振动一、实验目的1、了解共振产生驻波的条件,2、学会使用示波器、螺旋测微器、信号发生器的使用,3、探索弦振动的改进方案。
二、实验仪器YM-II型金属动态杨氏模量实验仪,包括数显频率计信号源,示波器,螺旋测微器,游标卡尺,物理天平等。
三、实验原理任何物体都有其固有的振动频率,这个固有振动频率取决于试样的振动模式、边界条件、弹性模量、密度以及试样的几何尺寸、形状。
只要从理论上建立了一定振动模式、边界条件和试样的固有频率及其他参量之间的关系,就可通过测量试样的固有频率、质量和几何尺寸来计算弹性模量。
将弦线用两根细丝悬挂在两只换能器(一只激振,一只拾振)下面,信号发生器产生一个音频正弦信号,通过激振换能器转换成机械振动,由悬线传递给弦线,激发弦线振动在弦线两端自由的条件下,作横向震动,弦线的机械振动在通过另一根悬线传递给换能器还原成电信号,在示波器上显现出来。
调节先好发生器的输出频率与弦线固有频率一致时,弦线共振。
拾振检测出,弦线共振时的共振频率,再测出弦线的几何尺寸,质量等相关参数,由已知的杨氏模量求相关量。
1.弦振动的基本方程一细长弦线做微小横(弯曲)振动时,取弦线的一端为坐标原点,沿弦线的长度方向为x轴建立坐标系,利用牛顿力学和材料力学的基本理论可推出弦线的振动方程:4422=∂∂+∂∂xUEI tU λ (1)式中U(x, t )为弦线上任一点x 在时刻t 的横向位移;E 为杨氏模量;I 为绕垂直于弦线并通过横截面形心的轴的惯量矩;λ为单位长度质量。
对长度为L ,两端自由的弦线,边界条件为: 弯矩 022=∂∂=xU EJM作用力 33xU EJxM F ∂∂-=∂∂=即x =0, L 时:,03322=∂∂=∂∂xU xU (2)用分离变量法解微分方程(1)并利用边界条件(2),可推倒出弦线自由振动的频率方程:1cos =⋅chkL kL (3) 其中k 为求解过程中引入的系数,其值满足:EIk λω24=(4)ω为弦线的固有振动角频率。
弦振动实验报告
弦振动实验报告一、实验目的。
本实验旨在通过实际操作,观察和研究弦的振动规律,了解弦的振动特性,加深对波动理论的理解。
二、实验仪器与设备。
1. 弦,使用直径均匀、材质均匀的弦;2. 震动器,产生弦的振动;3. 杆状支架,固定弦;4. 张力器,调整弦的张力;5. 示波器,观察弦的振动波形。
三、实验原理。
当弦被扰动后,会产生横波。
横波是指波动的介质振动方向与波的传播方向垂直的波动。
弦的振动可以用波的传播来描述,其波速与张力、线密度和振动的频率有关。
四、实验步骤。
1. 将弦固定在杆状支架上,并调整张力,使得弦保持水平并且张力均匀;2. 使用震动器产生弦的振动,调整频率和振幅,观察弦的振动情况;3. 将示波器连接到弦上,观察并记录弦的振动波形;4. 改变振动频率和振幅,重复步骤3,记录不同振动条件下的波形。
五、实验数据与分析。
通过实验记录和观察,我们发现了一些规律性的现象。
随着振动频率的增加,弦的振动波形发生了变化,波的振幅和波长也随之改变。
当频率达到一定值时,弦产生了共振现象,振幅达到最大值。
此外,我们还发现了不同频率下的波形特点,比如频率较低时,波形较为平缓,频率较高时,波形则变得更为复杂。
六、实验结论。
通过本次实验,我们深入了解了弦的振动特性,了解了振动频率对弦振动波形的影响,加深了对波动理论的理解。
同时,我们也通过实验数据和观察,验证了波动理论中的一些规律性原理。
七、实验总结。
本次实验不仅让我们通过实际操作加深了对波动理论的理解,也锻炼了我们的观察和记录能力。
在今后的学习和科研中,我们将继续深入学习和探索波动理论,为更深层次的科学研究打下坚实的基础。
八、参考文献。
1. 《大学物理实验》。
2. 《波动理论基础》。
以上为本次实验的报告内容。
(文档结束)。
2020年大学物理《弦振动》实验报告
大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1-------------------------------------------------------①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ--------------------------------------------------------②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2或λ=2*L/n代入③得γn=2L------------------------------------------------------④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
