平行四边形判定教案与习题
《平行四边形》教案参考5篇
《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。
2024年《平行四边形的认识》教案及反思平行四边形的认识教案模板
2024年《平行四边形的认识》教案及反思一、教学目标1.让学生通过观察、操作活动,掌握平行四边形的概念、性质和判定方法。
2.培养学生运用数学知识解决实际问题的能力。
3.激发学生学习数学的兴趣,提高学生的空间想象力和逻辑思维能力。
二、教学重点与难点1.教学重点:平行四边形的概念、性质和判定方法。
2.教学难点:平行四边形的判定方法的运用。
三、教学过程1.导入新课(1)教师展示一组图形,引导学生观察并说出它们的特点。
(2)引导学生回顾已学的四边形知识,为新课的学习做好铺垫。
2.探究新知(1)引导学生观察平行四边形的特点,让学生尝试用自己的语言描述。
(3)教师举例说明平行四边形的判定方法,让学生跟随教师一起分析、讨论。
3.实践应用(1)教师给出一些实际问题,让学生运用平行四边形的性质和判定方法解决。
(2)学生分组讨论,共同完成实际问题,教师巡回指导。
(2)教师展示一些特殊的平行四边形,如矩形、菱形等,让学生观察它们的特点。
四、教学反思1.本节课通过观察、操作活动,让学生掌握了平行四边形的概念、性质和判定方法,达到了教学目标。
2.在教学过程中,教师注重引导学生主动探究、积极思考,提高了学生的学习兴趣和空间想象力。
3.实践应用环节,学生能够将所学知识应用于实际问题,提高了学生的解决问题的能力。
4.课堂氛围活跃,学生参与度高,教学效果较好。
一、教学目标1.让学生通过观察、操作活动,掌握平行四边形的概念、性质和判定方法。
2.培养学生运用数学知识解决实际问题的能力。
3.激发学生学习数学的兴趣,提高学生的空间想象力和逻辑思维能力。
二、教学重点与难点1.教学重点:平行四边形的概念、性质和判定方法。
2.教学难点:平行四边形的判定方法的运用。
三、教学过程1.导入新课2.探究新知3.实践应用四、教学反思1.教学过程中,教师是否注重引导学生主动探究、积极思考。
2.学生是否能够将所学知识应用于实际问题。
3.课堂氛围是否活跃,学生参与度是否高。
课程教学设计方案平行四边形的判定
课程教学设计方案平行四边形的判定课程教学设计方案:平行四边形的判定一、课题内容课题名称:平行四边形的判定课时:2课时年级:八年级学科:数学二、教学目标1. 知识与技能:理解并掌握平行四边形的定义。
学会使用几何证明方法判定一个四边形是否为平行四边形。
2. 过程与方法:通过观察、推理、交流等活动,培养学生的空间想象能力和逻辑推理能力。
运用多媒体和实物模型,增强直观教学。
3. 情感态度与价值观:培养学生对几何学的兴趣和审美情感。
强调团队合作的重要性。
三、教学重点与难点重点:平行四边形的定义及判定方法。
难点:几何证明的过程和逻辑推理。
四、教学准备多媒体课件平行四边形的模型或图片绘图工具(如直尺、圆规等)五、教学过程1. 导入:利用多媒体展示生活中的平行四边形实例,如建筑物的结构、路标等,引发学生兴趣。
提问:“你们在哪里还见过平行四边形?它们有什么特点?”2. 新课导入:回顾四边形的定义和分类。
引入平行四边形的定义,并通过模型展示其特征。
3. 探究活动:分组活动:每组学生得到不同的四边形模型,判断哪些是平行四边形。
讨论与分享:每组汇报他们的发现,并讨论如何判定一个四边形是平行四边形。
4. 讲解与示范:讲解平行四边形的判定方法,如对边平行、对角线互相平分等。
通过示例演示如何使用这些方法进行证明。
5. 巩固练习:发放练习题,让学生独立完成。
随机选择几名学生上黑板展示解题过程。
展示平行四边形在实际生活中的应用,如建筑设计、艺术作品等。
7. 作业布置:分配相关的练习题,巩固所学知识。
探索任务:让学生寻找生活中的平行四边形,并尝试用今天学到的知识进行解释。
六、教学反思教学结束后,教师应反思教学效果,特别是学生对平行四边形判定方法的掌握程度。
调整教学方法,以适应不同学生的学习风格和需求。
课程教学设计方案:分数的加减法一、课题内容课题名称:分数的加减法课时:2课时年级:五年级学科:数学二、教学目标1. 知识与技能:理解并掌握分数加减法的运算规则。
新人教版八年下《19.1平行四边形-判定》word教案3篇
19.1.2 平行四边形的判定(一)教学目知识与技能1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题过程与方法经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力. 情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点理解和掌握平行四边形的判定定理.难点几何推理方法的应用.教学过程备注教学设计与师生互动第一步:创景引入:老师提问:1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?演示图片:选择各种四边形图片展示.提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?总结:平行四边形判定1 两组对边分别相等的四边形是平行四边形.平行四边形判定2 对角线互相平分的四边形是平行四边形.第二步:应用举例:例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.证明:(1) ∵A′B′∥BA,C′B′∥BC,∴四边形ABCB′是平行四边形.∴∠ABC=∠B′(平行四边形的对角相等).同理∠CAB=∠A′,∠BCA=∠C′.(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C 是平行四边形.∴AB=B′C,AB=A′C(平行四边形的对边相等).