初中一年级上册数学知识点

合集下载

最新初中一年级上期数学知识点

最新初中一年级上期数学知识点

初中一年级上期数学知识点>初中一年级上期数学知识点>第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

初中一年级上册数学知识点

初中一年级上册数学知识点

初中一年级上册数学知识点初中一年级上册数学知识点第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个局部不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个局部都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最根本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n 条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。

弧:圆上A、B两点之间的局部叫做弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

初中一年级数学知识点总结

初中一年级数学知识点总结

初中一年级数学知识点总结初中一年级数学知识点总结一一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;p不是有理数;(2)有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是 ;若ab=1? a、b 互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中一年级数学主要知识点

初中一年级数学主要知识点

初中一年级数学主要知识点1. 数的概念和运算自然数、整数、分数和小数的概念及其相互关系。

整数的加法、减法、乘法和除法。

分数的加法、减法、乘法和除法。

小数的加法、减法、乘法和除法。

2. 代数初步代数式的概念和运算。

一元一次方程的解法。

二元一次方程组的解法。

3. 几何初步点、线、面的概念及其相互关系。

角的概念及其度量。

三角形的性质和分类。

四边形的性质和分类。

圆的性质和计算。

4. 统计初步数据的收集、整理和表示。

平均数、中位数和众数的概念及其计算。

方差的计算和应用。

5. 数学思维和方法数学的抽象思维和逻辑推理能力。

数学建模和解决问题的能力。

数学探究和创新能力。

1. 函数与图形一次函数的概念、图像及其性质。

二次函数的概念、图像及其性质。

函数的增减性和极值。

2. 不等式与不等式组一元一次不等式的解法。

一元二次不等式的解法。

不等式组的解法。

3. 平面几何平行线与相交线的性质。

三角形的全等与相似。

四边形的全等与相似。

圆的性质及其与直线、圆弧的关系。

4. 空间几何点、线、面在空间中的关系。

空间几何体的性质和分类。

空间几何体的表面积和体积计算。

5. 数学实验与探究数学实验的基本方法和步骤。

数学探究活动的组织和实施。

数学探究活动的成果展示与交流。

6. 数学应用与建模数学在生活中的应用实例。

数学建模的基本方法和步骤。

数学建模案例分析。

7. 数学思维与策略数学问题的解决策略。

数学思维训练方法。

数学竞赛与数学游戏。

8. 数学文化数学历史与数学家故事。

数学与艺术、科学的关系。

数学在现代社会中的地位和作用。

9. 数据分析与概率数据的收集与整理。

数据的表示与解释。

概率的基本概念与计算。

简单的概率模型。

10. 数学思维与问题解决数学思维的培养与训练。

数学问题的识别与分析。

数学问题的解决策略与方法。

数学问题的反思与评价。

11. 数学与科技数学在科技发展中的作用。

数学与计算机科学的关系。

数学在信息技术中的应用。

12. 数学与生活数学在日常生活中的应用。

初中一年级上册数学知识点

初中一年级上册数学知识点

初中一年级上册数学知识点1. 数的基本性质2. 数的分类3. 小数的概念和加减运算4. 分数的概念和加减运算5. 平方根和立方根的概念6. 代数式、方程和不等式7. 二次根式的概念和性质8. 等角图形的概念和性质9. 根据比例求解问题10. 数据的收集和表示数学作为一门重要的学科,对于初中一年级的孩子来说更是至关重要。