弦振动实验装置和实验方法的研究
图 2 改进后的实验装置图
弦振动实验装置和实验方法的研究
93
3 数据处理与讨论
3.1 origin 软件数据处理 Origin 软 件 是 是 一 种 常 规 的 数 据 处 理 软
件[5 ̄7] ꎬ本文采用 origin 软件对数据进行分析和拟 合直线ꎬ本文采用拟合直线 y = bx +aꎬ由给定的自 变量 x 数列和因变量函数 y 数列值 y = bx+aꎬ由给
v2
=
FT ρ
即 v=
FT ρ
(2)
1.3 弦振动规律
将(1) 代入(2) 式ꎬ得出[4]
λ=
1 γ
FT ρ
(3)
整理后可得
γ
=
n 2l
FT ρ
(4)
式(3)表示ꎬ以一定频率 γ 振动的弦ꎬ其波长
λ 将因张力 FT 或线密度 ρ 的变化而变化的规律ꎮ 将式( 3) 两侧取对数ꎬ得
将式( 3) 两侧取对数ꎬ得
不稳定ꎬ可能会使实验中途停止ꎬ其次ꎬ移动音叉 由于摩擦ꎬ会使音叉运动轨迹很难以直线运动下 去ꎬ测量弦长时ꎬ由于实验正在进行ꎬ很难在出现 驻波时作好标记ꎬ这会导致实验结束后ꎬ测量的弦 长误差较大ꎮ
为了改实验条件ꎬ提高实验准确度ꎬ对原实验 装置作了一些改进ꎮ 改进后的装置如图 2 所示ꎬ 带轮子的音叉承载板( 用来减小音叉与桌面的摩 擦ꎬ使操作更容易) 、弹簧测力计、滑轮、带槽孔的 驻波控制屏、皮尺等ꎬ弦上张力的大小由弹簧秤直 接读出ꎬ而形成驻波的弦长的改变ꎬ可以通过移动 驻波控制屏的位置来实现ꎬ弦长的长短则由控制 屏控制ꎬ带皮尺的音叉运动轨迹平台ꎬ保证了音叉 沿直线运动且当出现稳定的驻波时会在第一时间 内读出弦长ꎮ
文献标志码: A
DOI:10.14139 / j.cnki.cn22 ̄1228.2018.01.022
弦振动规律研究实验指导书
弦振动规律研究实验指导书俸用格一:注意事项二:弦振动规律研究实验基本原理三:弦振动规律研究综合实验仪操作指南四:参考表格海南大学物理实验室一:注意事项1.进入实验室不可移动、摆弄实验台/桌上的所有仪器用具。
以免拉断仪器间的连接电缆/线、改变教师设置好的各种实验参数!2.实验结束后必需经任课教师检查你所使用的实验仪器与用具,器具完好无损方可离开实验室!3.实验过程中不可盲目转动示波器面板各旋钮,连线时务必正确使用探笔以免损坏探笔探针和内部芯线!4.实验过程中不可用手触碰弦线和电磁传感器线圈表面!5.实验过程中千万不可接错驱动传感器和接收传感器!6.实验过程中驱动与接收传感器不可靠得太近,以免相互产生干扰,通过观察示波器中的接收波形可以检验干扰的存在。
当他们靠得太近时,波形会改变。
为了得到较好的测量结果,至少两传感器的距离应大于cm10。
7.悬挂,、更换砝码以及砝码杆水平调节时务必动作轻巧,以免使弦线崩断,造成砝码坠落而发生事故。
二:弦振动规律研究实验基本原理【实验目的】1、巩固示波器的使用方法和操作技巧。
2、了解驻波形成的基本条件与弦振动的基本规律。
3、测量不同弦长和不同张力时弦振动的共振频率。
4、测量弦线的线密度。
5、测量弦振动时波的传播速度。
【实验仪器】301FB 型弦振动研究实验仪与弦振动实验信号源各1台,双踪示波器1台。
【实验原理】正弦波沿着拉紧的弦传播,可用式(1)来描述:)(2cos 1λπxt f y y m -⨯= (1)如果弦的一端被固定,那么当波到达固定端时会反射回来,反射波可表示为:)(2cos 1λπxt f y y m +⨯= (2)在保证这些波的振幅不超过弦所能承受的最大振幅时,两束波叠加后的波方程为: )2cos()/2cos(2t f x y y m ⋅⋅⋅=πλπ (3)等式的特点:当时间固定为0t 时,弦的形状是振幅为)2cos(20t f y m ⋅⋅π的正弦波形。
大物实验报告 弦振动与驻波实验