∴B′C=A′C.同理B′A=C′A,A′B=C′B.∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.第三步:随堂练习1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.(6个)②第8个图形中平行四边形的个数为___ __.(20个)第四步:课后练习:1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,B O=1/2BD,则四边形ABCD是平行四边形.()2、在四边形ABCD中,AC交BD 于点O,若OC= 且,则四边形ABCD是平行四边形.3、下列条件中,能够判断一个四边形是平行四边形的是()(A)一组对角相等;(B)对角线相等;(c)一组对角相等;(D)对角线相等;3、下列条件中能判断四边形是平行四边形的是().A、对角线互相垂直B、对角线相等C对角线互相垂直且相等D 对角线互相平分4、已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形.(用两种方法)5、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.6、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN .7.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF课后小结与反思:19.1.2 平行四边形的判定(三)教学目标知识与技能1.理解三角形中位线的概念,掌握它的性质2.能较熟练地应用三角形中位线性质进行有关的证明和计算过程与方法经历探索、猜想、证明的过程,进一步发展推理论证的能力.感悟几何学的推理方法.情感态度与价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.重点掌握和运用三角形中位线的性质.难点三角形中位线性质的证明(辅助线的添加方法)教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?第二步: 引入新课例(教材P98例4) 如图,点D 、E 、分别为△ABC边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)第三步:应用举例例1已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,∵ AH=HD ,CG=GD ,∴ H G ∥AC ,HG=21AC (三角形中位线性质).同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.第四步:课堂练习1.如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点的距离是 m ,理由是 .2.已知:三角形的各边分别为8cm 、10cm 和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,(1)若EF=5cm ,则AB= cm ;若BC=9cm ,则DE= cm ;(2)中线AF 与DE 中位线有什么特殊的关系?证明你的猜想.第五步:课后巩固1.(填空)一个三角形的周长是135cm ,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△A BC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.课后小结与反思:19.1.2 平行四边形的判定(二)教学目标知识与技能1.掌握用一组对边平行且相等来判定平行四边形的方法2.会综合运用平行四边形的四种判定方法和性质来证明问题3、使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系.过程与方法通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.难点几何推理方法的应用.平行四边形的判定定理与性质定理的综合应用.教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;2.平行四边形的判定方法;3.【探究】取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.第二步:应用举例:例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CD.∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC . ∴DE=BF . ∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).∴ BE=DF .此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.例2(补充)已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F .求证:四边形BEDF 是平行四边形.分析:因为BE ⊥AC 于E ,DF ⊥AC 于F ,所以BE ∥DF .需再证明BE=DF ,这需要证明△ABE 与△CDF 全等,由角角边即可.证明:∵ 四边形ABCD 是平行四边形,∴ AB=CD ,且AB ∥CD .∴ ∠BAE=∠DCF .∵ BE ⊥AC 于E ,DF ⊥AC 于F ,∴ BE ∥DF ,且∠BEA=∠DFC=90°.∴ △ABE ≌△CDF (AAS ).∴ BE=DF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).例3、 已知:如图3,E 、F 是平行四边形ABCD 对角线AC 上两点,且AE =CF.求证:四边形BFDE 是平行四边形.B A OC D EF图3分析:已知平行四边形可用平行四边形的性质,求证平行四边形要想判定定理,由于E 、F 在对角线上,显然用对角线互相平分来判定.证明:连结BD 交AC 于O.是平行四边形四边形即平行四边形ABCD OFEO CF OC AE AO CFAE ODOB ,OC OA ABCD ∴=-=-∴===∴(对角线互相平分的四边形是平行四边形)这道题,还可以利用CFB AED ,DFC ABE ∆≅∆∆≅∆用对边相等或平行来判定平行四边形,相比之下使用对角线较简便.例4、 已知:如图DBC ADB BF DE ,AC BF ,AC DE ∠=∠=⊥⊥。