数学知识点主要涵盖数的基本性质、小数、分数、代数式和方程、等角图形和数据处理等方面。

以下是对这些知识点的详细解释:1. 数的基本性质:包括数的大小顺序、正数、负数、零的概念和加、减、乘、除的基本运算。

2. 数的分类:包括自然数、整数、有理数、无理数等分类。

3. 小数的概念和加减运算:关注小数的四则运算和小数点的位置。

4. 分数的概念和加减运算:关注分数的大小比较和分数的四则运算。

5. 平方根和立方根的概念:这个知识点主要涉及到数字的开方和立方的规则。

6. 代数式、方程和不等式:这个知识点主要关注如何推导和求解代数式和方程。

7. 二次根式的概念和性质:关注二次根式的大小比较和四则运算。

8. 等角图形的概念和性质:关注等腰三角形、等边三角形等等。

9. 根据比例求解问题:这个知识点主要涉及到解决直接和反比例的问题。

10. 数据的收集和表示:关注数据的收集、处理和显示等技巧。

以上是初中一年级上册数学知识点的十个标题。

它们涵盖了数学的核心知识点,为初中学生打下坚实的数学基础提供了重要的保障。

1. 数的基本性质:数的大小顺序可以用数轴表示,正数为大于零的数,负数为小于零的数,零为表示没有数值大小。

加、减、乘、除的基本运算是数学学习的基础。

例如:4>-1,-5 < -3,0 = -0,2 + 3 = 5,5 - 2 = 3,2 x 3 = 6,6 ÷ 2 = 3。

2. 数的分类:自然数是从1开始的数字,整数为自然数和它的相反数的集合,有理数是所有可以表示成两个整数的比的数,无理数是不能用有理数表示的数。

初中一年级数学上册知识点【优秀5篇】

初中一年级数学上册知识点【优秀5篇】

初中一年级数学上册知识点【优秀5篇】总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,让我们一起来学习写总结吧。

如何把总结做到重点突出呢?它山之石可以攻玉,以下内容是为您带来的5篇《初中一年级数学上册知识点》,如果能帮助到亲,我们的一切努力都是值得的。

七年级数学代数初步知识知识点篇一1、代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a 。

3、几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2 ;a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是:-a2 。

初中一年级上册数学篇二教学目标:1、学生能在具体情境中自主解决乘加、乘减问题,建构乘加、乘减问题的模型,形成基本的解决问题的策略,掌握乘加、乘减的计算方法和算理,能正确地计算。

初中一年级数学知识点

初中一年级数学知识点

初中一年级数学知识点 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8一、无忧考网整理的关于初中一年级数学上册知识点第一章:有理数1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;(3) ; ;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

初中一年级数学知识点

初中一年级数学知识点

一、无忧考网整理的关于初中一年级数学上册知识点第一章:有理数1.有理数:1凡能写成形式的数,都是有理数,整数和分数统称有理数;注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2有理数的分类: ①②3注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;4自然数 0和正整数; a>0 a是正数; a<0 a是负数;a≥0 a是正数或0 a是非负数; a≤ 0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; 2注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3相反数的和为0 a+b=0 a、b互为相反数.4相反数的商为-1.5相反数的绝对值相等4.绝对值:1正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2 绝对值可表示为:或 ;3 ; ;4 |a|是重要的非负数,即|a|≥0;5.有理数比大小:1正数永远比0大,负数永远比0小;2正数大于一切负数;3两个负数比较,绝对值大的反而小;4数轴上的两个数,右边的数总比左边的数大;5-1,-2,+1,+4,,以上数据表示与标准质量的差, 绝对值越小,越接近标准;6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1 a、b互为倒数; 若ab=-1 a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; 3一个数与0相加,仍得这个数.8.有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c.9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10 有理数乘法法则:1两数相乘,同号得正,异号得负,并把绝对值相乘;2任何数同零相乘都得零;3几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正;11 有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac .简便运算12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;3a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;4据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.混合运运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤;18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择;第二章整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式;2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5. .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去添括号法则:去添括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:划线;二“+”务必用+号开始合并三合:合并10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大或从大到小排列起来,叫做按这个字母的升幂排列或降幂排列.第三章一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以或除以同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0x是未知数,a、b是已知数,且a≠0.8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘不漏乘最简公分母去括号----------注意符号变化移项----------变号留下靠前合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:1读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.2画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做已知量,填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:1行程问题:距离=速度时间 ;2工程问题:工作量=工效工时 ;工程问题常用等量关系:先做的+后做的=完成量3顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系:顺水路程=逆水路程4商品利润问题:售价=定价 , ;利润问题常用等量关系:售价-进价=利润5配套问题:6分配问题第四章图形初步认识一多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主正视图---------从正面看2、几何体的三视图侧左、右视图-----从左右边看俯视图---------------从上面看1会判断简单物体直棱柱、圆柱、圆锥、球的三视图.2能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图1同一个立体图形按不同的方式展开,得到的平现图形不一样的.2了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体1几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.2点动成线,线动成面,面动成体.二直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线ABBA 射线AB 线段a线段ABBA作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段1度量法2用尺规作图法4、线段的大小比较方法1度量法2叠合法5、线段的中点二等分点、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系1点在直线上 2点在直线外.三角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法四种:3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围 0<∠β<90°∠β=90° 90°<∠β<180°∠β=180°∠β=360°5、角的比较方法1度量法2叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角1借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.2借助量角器能画出给定度数的角.3用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形:符号:9、互余、互补1若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.2若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.3余补角的性质:等角的补余角相等.10、方向角1正方向2北南偏东西方向3东西北南方向。