物理实验报告哈工大物理实验中心班号33006学号1190501917姓名刘福田教师签字实验日期2020.4.19预习成绩学生自评分总成绩(注:为方便登记实验成绩,班号填写后5位,请大家合作。
)实验(三)弦振动和驻波实验一.实验目的1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;2、在振动源频率不变时,用实验确定驻波波长与张力的关系;3、观察弦振动及驻波的形成。
二.实验原理在一根拉紧的弦线上,张力为T,线密度为μ,则沿弦线传播的横波应满足运动方程其中x:波在传播方向(与弦线平行)的位置坐标;y:振动位移;而典型的波动方程为通过比较(1)、(2),可得到波的传播速度;若波源的振动频率为f,横波波长为λ,则横波沿弦线传播的速度可表示为波长与张力及线密度之间的关系可表示为两边取对数,得到公式波长的测量:驻波方法图像如图所示三.实验主要步骤或操作要点1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;①将弦线一端固定在鞋盒侧面,线跨过鞋盒沿,另一端下垂并悬挂一水瓶。
实验装置如图3-1图3-1②在保持张力不变的情况下,移动筷子位置,使半波长λ/2分别为10、15、20、25、30c m。
③用牙签波动弦线发出声音,利用P h y p h o x分别测出线的振动频率f2、在振动源频率不变时,用实验确定驻波波长与张力的关系①固定A B之间的距离并测量②利用小量杯等量地增加水瓶中水的体积,即等量地改变弦线的张力T③波动弦线,用软件p h y p h o x测量不同张力下弦线的振动频率f3、验证三分损益法①保持弦线张力不变,先将A B的距离固定,测出此时的频率,并将音调定为基准音D o,算出相应的F a,S o l,L a,高音D o的理论频率。
②移动筷子,缩短A B距离,波动弦线,先粗略听出F a音,再微调距离使得P h y p h o x 测出的频率恰为理论的F a音频率。
测出相应的A B距离。
标记F a位置。
弦音震动实验报告
大学物理实验报告课程名称:普通物理实验(2)实验名称:弦音震动学院:专业班级:学生:学号:实验地点:座位号:实验时间:一、实验目的:1、了解固定均匀弦振动的传播规律,加深对振动与波和干涉的概念。
2、了解固定均匀弦振动的传播形成驻波的波形,加深对干涉的特殊形式(驻波)的认识。
3、了解决定固定弦共有频率的因素,测量均匀弦线上恒博的传播速度及均匀弦线的线密度。
4、了解声音和频率的关系。
二、实验装置:实验装置如图1所示。
吉它上有四支钢质弦线,中间两支是用来测定弦线力,旁边两支用来测定弦线线密度。
实验时,弦线3与音频信号源接通。
这样,通有正弦交变电流的弦线在磁场中就受到周期性的安培力的激励。
根据需要,可以调节频率选择开关和频率微调旋钮,从显示器上读出频率。
移动劈尖的位置,可以改变弦线长度,并可适当移动磁钢的位置,使弦振动调整到最佳状态。
根据实验要求:挂有砝码的弦线可用来间接测定弦线线密度或横波在弦线上的传播速度;利用安装在力调节旋钮上的弦线,可间接测定弦线的力。
如图1所示,实验时,将弦线3(钢丝)绕过弦线导轮5与砝码盘10连接,并通过接线柱4接通正弦信号源。
在磁场中,通有电流的金属弦线会受到磁场力(称为安培力)的作用,若弦线上接通正弦交变电流时,则它在磁场中所受的与磁场方向和电流方向均为垂直的安培力,也随之发生正弦变化,移动劈尖改变弦长,当弦长是半波长的整倍数时,弦线上便会形成驻波。
移动磁钢的位置,将弦线振动调整到最佳状态,使弦线形成明显的驻波。
此时我们认为磁钢所在处对应的弦为振源,振动向两边传播,在劈尖与吉它骑码两处反射后又沿各自相反的方向传播,最终形成稳定的驻波。
考察与力调节旋钮相连时的弦线3时,可调节力调节旋钮改变力,使驻波的长度产生变化。
为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从骑码端发出的,沿弦线朝劈尖端方向传播,称为入射波,再由劈尖端反射沿弦线朝骑码端传播,称为反射波。
大学物理《弦振动》实验报告
大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一. 实验目的1. 观察弦上形成的驻波2. 学习用双踪示波器观察弦振动的波形3. 验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二. 实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