平行四边形的判定 教学设计
教学设计:平行四边形的判定1. 目标:使学生能够理解并掌握平行四边形的定义和判定方法。
2. 教学内容:-平行四边形的定义:对于四边形ABCD,如果两对对边分别平行,则该四边形为平行四边形。
-判定方法:-对边判定法:通过测量四边形的对边长度和夹角来判断是否平行。
-向量判定法:通过将四边形的对边向量进行比较来判断是否平行。
3. 教学步骤:步骤一:引入概念-引导学生回顾并复习平行线的定义和性质,强调平行线之间的关系和特点。
-引入平行四边形的概念,给出平行四边形的定义,并展示一些实际生活中的例子。
步骤二:对边判定法-解释对边判定法的原理和步骤:通过测量四边形的对边长度和夹角来判断是否平行。
-示意图:绘制一个示意图,标记四边形的对边和夹角,让学生可以更好地理解和应用判定法。
-搭配实例:给出几个具体的四边形,让学生通过测量对边长度和夹角来判断是否为平行四边形。
步骤三:向量判定法-解释向量判定法的原理和步骤:通过将四边形的对边向量进行比较来判断是否平行。
-示意图:绘制一个示意图,标记四边形的对边向量,让学生可以更好地理解和应用判定法。
-搭配实例:给出几个具体的四边形,让学生通过比较对边向量来判断是否为平行四边形。
步骤四:综合应用-提供一些综合性的问题和情境,要求学生运用所学的对边判定法和向量判定法来判断是否为平行四边形。
-鼓励学生主动提出问题,并进行讨论和解答,培养学生的分析和解决问题的能力。
4. 教学资源:-平行四边形的定义和性质的教材资料或课件。
-示意图的投影或绘制工具。
-实际生活中的平行四边形的图片或示例。
5. 教学评估:-练习题:提供一些练习题,让学生通过对边判定法和向量判定法来判断是否为平行四边形。
-问题解答:提出一些情境问题,要求学生运用所学的知识进行分析和解答。
-讨论参与:鼓励学生积极参与教学过程中的问题讨论和解答,评估他们的理解和应用能力。
通过以上教学设计,学生可以逐步理解和掌握平行四边形的定义和判定方法。
平行四边形教案(7篇)
平行四边形教案(7篇)作为一位杰出的老师,时常需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?读书破万卷下笔如有神,以下内容是本文范文为您带来的7篇《平行四边形教案》,如果能帮助到亲,我们的一切努力都是值得的。
平行四边形教案篇一导学目标:1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。
2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
能根据判别方法进行有关的应用。
3、在探索过程中发展学生的合理推理意识、主动探究的习惯。
4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
导学重点:平行四边形的判别方法。
导学难点:根据判别方法进行有关的应用导学准备:多媒体课件导学过程:一、快速反应1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?结论:______________________________________符号表示:4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。
图中有哪些互相平行的线段?二、议一议1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?三、平行四边形的判别方法:(1)两组对边分别平行的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的。
四边形是平行四边形。
平行四边形教案(最新6篇)
平行四边形教案(最新6篇)平行四边形篇一第二课时:平行四边形面积的计算练习课教学内容:练习二1 — 5题教学目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。
教学过程:练习二:第1题:使学生画出的平行四边形面积与图中长方形面积相等,平行四边形底与高的乘积为15.所画平行四边形的底和高分别为5和3、3和5或15和1.第2题:学生在测量时一定要注意底和高必须是对应的一组。
第3题:要告诉学生用途中标出的数据计算出来的面积是近似值。
这种近似的测量和计算在实际生活中经常用到。
第5题:可以让同桌两人分别准备一样大小的长方形框架。
操作时,一个长方形不动,另一个长方形拉成平行四边形。
通过观察、比较后要明确两点:1、把长方形拉成平行四边形后,周长没变,面积变了。
2、拉成的平行四边形越是显得扁平,它的高就越短,面积就会越小平行四边形篇二七、教学步骤【复习提问】图11.什么叫平行四边形?我们已经学习了它的哪些性质?2.已知:如图1,,.求证:.3.什么叫做两条平行线间的距离?它有什么性质?【引入新课】在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的。