初中一年级数学上册知识点

初中一年级数学上册知识点

初一数学概念实数:—有理数与无理数统称为实数。

有理数:整数和分数统称为有理数。

无理数:无理数是指无限不循环小数。

自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:符号不同的两个数互为相反数。

倒数:乘积是1的两个数互为倒数。

绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。

一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式有理数的运算法则⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

⑵减法法则:减去一个数,等于加上这个数的相反数。

⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。

数学第一章相交线一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。

邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。

两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

对顶角的性质:对顶角相等。

三、垂直1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。

其中一条叫做另一条的垂线,它们的交点叫做垂足。

记做a⊥b垂直是相交的一种特殊情形。

2、垂线的性质:①过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

初中一年级数学上册知识点

初中一年级数学上册知识点

初中一年级数学上册知识点初中一年级数学上册知识点概述一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数、负数和零的概念- 整数 operations (加法、减法、乘法、除法)2. 分数与小数- 分数的基本概念- 真分数与假分数- 分数的四则运算- 小数的基本概念- 小数的四则运算- 分数与小数的相互转换3. 代数表达式- 字母表示数- 代数式的概念- 单项式与多项式- 合并同类项- 代数式的简化4. 一元一次方程- 方程的概念- 一元一次方程的标准形式- 方程的解法(移项、合并同类项、系数化为1)二、几何1. 几何基本概念- 点、线、面、体的概念- 直线、射线、线段的区分- 角的概念(邻角、对角、平行线)2. 平面图形- 正方形、长方形的性质与计算- 三角形的基本性质- 等腰三角形、等边三角形的性质- 四边形的分类与性质(梯形、平行四边形、矩形、菱形)3. 面积与体积- 长方形、正方形的面积计算- 三角形的面积计算- 圆的面积与周长计算- 立方体、长方体的体积计算三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 简单统计图表的绘制(条形图、折线图)2. 概率- 随机事件的概念- 可能性的初步理解- 简单概率的计算四、应用题1. 利用所学知识解决实际问题- 速度、时间与距离问题- 货币、购物与消费问题- 比例与相似问题以上是初中一年级数学上册的主要知识点概述。

这些知识点构成了初中数学的基础,对于后续学习有着重要的影响。

学生应该通过练习和理解来掌握这些概念,为更高级的数学学习打下坚实的基础。

教师和家长应鼓励学生通过多种方式来探索和应用这些数学知识,以增强他们的数学能力和解决问题的技能。

初中一年级上册数学知识点

初中一年级上册数学知识点

初中一年级上册数学知识点1. 数系与数值大小比较2. 等式与方程3. 加减乘除混合运算4. 分数与小数的加减乘除5. 百分数的背景及应用6. 比与比例7. 开根与平方8. 正比例函数与反比例函数9. 一元一次方程的解法10. 坐标系及平面图形的性质1. 数系与数值大小比较:介绍自然数、整数、有理数的概念及大小比较方法,例如在自然数中,1比0大,2比1大,以此类推。