论和实验证明,波在弦上传播的速度可由下式表示:ρ1另外一方面,波的传播速度v 和波长λ及频率γ之间的关系是:v= λ γ-- ②将②代入①中得γ=λ1-- ③ρ 1又有L=n* λ/2或λ =2*L/n 代入③得γn=2L--- ④ρ 1四实验内容和步骤1. 研究γ和n 的关系①选择 5 根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm ,置驱动线圈距离一个弦码大约5.00cm 的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg 砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg⋯⋯. )④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1 时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5 时的共振频率,做γn 图线,导出γ和n 的关系。
大学物理实验----弦振动驻波
弦振动驻波的研究【实验目的】1.观察弦振动时驻波的形成;2.验证弦振动时驻波波长与张力的关系; 3.验证弦线波传播规律ρTV =,λ⋅=f V 。
【实验仪器】本实验用产生稳定驻波的实验装置产生驻波(如图1所示)。
波源A 是由电力驱动的电动音叉,能够产生机械波。
B 是一个定滑轮,称为节点。
从音叉A 的端部引出一根弦线穿过B 点后弯折,弦线的另一端悬挂一重物M 。
重物产生的重力就是加在弦线上的张力。
【实验原理】1. 求弦线线密度的原理机械波在介质中的传播速度与介质本身的物理属性有关系。
当一列横波沿弦线传播时,若维持张力T 不变,则横波的传播速度v 与弦线上的张力T 及弦线的线密度ρ的关系为ρTv =。
若弦线的振动频率为f ,横波在弦线上传播的波长为λ,则ρλTf v =⋅=,即ρλTf1=,若f 、ρ固定,则 λ∝T 。
精确测定λ和T ,作λ~T 图线,若其为一过原点的直线,则上述观点得到验证。
若知道f ,T ,λ则可求出弦线的线密度。
2. 用驻波法求波长的原理从波源A 发出的机械波沿着弦线向前传播。
机械波传播到节点B 后即被反射,反射回来的机械波仍然沿弦线传播。
发射波(波1)与反射波(波2)在C 点相遇,如图2。
波1比波图1 驻波发生装置源A 的相位延迟了πλϕ21⋅=x。
波2比波源A 的相位延迟了ππλϕ+⋅-=222xL 。
其中2ϕ里面附加的相位π是由于在节点B 的位置处,波是由波疏介质(弦线)入射到波密介质(金属定滑轮),因此产生半波损失,产生π的相位突变。
波1和波2在C 点处的相位差ππλϕϕϕ+⋅-=-=∆22212xL c 。
对于C 点来说,两列波的相位差恒定。
且两列波是从同一个波源发出的,故频率相同,振幅相同,满足机械波波的相干条件(频率相同,振幅相近,相位差恒定),会产生波的干涉现象。
图2 驻波原理当波源到节点的距离为半波长的整数倍的时候,即2λ⋅=m L ,m 为整数,在C 点处相遇的两束波的相位差为πλππππλλϕ22222⋅-+=+⋅-=∆xm xm c 。
弦振动的研究
苏州大学物理实验教学中心
力热学实验
分析可知弦振动满足波动方程:
2 y t 2
T
2 y x 2
(2.8—1)
x为波动传播方向,y为振动位移方向,ρ为弦线的
线密度,T为弦线张力,弦上波速为
苏州大学物理实验教学中心
力热学实验
弦线的张力
,
T mg W
m为砝码及砝码托的质量和.
(2)通电,调节振子螺钉(注意不可过紧)使音叉振动起 来,固定弦长约70cm左右,手按弦线以改变张力,观察 弦上形成不同半波个数时的驻波。取n =1,2,3,4,5, 可从手感觉张力T 的不同,并估计其大概数值。
(2) 测量时应使驻波波形稳定,且波节清晰, 砝码不要晃动,应保持静态。
(3) 电振音叉不起振或不使用时,应将触点 断开。
(4) 实验完毕,应立即将所有砝码取下放好。
苏州大学物理实验教学中心
力热学实验
精品课件!
苏州大学物理实验教学中心
力热学实验
精品课件!