如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题。
【讲解新课】图2(1)平行四边形的性质定理3,平行四边形的对角线互相平分。
先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明。
(2)平行四边形性质,定理的综合应用:同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键。
图3例2 已知:如图3 的对角线、相交于点,过点与、分别相交于点、.求证:.证明比较容易,只须证出△ △△,或△ △△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势。
如这里可直接由定理3得出,而不再重复定理的推导过程证出。
平行四边形的判定数学教案及反思
平行四边形的判定数学教案及反思数学教案是初中数学教师根据教学大纲和学生的实际情况编写的教学设计方案,对于课堂的展开十分重要,下面我为大家带来,欢迎大家参考。
平行四边形的判定数学教案教学建议1.重点平行四边形的判定定理重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.2.难点灵活运用判定定理证明平行四边形难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.3.关于平行四边形判定的教法建议本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.教学设计示例1[教学目标] 通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。
平行四边形的判定教案
19.1.2平行四边形的判定(1)第三课时平行四边形的判定(一)学习目标知识与技能:探索并掌握平行四边形的判别条件,领会其应用.过程与方法:经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力.情感态度与价值观:培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵.重难点、关键重点:理解和掌握平行四边形的判定定理.难点:几何推理方法的应用.关键:把握动手操作、观察、交流这一思想立线,利用三角形全等的概念加以理解,解决重点突破难点.教学准备教师准备:投影仪,教具:课本P96“探究”内容;补充材料制成投影片.学生准备:复习平行四边形性质;学具:课本P96“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“//”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形⎧⎧⇒⎪⎨⎩⎪⎪⎧⎪⇒⇒⎨⎨⎩⎪⎪⇒⎪⎪⎩对边平行边对边相等对角相等角邻角互补对角线互相平分【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形.(如下图)教师活动:归纳学生的发言,将问题引入到平行四边形判定方法上来.教师归纳:(借助上面的性质归纳)平行四边形判定与性质:备注:具体内容见课本P96~P97,教师此时可引导学生对定理进行证明.提出问题:同学们能否证明出上面所提出的判定呢?学生活动:开始证明上面提出的判定方法.主要是通过辅助线将四边形切割成一对三角形,再证明这对三角形全等把问题归结到定义上去.评析:在教师的指导下,学生学会添加辅助线,并学会数学的化归思想,这是几何学的重要环节,应予以突破.【设计意图】将两个“探究”应用操作感知的方法来发现,再应用数学化归思想,借助辅助线予以推理论证,达到解决重点,突破难点的目的.二、范例点击,应用所学例3(投影显示)如图,ABCD的对角线AC,BD交于点O,E、F是AC上的两点,并且AE=CF.求证四边形BFDE是平行四边形.ACBO FED思路点拨:例3的证明方法有多种,思路1:用课本的证法,依据平行四边形的对角线性质为方向,用AE=CF,可得OE=OF,OB=OD,从而得证.思路2:连接BE、DF,•利用三角形全等来证明四边形BFDE的两组对边分别相等.思路3:证明△ADE•≌△BCF•得到DE=BF,∠DEO=∠BFO.从而推出DE∥BF,也就是说用一组对边平行且相等的方法来证.但课本的证法最简单.教师活动:操作投影仪,分析例3,引导学生从不同的思路来证明例3.•拓宽学生的思维,请部分学生上讲台演示.学生活动:分四人小组,合作交流,对例3提出不同的证明思路.•踊跃上台“板演”.【设计意图】以例3为素材,发展学生一题多证的发散性思维,•同时将上面的三种平行四边形的判定方法进行应用、归纳,形成切入点,但要注意采用最优证法.【课堂演练】(投影显示)演练题:在ABCD中,E、F分别是AB、CD的中点,四边形AECF是平行四边形吗?证明你的结论.思路点拨:本道题有多种证法,如:可以从一组对边平行且相等的角度切入去证AE//FC;也可以从两组对边分别相等的切入点予以证明,去证AE=FC,AF=EC.【活动方略】教师活动:操作投影仪,组织学生训练,巡视、关注“学困生”的思维,发现好的证明方法.学生活动:独立思考,应用所学知识切入进行证明,形成分析思路,注意问题转化.踊跃上台演示.教师活动:在学生充分思考的基础上,请几位不同证明方法的学生上讲台演示,同时纠正书写表达方法.评析:应用一组对边平行且相等的方法较为简捷,在分析中要善于将未知问题逆推转化成能够解决的熟悉问题.【设计意图】让学生反复认识,学会分析.三、随堂练习,巩固深化1.课本P97“练习” 1,2.2.【探研时空】如图,ABCD中,AE⊥BD,CF⊥BD,垂足为E、F、G、H分别为AD、BC的中点,求证:EF和GH互相平分.(请用两种不同的证法).评析:课本P97“练习2”可以做为平行四边形的又一判定方法.四、课堂总结,发展潜能平行四边形判定:1.