2. 等式与方程:讲解等式和方程的定义及区别,以及解方程的方法,例如2x+3=7这个方程,解法是2x=4,x=2。

3. 加减乘除混合运算:以整数和分数的加减乘除为例,介绍运算顺序,例如7/3 + 2/5 - 1/2的运算顺序为先通分再相加减。

4. 分数与小数的加减乘除:介绍分数和小数的相互转换方法,以及加减乘除的运算法则,例如计算0.75 x 1 1/6,应先将11/6转化成小数,再进行计算。

5. 百分数的背景及应用:介绍百分数的定义及与分数、小数的转换,以及百分数在实际生活中的应用,例如计算折扣或税率等。

6. 比与比例:介绍比和比例的概念及对应的数学符号,以及比例中的同比例性质,例如三个数3、6、9之间的比为1:2:3,其中每两个数的比相同。

7. 开根与平方:介绍开方和平方的定义及计算方法,以及平方根和算术平方根的区别,例如√9=3,9的平方为81。

8. 正比例函数与反比例函数:介绍正比例函数和反比例函数的定义及图像特征,例如y=kx表示的是正比例函数,y=k/x表示的是反比例函数。

9. 一元一次方程的解法:介绍一元一次方程的定义以及解方程的方法,例如2x+3=7这个方程的解为x=2。

10. 坐标系及平面图形的性质:介绍笛卡尔坐标系和平面图形的基本概念,例如直线和曲线的表示方法,以及平面图形的基本性质,如面积、周长等。

我作为一个AI语言模型,可以根据您的要求生成一些内容,但可能不足3000字。

如果您需要更多的文本,请告诉我具体的需求,我会尽力满足。

初中一年级数学知识点

初中一年级数学知识点

初中一年级数学知识点第一章:有理数1.有理数:初中一年级数学知识点.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数; a>0 a是正数; a<0 a是负数;a≥0 a是正数或0 a是非负数; a≤0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 a+b=0 a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;(3) ; ;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1a、b互为倒数; 若ab=-1a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.混合运运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤.18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择.第二章整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5. .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).第三章一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度•时间;(2)工程问题:工作量=工效•工时;工程问题常用等量关系:先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程(4)商品利润问题:售价=定价,;利润问题常用等量关系:售价-进价=利润(5)配套问题:(6)分配问题第四章图形初步认识(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA) 射线AB 线段a线段AB(BA)作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系(1)点在直线上(2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形:符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向(2)北(南)偏东(西)方向(3)东(西)北(南)方向。

人教版初中一年级数学知识点

人教版初中一年级数学知识点

人教版初中一年级数学第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b=a+(-b) 减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