苏州大学物理实验教学中心
【思考题】
力热学实验
υ
T ρ
(2.8—2)
按波动公式 u f,结合式(2.8—2)
可得弦振动波长与张力的关系为
λ
1 f
T ρ
(2.8—3)
苏州大学物理实验教学中心
力热学实验
从式(2.8—1)容易得出前进波、反射波都是波动方程的
解,当满足一定条件时弦振动方式为驻波,为简明起见,
设x=0及x=L处 y≡0,即视弦的两端为固定,则驻波条件
大学物理实验弦振动课后反思
大学物理实验弦振动课后反思系统误差,实验误差系统误差。
表示弦振动的基频与弦长S成反比,与拉力F的平方根成正比。
一般误差分为系统误差、实验误差和系统误差两部分误差,主要是实验和环境带来的,就像一楼真空实验弦的长度精度一样。
这是必然的,也是必然的。
如果引起振动的频率很复杂(例如冲击或宽带振动),系统通常会“挑选”出它的共振频率以该频率振动,实际上系统会滤除其他频率。
误区分析固有频率是某种物质特有的固定振动频率。
我们知道每种物质都会振动。
但由于物质中微观粒子的不同,每种物质的频率也不同。
材料在一定频率的外力作用下,会随着外力的频率发生振动,物理学上称为强迫振动。
但由于能量消耗,强制振动的幅度会更小。
当外力的频率与材料的固有频率相同时,振幅将达到最大值。
即发生共振!这也是共振频率。
大学物理弦振动实验思考题解答1.当来自两个波源的两个波沿同一直线向相反方向传播时,它们是否会形成驻波:是的。
驻波形成的条件是两波的振幅和振动方向相同,相位差恒定。
当它们沿相同方向传播时会产生驻波。
在实验中,由入射波和反射波的相干性形成驻波。
当然,反射波可以用同一波源产生的另一种波代替进行实验。
2、细绳的粗细和弹力对实验的影响:粗细会影响实验的观察效果。
对于同样的材料,越厚,重力阻力的影响越大,节点越短。
弹性会影响振幅的变化。
弹性越好,实验中观察到的结果越明显。
当然,不均匀的厚度也会使谐振频率不稳定,阻碍驻波的产生。
形成原理波的波幅相同,频率相同,向相反方向传播的波,在波叠加时形成。
那么,如何让两个波传播的方向相反,并且两个波的幅值和频率相同呢?在实践中,通常使用波的反射。
例如,当声波传播到固定端时,弦上的驻波会反射。
反射波以与入射波相反的方向传播,具有相同的幅度和频率。
因此,入射波和反射波的叠加形成驻波。
对于管内的驻波,当声波传播到封闭端时,入射波和反射波叠加形成驻波。
以上内容参考:百科-驻波。
弦音震动实验报告
大学物理实验报告课程名称:普通物理实验(2)实验名称:弦音震动学院:专业班级:学生:学号:实验地点:座位号:实验时间:一、实验目的:1、了解固定均匀弦振动的传播规律,加深对振动与波和干涉的概念。
2、了解固定均匀弦振动的传播形成驻波的波形,加深对干涉的特殊形式(驻波)的认识。
3、了解决定固定弦共有频率的因素,测量均匀弦线上恒博的传播速度及均匀弦线的线密度。
4、了解声音和频率的关系。
二、实验装置:实验装置如图1所示。
吉它上有四支钢质弦线,中间两支是用来测定弦线力,旁边两支用来测定弦线线密度。
实验时,弦线3与音频信号源接通。
这样,通有正弦交变电流的弦线在磁场中就受到周期性的安培力的激励。
根据需要,可以调节频率选择开关和频率微调旋钮,从显示器上读出频率。
移动劈尖的位置,可以改变弦线长度,并可适当移动磁钢的位置,使弦振动调整到最佳状态。
根据实验要求:挂有砝码的弦线可用来间接测定弦线线密度或横波在弦线上的传播速度;利用安装在力调节旋钮上的弦线,可间接测定弦线的力。
如图1所示,实验时,将弦线3(钢丝)绕过弦线导轮5与砝码盘10连接,并通过接线柱4接通正弦信号源。
在磁场中,通有电流的金属弦线会受到磁场力(称为安培力)的作用,若弦线上接通正弦交变电流时,则它在磁场中所受的与磁场方向和电流方向均为垂直的安培力,也随之发生正弦变化,移动劈尖改变弦长,当弦长是半波长的整倍数时,弦线上便会形成驻波。
移动磁钢的位置,将弦线振动调整到最佳状态,使弦线形成明显的驻波。
此时我们认为磁钢所在处对应的弦为振源,振动向两边传播,在劈尖与吉它骑码两处反射后又沿各自相反的方向传播,最终形成稳定的驻波。
考察与力调节旋钮相连时的弦线3时,可调节力调节旋钮改变力,使驻波的长度产生变化。
为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从骑码端发出的,沿弦线朝劈尖端方向传播,称为入射波,再由劈尖端反射沿弦线朝骑码端传播,称为反射波。