边的关系:⎧⎪⎨⎪⎩证明两组对边分别平行证明两组对边分别相等证明一组对边平行且相等2.角的关系:证明两组对角分别相等.3.对角线的关系:证明两条对角线互相平分.备注:借助图形来理解,总结.五、布置作业,专题突破1.课本P100 习题19.1 4,5,10,122.选用课时作业优化设计六、课后反思第三课时作业优化设计【驻足“双基”】1.在ABCD中,若∠B-∠A=60°,则∠D=________.2.平行四边形的长边是短边的2倍,一条对角线与短边垂直,•则这个平行四边形的各角是__________.3.如果一个平行四边形的一边长是8,一条对角线长为6,那么它的另一条对角线的长x的取值范围是________.4.由两个全等三角形用各种不同的方法拼成四边形,•在这些拼成的四边形中是平行四边形的个数是().A.4个 B.3个 C.2个 D.1个5.以长为3cm、4cm、6cm的三条线段中的两条为边,另一条为对角线画平行四边形,可以画出不同形状的平行四边形().A.1个 B.2个 C.3个 D.4个6.已知:如图ABCD中,DM=BN,BE=DF,求证:四边形MENF是平行四边形.【提升“学力”】7.已知:如图,△ABD、△BCE、△ACF都是等边三角形,求证:四边形ADEF•是平行四边形.【聚焦“中考”】8.(2004年黑龙江省哈尔滨市中考题)如图,已知E为平行四边形ABCD中DC边的延长线上一点,且CE=DC,连结AE,分别交BC、BD于点F、G,连接AC交BD于O,连结OF.求证:AB=2OF.答案:1.120° 2.60°,120°,60°,120° 3.10<x<22 4.B 5.C6.•提示:•证△BEN≌△DFM,∴EN=FM,再证:△BFN≌△DEN7.提示:△CEF≌△CBA,∴EF=BA=AD,•同理△BDE≌△BAC,DE=AC=AF,∴ADEF 8.连结BE,∵ABCD,∴AB//CD,AO=OC,∵CE=CD,∴AB//CE,∴AB//EC,∴BF=FC,∴OF//12AB,∴AB=2OF.。
平行四边形的判定教案
平行四边形的判定教案教案标题:平行四边形的判定教学目标:1. 理解平行四边形的定义和特征。
2. 能够判定给定的四边形是否为平行四边形。
3. 掌握平行四边形的性质和相关定理。
教学准备:1. 平行四边形的定义和性质的教学资料。
2. 一些练习题和实例,用于巩固学生的理解和应用能力。
3. 教学投影仪或白板,以便展示教学内容。
教学过程:引入:1. 引导学生回顾并复习矩形的特征和性质,例如四个内角均为直角。
2. 提问学生,是否还有其他四边形具有特殊性质?探究:3. 展示平行四边形的定义和特征,即两对对边分别平行且相等。
4. 通过几个实例,引导学生观察和发现平行四边形的特点,例如对边长度相等、对角线互相平分等。
5. 分组讨论,让学生互相交流并总结平行四边形的性质。
巩固:6. 给学生一些练习题,让他们应用所学知识来判定给定的四边形是否为平行四边形。
7. 引导学生思考如何利用平行四边形的性质来解决实际问题,例如计算面积或证明其他几何定理。
拓展:8. 引导学生思考,如果已知一个四边形是平行四边形,我们能推断出什么?9. 介绍平行四边形的相关定理,例如平行四边形的对角线互相平分、对角线长度的关系等。
总结:10. 总结平行四边形的定义、特征和性质,并强调学生在几何问题中的应用能力。
11. 鼓励学生通过练习和实践来巩固所学知识。
评估:12. 给学生一些评估题目,以检验他们对平行四边形的理解和应用能力。
13. 对学生的答案进行讨论和解释,帮助他们纠正错误并加深理解。
拓展活动:14. 鼓励学生进行拓展活动,例如设计一个平行四边形的折纸模型或制作一个平行四边形的展板,以展示他们的学习成果。
教学反思:15. 教师对教学过程进行反思,总结教学中的亮点和不足,并提出改进的建议。
教学延伸:16. 在后续的几何学习中,引导学生将平行四边形的性质与其他几何概念相结合,例如三角形、多边形等,以拓展他们的几何思维能力。
平行四边形的判定说课稿(通用8篇)
平行四边形的判定说课稿平行四边形的判定说课稿(通用8篇)作为一名老师,通常需要用到说课稿来辅助教学,说课稿有助于顺利而有效地开展教学活动。
快来参考说课稿是怎么写的吧!下面是小编整理的平行四边形的判定说课稿范文,仅供参考,欢迎大家阅读。
平行四边形的判定说课稿篇1一、说教材本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。
它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。
二、说学情八年级的学生已经学习了初中阶段包括全等三角形的相关知识、平行四边形的性质在内的绝大多数几何概念及定理。
学生的抽象思维能力、逻辑推理能力有了很大的提高,学生对于新鲜的知识也充满着好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。
因此,由教师组织教学,让学生自主探索平行四边形的判定定理不仅成为可能,又可以作为初中几何知识综合能力的一次检验、一次再提升!三、教学目标【知识技能目标】1、运用类比的方法,通过学生的合作探究,得出平行四边形的第三个判定方法。
2、理解平行四边形的这两种判定方法,并学会简单运用。
【过程与方法目标】1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。
【情感态度与价值观目标】1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。
2、通过对平行四边形两个判定方法的探究,提高学生解决问题的能力。
3、通过对平行四边形两个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。