初中数学知识点总结分年级

初中数学知识点总结分年级

初中数学知识点总结分年级一年级上册:1. 数的认识- 自然数、整数的认识和运算- 小数、分数的基本概念和四则运算- 正负数的引入和简单的运算2. 算术运算- 加法、减法、乘法、除法的基本原则和运算法则- 乘法表的熟练掌握- 括号的使用和运算顺序3. 几何图形- 平面图形的认识,包括点、线、面的基本性质- 基本图形的分类,如圆形、正方形、长方形、三角形等 - 对称性和图形的对称轴4. 度量衡- 长度、面积、体积、质量的基本概念和计算方法- 常用度量单位及其换算关系一年级下册:1. 分数和小数- 分数的意义、性质和比较大小- 小数的意义、性质和比较大小- 分数与小数的相互转换2. 比例与百分数- 比例的概念和基本性质- 百分数的引入和应用- 比例和百分数的实际问题解决3. 线性方程- 线性方程的概念和解法- 一元一次方程的解法和应用- 二元一次方程组的解法和应用4. 几何图形的性质- 平行线的性质和判定- 三角形的基本性质和分类- 四边形的基本性质和分类二年级上册:1. 代数表达式- 字母表示数的概念- 单项式和多项式的概念和运算 - 代数表达式的简化和变形2. 函数的初步认识- 函数的概念和表示方法- 线性函数和二次函数的基本概念 - 函数图像的绘制和基本特征3. 几何图形的计算- 面积和体积的计算公式- 相似三角形的性质和应用- 圆的基本性质和计算4. 数据的收集和处理- 统计数据的基本概念- 数据的图表表示方法,如条形图、折线图- 概率的初步认识和简单概率计算二年级下册:1. 代数式的进一步学习- 多项式的乘法和除法- 因式分解的方法和应用- 分式的概念和运算2. 平面直角坐标系- 坐标系的建立和点的坐标表示- 坐标系中图形的平移、旋转和对称- 函数图像与坐标系的关系3. 三角形和四边形- 三角形的面积计算公式- 特殊四边形的性质,如梯形、菱形、矩形和正方形 - 不同四边形面积的计算方法4. 不等式和不等式组- 不等式的概念和基本性质- 一元一次不等式的解法和应用- 一元一次不等式组的解法和应用三年级上册:1. 整数的性质- 整数的奇偶性和整除性- 质数与合数的概念和判断方法- 最大公约数和最小公倍数的求法2. 代数方程- 一元二次方程的解法- 二元二次方程组的解法- 分式方程和无理方程的解法3. 几何图形的变换- 图形的平移、旋转和翻转- 几何图形的相似变换- 坐标系中图形变换的代数表示4. 统计与概率- 数据的集中趋势,如平均数、中位数和众数 - 数据的离散程度,如方差和标准差- 概率的进一步认识和复杂概率计算三年级下册:1. 实数和复数- 实数的基本概念和性质- 复数的基本概念和运算- 实数与复数之间的转换2. 函数的应用- 函数在实际问题中的应用- 函数的最值问题和解法- 函数图像的交点问题3. 圆和立体图形- 圆的性质和圆周角、圆心角的关系 - 圆锥、圆柱和球的基本性质- 立体图形的表面积和体积计算4. 综合问题解决- 数学知识在实际问题中的应用- 数学建模。

初中一年级数学上册第一章知识点

初中一年级数学上册第一章知识点

以下是为⼤家整理的关于初中⼀年级数学上册第⼀章知识点的⽂章,供⼤家学习参考!第⼀章有理数1.1正数和负数以前学过的0以外的数前⾯加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同⼀个问题中,分别⽤正数和负数表⽰的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴规定了原点、正⽅向、单位长度的直线叫做数轴。

数轴的作⽤:所有的有理数都可以⽤数轴上的点来表达。

注意事项:⑴数轴的原点、正⽅向、单位长度三要素,缺⼀不可。

⑵同⼀根数轴,单位长度不能改变。

⼀般地,设是⼀个正数,则数轴上表⽰a的点在原点的右边,与原点的距离是a个单位长度;表⽰数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表⽰相反数的两个点关于原点对称。

在任意⼀个数前⾯添上“-”号,新的数就表⽰原数的相反数。

1.2.4绝对值⼀般地,数轴上表⽰数a的点与原点的距离叫做数a的绝对值。

⼀个正数的绝对值是它的本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表⽰有理数,它们从左到右的顺序,就是从⼩到⼤的顺序,即左边的数⼩于右边的数。

⽐较有理数的⼤⼩:⑴正数⼤于0,0⼤于负数,正数⼤于负数。

⑵两个负数,绝对值⼤的反⽽⼩。

1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较⼤的加数的符号,并⽤较⼤的绝对值减去较⼩的绝对值。

互为相反数的两个数相加得0。

⑶⼀个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前⾯两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进⾏。