四、教学重点、难点【重点】平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。
18.1平行四边形的判定(教案)
三、教学难点与重点
1.教学重点
(1)掌握平行四边形的定义及基本性质,理解其对边平行且相等的特点;
举例:强调平行四边形两组对边分别平行且相等,对角线互相平分等核心性质。
(2)熟练运用平行四边形的判定方法,包括:两组对边分别平行、一组对边平行且相等、两组对边分别相等、对角线互相平分;
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的判定方法和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行四边形的基本性质和判定方法。
在学生小组讨论环节,虽然同学们积极参与,但部分学生的观点较为片面。我应该在讨论过程中,适时提出一些挑战性的问题,引导学生从不同角度思考问题,提高他们的逻辑思维和分析问题的能力。
最后,总结回顾环节,我发现部分学生对平行四边形判定的理解仍不够深入。在今后的教学中,我需要更加关注学生的掌握情况,通过设计不同难度的练习题,帮助他们巩固知识点,提高解题能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、判定方法和应用。同时,我们也通过实践活动和小组讨论加深了对平行四边形判定知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
平行四边形的性质和判定教学设计
平行四边形的性质和判定教学设计教学目的:1、深入了解平行四边形的不稳定性;2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊般--特殊”的辨证唯物主义观点。
教学重点:平行四边形的性质和判定。
教学难点:性质、判定定理的运用。
教学程序:复习创情导入平行四边形的性质边:对边平行(定义1);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:边:两组对边平行(定理1);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)二、授课1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。
4、反馈归纳:根据预习和讨论的效果,进行点拨指导。
5、尝试练习:完成习题,解答疑难。
6、深化创新:平行四边形的,性质边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)来在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:边:两组对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4) 两组对角分别相等(定理1)7、推荐作业1、熟记“归纳整理的内容”2、完成《练习卷》3、预习(1)矩形的定义?(2)矩形的性质定理1、2及其推论的内容是什么?(3)怎样证明?(4)例1的解答过程中,运用哪些性质?思考题1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已知求证;2、如何证明性质定理3的逆命题?3、有几种方法可以证明?4、例2的证明中,运用了哪些性质及判定?是否有其他方法?5、例3的证明中,运用了哪些性质及判定?是否有其他方法?跟踪练习1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD 是平行四边形。
平行四边形教案(精选14篇)
平行四边形教案(精选14篇)八年级数学教案:《平行四边形》篇一一、教学目标:1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。
2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。
3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。
教学重点:在制作中发现平行四边形的基本特征。
教学难点:引导学生发现平行四边形的特征。
二、教学过程:(一)创设情境,设疑激趣1.师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?生:能师:是什么平面图形,谁能上来指一指。
生:平行四边形根据回答:教师板书:平行四边形(二)引导探究,自主建构师:同学们再看,这里面有没有平行四边形?(出示扩缩尺、升降机图片)生:谁能上来指一指?师:那同学们想一下什么样的图形是平行四边形呢?请看大屏幕(大屏幕出示平行四边形定义:两组对边分别平行的四边形叫做平行四边形)师:谁能找一下这句话里最重要的几个词,并解释一下?生:四边形师:什么样的图形是四边形?生:由四条边围成的图形师:还有哪几个词?生:两组对边分别平行师:你能上来一边用手指着一边给大家解释一下这句话吗?生:能师:除了两组对边分别平行,两组对边的长度有什么关系呢?拿出刚刚发给你的平行四边形,量一量四条边的长度,你发现了什么?生:两组对边相等师:平行四边形的两组对边平行且相等,那么平行四边形的对角有什么特点呢?继续拿出发给你的平行四边形,把两组对角像老师这样折一折,你发现了什么?生:两组对角相等师:刚才同学们说的都非常好,现在带着你的理解在研究单的方格纸上画一个平行四边形生画图,师巡视指导。
研究单在下面的方格纸上画一个平行四边形师:(选几个学生画的平行四边形粘到黑板上)孩子们,画好了吗?生:画好了师:画好了,请看黑板,思考老师这样一个问题:为什么同学们画的平行四边形都不一样大呢?随意生怎么说,只要表达出底和高的意思就行师:介绍平行四边形的底和高注:这个平行四边形的高学生画注:老师画第二种情况师:请同学们继续拿出研究单,完成研究二。
平行四边形教案(7篇)
平行四边形教案(优秀7篇)作为一名教职工,就不得不需要编写教案,教案有助于学生理解并掌握系统的知识。
那么教案应该怎么写才合适呢?它山之石可以攻玉,下面本文范文为您精心整理了7篇《平行四边形教案》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
平行四边形教案篇一人教版五年级上册第六单元第一课时p87-881.理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。
3.感受数学在生活中的作用,体验学习数学的乐趣。
教学重点:探索并掌握平行四边形的面积计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积计算公式的推导过程。
教具学具:课件、一个平行四边形、剪刀一、创设情境,生成问题1.故事导入2.从平行四边形的地中引出课题“平行四边形的面积”。
二、探索交流,解决问题1.用数方格的方法计算面积。
(1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的`面积。
说明要求:一个方格表示1平方米,不满一格的都按半格计算。
把数出的数据填在表格中(见教材第87页表格)(2)学生完成,汇报结果。
(3)观察表格的数据,你发现了什么?通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。
2.推导平行四边形面积计算公式。
(1)提问:如果不数方格,能不能计算平行四边形的面积呢?(2)引导解决方法:把平行四边形转化成长方形(3)学生动手操作:拿出你们准备的平行四边形,以同桌为一小组,用课前准备的平行四边形和剪刀进行剪拼,教师巡视指导。
(4)学生汇报演示剪拼的过程及结果。
(5)教师用课件演示剪—平移—拼的过程。
(6)我们已经把一个平行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(7)出示讨论题,小组讨论。
平行四边形教案 (12)
平行四边形教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作总结、策划方案、演讲致辞、报告大全、合同协议、条据书信、党团资料、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays for everyone, such as work summary, planning plan, speeches, reports, contracts and agreements, articles and letters, party and group materials, teaching materials, essays, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!平行四边形教案关于平行四边形教案三篇作为一位无私奉献的人·民教师,常常需要准备教案,教案是教学活动的依据,有着重要的地位。
平行四边形的判定教学设计
平行四边形的判定教学设计平行四边形的判定教学设计在同一个二维平面内,由两组平行线段组成的闭合图形,称为平行四边形。
以下是店铺整理的平行四边形的判定教学设计,仅供参考,大家一起来看看吧。
平行四边形的判定教学设计篇1第一课时目标设计:知识目标:1、在对平行四边形认识的基础上,探索平行四边形的判定方法。
2、通过逆命题的猜想、操作验证、逻辑推理证明的过程,体验数学研究和发现的过程,学会数学思考的方法。
能力目标:能综合运用平行四边形的判定方法和性质解决一些简单的问题。
德育目标:发展学生的合情推理能力,进一步培养学生的逻辑推理能力,规范推理的书写格式。
重点、难点:重点:探究并掌握平行四边形的判定方法,能综合运用平行四边形的判定解决问题。
难点:理解合情推理和逻辑推理的融合,书写规范的推理过程。
教学方法:探究式学习方法:自主学习、合作交流教具准备:三角板、圆规、木条(两个长的相等,两个短的相等)、多媒体课件方法设计:导入新课1、创设问题情境有一块平行四边形的玻璃块,假如不小心打碎了,聪明的师傅拿着细绳很快将原来的平行四边形画出来了,你知道他用的是什么方法吗?带着这个问题,我们进入今天的探索。
板书课题:平行四边形的判定(一)交待本节课的学习目标。
2、回忆旧知(1)平行四边形的定义?(2)平行四边形具有哪些性质?(3)互逆命题的定义?3、提出问题,引入新知怎样判定一个四边形是平行四边形呢?当然,我们可以根据定义:两组对边分别平行的四边形是平行四边形来判定。
还有其他的判定方法吗?本节课我们共同研究这个问题。
探究新知一、自主学习(1)学生自主学习本节内容,整体感知,圈点出难点疑点。
(2)大胆猜想:你能写出“平行四边形的两组对边分别相等”的逆命题吗?猜想这个命题是真命题还是假命题?活动结果:根据上一章所学习的逆命题定义,学生独立写出,进行大胆猜想。
二、合作交流,实验操作(多媒体课件演示)请同学们拿出自己准备好的四段木条,四个同学一组活动,观察思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形判定教案
第一部分
一、课堂引入
【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
从探究中得到:
平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2 对角线互相平分的四边形是平行四边形。
二、例习题分析
例1(教材P87例3)已知:如图ABCD的对角线AC、
BD交于点O,E、F是AC上的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.