初中一年级数学知识点总结

初中一年级数学知识点总结

初中一年级数学知识点总结每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。

下面是我给大家整理的一些学校一班级数学学问点总结的学习资料,盼望对大家有所关心。

学校一班级数学学问点总结(上册)第一章有理数一、学问框架二.学问概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;(2) 肯定值可表示为:或 ;肯定值的问题常常分类争论;5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若a≠0,那么的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把肯定值相加;(2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把肯定值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数打算.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的安排律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;留意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最终加减.本章内容要求同学正确熟悉有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、肯定值的意义所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中一年级上册数学知识点初中一年级数学上册知识点篇一第二章一元一次方程2.1 从算式到方程方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的。

性质:1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)把等式一边的某项变号后移到另一边,叫做移项。

第三章图形认识初步3.1 多姿多彩的图形几何体也简称体(solid)。

包围着体的是面(surface)。

3.2 直线、射线、线段线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量1度=60分1分=60秒1周角=360度1平角=180度3.4 角的比较与运算如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

初中数学学习方法一、温故法学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

二、操作法对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。

三、类比法这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

四、喻理法为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念。

初中数学复习计划跨入新的一年,我们的新课结束,本学期的期末考试将在1月20日进行,为了使同学们能够在期末考试中取得较好的成绩,特制定本期末复习计划。

一、复习目标1、通过复习使学生在回顾基础知识的同时,掌握“双基”,构建自己的知识体系,掌握解决数学问题的方法和能力,从中体会到数学与生活的密切联系。

2、在复习中,让学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。

3、通过专题强化训练,让学生体验成功的快乐,激发其学习数学的兴趣。

4、通过摸拟训练,培养学生考试的技能技巧。

本学期的知识内容涉及的面比较广,基本概念比较多,也比较抽象,很多内容都是今后进一步学习的基础知识。

通过总复习把本学期知识内容进行系统的整理和复习,使学生对所学概念、计算方法和其它知识更好地结合掌握,并把各单元内容联系起来,形成较系统的知识,使计算能力和解答应用题的能力得到进一步的提高,圆满完成本学期的教学任务。

另外,通过总复习,查缺补漏,使学习比较吃力的同学,能弥补当初没学会的知识,为今后的进一步学习打好基础。

二、复习重点1、《第二章有理数》:抓住有理数、数轴、相反数、绝对值、大小比较等这些重要的概念极其相关知识,以判断的形式为主进行复习,强化训练有理数的加减乘除乘方极其混合运算。

2、《第三章字母表示数》:重点是同类项及合并同类项,求代数式的。

值,难点是列代数式和去括号,让学生清楚的掌握同类项和合并同类项,经过填空,判断练习,提高学生的熟练程度。

强化训练化简求值。

3、《第四章一元一次方程》:重点在于使学生能够根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法(去分母、去括号、移项、合并同类项、化系数为1),能运用一元一次方程解决实际问题。

4、《第五章走进图形世界》:空间观念:能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图。

展开图之间的转化;能根据条件做出立体模型或画出图形。

内容标准:会画基本几何体(直棱柱。

圆柱。

圆锥。

球)的三视图(主视图。

左视图。

俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原形。

了解直棱柱。

圆锥的侧面展开图,能根据展开图判断和制作立体模型。

了解基本几何体与其三视图。

展开图(球除外)之间的关系:通过典型实例,知道这种关系在现实生活中的应用(如物体的包装).5、《第六章平面图形的认识(一)》:掌握与线段、角、平行线、垂线相关的基础知识和基本技能,知道三个定理和线段中点、角平分线等定义的三种语言的相互转化。