(证明过程参看教材)
问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.
例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.
求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;
(2) △ABC的顶点分别是△B′C′A′各边的中点.
证明:(1) ∵A′B′∥BA,C′B′∥BC,
∴四边形ABCB′是平行四边形.
∴∠ABC=∠B′(平行四边形的对角相等).
同理∠CAB=∠A′,∠BCA=∠C′.
(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.
∴AB=B′C,AB=A′C(平行四边形的对边相等).
∴B′C=A′C.
同理B′A=C′A,A′B=C′B.
∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、
A′B′的中点.
例3(补充)小明用手中六个全等的正三角形做拼图游戏时,
拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你
的理由.
解:有6个平行四边形,分别是ABOF,ABCO,BCDO,
CDEO,DEFO,EFAO.
理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.
三、随堂练习
1.如图,在四边形ABCD中,AC、BD相交于点O,
(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边
形;
(2)若AC=10cm ,BD=8cm ,那么当AO=__ _cm ,DO=__ _cm 时,四边形ABCD 为平行四边形.
2.已知:如图,ABCD 中,点E 、F 分别在CD 、AB 上,DF
∥BE ,EF 交BD 于点O .求证:EO=OF .
第二部分
一、引入课堂
【探究】 取两根等长的木条AB 、CD ,将它们平行放置,再用两根木条BC 、AD 加固,得到的四边形ABCD 是平行四边形吗?
结论:一组对边平行且相等的四边形是平行四边形.
二、例习题分析
例1(补充)已知:如图,ABCD 中,E 、F 分别是AD 、BC
的中点,求证:BE=DF .
分析:证明BE=DF ,可以证明两个三角形全等,也可以证明
四边形BEDF 是平行四边形,比较方法,可以看出第二种方法简单.
证明:∵ 四边形ABCD 是平行四边形,
∴ AD ∥CB ,AD=CD .
∵ E 、F 分别是AD 、BC 的中点,
∴ DE ∥BF ,且DE=
21AD ,BF=21BC . ∴ DE=BF .
∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形). ∴ BE=DF .
此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.
例2(补充)已知:如图,
ABCD 中,E 、F 分别是AC 上
两点,且BE ⊥AC 于E ,DF ⊥AC 于F .求证:四边形BEDF 是平
行四边形.
分析:因为BE ⊥AC 于E ,DF ⊥AC 于F ,所以BE ∥DF .需再证明BE=DF ,这需要证明△ABE 与△CDF 全等,由角角边即可.
证明:∵ 四边形ABCD 是平行四边形,
∴ AB=CD ,且AB ∥CD .
∴ ∠BAE=∠DCF .
∵ BE ⊥AC 于E ,DF ⊥AC 于F ,
∴ BE ∥DF ,且∠BEA=∠DFC=90°.
∴ △ABE ≌△CDF (AAS ).
∴BE=DF.
∴四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
三、课堂练习
1.在下列给出的条件中,能判定四边形ABCD为平行四边形的是().
(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D
(C)AB=CD,AD=BC (D)AB=AD,CB=CD
2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图
中的平行四边形,并说明理由.
平行四边行判定习题
1.下列条件中能判断四边形是平行四边形的是().
(A)对角线互相垂直(B)对角线相等
(C)对角线互相垂直且相等(D)对角线互相平分
2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,
求证:BE=CF
3.判断题:
(1)相邻的两个角都互补的四边形是平行四边形;()
(2)两组对角分别相等的四边形是平行四边形;()
(3)一组对边平行,另一组对边相等的四边形是平行四边形;()
(4)一组对边平行且相等的四边形是平行四边形;()
(5)对角线相等的四边形是平行四边形;()
(6)对角线互相平分的四边形是平行四边形.()
4.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.
5.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;
(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)
6.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD
的平分线.求证:四边形AFCE是平行四边形.。