熟练地结合图形进行线段及角的和差倍分的简单计算,会用量角器和三角板画角。

三、复习方式1、总体思想:分单元复习,同时综合测试三次。

2、单元复习方法:学生先做单元练习题,收集各学习小组反馈的情况进行重点讲解,布置适当的作业查漏补缺。

3、综合测试:严肃考风考纪,教师及时认真阅卷,讲评找出问题及时训练、辅导。

四、时间安排第一阶段:单元复习1月10日——1月11日,复习本学期各章知识内容。

第二阶段:综合测试1、1月12、13日,综合测试1,讲评;2、1月14、17日,综合测试2,讲评;3、1月18、19日,综合测试3,讲评;其目的增强学生期末考试的信心。

4、1月20日,考前心理疏导,介绍解题的方法,学生自己复习,老师答疑。

初中一年级上册数学知识点篇二根据数学课标的要求,认真钻研教材,研究教材的重点、难点、关键,吃透教材外,还深入了解学生,设计课的类型,拟定采用的教学方法,认真写好教案。

每一课都做到"有备而来",每堂课都在课前作好充分的准备,并制作各种有利于吸引学生注意力的有趣教具,课后及时做出总结,认真搜集每课书的知识要点,归纳成集。

根据不同类型的学生拟定了课堂上辅导方案,使课堂教学中的辅导有针对性,避免盲目性,提高了实效。

新课标的数学课通常采用"问题情境——建立模型——解释、应用与拓展"的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。

在这一学期,在课堂上能根据教学内容的实际创设情境,让学生一上课就感兴趣,每节课都有新鲜感;注意调动学生的积极性,加强师生交流,充分体现学生的主观能动作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时也充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。

新课标倡导"自主、合作、探究"的学习方式。

在课堂上常为学生提供动手实践、自主探究、合作交流的机会,让他们讨论、思考、表达。

由于学生乐学,兴致高昂,通常学生获得的知识都超过教材和我备课的范围。

布置作业做到精读精练,有针对性,有层次性。

对学生的作业批改及时、认真,将在作业过程出现的问题,进行总结分析然后评讲,针对有关情况及时改进教学方法,做到有的放矢。

在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,同时加大了后进生的辅导力度,以提高后进生的成绩。

我所任教的两个班的总体情况一般。

上课的时候有些学生不能专心听讲,课后不能认真独立地完成作业,作业常找别人的来抄,这样就严重影响了成绩的提高。

对此,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。

在教学上,积极征求同备课其他老师的意见,学习他们好的方法。

同时,能多听优秀老师的课,虚心向他们请教好做法和需要注意什么问题,结合他们的意见和自己的思考结果,总结出每节课教学的经验和巧妙的方法,学习别人的优点,克服自己的不足,改进教学工作。

认真学习新教育教学的'理念,以新课改的思想理念指导教学,推进新课程改革的深入开展。

十月份我参加了晋江市中学数学教师现场教学设计比赛,获得三等奖,促进专业发展和课堂教学质量的提高。

这学期也完成了晋江市首期中小学教师远程研修骨干培训班结业考核。

经过一个学期的努力,期末考就是一种考验。

无论成绩高低,都体现了我在这学期的教学成果。

教学工作苦乐相伴,我会继续努力,多问,多想,多学习,争取进步把工作搞得更好。

由于经验颇浅,许多地方存在不足,希望在未来的日子里,能在领导老师和前辈的指导下,取得更好成绩。

初中一年级数学上册知识点篇三一、方程的有关概念1.方程:含有未知数的等式就叫做方程。

2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的。

过程。

⑴方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。

用式子形式表示为:如果a=b,那么ac=bc(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax=b(a0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。

六、用方程思想解决实际问题的一般步骤1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

2.设:设未知数(可分直接设法,间接设法)。

3.列:根据题意列方程。

4.解:解出所列方程。

5.检:检验所求的解是否符合题意。

6.答:写出答案(有单位要注明答案)。

七、有关常用应用类型题及各量之间的关系1、和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

3、劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出。

相关文档
最新文档